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Efficient first-principles electronic transport approach to
complex band structure materials: the case of n-type Mg3Sb2
Zhen Li 1✉, Patrizio Graziosi2 and Neophytos Neophytou1

We present an efficient method for accurately computing electronic scattering rates and transport properties in materials with
complex band structures. Using ab initio simulations, we calculate a limited number of electron–phonon matrix elements, and
extract scattering rates for acoustic and optical processes based on deformation potential theory. Polar optical phonon scattering
rates are determined using the Fröhlich model, and ionized impurity scattering rates are derived from the Brooks-Herring theory.
Subsequently, electronic transport coefficients are computed within the Boltzmann transport theory. We exemplify our approach
with n-type Mg3Sb2, a promising thermoelectric material with a challenging large unit cell and low symmetry. Notably, our method
attains competitive accuracy, requiring less than 10% of the computational cost compared to state-of-the-art ab initio methods,
dropping to 1% for simpler materials. Additionally, our approach provides explicit information on individual scattering processes,
offering an alternative that combines efficiency, robustness, and flexibility beyond the commonly employed constant relaxation
time approximation with the accuracy of fully first-principles calculations.
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INTRODUCTION
The discovery of novel materials has evolved into the paradigm of
big data-driven science1–3, which can benefit from theory
(physical and chemical laws), experiment (empirical trial and error
method), and computer simulation such as density functional
theory (DFT) calculations. With the continuous development of
artificial intelligence, new approaches, such as machine learn-
ing4,5, have broad applications, ranging from image recognition to
predictive analytics in materials science. Machine learning, fueled
by vast datasets, requires high-quality training data to avoid
erroneous, missing, or redundant information. To obtain large
quantities of high-quality data, it is necessary to balance the
accuracy of computing fundamental physical properties with the
efficiency of identifying candidate performance. This is particularly
the case for the electronic transport properties of solid-state
materials, where the central quantities are the carrier scattering
rates associated with intrinsic (electron–electron,
electron–phonon) and extrinsic (impurities, grain boundaries,
alloy disorder) scattering mechanisms. Even though
electron–phonon (e–ph) interaction dominates the device perfor-
mance at elevated temperatures, its detailed description is still
complicated. However, the key transport parameters are crucial for
novel material deployment in a variety of technological applica-
tions, including solar cells6–8, solid-state batteries9–11, light-
emitting diodes (LED)12,13, photocatalysis14–16, thermoelec-
trics17–19, and many more.
In recent years, there has been an increase of interest in the

computational prediction of the electronic transport behavior in
the myriad complex band materials that have emerged20–23. One
of the earliest and most common approaches is to solve the
Boltzmann transport equation (BTE) in the constant relaxation
time (CRT) approximation. This is due to the absence of
knowledge about the actual relaxation times, and it assumes
energy, momentum, band, and temperature independence of the
relaxation time. Traditionally, the most commonly used code is
BoltzTraP24,25, based on a smoothed Fourier interpolation of the

DFT electronic band structures. This code, for example, has
computationally driven the field of thermoelectric (TE) materials
for years26–29. Its computational cost can be further reduced using
a maximally localized Wannier function basis set as in the
BoltzWann code30. The CRT has been successfully applied to
high-throughput searches for computing transport behavior31.
However, the relaxation time is generally not a constant.
Comparisons of electronic transport properties indicate significant
quantitative and qualitative differences between those using
energy/momentum/band-dependent relaxation times and the
CRT32, which implies that optimizing and screening materials
need to be accomplished beyond the CRT level of approximation.
DFT and density functional perturbation theory (DFPT) have

enabled calculations of e–ph interactions from first principles. This
procedure can be accelerated within the EPW code33,34. By using
Fourier interpolation techniques to capture the short-range
contributions of the e–ph matrix elements and by computing
the dipole Fröhlich term to capture their long-range e–ph
contributions35, this DFPT + Wannier method can accurately
predict the relaxation time for all the acoustic and optical phonon
modes, including the intra-valley and inter-valley scattering, and in
many cases shows a remarkable agreement with experimental
measurements36–38. Most recently, a way to include the quadru-
pole e–ph interaction beyond the Fröhlich interaction has been
developed as well39,40. The quadrupole e–ph interaction is found
to be sizable in certain non-polar materials. Taking it into account
corrects the dipole term in polar materials and better describes
the long-range interactions for obtaining more accurate transport
results. However, to capture the delicate features of the scattering
near the band edges, ultra-fine grids for the sampling of electron
and phonon wavevectors in the Brillouin zone are needed, which
results in a vast number of computed matrix elements. For
example, for cubic Si, which contains two atoms in the unit cell,
hundreds of thousands of k-points are needed to obtain
convergence in the intrinsic mobility37, and typically the number
of matrix elements is of the order of N2

k (Nk is the number of k-
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points). Thus, currently, the computation of e–ph relaxation times
and charge transport within the BTE using the DFPT + Wannier
method is highly resource-intensive for materials with larger unit
cells (containing more atoms and basis functions) and lower
symmetry (featuring larger non-equivalent k-space regions)41,42.
To reduce computation cost while maintaining good accuracy
based on the DFPT + Wannier method, several methods are
available that involve averaging or integrating matrix elements
over the entire Brillouin zone, such as EPA25 and EPIC STAR43.
Additionally, the dual interpolation method has been found to be
very effective, being several orders of magnitude faster compared
to the DFPT + Wannier method44.
Instead of using the DFPT + Wannier method, one can also

