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Abstract: In this paper we identify the causes of numerical non-reproducibility in the unstructured 1

mesh computational motif, a class of algorithms commonly used for the solution of PDEs. We 2

introduce a number of parallel and distributed algorithms to address nondeterminism in the order of 3

floating-point computations, in particular a new graph coloring scheme which produces the identical 4

coloring result regardless of how many parts the graph is partitioned to. We implement these in 5

the OP2 domain specific language (DSL) and show how it can be automatically deployed to any 6

application that uses OP2 without user intervention. We contrast differences in results without 7

reproducibility and then demonstrate how bitwise reproducibility can be gained using our methods 8

on a variety of applications including a production CFD application used at Rolls-Royce. We evaluate 9

the performance and overheads of enforcing bitwise reproducibility on cluster of CPUs and GPUs. 10

Keywords: Floating-point, Bitwise reproducibility, Unstructured-mesh computation, DSL, CPU, GPU, 11

MPI 12

1. Introduction 13

Floating-point number representation and calculations form the backbone of sci- 14

ence and engineering computations. They allow one to represent and approximate the 15

continuous ranges of quantities/values on discrete systems such as digital computers. 16

However, any floating-point representation, including the IEEE floating-point standard, by 17

their very nature have a finite precision and suffer from truncation errors, which makes 18

operations on them non-associative [1]. This is particularly obvious when representing 19

numbers that fall in large dynamical ranges. For example, the expression (a + b) + c 20

has a different answer than a + (b + c) when, for example, a = 1020, b = −1020 and 21

c = 1 with a 64 bit representation; (1020 + −1020) + 1 = 0 + 1 = 1 in the former case 22

and 1020 + (−1020 + 1) = 1020 + −1020 = 0 in the latter. The issue is compounded on 23

parallel systems, where the associativity is applied in a non-deterministic manner. Thus, 24

the exact truncation events and the order in which they are performed lead to slightly 25

different results. Over long executions, the errors accumulate, potentially leading to larger 26

inconsistencies between results from multiple runs. 27

Execution of parallel applications and the results produced by their floating-point 28

number computations lead us to the notion of numerical reproducibility. In the strictest 29

sense, this means obtaining bitwise identical results from multiple runs of the same code 30

that consume the same inputs. A less stringent requirement would be to accept results 31

with errors less than machine precision, leading to the need for a tolerance range for 32

results. However, strict bitwise reproducibility could be essential for some applications, 33

with many codes [2–7] implementing algorithms and techniques to enforce the required 34

accuracy. Bitwise reproducibility is also useful for validating ported codes between different 35
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architectures. For example, by turning off fused multiply-add (FMA) operations and other 36

optimizations, we can compare the output of a new GPU implementation to a previous 37

trusted (validated) CPU implementation. If both produce the same result, then there is a 38

high probability that we have managed to create the new version without introducing new 39

errors. For relative debugging we already have examples of automatic test environments [8] 40

- with bitwise reproducibility, we can avoid the problem of choosing the margin of error. 41

Numerical reproducibility stands as a vital concern in the landscape of parallel com- 42

puting, where the attainment of bitwise identical results across multiple executions is 43

a sought-after goal. This emphasis on reproducibility becomes especially significant in 44

computational domains like computational fluid dynamics (CFD), where the reliability and 45

accuracy of conclusions drawn from simulation results are of paramount importance. In 46

practice, the application of various algorithms and techniques in codes addressing chal- 47

langes such as the wind vulnerability of structures [9] and modeling nonlinear aeroelastic 48

forces [10] underscores the broader need for ensuring that the conclusions derived from 49

these simulations are not only insightful but also reproducible. 50

Bitwise reproducibility, however, often comes at a performance cost. Where time spent 51

on carrying out order-preserving techniques to obtain identical results adds additional 52

overhead, compounding total time-to-solution. As such, careful trade-offs should be 53

considered, depending on the application domain and the validation and performance 54

requirements. Much of the current literature focuses on providing one-off solutions to this 55

problem for specific applications. Many of them rely on Kahan’s compensated solution 56

method [11], where after adding up the high order parts of two elements, the low order 57

error is stored and is accumulated with the low order part of the next summation. Many 58

apply this method specifically in their own applications [3,4,7]. Another widely used 59

method is introduced by Demmel et al. [12] where a variable number of bins are created 60

for different magnitudes and then are used to accumulate the given magnitude part of the 61

operands. We can see some examples of the usage of Demmel’s method in [3,13]. Other 62

application-specific methods also exist, for example sorted particle potentials in [6] and use 63

of integer conversions as in [14]. Most of these solutions require altering the code manually, 64

often using a different number representation, making code maintenance difficult and 65

expensive. This is especially problematic for large codebases. Additionally, most of these 66

solutions address a single target architecture, making it even more laborious and costly 67

when aiming to develop and maintain a performance-portable application. 68

The underlying goal of this paper is to explore the challenges in achieving reproducibil- 69

ity, specifically bitwise reproducibility for the domain of unstructured mesh computations, 70

one of the seven dwarfs [15] in HPC. The distinctive feature of unstructured mesh computa- 71

tions is the existence of data-driven indirections (such as a mapping from edges to vertices) 72

and computations that indirectly increment/read-write data, which cause data race in a 73

parallel environment. Although we are not aware of a systematic approach for unstruc- 74

tured meshes, we can see a number of similar works for other domains. The reproBLAS 75

project [16] covers many use cases in the field of dense linear algebra with reproducible 76

execution. Apostal et al. [17] created a code scanner, which can automatically recognise 77

certain reductions where reproducibility might cause problems. In this paper, on top of 78

providing a general solution applicable for a wide range of unstructured-mesh applications, 79

we showcase how reproducibility can be implemented within the OP2 domain specific lan- 80

guage (DSL). This paper is an extension of early work demonstrating the temporary array 81

method on two simple benchmarks [18]. Our results enable us to deliver reproducibility 82

automatically to a number of existing applications, written using OP2, including a full-scale 83

