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GENERALISED RADO AND ROTH CRITERIA

JONATHAN CHAPMAN AND SAM CHOW

Dedicated to Sean Prendiville

Abstract. We study the Ramsey properties of equations a1P (x1) + · · · + asP (xs) = b,
where a1, . . . , as, b are integers, and P is an integer polynomial of degree d. Provided there
are at least (1 + o(1))d2 variables, we show that Rado’s criterion and an intersectivity con-
dition completely characterise which equations of this form admit monochromatic solutions
with respect to an arbitrary finite colouring of the positive integers. Furthermore, we obtain
a Roth-type theorem for these equations, showing that they admit non-constant solutions
over any set of integers with positive upper density if and only if b = a1+ · · ·+as = 0. In ad-
dition, we establish sharp asymptotic lower bounds for the number of monochromatic/dense
solutions (supersaturation).
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1. Introduction

A system of polynomial equations is called partition regular if every finite colouring of the
positive integers admits monochromatic non-constant1 solutions to the system.2 A founda-
tional result in the field of arithmetic Ramsey theory is Rado’s criterion [23, Satz IV], which
provides necessary and sufficient conditions for a finite system of linear equations to be par-
tition regular. For example, given s > 3 and non-zero integers a1, . . . , as, Rado’s criterion
asserts that the linear homogeneous equation

a1x1 + · · ·+ asxs = 0 (1.1)

is partition regular if and only if there exists a non-empty set I ⊆ {1, . . . , s} such that∑
i∈I ai = 0.

2020 Mathematics Subject Classification. 11B30 (primary); 05D10, 11D72, 11L15 (secondary).
Key words and phrases. Arithmetic combinatorics, arithmetic Ramsey theory, Diophantine equations,

Hardy–Littlewood method, partition regularity, restriction theory.
1A solution (x1, . . . , xs) is non-constant if xi 6= xj holds for some i 6= j.
2Some authors allow constant monochromatic solutions in the definition of partition regularity.
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2 JONATHAN CHAPMAN AND SAM CHOW

A similar, stronger notion is that of density regularity, which refers to systems of equations
which have non-constant solutions over all sets of positive integers A satisfying

lim sup
N→∞

|A ∩ {1, 2, . . . , N}|
N

> 0.

Such sets A are said to have positive upper density. An influential Fourier analytic argument
of Roth [24] shows that if s > 3, then the linear homogeneous equation (1.1) is density
regular if and only if a1 + · · ·+ as = 0.

Recent work on partition regularity has focused on generalising the theorems of Rado and
Roth by finding necessary [1, 9] and sufficient [5, 6, 7, 22, 26] conditions for partition and
density regularity for general systems of polynomial equations. In this paper we consider
equations of the form

a1P (x1) + · · ·+ asP (xs) = 0, (1.2)

where P is a polynomial with integer coefficients, and a1, . . . , as are non-zero integers. Pre-
vious work of the second author with Lindqvist and Prendiville [7] extended Rado’s criterion
to equations (1.2) for P (x) = xd under the assumption that the number of variables s is
sufficiently large in terms of d.

In this paper, we extend these results further by completely characterising partition and
density regularity for equations (1.2) in sufficiently many variables. To state our main results,
we require the following definition. An integer polynomial P (x) ∈ Z[x] is called intersective
if for every positive integer n, there exists an integer x such that P (x) is divisible by n.
Integer polynomials which admit integer zeros are intersective, however, there exist numerous
intersective polynomials which have no rational zeros, such as P (x) = (x3− 19)(x2 + x+ 1).

Our first theorem shows that Rado’s criterion and Roth’s theorem hold for equations in
intersective polynomials with sufficiently many variables.

Theorem 1.1. Let d > 2 be an integer. There exists a positive integer s0(d) such that the
following is true. Let P be an intersective integer polynomial of degree d. Let s > s0(d) be
an integer, and let a1, . . . , as be non-zero integers.

(PR) The equation (1.2) is partition regular if and only if there exists a non-empty set
I ⊆ {1, . . . , s} such that

∑
i∈I ai = 0.

(DR) The equation (1.2) is density regular if and only if a1 + · · ·+ as = 0.

Moreover, we have s0(2) = 5, s0(3) 6 9, and

s0(d) 6 d2 − d+ 2b
√

2d+ 2c+ 1 (d > 4). (1.3)

Remark 1.2. The exact definition of s0(d) is given in §3. As we will soon clarify, intersectivity
is also a necessary condition for partition regularity.

By performing a change of variables, one may interpret Theorem 1.1 as generalisations
of Rado and Roth’s theorems to colourings and dense subsets respectively of the image set
P (N) := {P (1), P (2), P (3), . . .}. More precisely, if s > s0(d) and

∑
i∈I ai = 0 for some non-

empty I ⊆ {1, . . . , s}, then Theorem 1.1 asserts that the linear equation (1.1) admits non-
constant monochromatic solutions with respect to any finite colouring of P (N). Similarly, if
a1 + · · · + as = 0, then Theorem 1.1 implies that (1.1) has non-constant solutions over any
set of positive integers A satisfying

lim sup
N→∞

|A ∩ {P (1), . . . , P (N)}|
N

> 0.
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1.1. Inhomogeneous equations. Rado [23] also studied inhomogeneous linear equations

a1x1 + · · ·+ asxs = b, (1.4)

where a1, . . . , as are non-zero integers and b is a fixed integer. Rado showed that every finite
colouring of the integers admits (possibly constant) monochromatic solutions to (1.4) if and
only if (a1 + · · · + as) divides b. Returning to the positive integers, if one does not permit
constant monochromatic solutions, then it was noted by Hindman and Leader [15, Theorem
3.4] that (1.4) is partition regular if and only if (a1 + · · ·+ as) divides b and

∑
i∈I ai = 0 for

some non-empty I ⊆ {1, . . . , s}. Note that, by considering solutions over a non-zero residue
class modulo a sufficiently large prime p, equation (1.4) cannot be density regular if b 6= 0.

Our second theorem, of which Theorem 1.1 is a special case, comprehensively characterises
partition and density regularity for arbitrary polynomial analogues of (1.4) in sufficiently
many variables.

Theorem 1.3. Let d > 2 be an integer, and let s0(d) be as given in Theorem 1.1. Let P be
an integer polynomial of degree d, and let s > s0(d) be an integer. Let a1, . . . , as be non-zero
integers, and let b be an integer. Consider the equation

a1P (x1) + · · ·+ asP (xs) = b. (1.5)

(PR) The equation (1.5) is partition regular if and only if there exists a non-empty set
I ⊆ {1, . . . , s} such that

∑
i∈I ai = 0 and an integer m with b = (a1 + · · ·+as)m such

that P (x)−m is an intersective polynomial.
(DR) The equation (1.5) is density regular if and only if b = a1 + · · ·+ as = 0.

Note that, if a1 + · · ·+as 6= 0, then Theorem 1.3 implies that (1.5) is partition regular only
if P is an intersective polynomial. In the case where a1 + · · · + as = 0, we see that the set
of solutions to (1.5) is unchanged if we replace P by the intersective polynomial P − P (0).
Thus, intersectivity is absolutely vital for partition regularity, and is not merely a technical
assumption in Theorem 1.1. Our results are definitive in this regard, and also definitive in
terms of the coefficients a1, . . . , as, b.

In terms of the number of variables required, our results are state of the art in the sense that
they match current progress on the asymptotic formula in Waring’s problem. In the mono-
mial case, the second author found with Lindqvist and Prendiville [7] that (1 + o(1))d log d
variables suffice to characterise partition regularity. However, reducing the number of vari-
ables in that way requires estimates for moments of smooth Weyl sums that depend crucially
on the multiplicative structure of the polynomial P (x) = xd.

1.2. Supersaturation. Frankl, Graham, and Rödl [11, Theorem 1] obtained a stronger,
quantitative version of Rado’s theorem for systems of linear homogeneous equations. More
precisely, they showed that, for a given partition regular system of linear equations and for
sufficiently large N , a positive proportion of all solutions to the system over {1, . . . , N} be-
come monochromatic under any r-colouring of {1, . . . , N}. They also obtained an analogous
result for density regular linear systems [11, Theorem 2]. This phenomenon, in which a pos-
itive proportion of solutions are found to be monochromatic or lie over an arbitrary dense
set, is termed supersaturation, in analogy with similar results from extremal combinatorics.

One significant corollary of supersaturation results is that one can obtain monochromatic
solutions which are non-trivial, in the sense that the variables of the solution are distinct.
This may be readily deduced from supersaturation if one can first show that the set of trivial
solutions is sparse in the set of all solutions.

In previous work of the second author with Lindqvist and Prendiville [7, Theorem 1.4], it
was shown that partition regular equations of the form (1.2) with P (x) = x2 − 1 and s > 5
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satisfy supersaturation. They also obtained similar results for partition regular linear ho-
mogeneous equations in logarithmically smoothed numbers [7, Theorem 1.5]. More recently,
Prendiville [22, Theorem 1.7] has established supersaturation for partition regular equations
(1.2) in the case where P (x) = x2 and s > 5.

Our next theorem demonstrates that partition and density regular equations (1.2) in
sufficiently many variables satisfy supersaturation. Furthermore, as per the remark above,
we can ensure that the solutions we obtain are non-trivial.

Theorem 1.4. Let d > 2 be an integer, and let s0(d) be as given in Theorem 1.1. Let P be
an intersective integer polynomial of degree d. Let s > s0(d) be an integer, and let a1, . . . , as
be non-zero integers. Given a set of integers A, write

S(A) := {(x1, . . . , xs) ∈ As : xi 6= xj for all i 6= j, and a1P (x1) + · · ·+ asP (xs) = 0}.
(PR) If there exists a non-empty set I ⊆ {1, . . . , s} such that

∑
i∈I ai = 0, then for any

positive integer r there exists a positive real number c1(r) = c1(P ; a1, . . . , as; r) and
a positive integer N1 = N1(P ; a1, . . . , as; r) such that the following is true for any
positive integer N > N1. Given any r-colouring {1, . . . , N} = C1 ∪ · · · ∪ Cr, there
exists k ∈ {1, . . . , r} such that |S(Ck)| > c1(r)N s−d.

(DR) If a1 + · · ·+as = 0, then for any positive real number δ > 0 there exists a positive real
number c2(δ) = c2(P ; a1, . . . , as; δ) and a positive integer N2 = N2(P ; a1, . . . , as; δ)
such that the following is true for any positive integer N > N2. Given any set
A ⊆ {1, . . . , N} satisfying |A| > δN , we have |S(A)| > c2(δ)N s−d.

Remark 1.5. It follows from a standard application of the circle method that

#{x ∈ {1, 2, . . . , N}s : a1P (x1) + · · ·+ asP (xs) = 0} � N s−d,

provided that the ai do not all have the same sign. This threshold is motivated by the naive
heuristic [2, Section 1.1], which we now briefly describe. One imagines

a1P (x1) + · · ·+ asP (xs)

as a uniformly random integer in the range O(Nd), which therefore equals zero with proba-
bility roughly N−d. There are N s values sampled, so one expects around N s−d of them to
vanish.

1.3. Linearised equations. In the course of proving our main theorems, we are led to
study certain ‘linearised’ equations. These take the form

L1(n) = L2(P (z)), (1.6)

where P is an integer polynomial and P (z) = (P (z1), . . . , P (zt)), for some non-degenerate
linear forms L1 and L2 such that L1(1, . . . , 1) = 0. Here, a non-degenerate linear form in
t variables L : Zt → Z is a multilinear map of the form L(x) = b1x1 + · · · + btxt, where
b1, . . . , bt are non-zero integers. This naturally provides us with an opportunity to consider
partition regularity criteria for such linearised equations (1.6).

Recently, Prendiville [22] studied the equation (1.6) in the case where P (z) = z2, obtaining
necessary and sufficient conditions for partition regularity as well as a counting result for
certain partition regular equations of this form. By incorporating Prendiville’s ‘cleaving’
strategy into our methods, we obtain a counting result on partition regularity for linearised
equations (1.6) in sufficiently many variables.

Theorem 1.6. Let d > 2 and r be positive integers, and let s0(d) be as given in Theorem
1.1. Let P be an intersective integer polynomial of degree d. Let s and t be positive integers
satisfying s + t > s0(d). Let L1 and L2 be non-degenerate linear forms in s and t variables
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respectively, and assume that L1(1, 1, . . . , 1) = 0. There exists a positive constant c0 =
c0(L1, L2, P, r) and a positive integer N0 = N0(L1, L2, P, r) such that the following holds for
every positive integer N > N0. For any r-colouring {1, . . . , N} = C1 ∪ · · · ∪ Cr, there exist
k ∈ {1, . . . , r} such that, on writing M := Nd−r , we have

{(n, z) ∈ Csk × Ctk : L1(n) = L2(P (z))} > c0M
d(s−1)+t.

As observed by Prendiville [22], bounds of this shape are sharp for generic linearisaed
equations (1.6). Consider, for example, the equation

n1 + · · ·+ ns−1 − (s− 1)ns = s(zd1 + · · ·+ zdt ).

If (n, z) ∈ {1, . . . , N}s+t is a solution to this equation, then we see that z1, . . . , zt 6 N1/d.
Consequently, if we colour {1, . . . , N} = C1 ∪ · · · ∪ Cr by taking Cr := {1, . . . ,Md} and

Ci :=
{
x ∈ N : Nd−i < x 6 Nd−(i−1)

}
(1 6 i < r),

then we find that all monochromatic solutions to our equation come from Cr. We there-
fore conclude that there are at most Md(s−1)+t monochromatic solutions, which is within a
constant factor of the lower bound given in Theorem 1.6.

1.4. Methods. As in the previous works [5, 6, 7], a key step in our argument is the appli-
cation of a Fourier analytic transference principle. The transference principle was originally
developed by Green [12] to obtain solutions to linear equations in primes, and has subse-
quently been adapted to finding solutions over numerous different sets of arithmetic interest,
such as the kth powers [7, Part 2], logarithmically smooth numbers [7, Part 3], and kth
powers of primes [6].