address this challenge by using deformation potential theory to
compute the relaxation times. The initial concept of the
deformation potential for the e–ph interaction in the long
wavelength limit for acoustic phonons was introduced by Bardeen
and Shockley in 195045, and it has been a driving force in
simulations of semiconductor devices ever since. This method has
also recently been included within first-principles calculations by
computing the band shift of the valence band maximum (VBM) or
conduction band minimum (CBM) due to volume change and
using that to calculate transport properties, for example, as
performed in the AMSET code46. In this case, a single acoustic
deformation potential is extracted from the shift of electron
energies under external strain. No matrix elements are computed
and these common materials parameters used can be obtained
through relatively cheap ab initio calculations or found in
materials databases47. Thus, the method is computationally
inexpensive, enabling studies of a large number of materials with
much better accuracy compared to the CRT.
In this work, we introduce an efficient formalism to combine the

DFPT + Wannier method with the deformation potential theory,
offering an alternative direction to calculate transport properties
which provides efficiency, robustness, and flexibility. We calculate
the acoustic, optical, and inter-valley deformation potentials from
e–ph matrix elements using first-principles calculations. Scattering
rates are then calculated using deformation potential theory and
Fermi’s Golden Rule by considering their full energy, momentum,
and band dependence. We complete the calculation of the overall
scattering rates by computing polar optical-phonon and ionized
impurity scattering rates. Using our own-developed open-source
Boltzmann transport code ElecTra48, we validate our approach by
performing an in-depth investigation of scattering rates, mobility,
and Seebeck coefficient for the promising TE material n-type
Mg3Sb2 and compare to experiments, the CRT, and DFPT +
Wannier calculations. The material we use as an example is chosen
for its band structure complexity, unit cell size, and degree of
symmetry, which make fully ab initio calculations computationally
prohibitive. We achieve excellent agreement with the DFPT +
Wannier method while utilizing no more than 10% of its
computational cost. Applying the same approach to Si, a simpler
material, we demonstrate once again that we can attain ab initio
accuracy, this time at less than 1% of the corresponding ab initio
computational cost. Our method belongs to the category of
methods that compute and process matrix elements. However, it
distinguishes itself through advancements in accuracy and
flexibility. Firstly, we ensure accuracy by selectively computing
crucial matrix elements at specific energies and wavevectors,
focusing on regions responsible for electronic transitions. This
allows us to afford dense grids around these significant areas.
Secondly, our approach provides explicit information on individual
scattering processes (acoustic, optical, intra- and inter-valley),
offering valuable insights and capabilities that are particularly
advantageous for designing materials with optimal multi-valley
electronic structures49.

RESULTS
Carrier scattering approach
Figure 1a displays the trigonal structure of Mg3Sb2 (space group
P3m1), which is the one of the CaAl2Si2-type Zintl compounds
with complicated chemical bonds50. Even though almost all Zintl
materials are found to be p-type, Mg3Sb2 has recently been
synthesized as n-type using excess Mg atoms51. Figure 1b shows
the band structure of Mg3Sb2. Note that the band gap is
undervalued within the PBE functional used but can be increased
by using hybrid density functional HSE06 while the shape of the
band structure is basically unaltered52. Since the experimental
band gap is relatively large at 0.8 eV53, bipolar effects are not
considered. Consequently, the band gap is not factored into our
calculations for unipolar transport in the conduction band. The
CBM is located along the L*–M* line, slightly off the L–M high
symmetry line (see Supplementary Fig. 1). In addition, the K-point
valley is only 0.18 eV above the CBM. Thus, the vicinity of its
conduction band has a high-degeneracy Fermi surface, with six-
fold carrier pockets from the CBM and six more pockets from the K
point. Only one-third of each K-valley is located within the first
Brillouin zone, giving an overall K-valley degeneracy of two. This
conduction band complexity makes it possible to achieve
outstanding n-type TE performance54,55, as a large valley
degeneracy is one of the factors for high electronic transport32,56.
The complexity of the conduction bands of Mg3Sb2 is explicitly

chosen to demonstrate our method’s flexibility in considering both
intra-valley and inter-valley scattering. Figure 1c shows the various
intra-valley scattering mechanisms that take part, i.e., acoustic
deformation potential (ADP) scattering, optical deformation poten-
tial (ODP) scattering, polar optical phonon (POP) scattering, and
ionized impurity scattering (IIS). Figure 1d shows the various inter-
valley scattering (IVS) processes (see also Supplementary Fig. 2),
where the 2nd Brillouin zone is also considered and allows the
selection of the nearest scattering distance57. Both the CBM and K
valley are considered as the final states for IVS.
For non-polar materials, we can derive all the deformation

potentials from the e–ph matrix elements Mmnν(k, q)57. The
Mmnν(k, q) is defined as58,59

Mmnνðk;qÞ ¼ umkþq δqνV
�� ��unk� �

(1)

where umk+q and unk are the lattice-periodic part of the electronic
wavefunctions for the final state on band m with wavevector
k+ q and initial state on band n with wavevector k, respectively.
δqνV is the the derivative of the self-consistent potential
associated with a phonon of wavevector q and branch index ν
that can be computed by DFPT calculations. Bardeen and Shockley
defined the ADP as the shift of the band edges due to local
strain45. Acoustic phonons under the long wavelength limit
generate a corresponding dilation of the atomic spacing, which
gives rise to a perturbing potential that tends to shift the
electronic band energy. In this case, the ADP can be defined by
Db
ADP ¼ δHjSj�1, where b denotes ‘band shift’, δH is the perturbing

potential, and S is the strain. The ADP for non-polar materials can
also be calculated from DFPT calculations by
De�ph
ADP ¼ Mmnνðk;qÞjqj�1. Khan and Allen proved that the two

deformation potential quantities from the band shift and DFPT are
the same at the semiconductor band extrema60. On the other
hand, Harrison extended the ADP theory by considering the non-
polar optical phonon interaction with carriers61. In this case, the
perturbing potential is proportional to the atomic displacement u.
The ODP can be defined as DODP= δH∣u∣−1 62, obtained from DFPT
by De�ph