industrial computational fluid dynamics (CFD) code, executing on both CPU and GPU 84

cluster systems. Specifically, we make the following contributions: 85

1. We identify key sources of non-determinism in unstructured mesh computations and 86

propose three techniques of addressing them for this domain: (1) use of temporary 87

arrays for indirect increments, (2) coloring for indirect increments and read-writes, 88

and (3) reproducible reductions. 89
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2. To use a coloring approach for reproducible execution, we develop a deterministic 90

coloring algorithm, which depends only on the mesh and is independent of the 91

partitioning of the mesh (including the number of partitions). 92

3. The above developed techniques and algorithms are implemented within the OP2 93

DSL, in order to automatically generate target-specific parallel code that produce 94

reproducible results when executed on modern large-scale systems with multi-core 95

and many-core processor architectures. Leveraging OP2’s source-to-source translation, 96

we can deliver bitwise reproducibility without changes to the user code. 97

4. Various unstructured mesh applications, ranging from smaller benchmarks (Air- 98

foil [19], Aero [20]), a CFD mini-app (MG-CFD [21]) to a large-scale industrial CFD 99

application (Rolls-Royce Hydra [22]), previously developed with the OP2 DSL are 100

used to evaluate our proposed algorithms. Numerical results as well as the impact 101

on performance when executed on CPUs, GPUs, and their scalability on clusters are 102

explored. 103

To the best of our knowledge, our work is the first to provide a general solution for bitwise 104

reproducibility on unstructured mesh applications. We show that this solution achieves 105

good results in terms of accuracy and performance in industrial applications, such as 106

Rolls-Royce Hydra, demonstrating the practicability of this work for production codes. 107

The rest of this paper is organized as follows: in Section 2 we discuss related works, 108

in Section 3 we present background on floating-point number presentations and compu- 109

tations and introduce the sources of non-reproducibility, with examples from a number 110

of applications. In this section we also describe the unstructured mesh application class 111

and the OP2’s abstraction and framework. In Section 4 we describe multiple methods with 112

which we achieved bitwise reproducibility. In Section 5 we examine the performance of 113

these techniques, and in Section 6 we draw conclusions. 114

2. Related works 115

Bitwise reproducibility is a widely researched problem, usually investigated on a 116

specific application. 117

Mascagni et al. [2] list the main sources of non-reproducibility in a neuroscience appli- 118

cation: (i) the introduction of floating-point errors in an inner product; (ii) the introduction 119

of floating-point errors at each an increasing number of time steps during temporal refine- 120

ment (ii); and (iii) differences in the output of library mathematical functions at the level 121

of round-off error. They highlight the importance of numerical reproducibility without 122

providing a general solution. 123

Liyang et al. created a special method [6] for molecular dynamics applications in 124

the LAMPPS Molecular Dynamics Simulator [23]. From each particle, the potentials are 125

calculated first and then stored temporarily. Then they loop over every particle again, sort 126

the components for one element, and accumulate them in ascending order. This way, they 127

were able to eliminate the effect of non-associative accumulation. 128

Langlois et al. [3] tested multiple techniques for reproducible execution on an indus- 129

trial free-surface flow application: the 2D simulation of the Malpasset dam break. All 130

methods passed, but their main purpose is to determine how easy it is to use them. Kahan’s 131

compensated solution method [11] appeared to be the easiest to apply and provided accu- 132

rate results for low computing overhead. The integer conversion provided in Tomawac [14] 133

was also easy to derive and introduced a low overhead. The solution that uses reproducible 134

sums [12] was efficient, but is applied less easily in their case and introduced a significant 135

communication overhead. 136

He et al. [4] experimented on a dynamical weather science application. They tested 137

several methods, such as Kahan’s [11], or the double-double number technique [24] which 138

is an unevaluated sum of two IEEE double precision numbers. They also provide an MPI 139

operator for reductions. 140

Taufer et al. [5]. were looking into a molecular dynamics application, where by 141

reproducibility they meant that results of the same simulation running on GPU and CPU 142
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lead to the same scientific conclusions, so in their case bitwise reproducibility was not 143

necessary. They tried double precision arithmetic, which partially corrected the drifting, 144

but was significantly slower than single precision, comparable to CPU performance. They 145

created a library of float-float composite type, which is comparable in accuracy to double, 146

but the performance loss is only 7%, versus a loss of 182% of normal double precision. 147

Robey et al. also experimented with a dynamical fluid application [7]. They tried 148

to sort their data first then sum, but that was too slow. They applied Ozawa’s pair-wise 149

summation [25], which produced less truncation, but not bitwise reproducibility, although 150

this method is quick and can run in parallel. The double-double technique used too much 151

memory, so finally they used Kahan’s [11] and Knuts’s [26] approach due to their simplicity, 152

low additional cost and their added precision. 153

Apostal et al. [17] developed a source code scanner to recognise reductions over MPI 154

in C or C++ codes and automatically modify them to use Kahan’s summation [11] or an 155

algorithm developed by Demmel and Nguyen [12]. 156

Olsson et al. [27] defined some transformation techniques to describe concurrent 157

applications written in the SR programming language to achieve reproducibility. They can 158

transform an arbitrary SR program into two parts: one for recording a sequence of events 159

and one for replaying those events. 160

Reproducible Basic Linear Algebra Subprograms [16] (ReproBLAS), intends to provide 161

users with a set of parallel and sequential linear algebra routines that guarantee bitwise 162

reproducibility independent of the number of processors, data partitioning, reduction 163

scheduling, or the sequence in which the sums are computed in general. The BLAS are 164

commonly used in scientific programs, and the reproducible versions provided in the 165

ReproBLAS will provide high performance while reducing user effort for debugging, 166

correctness checking, and understanding the reliability of programs. 167

Graph coloring is a widely used method in HPC to maximise parallel efficiency, 168

without facing any race conditions. We can see a detailed example for using coloring 169

techniques in the work of Zhang et al. [28]. Their paper addresses challenges in parallelizing 170

unstructured CFD on GPUs, employing graph coloring for data locality optimization and 171

parallelization, resulting in substantial speed-up with GPU codes outperforming serial 172