If we assume that there exists a non-empty set I ⊆ {1, . . . , s} such that
∑

i∈I ai = 0, then
we may rewrite (1.2) as ∑

i∈I

aiP (xi) =
∑

j∈{1,...,s}\I

bjP (xj),

where bj = −aj for all j. We then linearise this equation to obtain a new equation∑
i∈I

aini =
∑

j∈{1,...,s}\I

bjPD(zj)

in variables ni and zj, where PD is some auxiliary intersective polynomial (see (3.9)). Count-
ing solutions to this linearised equation may be accomplished more easily by using the arith-
metic regularity lemma. We then use a transference principle to ‘transfer’ solutions of the
linearised equation to the original equation (1.2).

The main contribution of this article is the development of a transference principle for in-
tersective polynomials. Given an intersective polynomial P , we consider a W -tricked version
of the image set {P (1), P (2), . . .}, namely, a set of the form

SW =

{
P (x)− P (b)

W2

: x ≡ b (modW1)

}
,

for some 1 6 b 6 W1. Here, W is a product of powers of small primes, and W | W1 | W2 (see
§4 for further details). The upshot of working with this W -tricked set is that the elements
of this new set are equidistributed in residue classes for small primes, whereas the original
image set is not (consider, for example, the case where P (x) = x2).

To establish the desired transference principle, we construct a pseudorandom majorant
of the set SW defined above. This is carried out in §§4–7, and makes use of the Hardy–
Littlewood circle method. In particular, we study the properties of exponential sums of the
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form ∑
y6q

eq(aPD(y)),

where PD is some auxiliary intersective polynomial defined in terms of some parameter
D ∈ N (in our applications, one can take D = W 2), and as usual eq(x) := exp(2πix/q). One
difficulty that arises here is that we require restriction estimates that are independent of
the parameter D, though the coefficients of PD increase with D. To establish these uniform
bounds, we exploit a key insight of Lucier [18], that one can nevertheless bound the greatest
common divisor of the coefficients of PD(x)− PD(0) in terms of P alone.

Finally, having applied the transference principle, it remains to prove that the linearised
equation (1.6) admits many solutions (n, z) with the zj lying in a (translated and dilated)
colour class and the ni lying in a dense subset of {1, . . . , N}. This is achieved by appealing
to the arithmetic regularity lemma, as in [5, 22].

We finish this subsection with a brief description of how we deal with the colouring aspect.
There is an increasingly popular mantra that every colouring phenomenon is driven by an
underlying density phenomenon. In the case of homogeneous equations, the connection was
solved in practice by the second author with Lindqvist and Prendiville [7] using homogeneous
sets.3 Subsequently, a full theoretical explanation was provided by the first author [4], who
showed that homogeneous systems are partition regular if and only if they admit solutions
with variables drawn from an arbitrarily given homogeneous set. A fresh hurdle that arises
in the present work, compared with [7], is that our equation is inhomogeneous, and so the
theory of homogeneous sets does not help us. We resolve the issue by choosing the colour class
which has the largest intersection with a certain polynomial Bohr set. For supersaturation,
we supplement this with Prendiville’s new cleaving technique, as alluded to earlier.

1.5. Organisation. We begin in §2 by swiftly establishing necessary conditions for equa-
tions (1.2) and (1.5) to be partition or density regular. In particular, we prove the ‘only if’
parts of Theorem 1.1 and Theorem 1.3. We also give a short proof that Theorem 1.4 implies
Theorem 1.1, and Theorem 1.1 implies Theorem 1.3.

In §3, we state the two main results which are the focus of this paper: Theorem 3.4 and
Theorem 3.8. We show that these two theorems imply all of our results stated above. We
also recall some useful properties on intersective polynomials from [18], in particular, the
notion of auxiliary intersective polynomials.

The next four sections, §§4–7, are used to prove that Theorem 3.4 follows from Theorem
3.8. In §4, we apply the W -trick and introduce the majorant ν, the latter of which is the
focus of our investigations in the next two sections. In §5, we use the Hardy–Littlewood
circle method to establish a Fourier decay estimate for ν. We continue in §6 by establishing
restriction estimates for ν and for a related majorant µD. The conclusions of these three
sections are combined in §7 to apply a transference principle, which is used to complete the
proof that Theorem 3.8 implies Theorem 3.4.

Finally, in §8, we prove Theorem 3.8 by using a version of Green’s arithmetic regularity
lemma.

We also include a section in the appendix on polynomial congruences, the results of which
are used in §4 to execute the W -trick.

Notation. Let N denote the set of positive integers. For each prime p, let Qp and Zp denote
the p-adic numbers and the p-adic integers respectively. Given a real number X > 0, we
write [X] := {n ∈ N : n 6 X}. Set T = [0, 1]. For q ∈ N and x ∈ R, we write e(x) = e2πix

3A set of positive integers S is called homogeneous [7] (or multiplicatively syndetic [4]) if there exists a
positive integer M such that {x, 2x, . . . ,Mx} ∩ S 6= ∅ holds for all positive integers x.
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and eq(x) = e(x/q). For P (x) ∈ Z[x] and x = (x1, . . . , xs), where s ∈ N, we abbreviate
P (x) = (P (x1), . . . , P (xs)). If P is a polynomial with integer coefficients, we write gcd(P )
for the greatest common divisor of its coefficients. The letter ε denotes a small, positive
constant, whose value is allowed to differ between separate occurrences. We employ the
Vinogradov and Bachmann–Landau asymptotic notations, with the implied constants being
allowed to depend on ε. In any statement in which ε appears, we assert that the statement
holds for all sufficiently small ε > 0. For a finitely supported function f : Z→ C, the Fourier
transform f̂ is defined by

f̂(α) :=
∑
n∈Z

f(n)e(αn) (α ∈ R).
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2. Necessary conditions

In this section, we establish the necessary conditions for partition and density regularity.
In particular, we prove the ‘only if’ directions of Theorem 1.1 and Theorem 1.3. We begin by
noting that the necessary conditions for equations (1.2) and (1.5) to be partition or density
regular are the same as those for linear homogeneous equations.

Proposition 2.1. Let s ∈ N. Let a1, . . . , as be non-zero integers, and let P be an integer
polynomial of positive degree.

(I) If the equation (1.2) is partition regular, then there exists a non-empty set I ⊆ [s] such
that

∑
i∈I ai = 0.

(II) If the equation (1.2) is density regular, then a1 + · · ·+ as = 0.

Proof. First suppose that (1.2) is partition regular. By replacing each ai with −ai, we may
assume that the leading coefficient of P is positive. Thus, we can find M ∈ N such that the
restriction of P to the set {M,M + 1, . . .} defines a strictly increasing function with image
S = {P (M), P (M + 1), . . .} ⊆ N.

By Rado’s criterion [23, Satz IV], the conclusion of (I) holds if and only if the underlying
linear equation a1x1 + . . .+ asxs = 0 is partition regular. We establish the latter by using a
trick of Lefmann [17, Theorem 2.1]. Suppose that we have a finite colouring S = C1∪· · ·∪Cr.
By our choice of M , this induces a finite colouring {M,M + 1, . . .} = C ′1 ∪ · · · ∪ C ′r with
C ′i := {x > M : P (x) ∈ Ci}. By considering a colouring where each element of [M − 1]
receives a unique colour, partition regularity guarantees that (1.2) admits monochromatic
solutions with respect to any finite colouring of the set {M,M + 1, . . .}. We can therefore
find i ∈ [r] such that (1.2) has a solution over C ′i, whence a1x1 + · · ·+asxs = 0 has a solution
over Ci. We have therefore proven that a1x1 + · · ·+asxs = 0 is partition regular, as required.
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Now suppose that (1.2) is density regular. Let t ∈ {0, 1, . . . , deg(P )} be such that P (t) 6= 0,
and let p be a prime satisfying p > deg(P ) + |a1| + · · · + |as| and p - P (t). Since (1.2) is
density regular, it has a solution over the set {n ∈ N : n ≡ t (mod p)}. Thus, by reducing
(1.2) modulo p, we observe that p | (a1 + · · ·+ as). Our hypothesis on the size of p therefore
delivers the conclusion a1 + · · ·+ as = 0. �

Proposition 2.2. Let s ∈ N, and let P (x) ∈ Z[x] have positive degree. Let a1, . . . , as ∈
Z \ {0} and b ∈ Z. If the equation (1.5) is partition regular, then b = (a1 + · · · + as)m
for some m ∈ Z such that P (x)−m is an intersective polynomial. Furthermore, if (1.5) is
density regular, then b = a1 + · · ·+ as = 0.

Proof. Suppose that the equation (1.5) is partition regular. Note that for any q ∈ N, by
partitioning N into distinct residue classes modulo q, the partition regularity of (1.5) implies
that b ≡ (a1 + · · ·+as)mq (mod q) for some mq ∈ Z. In particular, we see that every integer
divisor of (a1 + · · ·+ as) must also divide b, whence b = (a1 + · · ·+ as)m for some m ∈ Z.

Now observe that if a1 + · · ·+ as = 0, then b = 0 and we could take m to be any integer.
In particular, we could chose m = P (0) so that P (x) −m is trivially intersective. Suppose
then that a1 + · · ·+ as 6= 0, whence the integer m = b(a1 + · · ·+ as)

−1 is uniquely defined.
Assume for a contradiction that P (x)−m is not intersective. By the Chinese remainder

theorem, we can find a prime p and a positive integer k such that P (x) ≡ m (mod pk) has
no integer solutions x. Now choose h ∈ N such that ph - (a1 + · · ·+ as). It follows that there
does not exist x ∈ Z satisfying the congruence

a1P (x) + · · ·+ asP (x) ≡ b (mod ph+k).

Hence, there are no monochromatic solutions to (1.5) with respect to the finite colouring
given by partitioning N into distinct residue classes modulo ph+k. This contradicts the
assumption that (1.5) is partition regular, so P (x)−m must be intersective.

Finally, suppose that (1.5) is density regular. Since density regularity implies partition
regularity, we deduce that b = (a1 + · · · + as)m for some integer m such that P (x) −m is
an intersective polynomial. Subtracting b from both sides therefore reveals that (1.5) can be
rewritten as

a1(P (x1)−m) + · · ·+ as(P (xs)−m) = 0. (2.1)

The conclusion that b = a1 + · · ·+ as = 0 now follows from Proposition 2.1. �

Remark 2.3. Observe that none of the results in this section make any assumptions on the
number of variables s. The condition s > s0(d) introduced in Theorem 1.1 is only used to
find solutions to our equations, that is, to obtain sufficient conditions for partition or density
regularity.

With these necessary conditions established, we close this section by noting that Theorem
1.4 implies Theorem 1.1, and Theorem 1.1 implies Theorem 1.3.

Proof of Theorem 1.1 given Theorem 1.4. The ‘only if’ parts of Theorem 1.1 may be inferred
from Proposition 2.2, whilst the remaining ‘if’ statements follow from Theorem 1.4. �

Proof of Theorem 1.3 given Theorem 1.1. The ‘only if’ parts of Theorem 1.3 follow from
Proposition 2.2. Similarly, the (DR) statement of Theorem 1.3 follows immediately from
Theorem 1.1 and Proposition 2.2. Finally, it remains to show that, under the hypotheses of
Theorem 1.3, if b = (a1 + · · ·+as)m for some integer m such that P (x)−m is an intersective
polynomial, then (1.5) is partition regular. Rewriting (1.5) as (2.1), the desired result now
follows from Theorem 1.1. �
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3. Linear form equations

As we have verified the necessary conditions for partition and density regularity, our focus
is now on obtaining solutions to (1.2) under the assumption that Rado’s condition holds,
meaning that there exists I ⊆ [s] with I 6= ∅ such that

∑
i∈I ai = 0. This condition allows

us to rewrite (1.2) as ∑
i∈I

aiP (xi) =
∑
j∈[s]\I

(−aj)P (xj).

The above equation takes the shape

L1(P (x)) = L2(P (y)) (3.1)

for some linear forms L1 and L2. We refer to a linear form L(x) = b1x1 + · · · + btxt in t
variables as non-degenerate if bj 6= 0 for all j ∈ [t], and we write gcd(L) := gcd(b1, . . . , bt).

Remark 3.1. Note that in the above paragraph we could have I = [s]. We follow the
convention that if we have an equation involving two linear forms L2 where one of the forms
has t = 0 variables, then we replace L2 with 0. In particular, in this situation, the equation
(3.1) takes the form

L1(P (x)) = 0.

To proceed further with our study of equations of the form (3.1), we require some notation.
Let T = T (d) ∈ N be minimal such that, for every integer polynomial P of degree d, the
equation

P (x1) + · · ·+ P (xT ) = P (xT+1) + · · ·+ P (x2T ) (3.2)

has OP (X2T−d+ε) solutions x ∈ [X]2T , and let

s0(d) = 2T (d) + 1. (3.3)

Here, we remind the reader of our convention that the implied constants may depend on ε.
The proof of [31, Corollary 14.7] yields

T (d) 6
d(d− 1)

2
+ b
√

2d+ 2c,

which verifies the bound (1.3) stated in Theorem 1.1. It follows from Hua’s lemma [16,
Equation (1)] that T (2) 6 2 and T (3) 6 4, whence s0(3) 6 9. Moreover, by considering
solutions with xi = xi+T for all i ∈ [T ], we have

T (d) > d, s0(d) > 2d+ 1.

In particular, s0(2) = 5.
By orthogonality, our definition of T = T (d) is equivalent to the statement that∫

T

∣∣∣∣∣∑
x6X

e(αP (x))

∣∣∣∣∣
2T

�P X
2T−d+ε (3.4)

holds for any integer polynomial P of degree d. We now use this observation to bound the
number of trivial solutions to (1.2) and (1.5).

Lemma 3.2. Let d, s,X ∈ N with s > 2, and let P be an integer polynomial with degree d.
Let a1, . . . , as, b, c be fixed integers, and let j, k ∈ [s] with j 6= k. If s > s0(d), then

#{x ∈ [X]s : a1P (x1) + · · ·+ asP (xs) = b, xj = c} �P X
s−d−1+ε.

and

#{x ∈ [X]s : a1P (x1) + · · ·+ asP (xs) = b, xj = xk} �P X
s−d−1+ε+d/(s−1).
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Moreover, if s > s0(d) + 1, or s > s0(d) and aj + ak 6= 0, then

#{x ∈ [X]s : a1P (x1) + · · ·+ asP (xs) = b, xj = xk} �P X
s−d−1+ε.