ODP ¼ Mmnνðk;qÞ.
For polar materials as the Mg3Sb2 at hand, the relevant e–ph

matrix elements Mmnν(k, q) for longitudinal phonons consist of
two parts. The first is the short-range part, which leads to the
deformation potential scattering described above. The second is
the long-range interaction, i.e., the Fröhlich interaction, which is
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related to the coupling between electrons and polar optical
phonons63. In general, at small ∣q∣ vectors, the Fröhlich interaction
due to long-wavelength longitudinal optical phonons obeys ∣q∣−1,
while interactions from polar acoustic phonons are of piezoelectric
nature and obey ∣q∣−1/2, as illustrated in Fig. 1e. Note that
piezoelectric scattering is important at very low temperatures in
very pure semiconductors, so we will not discuss much piezo-
electric scattering here since we consider highly doped Mg3Sb2 at
room temperature, plus our acoustic mode matrix element
calculations did not show any ∣q∣−1/2 behavior for this material
(Supplementary Fig. 4). The recently investigated quadrupole
e–ph interaction could provide corrections beyond the dipole
Fröhlich term39,40, and it is present in both polar and non-polar
materials. In comparison to the Fröhlich interaction, which follows
an order of ∣q∣−1 at small ∣q∣, the quadrupole matrix elements
converge to a constant value of order ∣q∣0 64. Consequently, they
do not exert a dominant influence over the long-range part in this
context. The Fröhlich interaction is defined as

ML
mnνðk;qÞ ¼ i m0

1=2e2

Ωε0

P
k
Mk

�1=2

´
P

G≠�q

ðqþGÞ�Z�
k �ekνðqÞ

ðqþGÞ�k1�ðqþGÞ

´ humkþqjeiðqþGÞrjunqi

(2)

where m0 is the sum of the masses of all the atoms in the unit cell,
Ω is the unit cell volume, ε0 is the vacuum permittivity, k∞ is the
high-frequency dielectric constant, Mk is the mass for atom k,G
indicates the reciprocal lattice vector, and Z�

k is the Born effective
charge tensor.
By subtracting the long-range part from the total matrix

elements35, we can get the short-range matrix elements for the
relevant phonons, as shown in Fig. 1e, which are then used to
extract deformation potentials. The deformation potentials exclud-
ing the polar singularity are defined as De�ph

ADP ¼ ½Mmnνðk;qÞ �
ML

mnνðk;qÞ�jqj�1 and De�ph
ODP ¼ Mmnνðk;qÞ �ML

mnνðk;qÞ.
In the case of IVS, which scatters a carrier from a given valley

into another one with very large changes in momentum, only
phonons with wave vectors near the zone boundary participate.
These transitions can be acoustically or optically mediated and
can happen within the first or even into the second equivalent
Brillouin zone. Away from the Γ point, both the acoustic and
optical phonon modes are flat and of high energy. Thus, for both,
the matrix elements for IVS resemble ODP scattering, and the
inter-valley deformation potentials can be defined as
De�ph
IVS ¼ Mmnνðk;qÞ �ML

mnνðk;qÞ. Note that the long-range con-
tributions are reduced significantly at these large phonon
wavevectors required for IVS, as shown in Fig. 1e.
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ODP
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Fig. 1 Carrier scattering. a Atomic structure for Mg3Sb2. b Electronic band structure for Mg3Sb2, where the orange zone shows valleys
contributing to electron transport. c A schematic depicting intra-valley scattering, e.g., at the conduction band minimum (CBM). d Illustration
for inter-valley scattering from the CBM to other equivalent CBM valleys and to the K valley. The Fermi surfaces depicted for the CBM and K
valleys are positioned on different energies, i.e., separately at energies 0.05 eV higher than their corresponding minima for better illustration
purposes. See Supplementary Fig. 3 for the original figures. e A schematic showing the long-range and short-range matrix element
contributions to electron–phonon scattering. The blue and green zones show the small and large ∣q∣ related to the intra-valley and inter-valley
deformation potential scattering, respectively. The inset shows the phonon spectrum for Mg3Sb2, where the purple and yellow zones indicate
the optical and acoustic phonon modes considered in extracting the ODP and ADP, respectively.
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Matrix elements for Mg3Sb2