CPU versions by 127 times and parallel CPU versions by more than thirty times in the same 173

MPI ranks. 174

3. Background 175

3.1. Floating-point representation 176

The IEEE-754 [29] standard specifies the format for representing floating-point numbers, 177

as well as rounding modes and arithmetic operations such as addition ⊕, subtraction ⊖, 178

multiplication ⊗, division ⊘ and square root sqrt. Floating-point numbers are written as 179

x · 2E, where the mantissa x ∈ [1, 2) is a number of m binary digits (bits) and E, Emin ≤ E ≤ 180

Emax, is an integer called the exponent. The format specifies m, Emin and Emax. Representable 181

numbers are those that can be expressed in this notation. If the solution of an operation 182

is not representable with one setup, then the result is rounded to a representable number. 183

The round-to-nearest, round-towards-zero, round-towards-positive-infinity, and round- 184

towards-negative-infinity rounding modes are selectable by modifying the internal state 185

of the floating-point unit (FPU). Every rounding mode has a rounding function f l(x) 186

that converts a real number x into a representable number. Every arithmetic operation is 187

defined as the rounding of an abstract arithmetic operation’s exact outcome. For example, 188

f l(a + b) will become the result of the sum of two integers a and b. All intermediate 189

values are rounded in computations that involve more than one operation. As a result, the 190

operators ⊕ and ⊖ are not associative. When a = 1020, b = −1020, and c = 1 with a 64 bit 191

representation, the expression (a + b) + c yields 1 while a + (b + c) produces 0. We have to 192

note here that the differently accumulated roundoff error in most cases should not change 193

the validity of an application [30]. Changing the execution order of an algorithm may still 194

produce valid results, independently of being reproducible. 195
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We can observe this effect in Figure 1, using a more realistic finite element method 196

example with a conjugate-gradient solver, with calculations in double precision (Aero [20] - 197

detailed in Section 3.8). On this histogram, we counted the number of different values of the 198

end results in relative differences for several magnitudes between running the application 199

using 8 processes and 16 processes. From the 6.5M elements, there were only 3599, which 200

had a bitwise identical result, the rest had a difference between 10−12 and 10−4, most of 201

them were around the magnitude of 10−8. 202

16 14 12 10 8 6 4 2
Relative difference (log10)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Co
un

t

1e6

Figure 1. Histogram, showing the relative differences in a conjugate-gradient solver (Aero) between
run with 8 processes and 16. The result converges to a numerically stable state, but on average there
is a 4.05e-07 difference.

3.2. Reproducibility 203

Reproducibility is often understood as experimental reproducibility. This is also a 204

widely researched topic [31–35], but our aim is to obtain bitwise identical results of an 205

application run with the same input parameters regardless of the level of parallelism, be 206

it the number of threads or processes executed simultaneously. Non-reproducibility is 207

not caused by the roundoff error, but by the non-determinism of accumulative roundoff 208

error. Due to the non-associativity of floating-point addition, accumulative roundoff 209

errors depend on the order of evaluation, which is almost always relaxed in parallel and 210

distributed environments. In a distributed MPI environment, there are multiple possible 211

sources of non-associativity: number of MPI nodes, MPI reduction tree shape, number 212

of cores per node, and data ordering. The histogram in Figure 1, which runs the Aero 213

benchmark of the OP2 library, shows the relative differences ( (a−b)
a | a > b) of a non- 214

reproducible application run with different numbers of MPI processes. In general, some of 215

the causes might be efficiently addressed, such as the reduction tree shape, which can be 216

defined by network interface cards[36], but changing the number of processes can cause 217

issues that are not as easily addressed. A general solution might be to fix the order of 218

evaluation, but that is, in many cases, incompatible with parallelization, and running 219

sequentially is prohibitively costly. Another solution is to eliminate rounding errors. We 220

can use exact arithmetics [37], but that will substantially increase the memory usage and 221

the cost of the computations, as well as the amount of communication when applied to 222

more complicated operations such as matrix multiplication. Higher precision can be used, 223

but it will be reproducible only with higher probability [38]. 224

3.3. Reproducible reductions 225

One of the most common sources of non-reproducibility come from reductions, where 226

we add up the elements of an array into a single result. When carrying this out with a 227

parallel execution, the rounding errors can accumulate rapidly. There are multiple solutions 228

for this problem [12,16,39], but the underlying observation is common to all approaches; 229
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adding up numbers with similar magnitudes is going to be exact. Demmel et al. [12] use 230

pre-roundings to a well-calculated magnitude with an extra sweep through the array, add 231

the values together, and then apply the same method on the remainders from the roundings. 232

Arteaga et al. [39] extended their work by calculating the magnitudes without the additional 233

sweep. The ReproBLAS library [16] creates bins for the magnitudes in advance, and uses 234

them in parallel for the summations. In our project, we use ReproBLAS, due to its user 235

friendly implementations; though the necessary reductions can be calculated by using other 236

techniques as well. 237

3.4. ReproBLAS 238

Reproducible Basic Linear Algebra Subprograms [16] (ReproBLAS), intends to provide 239

users with a set of parallel and sequential linear algebra routines that guarantee bitwise 240

reproducibility independent of the number of processors, data partitioning, reduction 241

scheduling, or the sequence in which the sums are computed in general. It assumes that 242

floating-point values are binary and conform to IEEE Floating-Point Standard 754-2008, 243

and floating-point operations are conducted in ROUND-TO-NEAREST mode (ties may be 244

broken at will) and that underflow happens gradually. Summing n floating-point values 245

with their default settings costs around 9n floating-point operations (arithmetic, compar- 246

ison and absolute value). The new “augmented addition” and “maximum magnitude” 247

instructions in their proposed IEEE Floating-Point Standard 754-2019 [40] can theoretically 248

reduce this count to 5n. On a single Intel Sandy Bridge core, for example, the ReproBLAS 249

slowdown compared to a performance-optimized non-reproducible dot product is 4× [41]. 250