Proof. For α ∈ T, write f(α) =
∑

x6X e(αP (x)). By orthogonality, Hölder’s inequality, and
(3.4), we have

#{x ∈ [X]s : a1P (x1) + · · ·+ asP (xs) = b, xj = c}

=

∫
T

 ∏
i∈[s]\{j}

f(aiα)

 e(α(ajP (c)− b)) dα 6
∏

i∈[s]\{j}

(∫
T
|f(aiα)|s−1 dα

)1/(s−1)

6
∏

i∈[s]\{j}

(
Xs−1−2T

∫
T
|f(aiα)|2T dα

)1/(s−1)

�P X
s−1−2TX2T−d+ε = Xs−d−1+ε.

Similarly,

#{x ∈ [X]s : a1P (x1) + · · ·+ asP (xs) = b, xj = xk}

=

∫
T

 ∏
i∈[s]\{j,k}

f(aiα)

 f((aj + ak)α)e(−bα) dα

6

 ∏
i∈[s]\{j,k}

∫
T
|f(aiα)|s−1 dα

1/(s−1)(∫
T
|f((aj + ak)α)|s−1 dα

)1/(s−1)

Using the observation ‖f‖∞ 6 f(0) = X to bound the second integral gives

#{x ∈ [X]s : a1P (x1) + · · ·+ asP (xs) = b, xj = xk}
�P (Xs−1−2TX2T−d+ε)(s−2)/(s−1)X 6 Xs−d−1+ε+d/(s−1).

If aj + ak 6= 0, then, as with the integrals involving ai with i /∈ {j, k}, we have∫
T
|f((aj + ak)α)|s−1 dα�P X

s−d−1+ε.

Incorporating this estimate delivers the bound

#{x ∈ [X]s : a1P (x1) + · · ·+ asP (xs) = b, xj = xk} �P X
s−d−1+ε.

Finally, if s > s0(d) + 1, then for all i ∈ [s] we have∫
T
|f(aiα)|s−2 dα�P X

s−d−2+ε.

Hölder’s inequality and the trivial bound ‖f‖∞ 6 X therefore imply that

#{x ∈ [X]s : a1P (x1) + · · ·+ asP (xs) = b, xj = xk}

6 X

 ∏
i∈[s]\{j,k}

∫
T
|f(aiα)|s−2 dα

1/(s−2)

�P X
s−d−1+ε.

�

Remark 3.3. In our applications of Lemma 3.2, the quantity X is chosen to be sufficiently
large relative to P . Consequently, we can take Xε sufficiently large such that the dependence
on P of the implicit constants can be removed.
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Let P be an intersective integer polynomial of degree d > 2. To simplify our forthcoming
arguments, we first restrict our attention to polynomials P which are strictly monotone
increasing and positive on the real interval [1,∞). That is, we assume P satisfies

1 6 P (x) < P (y) (x, y ∈ R, 1 6 x < y). (3.5)

To prove the main theorems stated in the introduction, we prove the following counting
result for equations of the form (3.1) where the yj variables lie in a particular colour class
and the xi variables are drawn from an arbitrary dense set.

Theorem 3.4. Let r and d > 2 be positive integers, and let 0 < δ < 1 be a real number.
Let P be an intersective integer polynomial of degree d which satisfies (3.5). Let s > 1 and
t > 0 be integers such that s+ t > s0(d). Let

L1(x) ∈ Z[x1, . . . , xs], L2(y) ∈ Z[y1, . . . , yt]

be non-degenerate linear forms such that L1(1, . . . , 1) = 0. Let X ∈ N be sufficiently large,
and suppose [X] = C1 ∪ · · · ∪ Cr. Then there exists k ∈ [r] with |Ck| �δ,r,L1,L2,P X such that
the following is true. For all A ⊆ [X] with |A| > δX, we have

#{(x,y) ∈ As × Ctk : L1(P (x)) = L2(P (y))} � Xs+t−d. (3.6)

The implied constant may depend on L1, L2, P, r, δ.

3.1. Deducing Theorem 1.4. Having introduced Theorem 3.4, we now show how it can be
used to prove Theorem 1.4. Given a polynomial P satisfying (3.5), we see that the conclusion
of Theorem 1.4 would follow immediately from Theorem 3.4 if we could ensure the colour
class Ck we obtain has density at least δ, as this would enable us to set A = Ck. Unfortunately,
this cannot always be guaranteed. Nevertheless, the conclusion of Theorem 3.4 informs us
that |Ck| > δ2|X| for some δ2 �L1,L2,P,r,δ 1. We may therefore apply Theorem 3.4 with this
new density δ2 and find another colour class Ck2 . Iterating this argument eventually yields a
colour class of sufficient density that our initial strategy of setting A equal to a colour class
can now be used to obtain Theorem 1.4.

The argument outlined above is termed cleaving by Prendiville [22], who used this method
to obtain a supersaturation result for the diagonal quadratic equations considered in [7] (see
[22, §2.1] for an overview of the cleaving strategy in the context of Schur’s theorem). We
now use this argument to show that, for X sufficiently large, there is a colour class Ck such
that the conclusion (3.6) of Theorem 3.4 holds with A = Ck.

Theorem 3.5. Let r and d > 2 be positive integers, and let P be an intersective integer
polynomial of degree d which satisfies (3.5). Let s > 1 and t > 0 be integers such that
s+ t > s0(d). Let

L1(x) ∈ Z[x1, . . . , xs], L2(y) ∈ Z[y1, . . . , yt]

be non-degenerate linear forms such that L1(1, . . . , 1) = 0. Let X ∈ N be sufficiently large,
and suppose [X] = C1 ∪ · · · ∪ Cr. Then there exists k ∈ [r] such that

#{(x,y) ∈ Csk × Ctk : L1(P (x)) = L2(P (y))} � Xs+t−d.

The implied constant may depend on L1, L2, P, r, δ.

Proof of Theorem 3.5 given Theorem 3.4. For each δ > 0, let c0(δ) be the implicit constant
appearing in the bound |Ck| �L1,L2,P,r,δ X in Theorem 3.4. Since decreasing the value of this
constant does not invalidate the conclusion of Theorem 3.4, we may henceforth assume that
0 < c0(δ) 6 δ for all δ > 0.

Now set δ0 = 1/r and let δi = c0(δi−1) for all i ∈ [r]. By the pigeonhole principle, we can
find k0 ∈ [r] such that |Ck0 | > X/r. For all i ∈ [r], let ki ∈ [r] be the index obtained by
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applying Theorem 3.4 with δ = δi. By the pigeonhole principle, we can find 0 6 i < j 6 r
such that ki = kj =: k. We claim that Ck satisfies the conclusion of Theorem 3.5. Indeed,
since |Ck| > c0(δi)X > δjX, our choice of i and j ensures that Ck = Ckj satisfies (3.6) with
A = Cki = Ck. This completes the proof of Theorem 3.5 provided that we assume that X
is sufficiently large in terms of L1, L2, P, r, and δr, which is permissible as δ0, . . . , δr are all
bounded away from 0 in terms of L1, L2, P, r. �

Proof of Theorem 1.4 given Theorem 3.4. In this proof we allow all implicit constants to
depend on the parameters P, a1, . . . , as, r, δ, and assume that N is sufficiently large with
respect to these parameters. In view of Lemma 3.2, Theorem 1.4 is equivalent to the same
statement with the condition ‘xi 6= xj for all i 6= j’ removed from the definition of S(A). We
therefore proceed to prove this equivalent version of Theorem 1.4.

We first consider polynomials P satisfying (3.5). Note that the density statement (DR)
follows immediately from Theorem 3.4. For the colouring statement (PR), observe that the
existence of a non-empty set I ⊆ [s] such that

∑
i∈I ai = 0 implies that we may express the

equation (1.2) as a linear form equation (3.1) with L1(1, . . . , 1) = 0. The desired result may
therefore be deduced from Theorem 3.5.

Having proven Theorem 1.4 for P satisfying (3.5), it remains to treat the general case. By
replacing each ai with −ai if necessary, it suffices to prove Theorem 1.4 under the assump-
tion that the leading coefficient of P is positive. Hence, there exists b ∈ N such that the
polynomial P̃ (x) := P (x+ b) obeys (3.5).

Now, given a colouring [N ] = C1∪· · ·∪Cr, we define a new colouring [N−b] = C̃1∪· · ·∪ C̃r
by setting C̃i := {x−b : x ∈ Ci\ [b]}. By our proof of the special case above, for N sufficiently
large, we deduce that there exists k ∈ [r] such that

#{z ∈ C̃sk : a1P̃ (z1) + · · ·+ asP̃ (zs) = 0} � N s−d.

The partition result (PR) now follows by adding b to each entry of every solution z ∈ C̃sk
found above to obtain � N s−d solutions to (1.2) over Ck.

Similarly, for the density statement (DR), we replace the δ-dense set A ⊆ [N ] with the
set Ã = {a − b : a ∈ A \ [b]}. As in the previous paragraph, we can find � N s−d solutions
to a1P̃ (z1) + · · · + asP̃ (zs) = 0 over Ã, each of which lifts to a solution to (1.2) over A by
adding b to each entry. �

Remark 3.6. It follows from the definition of s0(d) that the number of variables required in
our main theorems could be reduced if a stronger upper bound for T (d) is found. One could
also potentially weaken the assumption s > s0(d) by replacing T (d) with T (P ), this being
the least positive integer T such that (3.2) has OP (X2T−d+ε) solutions x ∈ [X]2T .

3.2. Auxiliary intersective polynomials. Akin to [7], we prove Theorem 3.4 by using a
‘linearisation’ procedure so that we may obtain solutions to (3.1) by transferring solutions
from the linearised equation of the form

L1(n) = L2(PD(z)), (3.7)

for some primitive linear form L and some auxiliary integer polynomial PD. The purpose
of this subsection is to formally define the auxiliary polynomials that we use, as well as to
state the linearised version of Theorem 3.4.

Let P be an intersective integer polynomial of degree d ∈ N. Recall from the introduction
that this means that for each n ∈ N there exists x ∈ Z such that P (x) ≡ 0 (modn).
Furthermore, observe that the property of being intersective is equivalent to having p-adic
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zeros for every prime p. Thus, for each prime p, we fix zp ∈ Zp such that P (zp) = 0. Let
mp > 1 be the multiplicity of zp as a zero of P over Zp. This allows us to define a completely
multiplicative function λ : N→ N such that λ(p) = pmp for all primes p. Explicitly, writing
ordp(D) for the multiplicity of p in the prime factorisation of D, we have

λ(D) :=
∏
p

pmpordp(D) (D ∈ N).

For later use, we record the following fact from [18, Equation (73)]:

D | λ(D) | Dd. (3.8)

The Chinese remainder theorem shows that for each positive integer D there is a unique
integer rD ∈ (−D, 0] such that

rD ≡ zp (mod pordp(D)Zp)

holds for all primes p.
With this notation in place, we can introduce the auxiliary polynomial

PD(x) :=
P (rD +Dx)

λ(D)
∈ Z[x]. (3.9)

Our choice of rD and λ(D) ensures that PD is indeed a polynomial with integer coefficients
(see [18, Lemma 21] for a detailed proof of this fact). These auxiliary polynomials and
the surrounding notation were introduced by Lucier [18] and have subsequently become a
standard tool when working with intersective polynomials. The significance of this con-
struction stems from Lucier’s result [18, Lemma 28] that the greatest common divisor of
the coefficients of PD(x) − PD(0) is uniformly bounded over all D ∈ N in terms of P only.
This observation is critical in our application of the circle method to exponential sums with
intersective polynomial phases (see Lemma 6.3).

Before moving on, we note that PD is also intersective.

Lemma 3.7. Let P be an intersective integer polynomial of positive degree, and let D be a
positive integer. Then the auxiliary polynomial PD defined by (3.9) is intersective.

Proof. It suffices to prove that PD has a zero over Zp for every prime p. Fix a prime p and
write D = pkM , where p -M and k > 0. Our definition of rD implies that rD = zp + pkt for
some t ∈ Zp, and so rD +Dx = zp + pk(t+Mx) for all x ∈ Zp. Since M is a multiplicative
unit in Zp, we can find x ∈ Zp such that t+Mx = 0, whence PD(x) = 0, as required. �

We now state a ‘linearised’ version of Theorem 3.4.

Theorem 3.8. Let r and d > 2 be positive integers, and let 0 < δ < 1 be a real number. Let
P be an intersective integer polynomial of degree d which satisfies (3.5). Let s > 1 and t > 0
be integers such that s+ t > s0(d). Let L1(x) ∈ Z[x1, . . . , xs] be a non-degenerate linear form
for which L1(1, 1, . . . , 1) = 0, and let L2(y) ∈ Z[y1, . . . , yt] be a non-degenerate linear form.
Let D,Z ∈ N satisfy Z > Z0(D, r, δ, L1, L2, P ), and set N := PD(Z). If [Z] = C1 ∪ · · · ∪ Cr,
then there exists k ∈ [r] such that the following is true. For all A ⊆ [N ] such that |A| > δN ,
we have

#{(n, z) ∈ As × Ctk : L1(n) = L2(PD(z))} � N s−1Zt. (3.10)

The implied constant may depend on L1, L2, P, r, δ.

Remark 3.9. Observe that, in contrast with Theorem 3.4, we have not specified a lower
bound for the density of the colour class Ck provided by Theorem 3.8. This is because such
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a conclusion follows automatically by a simple counting argument. Indeed, for t > 1, the
cardinality appearing on the left-hand side of (3.10) is bounded above by∑

z∈Ck

|{(n, z) ∈ [N ]s × [Z]t : L1(n) = L2(PD(z)), zt = z}| 6 |Ck|N s−1Zt−1.

Thus, we see that |Ck| > cZ, where c is the implicit constant in (3.10).

Before moving on, we show that it suffices to prove Theorem 3.8 under the assumption
that gcd(L1) = 1. In §8, we demonstrate the utility of this condition by parameterising
solutions to (3.7) with z fixed.

Proposition 3.10. Assume that Theorem 3.8 is true in the cases where gcd(L1) = 1. Then,
up to modifying the quantity Z0(D, r, δ, L1, L2, P ) and the implicit constant in (3.10), Theo-
rem 3.8 holds in general.