To obtain the deformation potentials and scattering rates for
Mg3Sb2, we first identify all possible electronic transitions, the
participating phonon modes, and their wavevectors. Then, we
compute the total matrix elements for all those. Next, we calculate
the long-range part of the e–ph matrix elements as in Eq. 2. For
generality and computational consistency, we perform this
operation for all modes (acoustic and optical, longitudinal and
transverse)35, where in the case of non-polar modes, the long-
range coupling strength is suppressed. After subtracting the long-
range part from the total matrix elements, what remains is the
short-range part, which is used for deriving the deformation
potentials. Figure 2 shows examples of the long-range, short-
range, and inter-valley matrix elements, where the first two are
relevant for intra-valley transitions. In Fig. 2a, the long-range
matrix elements for the optical phonon modes along the Γ–M
direction show that only two out of the four longitudinal optical
phonon modes are found to follow the ∣M∣ ~ ∣q∣−1 relation at small
∣q∣ vectors, thus being polar (see Supplementary Fig. 5 for these
along other high-symmetry directions as well). The other two
longitudinal modes (and all transverse modes) have long-range
values of nearly zero. For the polar modes identified, we then
compute their phonon energies. The inset of Fig. 2a shows the
energy of those two polar optical phonon modes along the Γ–M
direction. By calculating the average value of this polar optical
phonon energy along different high-symmetry directions and
then by averaging those values from all polar modes, we extract
one dominant frequency for the overall polar optical phonon
scattering process, which in this case is identified to be 26 meV.
Figures 2b, c show examples of the short-range part of e–ph

coupling matrix elements for acoustic and optical phonon modes.
In the case of acoustic modes, the short-range longitudinal
acoustic matrix elements increase almost linearly. Then, we
consider all high-symmetry equivalent crystallographic orienta-
tions57 (see Supplementary Figs. 6, 7, and Supplementary Table 1).
Afterwards, the overall ADP is calculated from both longitudinal
acoustic and transverse acoustic phonon modes by
DADP ¼ vsðD2

ADP;LAv
�2
l þ D2

ADP;TAv
�2
t Þ1=2, where vs, vl, and vt are

average sound velocity, longitudinal sound velocity, and trans-
verse sound velocity, respectively. In the case of optical modes,
the short-range optical matrix elements fluctuate slightly around a
constant value. We compute the overall ODP by merging the

short-range part of all the optical modes ν near the Γ point as

De�ph
ODP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωODP

P
ν

Mmnνðk;qÞ�ML
mnνðk;qÞ½ �2

ων

s
(3)

where ωODP is the average value of the optical phonon energy
involved in ODP scattering. For electrons in Mg3Sb2, the overall
ADP and ODP are calculated to be DADP = 3.37 eV and DODP =
1.36 eV Å−1, respectively, with ωODP= 23.00 meV.
Regarding IVS, the Fermi surface for electrons in Mg3Sb2

consists of six full CBM valleys and six one-third K valleys within
the first Brillouin zone. To capture the nearest transition path, we
consider the final points in both the first and second Brillouin
zones (Fig. 1d). Four types of inter-valley transitions can be
identified. From those, the first three are transitions from the initial
CBM valley to its first, second, and third nearest neighbor CBM
valleys. The fourth is a transition from the CBM to the K point.
Starting from the general consideration that both acoustic and
optical phonons contribute to inter-valley scattering, we calculate
the matrix elements versus the phonon energy involved for all
phonon modes that participate (Fig. 2d), where the initial
electronic state k is located at one CBM valley and the final
electronic state k+ q is located at another CBM or the K valley. For
each of the four scattering processes, the overall inter-valley
deformation potential DIVS can be calculated by combining the
short-range parts of all the relevant acoustic and optical phonons
as

De�ph
IVS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωIVS

P
ν

Mmnνðk;qÞ�ML
mnνðk;qÞ½ �2

ων

s
(4)

where ωIVS is the weighted average value for phonons in a given
IVS process. Transitions involved in these four processes have
different strengths, as seen from the calculated inter-valley
deformation potentials. For scattering from the initial CBM valley
to the other three equivalent CBM valleys, DIVS = 0.83, 0.69, and
1.15 eV Å−1, with ωIVS = 23.5, 21.3, and 17.6 meV, respectively. For
transition processes from the CBM to the K valley, DIVS = 1.08 eV
Å−1 with ωIVS = 18.9 meV.

Scattering rates and transport calculation
The deformation potentials and the dominant frequency for polar
optical phonons will be used as inputs to the BTE simulator for
transport. Other than those, additional input parameters needed
(dielectric constants, mass densities, etc.) are listed in

da b

c

1 2
3
4

3
4

2

1

Fig. 2 Electron–phonon coupling matrix elements for Mg3Sb2. a Long-range part of the matrix elements along the Γ–M line for optical
phonons. The dashed-doted colored lines show the ∣M∣ ~ ∣q∣−1 dependence for polar optical phonons near the Γ point. Only two modes have
polar behavior. The energy of these two modes is shown in the inset. b Short-range part of the matrix elements along the Γ–M line for the LA
and (c) optical phonon modes, with the initial electron state located at the CBM. d Overall inter-valley deformation potentials for the four
inter-valley scattering processes (green squares): three from the CBM to the other equivalent CBM and one from the CBM to the K valley. The
gray dots show the individual contributions of every phonon mode to each process. The inset illustrates the four processes from the CBM to
the final scattered states within the first Brillouin zone.
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Supplementary Table 2, which can be obtained through relatively
cheap ab initio calculations or are already tabulated in databases
such as the Materials Project47. The scattering rate expressions are
described in the Methods below, and the transport calculations
are carried out using our open-access ElecTra code48. In Fig. 3a, we
compare our calculated total energy-dependent e–ph scattering
rates for n-type Mg3Sb2 at room temperature (300 K) against fully
first-principles calculations (DFPT + Wannier) obtained using the
EPW code. The shape and magnitude of the phonon-limited
scattering rates are well reproduced, particularly at low energies.
For carriers with higher energy (>0.1 eV), which generally do not
affect transport significantly, our scattering rates are somewhat
lower compared to the DFPT + Wannier calculations, as we use
only a few relevant matrix elements around the valley extrema to
derive the deformation potentials, and don’t extend to higher
energies. The overall e–ph scattering rates are found to be much
higher than the ionized impurity scattering (IIS) rates (see Fig. 3a),
even at large impurity concentrations. This agrees well with
previous experiments65, where the mobility of n-type Mg3Sb2 near
300 K is found to be dominated by e–ph scattering instead of IIS.
This is different from that observed in common semiconductors
such as Si57.
Furthermore, our method considers different e–ph processes