Here, the output is reproducible regardless of how the input vector is permuted. For the 251

summing of 1,000,000 double precision floating-point (FP64) values, the slowdown on a 252

large-scale system with more than 512 Intel “Ivy Bridge” CPUs (the Edison machine at 253

NERSC) is less than 1.2×. The result is also reproducible regardless of how the input vector 254

is partitioned across nodes or how the local input vector is stored within a node. 255

3.5. The Unstructured mesh computational motif 256

Computations defined on unstructured meshes form an important basis for many engi- 257

neering calculations, commonly used in PDE discretizations such as finite elements of 258

finite volumes. An unstructured mesh is characterized by a number of sets (vertices, edges, 259

cells, etc.) with explicit connectivity information between them (e.g. edges to vertices). 260

Computations are commonly expressed as a parallel loop over a set, with computations 261

accessing data either directly on the iteration set or through an indirection. For example, 262

a common operation in computational fluid dynamics is to compute fluxes across faces 263

(edges), then increment/decrement state variables defined on connected cells. The key 264

motif here is the edge-centered computations indirectly incrementing cell data, which 265

then gives rise to non-determinism when the order of execution of the edges is relaxed for 266

the sake of parallelism. Another common pattern is the global reduction, often done in 267

non-deterministic order, where the result is then used in subsequent computations. For 268

example in the conjugate gradient algorithm, the results of dot products are used as weights 269

in the next step. 270

The distributed and parallel execution of unstructured mesh algorithms is a well- 271

established field [42–45]. For distributed memory execution, the mesh is partitioned using 272

one of many established libraries, such as PT-Scotch or ParMetis [46,47]. It is important to 273

note here that an unstructured mesh is a hypergraph, consisting of multiple “vertex” types, 274

whereas most partitioners only partition a simple graph, and the rest of the hypergraph is 275

usually partitioned in a greedy way through connections to the simple graph. This is then 276

related to how computations are executed: an “owner-compute” approach is commonly 277

utilised, where all computations associated with a given element are performed on the 278

process that owns that element. So, for instance in the earlier example, the process that owns 279

a given cell will execute all the edges that increment that cell, even if some of those edges 280

are not owned by it. This requires communicating all data needed to execute those edges as 281
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well. This often leads to redundant computations around partition boundaries. Depending 282

on the exact implementation the deterministic order of execution for elements is often 283

relaxed at this point to allow shared memory parallelization and powerful optimizations 284

such as overlapping computations and communications. 285

To enable shared-memory parallel execution of unstructured mesh computations, one 286

needs to address the issue of race conditions when indirectly incrementing/updating data. 287

Virtually all execution schemes used in the literature rely on the associativity of these 288

operations: for example, by using atomic updates, a staging of increments in an auxiliary 289

array and their separate sum, or a coloring scheme [48,49]. We are not aware of related 290

works that explicitly aim to maintain an ordering of operations whilst enabling shared 291

memory parallel execution. 292

3.6. OP2 293

The OP2 library provides a programming abstraction for describing unstructured meshes 294

and computations on them, relying on the access-execute paradigm to separate the descrip- 295

tion of computations from the actual parallel implementation. OP2 defines sets, mappings 296

between sets, and data on sets. Computations are then described as parallel loops over a 297

given set, accessing data either on the iteration set or through at most one level of indirec- 298

tion. The type of access is also explicitly declared (read, write, increment). Based on such 299

a description of computations, OP2 can automatically parallelize computations in both 300

distributed and shared memory systems, such as multi-core CPUs and GPUs [45]. Thanks 301

to the separation of per-element computations from how the execution of elements is sched- 302

uled and how data is moved, OP2 can take full control how the computation is carried out 303

on a processor. In the work presented in this paper, we utilise this to apply a variety of 304

approaches that allow for the deterministic ordering of indirect accesses (increments and 305

updates), guaranteeing bitwise reproducibility of the results. 306

3.7. Automatic code generation for reproducible execution 307

Altering an already existing nonreproducible code to be reproducible might be tedious and 308

laborious. Fortunately, in some ways, this process can be automated. 309

OP2 has an already established workflow to generate platform specific optimized 310

applications [50], Figure 2 summarizes the main mechanisms. If an application is imple- 311

mented using OP2’s API, then a source-to-source translator can generate platform specific 312

application files, which later can be compiled and linked with the backend libraries of 313

OP2. In our current work we modified three stages of the workflow. We added API calls to 314

the application description, so the user can choose which reproducible strategy should be 315

applied. In order to use these strategies, the source-to-source translator had to be updated 316

to generate such application files that use the reproducible backend libraries with MPI or 317

CUDA. 318

Figure 2. Flow diagram of the mechanism of OP2. The bold, red frames represent the updated steps
of OP2’s workflow from our work.
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3.8. Test applications 319

The following applications are implemented in OP2 to evaluate and assess the efficacy and 320

performance of our proposed algorithms. 321

Airfoil [19] is a representative CFD code, written using OP2’s C/C++ API. It is a non- 322

linear 2D inviscid airfoil code that uses an unstructured grid. Airfoil uses a finite volume 323

method to solve the steady-flow 2D Euler equations using a scalar numerical dissipation. 324

Airfoil is available as part of the OP2 framework. 325

Aero [20] is a 2D non-linear steady potential flow simulation of air moving around 326

an airfoil, developed based on standard finite element methods. It uses a quadrilateral 327

grid similar to that used by the Airfoil application but uses a Newton iteration to solve the 328

non-linear equations defined by a finite element approximation. Each Newton iteration 329

requires the solution of a linear system of equations. The assembly algorithm is based on 330

quadrilateral elements and uses transformations from the reference square to calculate 331

the derivatives of the first-order basis functions. Dirichlet-type boundary conditions are 332

applied on the far-field, and the symmetric sparse linear system is solved with the standard 333

conjugate-gradient (CG) algorithm. Aero is also available as part of the OP2 framework. 334