Proof. Let M = gcd(L1), and assume that M > 1. Using (3.8), we can find κ ∈ N such that
λ(M) = Mκ. By [18, Lemma 22], there exists an integer m in the range −M < m 6 0 such
that λ(M)PDM(x) = PD(m + Mx) ∈ Z[x]. Let Z ∈ N be sufficiently large, let N = PD(Z),
and set

Z̃ :=
Z −m
M

, Ñ := PDM(Z̃) =
PD(m+MZ̃)

λ(M)
=

N

Mκ
.

Finally, given an r-colouring [Z] = C1 ∪ · · · ∪ Cr, set C̃i := {z ∈ [Z̃] : m+Mz ∈ Ci} for each
i ∈ [r].

Let δ > 0, and let L be the non-degenerate linear form satisfying L1 = gcd(L1)L. Let
k ∈ [r] be the index given by applying Theorem 3.8 with the r-colouring [Z̃] = C̃1∪· · ·∪C̃r and
with parameters (L,DM, δ/2) in place of (L1, D, δ). Now given A ⊆ [N ] such that |A| > δN ,
we claim that there exists a set Ã ⊆ [Ñ ] of the form Ã = {x ∈ [Ñ ] : (κx + h) ∈ A}, for
some integer h, such that |Ã| > (δ/2)Ñ . Assuming that this is true, we observe that for any
(ñ, z̃) ∈ Ãs × C̃tk satisfying

L(ñ) = L2(PDM(z̃)),

the tuple (n, z) = (κñ + h,M z̃ +m) ∈ As × Ctk satisfies

L1(n) = λ(M)L(ñ) = L2(PD(m+M z̃)) = L2(PD(z)).

Since this map (ñ, z̃) 7→ (n, z) is injective, the desired bound (3.10) follows from our choice
of k.

It only remains to establish the existence of the set Ã. By partitioning [N ] into residue
classes modulo κ, the pigeonhole principle furnishes an integer b in the range 0 6 b < κ such
that the set

B := {x ∈ [(N + b)/κ] : (κx− b) ∈ A}

satisfies |B| > δN/κ. Note that, provided N is sufficiently large, we have

(N + b)/κ > N/(Mκ) = Ñ .

Hence, by partitioning [(N + b)/κ] into intervals of length between Ñ/2 and Ñ , we deduce
from the pigeonhole principle that there exists a translate of B with density at least δ/2 on
[Ñ ]. We can therefore find an integer h such that the set Ã = {x ∈ [Ñ ] : (κx + h) ∈ A}
satisfies |Ã| > (δ/2)Ñ , completing the proof of the claim. �
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3.3. Deducing Theorem 1.6. We close this section by demonstrating that Theorem 1.6
follows from Theorem 3.8. We first state the following slightly more technical version of
Theorem 1.6.

Theorem 3.11. Let d > 2 and r be positive integers, and let s0(d) be defined by (1.3). Let P
be an intersective integer polynomial of degree d which has a positive leading coefficient. Let
s and t be positive integers satisfying s+ t > s0(d). Let L1 and L2 be non-degenerate linear
forms in s and t variables respectively, and assume that L1(1, 1, . . . , 1) = 0. There exists a
positive constant c0 = c0(L1, L2, P, δ, r) and a positive integer N0 = N0(L1, L2, P, δ, r) such
that the following is true. Let Z0 > N0 be a positive integer and set Zi = P (Zi−1) for all
1 6 i 6 r. Then given any r-colouring {1, . . . , Zr} = C1∪· · ·∪Cr, there exist k,m ∈ {1, . . . , r}
and an interval of positive integers I of length Zm such that

{(n, z) ∈ (Ck ∩ I)s × (Ck ∩ [Zm−1])t : L1(n) = L2(P (z))} > c0Z
d(s−1)+t
m−1 .

Proof of Theorem 1.6 given Theorem 3.11. By replacing P and L2 with −P and −L2 respec-
tively if necessary, we may assume without loss of generality that the leading coefficient of P is
positive. Note that, if Q is an integer polynomial of positive degree, then Q(x+1)/Q(x)→ 1
as x → ∞. We therefore deduce that, provided N is sufficiently large, there exists Z0 ∈ N
such that N/2 < Zr 6 N , where Z1, . . . , Zr are as defined in the statement of Theorem
3.11. Moreover, if N (and hence Z0) is sufficiently large relative to P and r, then we may
assume that Zr−m �P Nd−m for all 0 6 m 6 r. Finally, since M := Nd−r �P Zj−1 for all
j ∈ [r], applying Theorem 3.11 to the colouring [Zr] = (C1∩ [Zr])∪· · ·∪(Cr∩ [Zr]) establishes
Theorem 1.6. �

As in our deduction of Theorem 1.4 from Theorem 3.4, we prove Theorem 3.11 from The-
orem 3.8 using Prendiville’s cleaving method. The particular ‘multi-scale’ cleaving argument
we use is a variant of the proof of [22, Theorem 8.1].

Proof of Theorem 3.11 given Theorem 3.8. Let η(δ) = η(L1, L2, P, r; δ) > 0 be the implicit
constant in (3.10). The conclusion of Theorem 3.8 implies that we may assume that η(δ) is
decreasing in δ, and that η(δ) < δ for all 0 < δ 6 1.

Let δr := 1/r, and for each i ∈ [r] set δr−i = η(δr−i+1)/2. Note that δ0 6 δ1 6 . . . 6 δr.
Let Z0, Z1, . . . , Zr be as defined in the statement of Theorem 3.11, and assume that Z0 is
sufficiently large in terms of L1, L2, P, r. By our construction of the δi, we may therefore
assume that each Zi is sufficiently large relative to δi.

For each i ∈ {0, 1, . . . , r}, let ki ∈ [r] be the index given by applying Theorem 3.8 with
parameters (D,Z, δ) = (1, Zi, δi) to the colouring [Zi] = (C1 ∩ [Zi])∪ · · · ∪ (Cr ∩ [Zi]). By the
pigeonhole principle, we can find k ∈ [r] and 0 6 i < j 6 r such that k = ki = kj.

Recall from Remark 3.9 that |Ck∩[Zj]| > η(δj)Zj. Hence, by partitioning [Zj] into intervals
of lengths between Zi+1/2 and Zi+1, the pigeonhole principle furnishes an interval I ⊆ [Zj]
of length |I| = Zi+1 such that

|Ck ∩ I| > (η(δj)/2)|I| = δj−1Zi+1 > δiZi+1.

Let h be the integer satisfying I + h = [Zi+1], whence A := h + (Ck ∩ I) ⊆ [Zi+1]. By the
translation invariance property L1(1, . . . , 1) = 0, observe that if (n, z) ∈ As × (Ck ∩ [Zi])

t is
a solution to L1(n) = L2(P (z)), then (n − h, z) ∈ (Ck ∩ I)s × (Ck ∩ [Zi])

t is also a solution.
Here, for n = (n1, . . . , ns), we have written n− h = (n1 − h, . . . , ns − h). Setting m = i+ 1,
our choice of k = ki therefore completes the proof. �

To summarise, we have now shown that all of our main results follow from Theorem 3.4
and Theorem 3.8. The focus of the rest of this paper is on first showing how to deduce
Theorem 3.4 from Theorem 3.8 and then, finally, proving Theorem 3.8.
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4. Linearisation and the W -trick

In this section we perform the preliminary manoeuvres needed to deduce Theorem 3.4
from Theorem 3.8. Henceforth, until the end of §7, we fix the parameters

δ, r, L1, L2, P (4.1)

appearing in the statement of Theorem 3.4 and allow all implicit constants to depend on
these parameters unless specified otherwise. In particular, we assume that P is an intersective
integer polynomial satisfying (3.5). Finally, let X and C be positive integers, sufficiently
large in terms of the parameters (4.1).

4.1. The W -trick. There are two main obstacles which need to be overcome when at-
tempting to replace the equation L1(P (x)) = L2(P (y)) appearing in Theorem 3.4 with the
linearised equation L1(n) = L2(PD(z)) in Theorem 3.8. The first problem concerns the dif-
ferent scales of the variables in the latter equation. This issue is handled by considering a
weighted count of solutions, which we address in the next subsection. The second obstacle
comes from the fact that, unlike N, the image set {P (n) : n ∈ N} is not equidistributed in
residue classes modulo p for arbitrary primes p. This problem can be ameliorated for small
primes p 6 w, for some parameter w, using the W -trick. This technique, originally devel-
oped by Green [12] to solve linear equations in primes, has subsequently become a standard
tool for solving Diophantine equations over sparse arithmetic sets [3, 5, 6, 7, 22, 25].

Let w be a positive integer which is large in terms of the quantity C, and assume that the
positive integer X is large in terms of w. Define

M = Cd2102w, W =

(∏
p6w

p

)100dw

, V =
√
W, D = W 2,

and let N,Z > 1 be given by

N = PD(Z), Z =
X − rD
D

. (4.2)

We assume that Z is a positive integer; we will explain in §7 why we are allowed to make
this assumption.

Given A ⊆ [X] with |A| > δX, for R ∈ N and b ∈ [R], denote

Ab,R = {x ∈ A : x ≡ b (modR)}.

Writing (H,W )d to denote the largest m ∈ N for which md | (H,W ), Lemma A.5 implies
that

δX 6 |A| 6
∑
b∈[W ]:

(P ′(b),W )d6M

|Ab,W |+O(10wWM−1/2dX/W e).

Here we have made use of the trivial bound |Ab,W | 6 dX/W e for all b. Note that if
(P ′(b),W ) - V , then there exists a prime p 6 w dividing (P ′(b),W ) with multiplicity greater
than 50w. This would then imply the lower bound (P ′(b),W )d > 250w. Since w is large
relative to C and d, we have M < 250w. Thus, if (P ′(b),W )d 6 M , then (P ′(b),W ) | V . As
10wM−1/2 6 C−1/2 and C is large in terms of δ, we therefore have

δX �
∑
b∈[W ]:

(P ′(b),W )|V

|Ab,W |,
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and maximising yields b0 for which

|Ab0,W | �
δX

W
, (P ′(b0),W ) | V.

Define κ ∈ N by

Wκ(P ′(b0),W ) = λ(D).

By pigeonholing, there exists b ∈ [Wκ] with b ≡ b0 (modW ) such that

|Ab,Wκ| �
δX

Wκ
.

As

(P ′(b),W ) = (P ′(b0),W ) | V,
we see that

(P ′(b),Wκ) = (P ′(b),W ) = (P ′(b0),W ).

Set

A =

{
P (x)− P (b)

λ(D)
: x ∈ Ab,Wκ

}
,

noting from the Taylor expansion that A ⊂ Z. Now, for a given colouring [X] = C1∪· · ·∪Cr,
for each i ∈ [r] let

C̃i := {z ∈ [Z] : rD +Dz ∈ Ci}.
Observe that if (n, z) ∈ As × C̃tk satisfies the linearised equation (3.7) then (x,y) ∈ As × Ctk
satisfies the original equation (3.1), where

ni =
P (xi)− P (b)

λ(D)
(1 6 i 6 s), yj = rD +Dzj (1 6 j 6 t).

Moreover, by passing from the set {P (x) : x ∈ N} to the set{
P (x)− P (b)

λ(D)
: x ≡ b (modWκ)

}
,

we have achieved our goal of equidistribution modulo all primes up to w. Indeed, writing
x = Wκy + b, our choice of b and the Taylor expansion of P demonstrate that

P (x)− P (b)

λ(D)
≡
(

P ′(b)

(P ′(b),W )

)
y (mod p)

holds for any prime p 6 w. The bracketed factor is coprime to p, whence, as y varies
over residue classes modulo p, the polynomial on the left-hand side equidistributes over
congruence classes modulo p.

4.2. Constructing the weight function. Having resolved the problem of equidistribution,
we return to the problem of handling the different scales N and Z in Theorem 3.8. To proceed
we construct the following weight function. Given A ⊆ [X] with |A| > δX, let b ∈ [Wκ] and
A ⊆ Z be as defined above. Define

ν = νb : Z→ [0,∞), ν(n) = (P ′(b),W )−1
∑

x∈(b,X]
x≡b (modWκ)
P (x)−P (b)

λ(D)
=n

P ′(x). (4.3)

Observe that ν is supported on [N ].
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Lemma 4.1 (Density transfer). If X and N are sufficiently large in terms of w and the
fixed parameters in (4.1), then ∑

n∈A

ν(n)� N.

In particular, the implicit constant does not depend on w.

Proof. Let c = c(δ) be a suitably small, positive constant. Since |Ab,Wκ| � δX/(Wκ), we
can choose c sufficiently small to ensure that there are at least cX/(Wκ) positive integers
y > cX/(Wκ) such that (Wκy + b) ∈ Ab,Wκ and

P ′(Wκy + b)� (Wκy + b)d−1 > (Wκy)d−1.

Writing B ⊆ N for the set of these y, we deduce that∑
x∈Ab,Wκ

P ′(x)�
∑
y∈B

(Wκy)d−1 >
∑
y6 cX

Wκ

(Wκy)d−1 � (Wκ)d−1

(
X

Wκ

)d
=

Xd

Wκ
.

Hence, for X sufficiently large, we have

(P ′(b),W )
∑
n∈A

ν(n) = O((Wκ)d−1) +
∑

x∈Ab,Wκ

P ′(x)� Xd

Wκ
.

Here, the O((Wκ)d−1) term accounts for the potential contribution of x ∈ {b} ∩ A. From
the definition of κ, we therefore conclude that∑

n∈A

ν(n)� Xd

λ(D)
� N.

�

Similarly
‖ν‖1 � N.

5. Fourier decay

Having introduced the weight function ν, we study the properties of its Fourier transform
ν̂ using the Hardy–Littlewood circle method. Throughout this section, we fix ν = νb as given
by (4.3), for some b ∈ [Wκ]. The main result of this section is the Fourier decay estimate

‖ν̂ − 1̂[N ]‖∞ � wε−1/dN. (5.1)

Remark 5.1. Although we made a judicious choice of b in the previous section to establish
Lemma 4.1, the results of this and the next section remain true for arbitrary b satisfying
(P ′(b),W ) |

√
W . In particular, these results do not make reference to any sets A or A.

For all α ∈ T, we have

(P ′(b),W )ν̂(α) =
∑

x∈(b,X]
x≡b (modWκ)

P ′(x)e

(
α
P (x)− P (b)

λ(D)

)

=
∑

Wκy+b∈(b,X]

P ′(Wκy + b)e

(
α
P (Wκy + b)− P (b)

λ(D)

)
.