separately, so that we can evaluate their strength independently
(Fig. 3b). It is clear that polar optical phonon (POP) scattering
dominates the e–ph scattering at 300 K. The ADP scattering is the
second strongest mechanism. It is somewhat higher but

comparable to the IVS processes. The ODP scattering rates are
lower. Although POP dominates the phonon scattering processes
in this material, in general, it is essential to consider all processes
when assessing electronic transport, which provides an in-depth
understanding of the internal scattering processes. The POP-
dominant scattering in n-Mg3Sb2 leads to the relatively weak
influence of IIS on the electron mobility, as shown in Fig. 3c. This
supports previous experimental data that the IIS is not dominant
in Mg3Sb2, even at the high charge carrier concentrations near
those needed for TE applications65. Since we are able to separate
all processes, it is useful to note the strength of intra- versus inter-
valley transitions, which is an essential piece of information in
studies of band alignment in TE materials. As an indication for the
relative strength of these processes, by averaging the scattering
rates in the energy range of 0–0.1 eV, without POP we find that
the ratio of the intra- to inter-valley transitions is rintra/inter = 3.0,
whereas if POP is included in the intra-valley transitions, the ratio
jumps to rintra/inter = 24.8, clearly indicating that intra-valley
processes dominate.
Since Mg3Sb2 is a very promising TE material for room

temperature applications54, we now compute the TE transport
properties, i.e., electrical conductivity, Seebeck coefficient, and
power factor (PF), as shown in Figs. 3d–f, respectively. We
compare our calculations with experimental data and other
calculations51,54,65–70. Figure 3d shows the phonon-limited con-
ductivity, which reproduces very well the results from DFPT +
Wannier66. Note that in both our calculations and DFPT +

Fig. 3 Calculated scattering rates and transport properties for Mg3Sb2. a Comparison of the calculated scattering rates against those
obtained using density functional perturbation theory combined with Wannier interpolation (DFPT + Wannier) at 300 K from ref. 66.
Calculated scattering rates for ionized impurity scattering at different impurity concentrations are also shown. b Scattering rates for acoustic
deformation potential (ADP), optical deformation potential (ODP), inter-valley deformation potential (IVS), and polar optical phonon (POP)
scattering. The vertical dotted line indicates the energy of the effective polar phonon frequency. c Comparison of the electron mobility limited
by only electron–phonon scattering (e–ph) and by both electron–phonon and ionized impurity scattering (e–ph + IIS) against experiments
from refs. 54,65,67–69. d Comparison of the electronic conductivity against those obtained by DFPT + Wannier66 and experiments54,65,67–69.
e Comparison of the Seebeck coefficient at 300 K using the constant relaxation time (CRT) approximation, e–ph, and e–ph + IIS conditions,
and against those obtained by DFPT + Wannier66 and experiments51,54,65,67–70. f Comparison of the thermoelectric power factor at 300 K
between calculations and experiments from refs. 54,65,67–69.
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Wannier, the conductivity is larger compared to experi-
ments54,65,67–69, even when the IIS is included in our calculations.
This difference is expected, as these materials typically have a
large number of defects (e.g., grain boundaries, neutral impurities,
and crystallographic defects). The influence of such defects is
known to be less for higher carrier densities71. Also, note that even
in single crystals, there are uncertainties arising from the
difference between the Hall mobility and drift mobility, leading
to a corresponding error in the indicated carrier concentrations,
and additional differences in computational versus measured
data72.
On the other hand, the Seebeck coefficient is not sensitive to

the details of the relaxation time. All simulation methods66, even
the CRT approximation, are adequate to provide comparable
results to experiments51,54,65,67–70, as shown in Fig. 3e. Thus, the
calculated PF (Fig. 3f) is higher compared to experiments54,65,67–69,
a reflection of the higher conductivity in both our calculations and
DFPT + Wannier methods. Importantly, for thermoelectrics, which
operate at relatively high densities, we also find that the IIS has a
negligible effect on the PF for this material. In contrast, for
materials such as Si, the PF can be decreased by 64% (see
Supplementary Fig. 8) at high densities. Therefore, using materials
like n-type Mg3Sb2, which appear to be immune to IIS, could
represent a promising direction for thermoelectrics. Indeed, this is
one of the reasons that make Mg3Sb2 a competitive alternative to
the state-of-the-art n-type TE alloys near room temperature.
It is interesting to note that the transport properties of n-type

Mg3Sb2 are nearly isotropic (see Supplementary Fig. 9), despite the
fact that the crystal structure is anisotropic and every single carrier
pocket of the CBM is anisotropic along the three axial directions in
k-space. This is because the average effective mass tensor is nearly
isotropic after considering the six equivalent carrier pockets. The
conductivity effective masses along the different directions
are calculated to be mcond,x = 0.1646 me,mcond,y = 0.1845
me,mcond,z = 0.1656 me (me is electron mass). The nearly isotropic
effective mass has also been reported in previous works using the
parabolic band model, where the effective masses are estimated
by fitting the near-edge band dispersions: min-plane = 0.22–0.24
me,mout-of-plane = 0.16–0.17 me

52,66,73; min-plane = 0.32 me,mout-of-

plane = 0.28 me
54,55,74 It should be noted that the effective masses

obtained using the parabolic band model ignore the effect of non-
parabolicity, warping, as well as the presence of other bands and
valleys at slightly higher energies and in different orientations. The
mass values we report above are calculated by averaging over all
contributing electronic bands weighted by their occupancy using

our home-developed Effective Mass Finder (EMAF) code, which
accounts for all band non-uniformities32,75,76. In the same way, we
also compute the overall density of states effective mass for n-
type Mg3Sb2 to be mDOS = 0.6788 me.