MG-CFD is a 3D unstructured multigrid, finite-volume computational fluid dynamics 335

(CFD) mini-app for solving an inviscid flow problem. It performs a three-dimensional 336

finite-volume discretization of the Euler equations for inviscid, compressible flow across 337

an unstructured grid by extending the CFD solver in the Rodinia benchmark suite [51,52]. 338

It accumulates fluxes by performing a sweep across edges, which is implemented as a 339

loop over all edges. Multigrid support is achieved by supplementing the Euler solver’s 340

architecture in the work of Corrigan et al. [51] with crude operators that transport the 341

simulation’s state between multigrid levels. MG-CFD was originally created as a CPU- 342

only implementation[53], but it has since been implemented with OP2 as well. It can be 343

downloaded as open-source software [21]. 344

Hydra [54] is a full-scale industrial CFD application for the design of turbomachine 345

components of aircraft engines at Rolls-Royce. Hydra is a complex and configurable 346

application that can perform various simulations on highly detailed unstructured meshes. 347

Its development originally started 23 years ago [55], and it is still actively developed and 348

optimized to this day. The simulations implemented in Hydra are typically applied to 349

large meshes, which can contain tens to hundreds of millions of edges, and can run from 350

a few minutes to weeks. It consists of several components that simulate various aspects 351

of the design, including the steady and unsteady flows that occur in the engine around 352

adjacent rows of rotating and stationary blades, the operation of compressors, turbines 353

and exhaust, and the simulation of behavior such as ingestion of ground vortices. The 354

guiding equations to be solved are the Reynolds-Averaged Navier-Stokes (RANS) equations, 355

which are second-order PDEs. By default, Hydra uses a 5-step Runge-Kutta method for 356

the time-marching, which is accelerated by multigrid and block-Jacobi preconditioning 357

[55,56]. Our work uses Hydra set up with several configurations: An unsteady simulation 358

of two blades of DLR’s Rig250 mesh and a steady simulation of NASA’s Rotor37 mesh 359

with different turbulence models: Spalart-Allmaras wall function model, which is a one- 360

equation model that solves a modelled transport equation for the kinematic eddy turbulent 361

viscosity; and a k-ω, which is a two-equation model, that is used as an approximation for 362

the Reynolds-averaged Navier–Stokes equations (RANS equations). Again, we highlight 363

the effect of nonreproducibility on a few examples with Hydra. In Figure 3 we can observe 364

how the relative difference accumulates when increasing the number of time-steps from 365

10 to 100, while using the same unsteady numerical method on the same mesh. For a full 366

revolution of two blade rows, 2000 time-steps are needed, where one time-step contains 10 367

iterations. In Figure 4 we show that different turbulence models are impacted differently 368

by the relaxation of execution order, run for 100 iterations with a steady simulation on 369

the NASA Rotor37 benchmark. The k-ω is more susceptible to rounding error than the 370

Spalart-Allmaras. The variable ω is used to avoid singularity near the wall, but it also 371

becomes more sensitive to precision than the Spalart variable. This has a knock-on effect 372
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on the whole boundary layer, and hence the flow field. All four histograms present the 373

magnitude of differences between two runs with the same setup, just running with different 374

numbers of MPI processes. 375
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(a) Rig250 mesh with 20M nodes, 10 timesteps,
Spalart-Allmaras model
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Figure 3. Histograms, generated by using Hydra. The relative difference increases with more
timesteps on an unsteady numerical solver
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(b) Rot37 mesh with 8M nodes, 100 iterations,
Spalart-Allmaras model

Figure 4. Histograms, generated by using Hydra. The two models are not directly comparable, but
they illustrate how the relative difference depends on the numerical properties of the applied model

4. Theory and calculation 376

In this section we describe our techniques to solve the two main problems which cause 377

non-reproducibility: local element-wise reductions and global reductions. Most of our 378

methods focus on the local reductions. For global reductions we utilize ReproBLAS. Most 379

of our examples in this section use an edges→cells mapping, but all of these algorithms are 380

implemented generally using the dimension of the specific mapping. 381

To solve the issue of ordering in local (element-wise) reductions, we provide two 382

separate approaches: 1) a method storing increments temporarily and applying them later 383

in a fixed order 2) different reproducible coloring techniques, which later can be used 384

as colored execution, maintaining deterministic ordering. For all of these techniques we 385

must provide a common deterministic seed which will always be the same, even with 386

different number of MPI processes. That common seed is the global ID of all elements in 387

the whole mesh. If there are multiple MPI processes, then the global IDs of each element 388

must be communicated between the processes. If an element is owned by the given process, 389

then its global ID can be looked up from an internal data array of OP2. If an element is 390

not owned, then its global ID must be imported from the MPI process that owns it. All 391
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of our techniques use two main parts: 1) the OP2 backend must calculate the execution 392

order and 2) the generated code must execute the computations in this order. We apply 393

the reproducible execution methods only on kernels where the order of summation does 394

matter. These are loops with global reductions, indirect incrementing operations (OP_INC), 395

or operations with an indirect read and write access pattern (OP_RW). 396

4.1. Temporary array method 397

A temporary array-based technique can be used for ensuring reproducibility for increment- 398

ing operations. Consider using an edge→cells mapping and an incrementing operation. 399