For q ∈ N, a ∈ Z and β ∈ R, write

S(q, a) =
∑
x6q

e

(
a(P (Wκx+ b)− P (b))

qλ(D)

)
, I(β) =

∫ N

0

e(βγ) dγ.



GENERALISED RADO AND ROTH CRITERIA 19

Lemma 5.2 (Major arc asymptotic). Let q ∈ N, a ∈ Z, and suppose ‖qα‖ = |qα−a|. Then

ν̂(α) = q−1S(q, a)I(α− a
q
) +O(Xd−1(q +N‖qα‖)).

Proof. Put β = α− a
q
. Breaking the sum into residue classes modulo q yields

(P ′(b),W )ν̂(α) = O((Wκ)d−1) +
∑
x6q

∑
X0<z6Y0

P ′(Wκqz +Wκx+ b)

e

((
a

q
+ β

)
P (Wκqz +Wκx+ b)− P (b)

λ(D)

)
,

where

X0 =
−(Wκx+ b)

Wκq
, Y0 =

X − (Wκx+ b)

Wκq
.

Taylor’s theorem yields

P (Wκqz +Wκx+ b) ≡ P (Wκx+ b) (mod qλ(D)),

so

(P ′(b),W )ν̂(α) = O((Wκ)d−1) +
∑
x6q

e

(
a(P (Wκx+ b)− P (b))

qλ(D)

) ∑
X0<z6Y0

φx(z),

where

φx(z) = P ′(Wκqz +Wκx+ b)e

(
β
P (Wκqz +Wκx+ b)− P (b)

λ(D)

)
.

By Euler–Maclaurin summation [29, Equation (4.8)], we have∑
X0<z6Y0

φx(z) =

∫ Y0

X0

φx(z) dz +

∫ Y0

X0

φ′x(z)(z − bzc − 1/2) dz +O(P ′(X)).

If X is sufficiently large, then every z ∈ [X0, Y0] satisfies

|φ′x(z)| 6 |φ′x(Y0)| 6 Wκq(P ′′(X) + |β/λ(D)|P ′(X)2)� WκqXd−2(1 +N |β|).

Recalling that Wκq(Y0 −X0) = X, we therefore obtain∑
X0<z6Y0

φx(z) =

∫ Y0

X0

φx(z) dz +O(Xd−1(1 +N |β|)).

The change of variables

γ =
P (Wκqz +Wκx+ b)− P (b)

λ(D)

now yields∣∣∣∣P ′(b),W )q−1I(β)−
∫ Y0

X0

φx(z) dz

∣∣∣∣ 6 ∣∣∣∣P (0)− P (b)

λ(D)
− 0

∣∣∣∣+

∣∣∣∣P (X)− P (b)

λ(D)
−N

∣∣∣∣� 1.

We therefore conclude that∑
X0<z6Y0

φx(z) = (P ′(b),W )q−1I(β) +O(Xd−1(1 +N |β|)),

completing the proof. �
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We have the standard bound

I(β)� min{N, ‖β‖−1}. (5.2)

Note that
S(q, a) =

∑
u6q

eq(aP(x)),

where

P(x) =
P (Wκx+ b)− P (b)

λ(D)
=:
∑
j6d

vjx
j ∈ Z[x].

Lemma 5.3. Suppose (q, a) = 1. Then

S(q, a)� q1+ε−1/d.

Further, if (q,W ) > 1 then S(q, a) = 0. Finally, if q > 2 then q−1S(q, a)� wε−1/d.

Proof. Write q = q1q2, where q1 is w-smooth and (q2,W ) = 1. Then

S(q, a) =
∑
u16q1

∑
u26q2

eq1q2 (aP(q2u1 + q1u2)) =
∑
u16q1

∑
u26q2

eq1q2

(
a
∑
j6d

vj(q2u1 + q1u2)j

)

=
∑
u16q1

∑
u26q2

eq1q2

(
a
∑
j6d

vj((q2u1)j + (q1u2)j)

)

=
∑
u16q1

eq1

(
a1

∑
j6d

vj(q2u1)j

)
·
∑
u26q2

eq2

(
a2

∑
j6d

vj(q1u2)j

)
,

where
q2a1 ≡ a (mod q1), q1a2 ≡ a (mod q2).

Since (q1, q2) = 1, we can change variables from u1 and u2 to q2u1 and q1u2 respectively to
obtain

S(q, a) =
∑
u6q1

eq1

(
a1

∑
j6d

vju
j

)
·
∑
u6q2

eq2

(
a2

∑
j6d

vju
j

)
= S(q1, a1)S(q2, a2).

Put
h = (q1,W ), q1 = hq′, W = hW ′.

Then

S(q1, a1) =
∑
u16q′

∑
u26h

ehq′(a1P(u1 + q′u2)) =
∑
u16q′

∑
u26h

ehq′

(
a1

∑
j6d

vj(u1 + q′u2)j

)
.

As
W | vj (2 6 j 6 d),

we have
S(q1, a1) =

∑
u16q′

eq1(a1P(u1))
∑
u26h

eh(a1v1u2).

Observe that v1 = P ′(b)
(P ′(b),W )

, and recall that (P ′(b),W ) | V =
√
W . For each prime p 6 w, we

therefore have ordp(P
′(b)) 6 ordp(

√
W ) < ordp(W ), and so ordp(v1) = 0. Thus (v1,W ) = 1,

and in particular (h, a1v1) = 1. Hence

S(q1, a1) =

{
1, if q1 = 1

0, if q1 6= 1.
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This shows that if (q,W ) > 1 then S(q, a) = 0.
Next, we estimate

S(q2, a2) =
∑
x6q2

eq2

(
a2

∑
j6d

vjx
j

)
.

The binomial theorem tells us that

vd =
`P (Wκ)d

λ(D)
=
`P (Wκ)d−1

(P ′(b),W )
,

where `P is the leading coefficient of P . As (q2,W ) = 1, we have in particular (vd, q2)� 1.
Thus, by periodicity and [29, Theorem 7.1], we have

|S(q, a)| 6 |S(q2, a2)| � q
1+ε−1/d
2 6 q1+ε−1/d.

If q > 2 and S(q, a) 6= 0 then q1 = 1 and q2 > 2, whereupon q2 > w and

q−1S(q, a) = q−1
2 S(q2, a2)� q

ε−1/d
2 < wε−1/d.

�

We establish (5.1) using the circle method. Put τ = 1/100 and Q = Xτ . For coprime
q, a ∈ Z such that 0 6 a 6 q 6 Q, define

M(q, a) = {α ∈ T : |α− a/q| 6 Q/N}.

Let M be the union of the sets M(q, a), and put m = T \M.
First suppose α ∈ m. By Dirichlet’s approximation theorem (see [29, Lemma 2.1]), there

exist coprime q ∈ N and a ∈ Z such that q 6 Q and |α− a/q| 6 (qQ)−1. As α ∈ m, we must
also have |qα− a| > qQ/N , so

1̂[N ](α)� ‖α‖−1 6
q

‖qα‖
=

q

|qα− a|
<
N

Q
.

Let y0 ∈ N be maximal such that Wκy0 6 X. By partial summation, we have

(P ′(b),W )ν̂(α) =
∑
y6y0

P ′(Wκy + b)e(αP(y))

= P ′(Wκy0 + b)

(∑
y6y0

e(αP(y)

)
−
∑
y<y0

∑
u6y

e(αP(u))(P ′(Wκ(y + 1) + b)− P ′(Wκy + b)).

For each y 6 y0, we have P ′(Wκy+b)� Xd−1 and P ′(Wκ(y+1)+b)−P ′(Wκy+b)� Xd−2.
Thus, collecting all of these y0 6 X terms together gives

(P ′(b),W )ν̂(α)� Xd−1 sup
Y 6X/(Wκ)

∣∣∣∣∣∑
y6Y

e(αP(y))

∣∣∣∣∣ .
By Dirichlet’s approximation theorem, there exist coprime v ∈ N and b ∈ Z such that
v 6 N/Q and |α − b/v| 6 Q/(vN). As α ∈ m, we must have v > Q. As vd �w 1, Weyl’s
inequality in the form [20, Proposition 4.14] yields∑

y6Y

e(αP(y))�w Y
1+ε(Y −1 + v−1 + vY −d)21−d � X1+ε−τ21−d .
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As X is large in terms of w, we thus have

ν̂(α)� N1+ε−21−d/(100d) � wε−1/dN, (5.3)

wherein the implied constants do not depend on w, and hence

ν̂(α)− 1̂[N ](α)� wε−1/dN. (5.4)

Next, suppose a ∈ {0, 1} and α ∈M(1, a). Then, by Lemma 5.2, we have

ν̂(α) = I(α) +O(Xd−1+τ ).

Euler–Maclaurin summation yields

I(α)− 1̂[N ](α)� 1 +N‖α‖ � Q,

so by the triangle inequality

ν̂(α)− 1̂[N ](α)� Xd−1+τ � wε−1/dN.

Finally, suppose α ∈M(q, a) with q > 2. Then ‖α‖ > q−1 − |α− a/q| � q−1, so

1̂[N ](α)� ‖α‖−1 � Q.

By Lemmas 5.2 and 5.3, as well as (5.2), we have

ν̂(α)� wε−1/dN.

Thus, we again have (5.4). We have secured (5.4) in all cases, completing the proof of (5.1).
We record, for later use, the following bounds that arose above.

Lemma 5.4. For τ = 1/100, we have

ν̂(α)� N1+ε−21−d/(100d) (α ∈ m)

and

ν̂(α)� qε−1/d min{N, |α− a/q|−1}+Xd−1+2τ (α ∈M(q, a) ⊂M).

Proof. The first bound is (5.3). Combining Lemmas5.2 and 5.3 gives

ν̂(α)� qε−1/dI(α− a/q) +O(Xd−1(q +N‖qα‖)) (α ∈M(q, a) ⊂M).

For α ∈M(q, a), we have

q +N‖qα‖ 6 2Q = 2X2τ .

Thus, the second claimed bound follows from (5.2). �

6. Restriction estimates

Continuing our study of ν = νb for fixed b, in this section we establish restriction estimates
for ν. We also obtain restriction estimates for a related weight function µD corresponding
to the auxiliary polynomial PD.
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6.1. Restriction for ν. Recall that T = T (d) ∈ N is as defined in §3.

Lemma 6.1. Let E > 2T be real, and let φ : Z→ C with |φ| 6 ν. Then∫
T
|φ̂(α)|E dα�E N

E−1.

Proof. Note that ‖φ‖∞ 6 ‖ν‖∞ � Xd−1. Hence, by orthogonality and the triangle inequal-
ity, we have∫

T
|φ̂(α)|2T dα =

∑
n1+···+nT=nT+1+···+n2T

φ(n1) · · ·φ(nT )φ(nT+1) · · ·φ(n2T )

6 ‖φ‖2T
∞

∑
x1,...,x2T∈[X]

P (x1)+···+P (xT )=P (xT+1)+···+P (x2T )

1

� X2T (d−1)+2T−d+ε � N2T−1+ε.

Let u = (2T + E)/2, in order to be sure that u > 2d. As

‖φ̂‖∞ 6 ‖ν‖1 � N,

we have ∫
T
|φ̂(α)|u dα� Nu−1+ε. (6.1)

This falls short of the optimal estimate at exponent u by a factor of N ε. As the implied
constant may depend on ε, the proof is not yet finished. However, there is a classical
principle that enables us to eliminate this loss by increasing the exponent, say from u to E.
This ‘epsilon-removal’ phenomenon is discussed in [14]. To formally complete the proof, we
insert the almost-sharp estimate (6.1), together with the ingredients in Lemma 5.4, into the
general epsilon-removal lemma [25, Lemma 25]. �

Lemma 6.2. Let E > 2T be real, and let φ : Z→ C with |φ| 6 ν + 1[N ]. Then∫
T
|φ̂(α)|E dα�E N

E−1.

Proof. We decompose φ = φ1 + φ2, where |φ1| 6 ν and |φ2| 6 1[N ]. Then∫
T
|φ̂2(α)|E dα 6 NE−2T

∫
T
|φ̂2(α)|2T dα

6 NE−2T
∑

n1+···+nT=nT+1+···+n2T

φ2(n1) · · ·φ2(nT )φ2(nT+1) · · ·φ2(n2T )

6 NE−1.

By Lemma 6.1 and the triangle inequality, we thus have∫
T
|φ̂(α)|E dα�E

∫
T
|φ̂1(α)|E dα +

∫
T
|φ̂2(α)|E dα�E N

E−1.

�
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6.2. Restriction for PD. In this subsection, we fix some D ∈ N, and let N,Z ∈ N be as in
(4.2), for some X which is sufficiently large relative to P and D. Recalling (3.5), define

µD : Z→ C, µD(n) =
N

Z

∑
z6Z

PD(z)=n

1 =
N

Z
1PD([Z])(n). (6.2)

Note that µD is supported on [PD(Z)] = [N ], and that

‖µD‖1 = N, µ̂D(α) =
N

Z

∑
z6Z

e(αPD(z)).

The purpose of this subsection is to establish the following restriction estimate for µD, which
is analogous to the bound obtained in Lemma 6.1 for ν.

Lemma 6.3. Let E > 2T be real, and let φ : Z→ C with |φ| 6 µD. Then∫
T
|φ̂(α)|E dα�E N

E−1.

This is more subtle than Lemma 6.1, as it requires us to extract savings depending on
the size of the coefficients of PD. Indeed, it would be false if gcd(PD − PD(0)) were large.
However, we know from [18, Lemma 28] that

gcd(PD − PD(0))�P 1. (6.3)

Our proof of Lemma 6.3 proceeds along similar lines to that of Lemma 6.1. Orthogonality
yields∫

T
|φ̂(α)|2T dα 6 (N/Z)2T

∑
z1,...,z2T6Z

PD(z1)+···+PD(zT )=PD(zT+1)+···+PD(z2T )

1

6 (N/Z)2T
∑

x1,...,x2T6X
P (x1)+···+P (xT )=P (xT+1)+···+P (x2T )

1� (N/Z)2TX2T−d+ε

� (N/Z)2T (DZ)2T (DZ)ε−d � N2TD2TN (ε−d)/d = D2TN2T−1+ε/d.