Computational performance
We now compare the performance of our method with that of the
DFPT + Wannier for mobility calcuations in Si and Mg3Sb2, and
demonstrate the significant computational savings our method
offers. The total computation can be divided into two parts: the
first is the computation of e–ph matrix elements using DFT and
DFPT calculations, which is common in both methods; the second
is the actual transport computation, where one needs a relatively
dense mesh after interpolation to achieve convergent results in
the DFPT + Wannier method. For example, for Si, around 500,000
k-points are found to be necessary for mobility convergence37. For
GaAs, using a 320 × 320 × 320 grid increases mobility by over 20%
compared to the 150 × 150 × 150 mesh36, indicating that a denser
mesh for k-points could be necessary. This demonstrates the
difficulty in achieving convergent results and, in general, the
actual feasibility of fully ab initio electronic transport studies in
complex materials because such meshes present enormous
computational challenges. In the case of Mg3Sb2, a mesh of
75 × 75 × 50 was used for k-points in DFPT + Wannier (Fig. 3)66.
No convergence information is available due to the expensive cost
of complex materials. However, the excellent match to our results
in Fig. 3 could signal that convergence is reached.
Figure 4 shows the time required using the EPW code for

transport simulations with respect to the number of electron
wavevectors in the Brillouin zone. To be consistent with the
definition of numbers of k-points Nk in the convergence test as in
ref. 37, we use the product of the meshes to be interpolated kxkykz
as the Nk. Uniform grids are used with the k-points being twice as
dense as the q-points in each direction. Reliable converged
transport results using this DFPT + Wannier method require
computational times at the right side of Fig. 4a, where nearly
500,000 k-points are used. This is a computationally expensive
process because the mesh of q-points typically increases with that
of k-points. Thus, the number of matrix elements to be computed
is proportional to their product and increases with the mesh size.
Although these result from interpolation, their number is very
large, and thus the computation is quite heavy.
On the other hand, in our deformation potential method, the

transport simulation is limited by the extraction of the deforma-
tion potentials, for which only a few dozen matrix elements are

Fig. 4 Comparison of computation time and accuracy in transport calculations. a The CPU time needed for the mobility calculation of
Mg3Sb2 and Si by using density functional perturbation theory combined with Wannier interpolation (DFPT + Wannier) within the EPW code
with different k-points. The green-shaded region indicates the mesh size required for convergent mobility calculations. The inset shows the
initial DFPT time requirements. Our method requires the time in the inset plus the left-most values in the main figure. bMobility computed by
the ElecTra code considering only ADP and POP scattering, then all relevant scattering mechanisms, i.e., ADP, ODP, IVS, and POP, and compared
against those obtained using DFPT + Wannier37,66,77,81.
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needed. In this case, the computational time required for transport
calculations coincides with that on the left side of Fig. 4a. For Si,
our transport time is only 10 core hours, significantly out-
performing the DFPT + Wannier method, which is expected to
require 50,000 core hours. This remarkable efficiency arises from a
substantial reduction in the number of the matrix elements
involved. For Mg3Sb2, the computational cost is considerably
higher than for Si. The transport simulation is projected to
demand 100,000 core hours in the DFPT +Wannier method, while
our method completes the task in just 2,000 core hours.
For the first part of the overall computation, we show the

computational time required for the dominant DFPT part in the
inset of Fig. 4a. For Si, the initial 12 × 12 × 12 k-points and 6 × 6 × 6
q-points are used, while for Mg3Sb2, the initial 12 × 12 × 8 k-points
and 6 × 6 × 4 q-points are used. These are the initial meshes used
in the transport calculation for computation time in Fig. 4a. We
also show the time with the initial 5 × 5 × 3 q-points for the more
computationally demanding Mg3Sb2, a size used typically in
literature66, whose data we have shown in Fig. 3.
The computational time required at this first step is significant,

but it is still at least an order of magnitude lower compared to the
converged transport simulations. Since the transport part in our
method is computationally much less expensive, the DFPT +
Wannier part dominates the overall computation for both Si and
Mg3Sb2, irrespective of the q-grid used. Thus, overall, for simple
materials (small unit cells, high symmetry) such as Si, our
deformation potential method requires less than 1,000 core hours
while DFPT + Wannier is limited by the transport part, which
makes our method 100 times more efficient. For more complex
materials such as Mg3Sb2, both methods require 10,000 core hours
for the DFPT calculation. Our method is overall 10 times faster
than DFPT + Wannier. This difference can be more significant if a
coarser q-grid is used, e.g., the 5 × 5 × 3. We also note that in cases
involving larger unit cells, the absolute cost can be significantly
higher compared to simpler materials, particularly in terms of the
extra effort required to establish confidence in transport
convergence. Thus, the high computational costs of the DFPT +
Wannier method would make it daunting for its widespread use
and quantitative confidence in its results.
Concerning accuracy, in Fig. 4b, we compare the mobility