Here we would iterate through all the edges, calculate values, and add them to a variable 400

defined on a neighboring cell. To achieve reproducibility, we modify this structure by 401

storing the calculated increments in a temporary array defined on the edges, and after all 402

increments are calculated, we iterate through all the cells and apply these increments in a 403

fixed order defined by the global_IDs of the edges. In Figure 5 we can see an example of 404

this method, where edge2’s global_ID is the smallest, so the value from edge2 is applied 405

first on the cell, then edge0, etc. 406

To achieve this modified execution, a few extra preparations must be done in the 407

backend, which are shown in Algorithm1. After the global_IDs are shared, the next step 408

is to create a reversed mapping for every map. The reversed mapping is needed, so we 409

can iterate through the cells and in each iteration we can access the edges connected to 410

the given cell. This reversed map uses local indices which might be in different order in 411

different MPI ranks. That is why we need to reorder them by using their previously shared 412

global indices. Another modification done on the reversed map is, that it actually stores 413

indices of a temporary array where the increments from the edges are stored for a cell. In 414

other words: if the kth element in line n (kth edge connection of cell n) of the reversed map 415

is x, then it means that in the temporary increments array at location x the increment for 416

cell n from edge k can be found. 417

The main disadvantage of this method is the need for significant additional memory: 418

to store the reversed mapping, and to store the increments. The reversed map uses a Com- 419

pressed sparse row (CSR) format, which consist of a main array of increment indexes (inte- 420

gers), with the size of set_from_size ∗ original_map_dimension, and another array in- 421

dexing the previous array with a size of set_to_size+1. The temporary arrays themselves 422

can use much more memory: set_from_size ∗ map_dimension ∗ data_element_size. 423

Algorithm 1 Algorithm of generating incrementing order

exchange global IDs
OP_map_index = number of maps
for m = 0 to OP_map_index do

create reversed mapping for map m
set_to_size = target set’s size of map m
for i = 0 to set_to_size do

sort the reversed connections of i by global IDs
end for

end for
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Figure 5. Due to local id renumbering, the global ids must be used for a reproducible execution order.

Algorithm 2 Algorithm for applying the order of increments

set_ f rom_size = source set’s size of the original map
original_map_dim = the dimension of the original map
set_to_size = target set’s size of the original map
for n = 0 to set_ f rom_size ∗ original_map_dim do

tmp_incs[n]← 0
end for
for n = 0 to set_ f rom_size do

prepare regular access indices for OP_READ and OP_WRITE parameters
call kernel function, using the tmp_incs array for OP_INC parameters

end for
for n = 0 to set_to_size do

for all connection i of n do
apply the temporary increment from connection i on the final location of the data

end for
end for

After creating the reversed map with the correct order, we generate a new op_par_loop 424

implementation code to use this modified method. The main changes can be seen in 425

Algorithm 2. After the initialization phase, it is imperative to set all elements in a temporary 426

array to zero to accommodate individual increments. This step is crucial as the user kernel 427

performs the increments, and proper initialization is required beforehand. Moreover, this 428

approach ensures that the data remains in the cache, enhancing overall performance. Then 429

we can call the kernel function for all edges to access the elements defined on the cells. If a 430

parameter is accessed through an OP_READ or OP_WRITE method, then the execution order 431

does not matter, so we can use the original method of directly storing the new state in the 432

data. If the parameter is incremented (OP_INC), then we need to store each increment value 433

in the tmp_incs array instead of adding to the actual data. After the iteration on edges 434

is completed and all increments are calculated, we need to apply those to the actual data 435

on cells. For that, we start a new cell-based loop on the cells and by using the reversed 436

mapping with the fixed ordering, for each cell we can gather and apply the increments. 437

This method is generally applicable to other types of mappings as well. 438

4.2. Reproducible coloring 439

The temporary arrays method only works for increment-type operations, where increments 440

can be stored separately. If a kernel not only increments a variable, but also reads and 441

rewrites it (OP_RW), then the kernel call from one edge must be executed, storing its result 442

in the cell before another edge accessing that cell can be executed. Although OP2 still 443
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requires that the computation be associative, we cannot store the increments separately. 444

This problem needs a solution to be able to really execute the kernel calls in a predefined 445

fixed order and achieve reproducibility. To solve this issue, we can apply a regular coloring 446

scheme with the following restriction: we are looking for an equivalence class of colorings 447

where if the color of one element is smaller than that of another connected element in the 448

case of one coloring, then it should also be the same in the case of any other coloring. 449

We have three main approaches to solve this problem. An initial trivial solution is to 450

choose the global index of the edge as the color. With this, we have as many colors as edges 451

in any given subgraph, but we do not have multiple edges with the same color. This is 452

useful for MPI-only parallelization, but not for a shared memory method. The advantage 453

is that this trivial method can be solved without actually coloring the elements. We can 454

just use the numbering from the global_ids for ordering sequential execution. This trivial 455

execution schedule can be considered as a special case of colored execution and in fact 456

they use the same generated code. Therefore we refer to it as a coloring method. The 457

second method is a non-distributed method: we apply a greedy coloring algorithm on 458

the whole mesh in a single process as a pre-processing step, and save the assigned colors 459

in a file. When we rerun the application on multiple processes, we load and distribute 460

the saved colors the same way as we distribute the mesh elements between the processes. 461

With a greedy coloring, we can generate a near optimal number of colors, thus we have 462

a high degree of parallelism. The drawback of this option is that we have to execute the 463

pre-processing part in a single process. This carries the restriction that the whole mesh must 464

be able to fit into the memory on a single node. The third method is a novel distributed 465

coloring scheme, which does not suffer from this restriction. 466

4.2.1. Distributed reproducible coloring method 467

We base our method on an algorithm developed by Osama et al. [57]. This original 468

non-reproducible parallel method can be seen in algorithm 3 between lines 7 and 40. We 469

iterate through each element, calculate a local hash value and then compare it to its (as 470

yet uncolored) neighbors’ hash values. If the examined hash value is a local minimum 471

or maximum in its neighborhood in a given iteration, then we can assign it a color. In 472

our implementation we use Robert Jenkins’ 32 bit integer hash function [58]. This hash 473

function is a custom, non-cryptographic function that operates on unsigned integers. It 474

uses a combination of bitwise operations and arithmetic with specific constants to compute 475

the hash of an input. 476

The difficulty of applying this algorithm in a distributed graph comes from two 477

sources. First, in each iteration of the previously described algorithm, we must know if 478

the neighbor element already received a color, or not. Thus, we need to synchronise the 479

assigned colored values on the borders of each subgraph (MPI partition). Secondly, it is 480

difficult to figure out all the neighbors of an element on the border of a subgraph in a 481

standard owner compute model. We can see an example of this problem in Figure 6. Solid 482

dots and continuous lines are the owned elements. In this example, we use an edge→ nodes 483

mapping, thus we import one layer of halo elements (e.g. edge 7,8,9 on Process 0) so we 484

can update the owned nodes from all attached edges (so far it is a standard owner compute 485

model). However, to calculate the smallest hash value in a neighborhood, we also need to 486

communicate edges even around the non owned nodes (e.g. edge 0,2,5,6 on Process 1). Our 487

extension to distributed execution can also be applied to other iterative coloring techniques 488

which use only local information (the algorithm is not sequential) and deterministic even 489

with different graph partitioning. The number of colors is not explicitly minimized. 490