As N is arbitrarily large compared to D, we thus have∫
T
|φ̂(α)|2T dα� N2T−1+ε,

and the implied constant does not depend on D. Let u = (2T + E)/2, in order to be sure
that u > 2d. Since

‖φ̂‖∞ 6 ‖µD‖1 = N,

we have ∫
T
|φ̂(α)|u dα� Nu−1+ε. (6.4)

Suppose α ∈ m. By Dirichlet’s approximation theorem, there exist coprime v ∈ N and
b ∈ Z such that v 6 N/Q and |α − b/v| 6 Q/(vN). As α ∈ m, we must also have v > Q.
The leading coefficient of PD is

`PD
d

λ(D)
�D 1,

where `P is the leading coefficient of P . Hence, Weyl’s inequality in the form [20, Proposition
4.14] gives

µ̂D(α)�D N1+ε(v−1 + Z−1 + vZ−d)21−d � N1+ε(Dd/Q)21−d .



GENERALISED RADO AND ROTH CRITERIA 25

Since N is arbitrarily large compared to D, we have

µ̂D(α)� N1+εQ−21−d , (6.5)

and the implied constant does not depend on D.

We come to the major arcs. For q ∈ N, a ∈ Z and β ∈ R, define

SD(q, a) =
∑
x6q

eq(aPD(x)), ID(β) =
N

Z

∫ Z

0

e(βPD(z)) dz.

Lemma 6.4. Let q ∈ N, a ∈ Z, and suppose ‖qα‖ = |qα− a|. Let β = α− a
q
. Then

µ̂D(α) = q−1SD(q, a)ID(β) +O((q +N‖qα‖)N/Z).

Proof. Breaking the sum into residue classes modulo q yields

µ̂D(α) =
N

Z

∑
y6q

∑
X0<x6Y0

e(αPD(qx+ y)),

where
X0 = −y/q, Y0 = (Z − y)/q.

By periodicity, we have eq(aPD(qx+ y)) = eq(aPD(y)), whence

µ̂D(α) =
N

Z

∑
y6q

eq(aPD(y))
∑

X0<x6Y0

e(βPD(qx+ y)).

Using Euler–Maclaurin summation [29, Equation (4.8)], for Z sufficiently large, we find that∑
X0<x6Y0

e(βPD(qx+ y))−
∫ Y0

X0

e(βPD(qx+ y)) dx

= 2πi

∫ Y0

X0

qβP ′D(qx+ y)e(βPD(qx+ y))(x− bxc − 1/2) dx+O(1)

� 1 + q|β|(Y0 −X0)|P ′D(qY0 + y)| � 1 +
Z|β|Xd−1D

λ(D)
� 1 +N |β|.

A change of variables gives ∫ Y0

X0

e(βPD(qx+ y)) dx =
Z

Nq
ID(β),

completing the proof. �

Lemma 6.5. Suppose (q, a) = 1. Then

SD(q, a)� q1+ε−1/d.

Proof. In view of (6.3), this follows from periodicity and [29, Theorem 7.1]. �

Lemma 6.6. We have
ID(β)� N(1 +N‖β‖)−1/d.

Proof. The leading coefficient of PD is `PD
d/λ(D), so by [29, Theorem 7.3] we have

ID(β)� N(1 + ZdDd‖β‖/λ(D))−1/d.

The claimed bound follows upon noting that

(ZD)d

λ(D)
� P (X)

λ(D)
= PD(Z) = N
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�

Proof of Lemma 6.3. Combining the results of Lemmas 6.4, 6.5 and 6.6 furnishes

µ̂D(α)� qε−1/dN

(1 +N |α− a/q|)1/d
+O((q +N‖qα‖)N/Z).

Our definition of the major arcs M(q, a) implies that

q +N‖qα‖ 6 Q+Q2 = Xτ +X2τ (α ∈M(q, a)).

Recalling from (4.2) that N/Z = DN/(X − rD), we therefore have

µ̂D(α)� qε−1/dN

(1 +N |α− a/q|)1/d
+DNX2τ−1 (α ∈M(q, a) ⊂M). (6.6)

Finally, observe from its proof that [25, Lemma 25] holds with ‖α−a/q‖κ in place of ‖α−a/q‖
in its third assumption. Inserting (6.4), (6.5) and (6.6) into this, applied with κ = d−1 − ε,
completes the proof. �

7. The transference principle

Let s > 1 and t > 0 be integers such that s+ t > s0(d), where s0(d) is as defined in (3.3).
For finitely supported f1, . . . , fs : Z→ R and h1, . . . , ht : Z→ R, define

Φ(f1, . . . , fs;h1, . . . , ht) =
∑

L1(n)=L2(m)

f1(n1) · · · fs(ns)h1(m1) · · ·ht(mt). (7.1)

For finitely supported f, h : Z→ R, we abbreviate

Φ(f1, . . . , fs;h) := Φ(f1, . . . , fs;h, . . . , h), Φ(f ;h) := Φ(f, . . . , f ;h, . . . , h).

Given a finite set of integers A, we also write Φ(A;h) := Φ(1A;h).
We begin by showing that the size of the counting operator Φ(f1, . . . , fs;h) is controlled

by the size of the Fourier coefficients of each of the fj. Write

L1(x) = a1x1 + · · ·+ asxs, L2(x) = c1x1 + · · ·+ ctxt.

Lemma 7.1 (Fourier control). Let f1, . . . , fs : Z → R and h : Z → R. If |h| 6 µD and
|fj| 6 ν + 1[N ] for all j ∈ [s], then

Φ(f1, . . . , fs;h)� N s+t−1
∏
j6s

(‖f̂j‖∞/N)1/(2s+2t).

Proof. By orthogonality and Hölder’s inequality, we have

|Φ(f1, . . . , fs;h)| =

∣∣∣∣∣
∫
T

∏
j6s

f̂j(ajα) ·
∏
`6t

ĥ(−c`α) dα

∣∣∣∣∣
6
∏
j6s

(∫
T
|f̂j(ajα)|s+t dα

)1/(s+t)

·
∏
`6t

(∫
T
|ĥ(−c`α)|s+t dα

)1/(s+t)

Since f̂j is 1-periodic, the change of variables β = ajα reveals that∫
T
|f̂j(ajα)|s+t dα =

1

|aj|

|aj |∑
i=1

∫
T
|f̂j(β)|s+t dβ =

∫
T
|f̂j(β)|s+t dβ (1 6 j 6 s).
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By applying similar reasoning to the integrals involving ĥ, we therefore obtain

|Φ(f1, . . . , fs;h)| 6
(∫

T
|ĥ(α)|s+t dα

)t/(s+t)∏
j6s

(∫
T
|f̂j(α)|s+t dα

)1/(s+t)

6

(∫
T
|ĥ(α)|s+t dα

)t/(s+t)∏
j6s

(
‖f̂j‖1/2

∞

∫
T
|f̂j(α)|s+t−1/2 dα

)1/(s+t)

.

Lemmas 6.2 and 6.3 now give

Φ(f1, . . . , fs;h)� (N s+t−1)t/(s+t)
∏
j6s

(
‖f̂j‖1/(2s+2t)

∞ N (s+t−3/2)/(s+t)
)

= N s+t−1
∏
j6s

(‖f̂j‖∞/N)1/(2s+2t).

�

Proof of Theorem 3.4 given Theorem 3.8. We fix the parameters δ, r, L1, L2, P , as we did at
the start of §4, and allow all forthcoming implicit constants to depend on these parameters.
Let δ̃ ∈ (0, 1) be sufficiently small in terms of these parameters. We also choose w ∈ N to
be sufficiently large in terms of the fixed parameters, and define W and D = W 2 as in §4.
Let Z and N be defined by (4.2).

We begin by addressing the assumption that the quantity Z defined in (4.2) is a positive
integer, which is equivalent to requiring D to divide X − rD. If this is not the case, then
we replace X with X ′ = X − m, where m ∈ [D] is chosen such that D divides X ′ − rD.
Provided that X is sufficiently large relative to D and δ, we have (X/2) < X ′ 6 X, and
every A ⊆ [X] with |A| > δX satisfies |A ∩ [X ′]| > |A| −D > (δ/2)X ′. Hence, by replacing
(X, δ) with (X ′, δ/2), we may henceforth assume that Z ∈ N.

Let [X] = C1 ∪ · · · ∪ Cr and set

C̃i := {z ∈ [Z] : rD +Dz ∈ Ci} (1 6 i 6 r).

Let k ∈ [r] be the index provided by applying Theorem 3.8 with respect to the colouring

[Z] = C̃1 ∪ · · · ∪ C̃r and with δ̃ in place of δ. Our goal is to show that this k ∈ [r] satisfies
the conclusion of Theorem 3.4. In view of the remarks following the statement of Theorem
3.8, and since D is ultimately bounded above in terms of the fixed parameters only, we note
that

|Ck| > |C̃k| � Z � X.

Let A ⊆ [X] satisfy |A| > δX, and define κ, b,A and ν = νb as in §4. In particular, recall
that b ∈ [Wκ] is chosen to ensure that Lemma 4.1 holds. Let

f = ν1A, hi(n) =
N

Z

∑
z∈C̃i

PD(z)=n

1 (1 6 i 6 r).

In light of (3.5), the function hi is supported on [N ]. Recalling the Fourier decay estimate
(5.1), the dense model lemma [21, Theorem 5.1] provides a function g such that

0 6 g 6 1[N ], ‖f̂ − ĝ‖∞ � (logw)−3/2N.
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For ` ∈ [s], write u(`) = (u
(`)
1 , . . . , u

(`)
s ), where

u
(`)
j =


g, if j < `

f − g, if j = `

f, if j > `.

By the telescoping identity and Lemma 7.1, we now have

Φ(f ;hi)− Φ(g;hi) =
∑
`6s

Φ(u(`);hi)� (logw)−3/(4s+4t)N s+t−1 (1 6 i 6 r).

Recall from Lemma 4.1 that ∑
n∈Z

f(n)� N.

As f̂(0)− ĝ(0)� (logw)−3/2N , for w sufficiently large, it follows that∑
n∈Z

g(n)� N.

Let c be a small, positive constant, which depends only on the fixed parameters, and set

Ã = {n ∈ Z : g(n) > c}.

By the popularity principle (see [28, Exercise 1.1.4]), we have |Ã| � N . In particular,

provided δ̃ is sufficiently small, we can ensure that |Ã| > δ̃N . Thus, Theorem 3.8 informs
us that

Φ(Ã;hk)� N s+t−1.

We therefore have Φ(g;hk)� N s+t−1, whence Φ(f ;hk)� N s+t−1, and finally

|{(x,y) ∈ As × Ctk : L1(P (x)) = L2(P (y))}| > ‖f‖−s∞ ‖hk‖−t∞Φ(f ;hk)

�w (X1−d)s(Z/N)tN s+t−1

�w X
s+t−d.

Since w = Oδ,r,L1,L2,P (1), the proof is complete. �

8. Arithmetic regularity

In this section, we prove Theorem 3.8 using the arithmetic regularity lemma. This lemma,
originally due to Green [13], allows one to decompose the indicator function 1A of a dense set
A ⊆ [N ] as 1A = fstr + fsml + funf , for some ‘structured’ function fstr : [N ]→ [0, 1] and some
‘small’ functions fsml, funf : [N ] → [−1, 1]. The upshot is that, after some careful analysis,
we can count solutions to L(n) = L2(PD(z)) with n ∈ As by instead counting solutions with
the ni weighted by fstr. This new counting problem can be addressed directly by exploiting
the ‘almost-periodicity’ of the function fstr.

One issue with this approach is that Theorem 3.8 requires us to find a colour class Ck which
delivers the conclusion (3.10) for all δ-dense sets A ⊆ [N ] simultaneously. Unfortunately,
the arithmetic regularity lemma is not well-suited to decomposing a potentially unbounded
collection of indicator functions 1A in such a way that we obtain a consistent structure for
each of the corresponding functions fstr. Instead, as in the work of Prendiville [22, §3], we fix
an arbitrary finite collection of dense sets A1, . . . ,Ar ⊆ [N ], which can then be decomposed
simultaneously, and find a colour class Ck for which (3.10) holds for all A ∈ {A1, . . . ,Ar}.
This delivers the following variation of Theorem 3.8.
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Theorem 8.1. Let r and d > 2 be positive integers, and let 0 < δ < 1 be a real number. Let
P be an intersective integer polynomial of degree d which satisfies (3.5). Let s > 1 and t > 0
be integers such that s+ t > s0(d). Let L1(x) ∈ Z[x1, . . . , xs] be a non-degenerate linear form
for which gcd(L1) = 1 and L1(1, . . . , 1) = 0, and let L2(y) ∈ Z[y1, . . . , yt] be a non-degenerate
linear form. Let D,Z ∈ N satisfy Z > Z0(D, r, δ, L1, L2, P ), and set N := PD(Z). Let

Ai ⊆ [N ], |Ai| > δN (1 6 i 6 r).

If [Z] = C1 ∪ · · · ∪ Cr, then there exists k ∈ [r] such that

#{(n, z) ∈ Asi × Ctk : L1(n) = L2(PD(z))} � N s−1Zt (1 6 i 6 r). (8.1)

The implied constant may depend on L1, L2, P, r, and δ, but does not depend on D.

Although Theorem 8.1 may seem weaker than Theorem 3.8, they are in fact equivalent.
This may be proved directly, however, as this argument may be applicable in other contexts,
we instead encapsulate the proof strategy in the following combinatorial result, for which we
have not found a reference. This lemma is essentially a finite version of the axiom of choice.

Lemma 8.2. Let U, V be non-empty sets such that V is finite. Let E ⊆ U × V . Suppose
that for every S ⊆ U with |S| 6 |V | there exists v ∈ V such that (s, v) ∈ E for all s ∈ S.
Then there exists x ∈ V such that (u, x) ∈ E for all u ∈ U .