calculated at 300 K using our deformation potential method in the
ElecTra code versus the fully ab initio DFPT + Wannier method in
the EPW code. We compare calculations for three materials (full

study for Si presented in ref. 57), i.e., n-type Si, p-type Si, and n-type
Mg3Sb2. Note that different values are reported from DFPT +
Wannier works in various publications, as shown by the error bars
in Fig. 4b, which may arise from details in the first-principles
calculation of band structures, different grids for Brillouin-zone
sampling, and various pseudopotentials for exchange and
correlation37. The mobilities calculated using our method for
these three examples agree very well with DFPT + Wan-
nier37,66,77–81, which comes from the consideration of all scattering
physics elaborately, by including contributions from all phonon
processes (ADP, ODP, IVS, and POP) and distinguishing between
intra- versus inter-valley processes. Notably, despite extracting
only a few matrix elements and processing them into deformation
potentials, we strategically focus on the essential transport
regions, resulting in a locally dense matrix element grid. This is
potentially advantageous compared to selecting matrix elements
on a sparse grid across the entire Brillouin zone. In Fig. 4b, we also
present results excluding ODP and IVS, considering only ADP for Si
and ADP + POP for Mg3Sb2. In the case of Si, the mobility is highly
overestimated, while for the polar Mg3Sb2, a better match is
found, which signals the variation in behavior observed when
ignoring ODP and IVS.

DISCUSSION
With regard to the calculation of transport properties, there are
many approaches available with varying degrees of complexity,
reflecting the accuracy of the results versus the computational
cost. Codes such as EPW and PERTURBO use DFPT + Wannier34,82,
accounting for all the scattering mechanisms but at a substantial
computational cost, especially for materials with large unit cells
and complex band structures. To reduce computational costs, the
EPA method follows a simplified approach by averaging the
matrix elements g across the Brillouin zone into an effective
lifetime83. However, such treatment may not be accurate enough
in cases where g2 varies rapidly. To overcome this problem, EPIC
STAR uses the generalized Eliashberg function from g2ω−1 43,
which varies slower than g2 at a small ∣q∣, although g2ω−1 for
acoustic phonons could also vary linearly for long wavelength and
introduce some uncertainties. The dual interpolation method
recently reported allows for a couple of orders of magnitude
computational cost reduction compared to state-of-the-art EPW
calculations44. Such methods are appropriate when focusing on

Fig. 5 Comparison of intra-valley and inter-valley scattering in Mg3Sb2. a 2D view of the first Brillouin zone for electrons (white) and
phonons (blue), with the q points involved in the calculations depicted by colored dots. The initial state is at the center of the phonon
Brillouin zone (purple dots). b Scattering rates for intra-valley deformation potential scattering (ADP + ODP) and three types of inter-valley
scattering. c Comparison between the scattering strength of intra-valley and inter-valley deformation potential scattering. In (a), the colored
dots refer to the q points used in our method to derive deformation potentials. In (c), the scattering strength is the sum of the scattering rates
within the energy range 0–0.1 eV.
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overall mobility and transport properties. However, their accuracy
depends on the grid used, and the detailed information for the
individual processes can also be further refined.
On the other hand, codes such as AMSET focus more on

computational efficiency and scalability without the calculation of
e–ph matrix elements. AMSET extracts the ADP from band shifts
after applying stress along specific directions and uses that to
form the scattering rate expressions46, which is a very effective
method to obtain transport properties at a very low computa-
tional cost. However, it pays the price of larger potential
inaccuracies in capturing the details of the underlying physical
mechanisms correctly, e.g., ODP and IVS, which may be critical for
materials with strong ODP scattering or multiple valleys. The latter
(multi-valley character) is one of the most prominent directions for
obtaining high TE performance32.
Our method belongs to the category of methods that

compute matrix elements, but does not require computations
across the entire Brillouin one. For the extraction of deforma-
tion potentials, we use a few matrix elements near the specific q
vectors for intra/inter-valley scattering, as shown in Fig. 5a, and
these can be selected on a dense mesh. More importantly, by
treating each q and phonon branch separately, we have access
to the information about the underlying physical processes,
such as intra-valley transitions versus inter-valley transitions.
For example, Fig. 5b shows the scattering rates from each of
these transitions, a capability that other codes and methods
that integrate/average all matrix elements in the entire Brillouin
one do not provide. Clearly, we can identify the strength of
intra-valley versus inter-valley deformation potential scattering,
as well as the relevant strength between the different inter-
valley transitions themselves (see Fig. 5c). This capability is
essential to evaluate the potential benefits of the band
alignment strategy for novel TE materials to improve PF, one
of the main directions that the community takes to enhance the
materials’ performance.
It should also be mentioned that our method is based on the

deformation potential theory and can be applied to semiconduc-
tors and insulators but not to metals. For the electronic
conductivity of metals, the usual method is to perform the
computation using the Eliashberg function. A formalism that
replaces the matrix elements with effective deformation potentials
could reduce computation costs to the levels described in this
work, as it might not be necessary to compute all matrix elements
throughout the Brillouin zone, but we are not aware of
developments in that direction.
In conclusion, we have introduced a first-principles approach

for calculating deformation potentials and scattering rates,
which are subsequently employed in a Boltzmann transport
simulator to compute transport properties of semiconductors
and insulators. By encompassing all common scattering
processes, i.e., ADP, ODP, IVS, POP, and IIS, our method achieves
comparable accuracy to state-of-the-art fully ab initio DFPT +
Wannier methods with a drastic computational reduction, at
least 100 times for simple materials with small unit cells and at
least 10 times for more complex materials with larger unit cells
and lower symmetry, owing to the limited number of matrix
elements required for deriving deformation potentials. Further-
more, our method provides explicit information about all
scattering processes individually, even distinguishing between
different inter-valley transitions. We anticipate that our
approach will offer a versatile alternative, combining efficiency,
robustness, and flexibility beyond the commonly employed CRT
approximation, while maintaining the accuracy of fully first-
principles calculations. This method can prove invaluable for
gaining insights into individual transport properties and
guiding machine learning studies by facilitating the develop-
ment of accurate test sets and descriptors.