Version January 4, 2024 submitted to Appl. Sci. 13 of 21

Figure 6. An example of a second ghost layer to determine the edge→edge neighbors on the partition
borders

4.3. Parallel global reduction 491

Global reductions are another source of non-reproducibility in MPI applications. This 492

operation is commonly done by performing a local sum on each process, then calling 493

MPI_Reduce, however this assumes associativity. If we use different numbers of MPI 494

processes, then we would sum different elements and even a different number of elements 495

locally, which again can produce different results. To solve this issue, we introduced 496

another temporary storage. If a kernel performs an increment reduction, then we give 497

a temporary storage point to store the increment for the result of each element. Then, 498

in each MPI process, we reduce these increments reproducibly by using the ReproBLAS 499

library. First, we create a local ReproBLAS’s double_binned variable for every MPI process, 500

then we use binnedBLAS_dbdsum to collect those into the local_sum. After that, we use 501

reproBLAS’s method to call an MPI_Allreduce with the binnedMPI_DBDBADD operator. 502

Finally, we convert the result back to a regular double precision variable and return it. 503

4.4. Reproducible codegeneration with OP2 504

Using OP2’s source-to-source translator, a user can easily generate reproducible code 505

from an app, which already has an implementation using OP2. A few flags are responsible 506

for controlling the mechanisms that allow reproducible code to be generated. In the 507

translator scripts these are: reproducible - needed for all methods, repr_temp_array - 508

for using temporary arrays, repr_coloring - for using reproducible coloring method and 509

trivial_coloring which will produce the trivial coloring version. To enable the greedy 510

coloring technique, the -op_repro_greedy_coloring command line flag must be used 511

with the application. 512

5. Performance Results 513

We measured our techniques with four test applications, introduced in Section 3.8. All 514

results are the average of 10 measurements. Table 1 summarises the details of the different 515

machine setups we used for our measurements. 516

Name CPU GPU #processes
per node

compiler OS

Cirrus-
CPU

Intel Xeon E5-2695
(Broadwell) @ 2.1
GHz

n.a. 18 cores, 2
threads per
core per node

icc (ICC)
19.0.0.117

Red Hat Enter-
prise Linux 8.1
(Ootpa)

Cirrus-
GPU

2.5 GHz, Intel Xeon
Gold 6248

NVIDIA
Tesla V100-
SXM2-
16GN

20 cores, 2
threads per
core, 4 GPUs
per node

nvc++ 21.9-0 Red Hat Enter-
prise Linux 8.1
(Ootpa)

Table 1. Details of the different machine setups
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Algorithm 3 Algorithm for reproducible coloring in a distributed graph

1: create neighbor lists
2: global_done = 0
3: local_done = false
4: if set_size == 0 then
5: local_done = true
6: end if
7: iteration = 0
8: low_color = 0
9: high_color = 1

10: while global_done < number of subgraphs do
11: if not local_done then
12: for all element e in from_set do
13: if e has no color then
14: calculate hash value of e in iteration i
15: is_min = true
16: is_max = true
17: for all neighbors n of e do
18: if n has no color then
19: calculate hash value of n in iteration i
20: if n’s hash < = e’s hash then
21: is_min = false
22: else if n’s hash > = e’s hash then
23: is_max = false
24: end if
25: end if
26: end for
27: if is_min then
28: give low_color as color of e
29: number of noncolored elements − = 1
30: end if
31: if is_max then
32: give high_color as color of e
33: number of noncolored elements − = 1
34: end if
35: end if
36: end for
37: if number of noncolored elements == 0 then
38: local_done = true
39: end if
40: end if
41: exchange halo color values
42: reduce local_done values into global_done
43: low_color += 2
44: high_color += 2
45: iteration += 1
46: end while

All of our methods provide full reproducibility at the expense of additional compu- 517

tations, suboptimal scheduling, or redundant memory usage. The overall cost of these 518

techniques is visualized in Figures 7 and 8 and in Table 2. We compare each run with its 519

original, non-reproducible version. On CPU systems, slowdowns are between 1 and 3.21 520

times. The difference between the greedy and distributed coloring methods comes down to 521

data reuse and cache line utilization, because of the different number of colors used. The 522

main reason for that is that the data for neighboring elements is located close in memory, 523
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but when using coloring, adjacent elements will have different colors, leading to poor 524

utilization. A few examples for the number of colors used is shown in Table 3. While the 525

greedy scheme leads to near-optimal color counts, the parallel scheme yields much higher 526

color counts particularly in 3D. The performance of the trivial coloring scheme is close 527

to the reference, since it uses a similar order of execution to the nonreproducible version, 528

with the only differences around the borders of MPI partitions. Since with the trivial 529

scheme we still require sequential execution within a process, we cannot use additional 530

parallelization techniques, such as CUDA or OpenMP. In contrast, the slowdown on GPUs 531

is more significant, because they are even more sensitive to data access patterns and cache 532

locality than CPUs. In particular, with the usage of the temporary arrays, we have to iterate 533

through the increment data twice, once when populating it and once when gathering the 534

results, each time with a different access pattern. If we optimize for one stage, then the 535

other will suffer from the non-coalesced data accesses. This is even true for the coloring 536

methods. If we reorganize the data in a set according to one map, then later, using another 537

map to the same set, we again get inefficient access patterns. 538

The runtime overhead of the preprocessing preparations of the temporary array and 539

coloring methods against the number of MPI processes are detailed in Figure 9 and using 540

only one process in Table 4. 541

(a) Using 40 MPI-only processes on the Cirrus ma-
chine

(b) Using 1 MPI+CUDA GPU process on the
Cirrus-GPU machine

Figure 7. Slowdown effect of the different methods compared to the non reproducible version
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Figure 8. Slowdown of Hydra measured on an 8M mesh, 20 iterations, using the Cirrus-CPU machine