Proof. Suppose that for each x ∈ V there exists sx ∈ U such that (sx, x) /∈ E. Taking
S = {sx : x ∈ V } establishes the contrapositive. �

Proof of Theorem 3.8 given Theorem 8.1. In view of Proposition 3.10, it suffices to consider
only the case where gcd(L1) = 1. Let V = [k] and set U = {A ⊆ [N ] : |A| > δN}. Let
E denote the set of pairs (A, k) such that the inequality (8.1) holds for Ck with Ai = A.
We conclude from Theorem 8.1 and Lemma 8.2 that Theorem 3.8 holds with the implicit
constant in (3.10) equal to the one in (8.1), and with the same Z0(D, r, δ, L1, L2, P ). �

8.1. The arithmetic regularity lemma. We now introduce the version of the arithmetic
regularity lemma that we use to prove Theorem 8.1. In the sequel, we write TK for the
K-dimensional torus (R/Z)K . This is equipped with a metric (α,β) 7→ ‖α− β‖, where

‖θ‖ := max
16i6K

min
n∈Z
|θi − n| (θ = (θ1, . . . , θK) ∈ TK).

This allows us to define Lipschitz functions on TK . Given a positive real number H, a
function F : TK → R is H-Lipschitz if

|F (α)− F (β)| 6 H‖α− β‖ (α,β ∈ TK).

Lemma 8.3 (Arithmetic regularity lemma). Let r ∈ N, σ > 0, and let F : R>0 → R>0 be a
monotone increasing function. Then there exists a positive integer K0(r;σ,F) ∈ N such that
the following is true. Let N ∈ N and f1, . . . , fr : [N ]→ [0, 1]. Then there is a positive integer
K 6 K0(r;σ,F) and a phase θ ∈ TK such that, for every i ∈ [r], there is a decomposition

fi = f
(i)
str + f

(i)
sml + f

(i)
unf

of fi into functions f
(i)
str , f

(i)
sml, f

(i)
unf : [N ]→ [−1, 1] with the following stipulations.

(I) The functions f
(i)
str and f

(i)
str + f

(i)
sml take values in [0, 1].

(II) The function f
(i)
sml obeys the bound ‖f (i)

sml‖L2(Z) 6 σ‖1[N ]‖L2(Z).

(III) The function f
(i)
unf obeys the bound ‖f̂ (i)

unf‖∞ 6 ‖1̂[N ]‖∞/F(K).

(IV) The function f
(i)
str satisfies

∑N
m=1(fi − f (i)

str)(m) = 0.
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(V) There exists a K-Lipschitz function Fi : TK → [0, 1] such that Fi(xθ) = f
(i)
str(x) for all

x ∈ [N ].

Proof. This is essentially [22, Lemma 3.3] and can be proved using the methods of [27,
Theorem 1.2.11] or [10, Theorem 5] (see also [25, Lemma 3]).

For the convenience of the reader, with reference to the arguments and notation of [27],
we outline the minor modifications one needs to make to obtain the required result. Let
F0 : R>0 → R>0 be defined by F0(x) := F(rx). By following the iterative procedure given in
the proof of [27, Theorem 1.2.11] (with F replaced by F0), one obtains a sequence of factors

B(i)
1 ⊂ B

(i)
2 ⊂ . . . for each i ∈ [r]. The energies ‖E(f |B(i)

1 )‖2
L2([N ]), ‖E(f |B(i)

2 )‖2
L2([N ]), . . . are

monotone increasing between 0 and 1, so it follows from the pigeonhole principle that there
exists k � rσ−2 such that

max
16i6r

(
‖E(f |B(i)

k+1)‖2
L2([N ]) − ‖E(f |B(i)

k )‖2
L2([N ])

)
6 σ2.

The choice of factors B(i)
j delivered by this argument then shows that, upon setting

f
(i)
str := E(fi|Bk), f

(i)
sml := E(fi|Bk+1)− E(fi|Bk), f

(i)
unf := fi − E(fi|Bk+1),

properties (I)-(IV) hold with F0 in place of F . We also have (V) but with some θ(i) ∈ TK
for each i ∈ [r] in place of the desired θ. To establish (V) in the form given above, we
set θ := (θ(1), . . . ,θ(r)) ∈ TKr. Thus, for each i ∈ [r], we can define a projection map

πi : TKr → TK such that πi(θ) = θ(i), whence f
(i)
str(x) = Fi ◦ πi(xθ) for all x ∈ [N ]. Since

each Fi ◦ πi is Kr-Lipschitz, and since F0(K) = F(Kr), we may replace K with Kr to
complete the proof. �

To prove Theorem 8.1, we apply the arithmetic regularity lemma above to decompose
the indicator functions 1Ai of our dense sets Ai ⊆ [N ]. As in §5 and §6, where we focused
our attention on a single weight function ν = νb, it is convenient for us to first study the
consequences of applying the arithmetic regularity lemma to a single function f . In such
instances, we omit the index i and write f = fstr +fsml +funf for the decomposition provided
by Lemma 8.3. One can think of these results as pertaining to f = 1Ai for some i ∈ [r], with
the resulting conclusions being uniform in i.

Given finitely supported functions f1, . . . , fs, g1, . . . , gt : Z→ C, define the counting oper-
ator

ΛD(f1, . . . , fs; g1, . . . , gt) :=
∑

L1(n)=L2(PD(z))

f1(n1) · · · fs(ns)g1(z1) · · · gt(zt).

As with the counting operator Φ, we make use of the abbreviations

ΛD(f1, . . . , fs;h) := ΛD(f1, . . . , fs;h, . . . , h), ΛD(f ;h) := ΛD(f, . . . , f ;h, . . . , h),

and, for finite A,B ⊂ Z:

ΛD(f1, . . . , fs;B) := ΛD(f1, . . . , fs; 1B), ΛD(A;B) := ΛD(1A; 1B).

By a change of variables, one can relate ΛD to the counting operator Φ defined by (7.1)
which we studied in §7. In particular, one can adapt Lemma 7.1 to ΛD as follows.

Lemma 8.4 (Fourier control). Let f1, . . . , fs, g1, . . . , gt : Z → R be functions supported on
[N ]. Then for any B ⊆ [Z], where N = PD(Z), we have

|ΛD(f1, . . . , fs;B)− ΛD(g1, . . . , gs;B)| � max
16i6s

(‖f̂i − ĝi‖∞/N)1/(2s+2t)N s−1Zt.
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Proof. Define the function h : Z→ R by

h(x) :=

{
1B(z), if there exists z ∈ [Z] such that x = PD(z)

0, otherwise.

Now note that, for all finitely-supported F1, . . . , Fs : Z→ R, we have

ΛD(F1, . . . , Fs;B) = Φ(F1, . . . , Fs;h).

Let µD be given by (6.2). Since |h| 6 (N−1Z)µD, we deduce from the telescoping identity
and Lemma 7.1, as in §7, that

|Φ(f1, . . . , fs; (NZ−1)h)− Φ(g1, . . . , gs; (NZ−1)h)| � max
16i6s

(‖f̂i − ĝi‖∞/N)1/(2s+2t)N s+t−1.

Here we have used the trivial bound ‖f̂i‖∞ 6 N for all i ∈ [s]. Multiplying both sides by
(N−1Z)t completes the proof. �

An immediate consequence of this result is that we can show that ΛD(f ;B) is well-
approximated by Λ(fstr + fsml;B).

Lemma 8.5 (Removing funf). Let f : Z → [0, 1] be supported on [N ]. Let σ > 0, and
let F : R>0 → R>0 be a monotone increasing function. Let fstr, fsml, funf be the functions
provided by applying Lemma 8.3 to f . Then for any B ⊆ [Z], we have

|ΛD(f ;B)− ΛD(fstr + fsml;B)| �P N
s−1ZtF(K)−1/(2s+2t).

Proof. This follows immediately from Lemmas 8.3 and 8.4 with fi = f and gi = fstr + fsml

for all i ∈ [s]. �

8.2. Polynomial Bohr sets. Having removed funf , it remains to obtain a lower bound
for the quantity Λ(fstr + fsml;B), thereby producing a lower bound for Λ(f ;B). As in
typical applications of the arithmetic regularity lemma, this is accomplished by exploiting
the ‘almost-periodicity’ of the function fstr. Explicitly, this is the observation that, as F is a
Lipschitz function, we have fstr(n+ d) ≈ fstr(n) whenever n, n+ d ∈ [N ] are such that ‖dθ‖
is small. The set of such d is known as a Bohr set. Since we are interested in the case where
d = PD(z) for some z ∈ [Z], we therefore need to consider polynomial Bohr sets, which are
defined as follows.

Definition 8.6 (Bohr sets). Let K ∈ N, ρ > 0, and α ∈ TK . Let Q ∈ Z[x] be an integer
polynomial of positive degree. The (polynomial) Bohr set BohrQ(α, ρ) is the set

BohrQ(α, ρ) := {n ∈ N : ‖Q(n)α‖ < ρ} =
K⋂
i=1

{n ∈ N : ‖Q(n)αi‖ < ρ}.

Bohr sets are well-studied objects in additive combinatorics and analytic number theory
[28, §4.4]. In the classical setting Q(n) = n, it is well known that the Bohr set has positive
lower density. For our applications, we only need to ensure that

|BohrQ(α, ρ) ∩ [Z]| �d,K,ρ Z

for Z large enough relative to Q,K, ρ, where Q is an intersective polynomial of degree d.
The crucial aspect of this bound which we emphasise is that the implicit constant does not
depend on the frequency α nor on the coefficients of Q. Note that intersectivity is necessary
even to ensure that the Bohr set is non-empty, for otherwise there is a local obstruction.

We start with the case Q(0) = 0, which was investigated in [5].
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Lemma 8.7. Let K ∈ N, ρ > 0 and α ∈ TK. Let Q(x) ∈ Z[x] be a polynomial of degree
d ∈ N such that Q(0) = 0. Then there exists a positive real number ∆0(ρ) = ∆0(d,K, ρ) and
a positive integer Z0(d,K, ρ) such that if Z > Z0(d,K, ρ) then

|BohrQ(α, ρ) ∩ [Z]| > ∆0(ρ)Z.

Proof. Write Q(x) =
∑d

i=1 aix
i for some a1, . . . , ad ∈ Z. We abuse notation and write

Bohri(α, ρ) for BohrP (α, ρ) when P (x) = xi. The triangle inequality implies that

BohrQ(α, ρ) ⊇
d⋂
i=1

Bohri(β
(i), ρ/d),

where β(i) := aiα. From d applications of [5, Corollary 6.9], we deduce that there exists a
positive integer M �d,K,ρ 1 such that {x, 2x, . . . ,Mx}∩BohrQ(α, ρ) 6= ∅ holds for all x ∈ N.
Thus, we conclude from [7, Lemma 4.2] that |BohrQ(α, ρ) ∩ [Z]| > Z/(2M2) holds for all
Z >M . �

We now consider the general case where Q is an arbitrary intersective polynomial. To
deduce the required result from Lemma 8.7, we need to know that

sup
α∈TK

min
z∈[Z]
‖Q(z)α‖ → 0 (Z →∞).

As previously mentioned, the significant feature is uniformity in α. Such a result follows
from the much stronger quantitative bound given in [19, Theorem 1]. Using this, we now
establish a lower bound for the density of an arbitrary intersective polynomial Bohr set.

Lemma 8.8. Let K ∈ N, ρ > 0 and α ∈ TK. Let Q(x) ∈ Z[x] be an intersective polynomial
of degree d ∈ N. Then there exists a positive real number ∆1(ρ) = ∆1(d,K; ρ) and a positive
integer Z1(Q,K, ρ) such that if Z > Z1(Q,K, ρ) then

|BohrQ(α, ρ) ∩ [Z]| > ∆1(ρ)Z.

Proof. If Z is sufficiently large in terms of (Q,K, ρ), then it follows from [19, Theorem 1]
that there exists t ∈ BohrQ(α, ρ/2) with t < Z/2. Let P (x) := Q(x + t) − Q(t). Since
P (0) = 0, Lemma 8.7 ensures that

|BohrP (α, ρ/2) ∩ [Z/2]| �d,K,ρ Z.

By the triangle inequality, we now have

{t+ x : x ∈ (BohrP (α, ρ/2) ∩ [Z/2])} ⊆ BohrQ(α, ρ) ∩ [Z],

from which the desired bound follows. �

8.3. Completing the proof of Theorem 8.1. Recall that the coefficients of L1 are co-
prime. This implies that there exists v ∈ Zs whose entries have size OL1(1) such that
L1(v) = 1. Thus, for any finitely supported f1, . . . , fs, g1, . . . , gt : Z→ C, we may write

ΛD(f1, . . . , fs; g1, . . . , gt) =
∑
z∈Zt

g1(z1) · · · gt(zt)Ψz(f1, . . . , fs),

where

Ψz(f1, . . . , fs) :=
∑

L1(n)=0

s∏
i=1

fi(ni + viL2(PD(z))).

For brevity, we write Ψz(f) := Ψz(f, . . . , f). Following [5, §6.1], we proceed to study these
auxiliary counting operators Ψz, with a view towards obtaining a lower bound for ΛD by
summing over z lying in a polynomial Bohr set.
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Lemma 8.9 (Generalised von Neumann for Ψ). Let z ∈ Zt, and let Ψz be defined as above.
If f, g : [N ]→ [0, 1], then

|Ψz(f)−Ψz(g)| 6 sN s−1(‖f − g‖2
2/N)1/2.

Proof. For all f1, . . . , fs : Z→ [−1, 1] supported on [N ], we proceed to show that

|Ψz(f1, . . . , fs)| 6 (‖fj‖2
2/N)1/2N s−1

for all j ∈ [s]. Once this is established, the lemma then follows from the telescoping identity

Ψz(f)−Ψz(g) =
s∑
i=1

Ψz(h1, . . . , hi−1, hi − gi, gi+1, . . . , gs),

where hi = f and gi = g for all i ∈ [s].
We demonstrate only the case j = s, as the other cases follow by symmetry. Given

n = (n1, . . . , ns) ∈ Zs, we write L1(n) = L1(ñ, ns), where ñ = (n1, . . . , ns−1) ∈ Zs−1. Let
u = L1(0, . . . , 0, vsL2(PD(z))) ∈ Z. By the change of variables n = ns + vsL2(PD(z)), we
have

Ψz(f1, . . . , fs) =
∑
n∈Z

fs(n)
∑

ñ∈Zs−1

L1(ñ,n)=u

s−1∏
i=1

fi(ni + viL2(PD(z))).