METHODS
DFT calculations
The electronic band structure, phonon dispersion, and e–ph
coupling matrix elements are calculated from DFT and DFPT using
the Quantum ESPRESSO package84. The optimized norm-
conserving Vanderbilt (ONCV)85 pseudopotentials are used under
the generalized gradient approximation (GGA) with the Perdew-
Burke-Ernzerhof (PBE)86 functional. The EPW package34 is used to
perform Wannier function interpolation for the e–ph coupling
matrix elements.

Scattering rates
The e–ph scattering rates due to ADP are extracted using Fermi’s
golden rule as57,87,88

SADPk;k0

��� ��� ¼ π
_D

2
ADP

kBT
ρv2s

gðEÞ (5)

Here, ρ is the mass density, and g(E) is the density of states for the
final scattering state.
The corresponding ODP scattering rates are computed as87,88

SODPk;k0

��� ��� ¼ πD2
ODP

2ρω Nω þ 1
2 ∓ 1

2

� �
gðE ± _ωÞ (6)

where ω is the dominant frequency of the optical phonons, which
is considered to be constant over the entire reciprocal unit cell. Nω

is the phonon Bose-Einstein statistical distribution and the + and
− signs indicate the emission and absorption processes,
respectively.
The IVS rates follow the optical phonon description and are

again computed as

SIVSk;k0

��� ��� ¼ πD2
IVS

2ρω Nω þ 1
2 ∓ 1

2

� �
gðE ± _ωÞ (7)

Note that ω here is the phonon frequency associated with the
corresponding inter-valley scattering processes.
The POP scattering rates due to the Fröhlich interaction can be

computed from the dielectric constants, which capture the matrix
element in a polarizable continuum as87,88

SPOPk;k0

��� ��� ¼ πe2ω
jk�k0 j2ε0

1
k1

� 1
k0

� 	
ðNω þ 1

2 ∓ 1
2ÞgðE ± _ωÞ (8)

where e is the electronic charge, and ω is the dominant frequency
of polar optical phonons over the whole Brillouin zone, which has
been validated to be a satisfactory approximation83. k0 is the static
dielectric constant.
The Brooks-Herring model89 is used to describe the elastic

scattering rate due to ionized dopants. The screened IIS is then
given by

SIISk;k0
��� ��� ¼ 2π

_
Z2e4

k20ε
2
0

Nimp

ðjk�k0 j2 þ 1
L2
D

Þ2 gðEÞ (9)

where Z is the electric charge of the ionized impurity, Nimp is the
density of the ionized impurities, and LD is the generalized
screening length defined as

LD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0ε0
e

∂EF
∂n

� �q
(10)

where EF is the Fermi level and n is the carrier density.

Transport
Transport calculations with the DFPT + Wannier method were
conducted using the EPW code34, while our method employed the
ElecTra code48. The k-point mesh for the band structure of Mg3Sb2
was initially set to 60 × 60 × 40 and later interpolated to
180 × 180 × 120 (see Supplementary Figs. 10, 11). The kernel
quantity, known as the transport distribution function (TDF), is
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defined as

ΞijðEÞ ¼ s
ð2πÞ3

P
k;n

viðk;nÞvjðk;nÞτiðk;nÞgðEÞ (11)

where s is the spin degeneracy and s = 2 is used as the two spin
sub-bands are degenerate in the materials we consider here, vi(k, n)
is the i-component of the band velocity, and τi(k, n) is the overall
relaxation time which is derived from the transition rate jSk;k0 j
between the considered initial state and all the possible final
states90. The overall jSk;k0 j is calculated by combining the strength
of all scattering mechanisms using Matthiessen’s rule as91

jSk;k0 j ¼ SADPk;k0

��� ���þ SODPk;k0

��� ���þ SIVSk;k0

��� ���þ SPOPk;k0

��� ���þ SIISk;k0
��� ��� (12)

The TDF is crucial in understanding electronic transport in
advanced materials. All quantities defining the TDF, including the
scattering relaxation times, band velocities, and density of states, are
in principle dependent on energy, momentum, and band. Then,
within the electronic BTE, one can define the moments of the TDF as

RðαÞ ¼ e2
R1
E0

dE � δf 0
δE

� �
ΞðEÞ E�EF

kBT

� 	α
(13)

where f0 is the equilibrium Fermi distribution. From all relevant
transport coefficients, the mobility μ, conductivity σ, Seebeck
coefficient S, and electronic thermal conductivity κe (see
Supplementary Fig. 12), are obtained as

μ ¼ Rð0Þ
ne

(14)

σ ¼ Rð0Þ (15)

S ¼ kB
e
Rð1Þ

Rð0Þ
(16)

κe ¼ k2BT
e2 Rð2Þ � ½Rð1Þ �2

Rð0Þ


 �
(17)
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