App Non reproducible Temporary arrays Coloring method
Airfoil 0.92 1.6 1.3
Aero 2.6 3.4 2.8
MG-CFD 7.5 14.4 9

Table 2. Memory usage of the reference run and with using the proposed methods in GB.
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App (map) Greedy Distributed
Airfoil (pecell1) 4 14
Aero (pcell1) 5 17
MG-CFD (edge→node0) 7 19

Table 3. Number of colors with the different methods on the applications main map

(a) Reversed map and temporary array creation
time for the temporary array method

(b) Reversed map creation and distributed coloring
time

Figure 9. Scaling of preprocessing overhead

App Runtime
Airfoil 4.65 s
Aero 1.79 s
MG-CFD 128.88 s

Table 4. Reversed map creation and greedy coloring time

Figure 10 shows how well the test applications scale with the different methods using 542

1, 2, 4 and 8 nodes on the Cirrus cluster. On the CPU side, all methods have the same 543

parallel efficiency on each application, except the distributed and greedy coloring methods 544

on Airfoil, where we can observe superlinear scaling (Figure 10a), since much of the data 545

used can fit into the cache if it is divided between at least 4 nodes. We cannot observe 546

this on the temporary array method, because it uses extra memory to store increments 547

separately. Apart from the reductions (discussed in detail below), MPI communications, 548

and communication times do not differ between reproducible and non-reproducible. For 549

non-reproducible execution, the communication overhead (as a fraction of total runtime) 550

will become higher using multiple nodes. In the case of reproducible execution, because 551

we spend more time in the colored execution, we spend a smaller fraction of the total time 552

in communications. Therefore the relative difference is decreasing, the slowdown effect 553

with any method compared to the non-reproducible is less when more nodes are used. 554
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(a) Airfoil, using 36 MPI Intel Xeon CPU pro-
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(b) Airfoil, using 4 Nvidia V100 GPU processes
per node
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(c) Aero, using 36 MPI Intel Xeon CPU processes
per node
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(d) Aero, using 4 Nvidia V100 GPU processes
per node
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(e) Mg-cfd, using 36 MPI Intel Xeon CPU pro-
cesses per node

Number of processes

R
un

im
e 

(s
)

0.1

0.2

0.4

0.8

2

4

4 8 16 32

non reproducible temporary arrays greedy coloring
distributed coloring

(f) Mg-cfd, using 4 Nvidia V100 GPU processes
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Figure 10. Strong scaling measurement of the different methods, using 1,2,4,8 nodes

We can observe the strong scaling of a reduction kernel in Figure 11. Since all repro- 555

ducible methods use the same reduction technique, there is no separate measurement for 556

them. Again on CPUs we can see the superlinear effect as the application fits more and 557

more into the cache. We can also observe that there is an additional cost of the reduction 558

caused by the reproBlas functions. The most significant factor in the cost of reproducible 559

reduction is that we must write all the values to be reduced into a separate array and per- 560

form a reduction on it within a process. This leads to extra memory movement compared 561

to the reference version. This is particularly expensive on GPUs, because this array must be 562

copied to the host to perform the local summation. MPI_reduce is not significantly more 563

expensive. 564
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(a) Airfoil_update on the Cirrus-CPU machine (b) Airfoil_update on the Cirrus-GPU machine
Figure 11. Strong scaling measurement of a reduction kernel

Using only MPI parallelization the overhead is quite small (between 1 and 1.12 times). 565

Using shared memory parallelism, it is a bit greater, due to the bad cache locality. In some 566

extreme cases, we can even lose the speedup gain from GPUs, our reproducible methods 567

work better on CPU-only systems. 568

6. Conclusions 569

In this paper, we examined the non-reproducibility phenomenon that occurs due 570

to the non-associative property of the floating-point number representation on applica- 571

tions defined on unstructured meshes. We compared the differences in results without 572

reproducibility across a range of applications, including Rolls-Royce’s production applica- 573

tion Hydra. Non-reproducibility is a widely studied problem, however, we have not yet 574

found an effective solution for distributed systems that could also be applied to arbitrarily 575

partitioned meshes. In this work, we developed a collection of parallel and distributed 576

algorithms to create a plan and then execute it, guaranteeing the reproducibility of the 577

results. Of these, we highlight a graph coloring scheme that gives the same colors regardless 578

of how many parts the graph was partitioned into. We implemented all of our methods in 579

the OP2 DSL and then we showed how they can be automatically applied without user 580

intervention to any application that is already using OP2. We demonstrated that on CPU 581

systems, our methods can achieve bitwise reproducible results with a slowdown between 1 582

and 3.21 times in various applications, and on GPU systems with a slowdown between 2.31 583

and 10.7 times due to the modified data access patterns. 584

While there are alternative methods addressing the issue of reproducible reduction, 585

their complexity is akin to ours and from the perspective of OP2, the choice of method 586

is non-critical. This is why we do not draw comparisons on this aspect, as the time 587

spent on reductions is relatively short. Our work stands out in the development of a 588

generalized method ensuring reproducible execution, applicable to various applications. 589

This is in contrast to other solutions that are application-specific. There are several general 590

methods available. Kahan’s method, although popular, does not guarantee reproducibility, 591

just higher accuracy. The most straightforward method involves sorting the elements 592

before adding them. The most general method, perhaps, is the binned method, like in 593

the ReproBLAS library. However, all these methods are more complex and mainly more 594

expensive in compute and/or in memory usage. By leveraging the properties of the 595

unstructured mesh, we can keep the costs low, thus presenting a more efficient solution. 596
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