Note that fs(n) vanishes if n /∈ [N ]. Hence, by applying Cauchy–Schwarz to the outer sum
over n, we deduce that

|Ψz(f1, . . . , fs)|2 6 ‖fs‖2
2

N∑
n=1

 ∑
ñ∈Zs−1

L1(ñ,n)=u

s−1∏
i=1

fi(ni + viL2(PD(z)))


2

.

Since |fi| 6 1[N ] for all i, we deduce that the inner sum over ñ is bounded above by

#{ñ ∈ Zs−1 : L1(ñ, n) = u, (ni + viL2(PD(z))) ∈ [N ] (i ∈ [s− 1])} 6 N s−2.

Inserting this bound reveals that

|Ψz(f1, . . . , fs)|2 6 ‖fs‖2
2

N∑
n=1

N2(s−2) = (‖fi‖2
2/N)N2(s−1),

and taking square roots completes the proof. �

Before we use this lemma to obtain a lower bound for Ψz(fstr + fsml), we require two
additional lemmas. Firstly, we require a functional version of the supersaturation result of
Frankl, Graham, and Rödl [11, Theorem 2] for density regular linear equations.

Lemma 8.10. Let δ > 0, and let f : [N ]→ [0, 1]. If ‖f‖1 > δN , then∑
L1(n)=0

f(n1) · · · f(ns)�L1,δ N
s−1. (8.2)

Proof. Let Ω = {x ∈ [N ] : f(x) > δ/2}. The popularity principle [28, Exercise 1.1.4] implies
that |Ω| > (δ/2)N , and so∑

L1(n)=0

s∏
i=1

f(ni) >
∑

L1(n)=0

s∏
i=1

((δ/2)1Ω(ni)) = (δ/2)s|{n ∈ Ωs : L1(n) = 0}|.

Since L1(1, . . . , 1) = 0, the required bound now follows from [11, Theorem 2]. �
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Remark 8.11. Alternatively, one can prove Lemma 8.10 without using [11, Theorem 2]. After
applying the arithmetic regularity lemma (Lemma 8.3), one can then show that the sum (8.2)
for fstr is �L1,δ N

s−1 by restricting to a sum over n1, . . . , ns lying in a linear Bohr set (see
[5, §6] for further details).

As mentioned previously, we intend to make use of the almost periodicity of fstr to obtain
a lower bound for Ψz(fstr +fsml) when z lies in an intersective polynomial Bohr set. However,
we have to be conscious of the fact that we are relying on the relation fstr(n) = F (nθ), which
only holds for n ∈ [N ]. To guarantee that quantities of the form ni + viL2(PD(zj)) lie in
[N ], we restrict our variables according to (n, z) ∈ [c(η)N, (1 − c(η))N ]s × [ηZ]t, for some
sufficiently small η > 0 and some corresponding quantity c(η) > 0 such that c(η) → 0+ as
η → 0+. Moreover, since our final bound (3.10) does not depend on D, we need to ensure
that the decay rate of c(η) is independent of D. This is accomplished by the following simple
lemma on polynomial growth.

Lemma 8.12. Let P be an intersective integer polynomial of degree d ∈ N satisfying (3.5).
Then there exists M0(P ) ∈ N such that the following is true. Let η ∈ (0, 1), let D ∈ N, and
define the auxiliary polynomial PD by (3.9). If M > (M0(P ) + 1)/η, then

PD(ηM) 6 (4η)dPD(M).

Proof. Let `P denote the leading coefficient of P . Since (3.5) holds, we know that `P > 1,
and that there exists a positive integer M0(P ) > 4 such that

`PY
d 6 2P (Y ) 6 3`PY

d

holds for all real Y > M0(P ). Since −D < rD 6 0, it follows that if M > (M0(P ) + 1)/η
then

PD(ηM)

PD(M)
6

3(rD +DηM)d

(rD +DM)d
6

3(DηM)d

(DM −D)d
= 3ηd

(
1 +

1

M − 1

)d
.

The asserted bound now follows upon noting that M >M0(P ) > 4. �

Lemma 8.13 (Lower bound for Ψz(fstr + fsml)). For all δ > 0, there exist positive constants
c1(δ) = c1(L1, L2; δ) > 0 and η = η(d, L1, L2, δ) > 0 such that the following is true. Suppose
f : Z → [0, 1] is supported on [N ] and satisfies ‖f‖1 > δN . Given σ > 0 and a monotone
increasing function F : R>0 → R>0, let fstr, fsml, K and θ be as given by applying Lemma 8.3
to f . Let ρ > 0 satisfy Kρ 6 1, and let z ∈ BohrPD(θ, ρ)t. If z ∈ [ηZ]t, then

Ψz(fstr + fsml) > (c1(δ)−OL1,L2(σ +Kρ))N s−1.

Proof. Lemma 8.9 informs us that

Ψz(fstr + fsml) = Ψz(fstr) +O(σN s−1).

It therefore only remains to estimate Ψz(fstr). For each n ∈ Zs, define

Iz(n) :=

{
1, if (ni + viL2(PD(z))) ∈ [N ] for all i ∈ [s];

0, otherwise.

Since z ∈ BohrPD(θ, ρ)t, we deduce from property (V) of Lemma 8.3 that if n ∈ [N ]s, then

Iz(n)|fstr(ni)− fstr(ni + viL2(PD(z)))| �v,L2 Kρ (1 6 i 6 s).
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Thus, by using property (I) to bound fstr by 1, we find that

Ψz(fstr) =
∑

L1(n)=0

Iz(n)
s∏
i=1

[fstr(ni) +Ov,L2(Kρ)]

=

 ∑
L1(n)=0

Iz(n)fstr(n1) · · · fstr(ns)

+Ov,L2(KρN
s−1).

In view of (3.5) and Lemma 8.12, we see that

|L2(PD(z))| �L2 PD(ηZ) 6 (4η)dN (z ∈ [ηZ]t).

It follows that there exists a constant c = c(L1, L2, d) > 0 such that, for all z ∈ [ηZ]t,
the function Iz is non-zero on the set Ωt, where Ω :=

(
cηdN, (1− cηd)N

]
∩ Z. Using the

non-negativity of the function fstr, we therefore find that

Ψz(fstr) >

 ∑
L1(n)=0

g(n1) · · · g(ns)

−Ov,L2(KρN
s−1),

where g(n) := 1Ω(n)fstr(n).
Finally, we infer from property (IV) of Lemma 8.3 that g(1) + · · ·+ g(N) > (δ − 2cηd)N .

Thus, by taking η sufficiently small, we can apply Lemma 8.10 to g to obtain the required
bound. �

Combining all of these results finally allows us to prove Theorem 8.1, thereby completing
the proof of Theorem 3.8.

Proof of Theorem 8.1. Fix r ∈ N and δ ∈ (0, 1). Let c1(δ) and η = η(δ, P, L1, L2) be as
given in Lemma 8.13. Notice that the conclusion of Lemma 8.13 allows us to assume that
c1(δ) < 1, which we do. Let σ = c1(δ)/M , where M = M(L1, L2) is some suitably large
positive integer, and let ∆1 be the function given by Lemma 8.8. Let F : R>0 → R>0 be a
monotone increasing function which satisfies

F(x)−1/(2s+2t) 6 τc1(δ)
(
ηr−1∆1(d, x;x−1σ)

)t
(8.3)

for all x ∈ N, where τ = τ(P ) > 0 will be chosen shortly.
Let N,Z ∈ N be as given in the statement of Theorem 8.1, and assume they are sufficiently

large in terms of (δ, r, L, L2, P ). Suppose we have an r-colouring [Z] = C1 ∪ · · · ∪ Cr, and
sets A1, . . . ,Ar ⊆ [N ] satisfying |Ai| > δN for each i ∈ [r]. Applying Lemma 8.3 to each of

the functions fi := 1Ai provides a decomposition fi = f
(i)
str + f

(i)
sml + f

(i)
unf , as well as associated

parameters K 6 K0(r;σ,F) and θ ∈ TK . Let ρ > 0 be defined by the equality Kρ = σ. By
our choices of parameters in the previous paragraph, we can assume that N and Z are also
sufficiently large relative to (σ,F , ρ, η).

Now let C ′i = Ci ∩ [ηZ] for all i ∈ [r]. Recall from Lemma 3.7 that PD is an intersective
polynomial of degree d. Thus, applying the pigeonhole principle and Lemma 8.8 to the
colouring [ηZ] = C ′1 ∪ · · · ∪ C ′r yields an index k ∈ [r] such that

|BohrPD(θ, ρ) ∩ C ′k| > r−1∆1(d,K; ρ)ηZ. (8.4)

It now remains to establish (8.1) for this choice of k.
Let B := C ′k ∩ BohrPD(θ, ρ). For any z ∈ Bt, if M is large enough, then Lemma 8.13

implies that

2Ψz(f
(i)
str + f

(i)
sml) > c1(δ)N s−1 (1 6 i 6 r).
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Summing over z yields

2ΛD(f
(i)
str + f

(i)
sml;B) > c1(δ)|B|tN s−1.

Incorporating Lemma 8.5 and (8.4) reveals that

2ΛD(Ai;B) >
(
c1(δ)|B|t − CF(K)−1/(2s+2t)Zt

)
N s−1

>
(
c1(δ)r−t∆1(d,K;K−1σ)tηt − CF(K)−1/(2s+2t)

)
N s−1Zt,

for all i ∈ [r] and some constant C = C(P ) > 1. Setting τ−1 = 2C in (8.3) now gives

ΛD(Ai; Ck) > ΛD(Ai;B)�δ,r,P,L1,L2 N
s−1Zt (1 6 i 6 r),

as required. �

Appendix A. Polynomial congruences

Lemma A.1. Let p be prime, and let s ∈ N. Let f(x) ∈ Zp[x] have degree d ∈ N and
discriminant ∆. Assume that p - c∆, where c is the leading coefficient of f . Then

#{x ∈ [ps] : f(x) ≡ 0 (mod ps)} 6 d.

Proof. Define

Z = {x ∈ Qp : f(x) = 0}, Zs = {x ∈ [ps] : f(x) ≡ 0 (mod ps)}. (A.1)

Writing ∆̄ for the discriminant of the image f̄ of f in Fp, we have

p - ∆̄ =
∏

x∈Fp:f̄(x)=0

f̄ ′(x).

Consequently, if a ∈ Zs then p - f ′(a), so by Hensel’s lemma there exists ã ∈ Z such that

ã ≡ a (mod ps).

Hence
|Zs| 6 |Z| 6 d.

�

Lemma A.2. Let p be prime, and let f(x) ∈ Zp[x] be squarefree of degree d > 2. Let R 6= 0
be the resultant of f and f ′, and let j > ordp(R) be an integer. Then

Yj := {y ∈ Zp : f(y) ≡ f ′(y) ≡ 0 (mod pj)} (A.2)

is empty.

Proof. By [8, Chapter 3, §6, Proposition 5], there exist non-zero polynomials g1, g2 ∈ Zp[x]
such that R = fg1 + f ′g2. Since pj - R, the result follows. �

Lemma A.3. Let p be prime, and let f(x) ∈ Zp(x) be squarefree of degree d ∈ N. Define
Y1, Y2, . . . as in (A.2). Let h ∈ Z>0, suppose Yh+1 = ∅, and let s > 2h be an integer. Then

#{x ∈ [ps] : f(x) ≡ 0 (mod ps)} 6 dph.

Proof. Let Z and Zs be as in (A.1). For a ∈ Zs, write δa = ordp(f
′(a)), and note that

δa 6 h. By Hensel’s lemma [30, Lemma 3], if a ∈ Zs then there exists ã ∈ Z such that

ã ≡ a (mod ps−δa).

Therefore
ã ≡ a (mod ps−h),

and so
|Zs| 6 ph|Z| 6 dph.

�
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Lemma A.4. Let f(x) ∈ Z[x] be squarefree of degree d ∈ N, and let m ∈ N. Then

#{x ∈ [m] : f(x) ≡ 0 (modm)} �f d
ω(m).

Proof. Let C = |c∆|, where c is the leading coefficient of f and ∆ is the discriminant of f .
Let h ∈ N be minimal such that Yh is empty for any prime p 6 C. By Lemma A.2, we know
that h�f 1. For p > C and s ∈ N, Lemma A.1 yields

#{x ∈ [ps] : f(x) ≡ 0 (mod ps)} 6 d.

By the Chinese remainder theorem, it remains to show that if p 6 C and s ∈ N then

#{x ∈ [ps] : f(x) ≡ 0 (mod ps)} 6 dp2h.

This is trivial if s 6 2h, and otherwise it follows from Lemma A.3. �

Let w and W be as defined in §4. The following lemma, based on Rankin’s trick, is
analogous to [7, Lemma A.3].

Lemma A.5. Let P (x) ∈ Z[x] have degree d > 2. Then there are at most OP (10wWM−1/2)
integers b ∈ [W ] such that

(P ′(b),W )d > M,

where (P ′(b),W )d denotes the largest m ∈ N for which md | (P ′(b),W ).

Proof. Let f(x) ∈ Z[x] be the product of all irreducible integer polynomials dividing P ′.
Observe that P ′ | fd, whence (P ′(b),W )dd 6 (f(b),W )d for all b. Thus, it suffices to obtain
an upper bound for the number of b ∈ [W ] satisfying (f(b),W ) > M .

By Lemma A.4, we have

#{z ∈ [m] : f(z) ≡ 0 (modm)} �f (degf)ω(m) �f,ε m
ε.

If m | W , then, given z ∈ [m], the number of b ∈ [W ] satisfying b ≡ z (modm) equals W/m.
Hence, the number of b ∈ [W ] such that (f(b),W ) > M is at most a constant times∑

m>M
m|W

W

m
mε 6

∑
m>M

w-smooth

Wmε−1

√
m

M
6 WM−1/2

∏
p6w

(
1− pε−1/2

)−1
.

Here, we bounded the sum of mε−1/2 over all w-smooth m > M by a sum over all w-smooth
m, which can then be expressed as the Euler product on the right-hand side. If we take
ε = 1/6, then every prime p satisfies p1/2−ε > 21/3 > 10/9. It follows that the Euler product
is bounded above by 10w. This gives the required upper bound. �
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[11] P. Frankl, R. L. Graham, and V. Rödl, Quantitative theorems for regular systems of equations, J.

Combin. Theory Ser. A 47 (1988), 246–261.
[12] B. J. Green, Roth’s theorem in the primes, Ann. of Math. 161 (2005), 1609–1636.
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