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ABSTRACT
B-spline-based hidden Markov models employ B-splines to specify the emission distributions, offering a
more flexible modeling approach to data than conventional parametric HMMs. We introduce a Bayesian
framework for inference, enabling the simultaneous estimation of all unknown model parameters including
the number of states. A parsimonious knot configuration of the B-splines is identified by the use of a trans-
dimensional Markov chain sampling algorithm, while model selection regarding the number of states can
be performed based on the marginal likelihood within a parallel sampling framework. Using extensive
simulation studies, we demonstrate the superiority of our methodology over alternative approaches as well
as its robustness and scalability. We illustrate the explorative use of our methods for data on activity in
animals, that is whitetip-sharks. The flexibility of our Bayesian approach also facilitates the incorporation of
more realistic assumptions and we demonstrate this by developing a novel hierarchical conditional HMM
to analyse human activity for circadian and sleep modeling. Supplementary materials for this article are
available online.
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1. Introduction

The class of hidden Markov models (HMMs) offers a power-
ful approach for extracting information from sequential data
(Rabiner 1989). A basic N-state HMM consists of a discrete-
time stochastic process (xt , yt) where xt is an unobserved N-state
time-homogeneous Markov chain, and yt|xt ∼ fxt (yt) with the
emission distributions fxt belonging to some parametric family
such as normal or gamma. However, a parametric HMM is often
too restrictive for complex real data (Zucchini, MacDonald, and
Langrock 2016). It is recognized that simple parametric choices
for the emission distributions are not always justified, and more-
over, their misspecification can lead to seriously erroneous infer-
ence on the number and classification of hidden states (Yau et al.
2011; Pohle et al. 2017). Semi- and nonparametric modeling of
emission distributions offer more flexibility and/or may serve as
exploratory tools to investigate the suitability of a parametric
family; see Piccardi and Pérez (2007) for activity recognition
in videos, Yau et al. (2011) for the analysis of genomic copy
number variation, Langrock et al. (2015, 2018) for modeling
animal movement data and Kang et al. (2019) for delineating the
pathology of Alzheimer’s disease, among many others. Theoreti-
cal guarantees for inference in such models have been studied in
a number of recent papers. Notably Alexandrovich, Holzmann,
and Leister (2016) proved that model parameters and the order
of the Markov chain are identifiable (up to permutations of the
hidden states labels) if the transition probability matrix of {xt}
has full rank and is ergodic, and if the emission distributions are
distinct. These conditions are fairly generic and in practice will
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usually be satisfied. We also refer to Gassiat, Cleynen, and Robin
(2016a), Gassiat and Rousseau (2016b) for further identifiability
results, and to Vernet (2015), De Castro, Gassiat, and Le Corff
(2017), and references therein, for further theoretical results on
inference under nonparametric settings. The increased flexibil-
ity and modeling accuracy obtained by nonparametric emission
distributions comes at a higher computational cost. For instance,
the cost of the standard HMM algorithms (e.g., the forward-
backward algorithm of Rabiner 1989) for kernel-based HMMs
(Piccardi and Pérez 2007) is subject to a quadratic growth with
data size n and thus can be prohibitive for long time series
data. Bayesian nonparametric HMMs (Yau et al. 2011) built on
Dirichlet process mixture models pose challenges to the existing
sampling methods due to the increased complexity of the model
space (Hastie, Liverani, and Richardson 2015).

Splines have good approximation properties for a rich class
of functions (De Boor et al. 1978; Schumaker 2007). A spline
function of order O is a piecewise polynomial function of degree
O − 1 where the polynomial pieces are connected at the so-
called knot points. Provided these are distinct, the derivatives
of piecewise polynomials are (O − 2)-times continuously dif-
ferentiable at the knots. B-splines (short for basis splines) of
order O provide basis functions for representing spline func-
tions of the same order defined over the same set of knots
(De Boor et al. 1978). The great flexibility and nice computa-
tional properties of the B-splines make them a popular tool in
semi-/nonparametric statistical modeling, especially in nonlin-
ear regression analysis (Denison et al. 2002; Zanini et al. 2020)
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and density estimation (Koo 1996; Edwards, Meyer, and Chris-
tensen 2019). Incorporating B-splines into HMMs is attractive
for real applications as two powerful aspects can be exploited,
the forward-backward algorithm for efficient HMM inference,
and the flexibility for estimating the emission densities. A fre-
quentist estimation approach for HMM based on penalized B-
splines (P-splines) was introduced by Langrock et al. (2015,
2018). It requires pre-specifying the number and positions of
knots where, in practice, a large number of knots are needed
to ensure flexibility, leading to computational challenges (e.g.,
convergence to suboptimal local extreme of the likelihood) and
cost. Also to date the selection of the state-specific smooth-
ing parameters and the quantification of parameter uncertainty
remain challenging inferential tasks in the frequentist frame-
work. Current methods rely on cross-validation and parametric
bootstrap techniques (Langrock et al. 2015), which are extremely
computationally intensive and can be numerically unstable espe-
cially for increasing cardinality N. Hence, their approach is so far
only feasible for models with a small N which may severely limit
its applicability.

As far as we are aware spline-based methods have not yet
been considered for emission density estimation in a Bayesian
formulation of HMMs. The aim of this article is to propose and
develop a methodology that achieves exactly this by means of
an almost “tuning-free” reversible jump Markov chain Monte
Carlo (RJMCMC) algorithm (Green 1995), which exploits (i)
the forward filtering backward sampling (FFBS) procedure for
efficient simulation of the hidden state process, (ii) a stochastic
approximation based adaptive MCMC scheme for automatic
tuning, (iii) a reparameterization scheme for enhancing the
sampling efficiency and (iv) an adaptive knot selection scheme
that modifies and extends ideas considered in other scenar-
ios such as DiMatteo, Genovese, and Kass (2001) and Sharef
et al. (2010) for flexible emission modeling. We report results
demonstrating significant advantages of our proposed adaptive
spline based algorithm. Compared to current alternative spline-
based approaches, namely the frequentist P-spline approach of
Langrock et al. (2015), and a Bayesian adaptive P-spline (Lang
and Brezger 2004) approach which is newly adapted here for
density estimation in HMMs, our method generally achieves
higher estimation accuracy and efficiency while maintaining a
much lower model complexity. It also performs favorably over
the Gaussian mixture based HMM in more challenging data-
generating scenarios.

Estimating N is often a question of scientific interest in
itself and introduces an additional level of complexity to HMM
inference. While order estimation has been extensively studied
for parametric HMMs, such as in Celeux and Durand (2008),
Pohle et al. (2017), and Frühwirth-Schnatter and Frèuhwirth-
Schnatter (2006), few theoretical or practical results have been
obtained for the semi- or nonparametric case, which often
requires the number of states to be known or fixed in advance
(Piccardi and Pérez 2007; Yau et al. 2011; Lehéricy 2018).
Recently, Lehéricy (2019) proposed two estimators for N, which
are theoretically attractive but suffer from implementation
difficulties such as non-convex optimization problems and
heuristic tuning. In this article, we address this issue with
a fully Bayesian approach to the selection of N through a
parallel sampling scheme that is both easy to implement and

computationally efficient. Quantities such as the marginal
likelihood for each model can be easily estimated.

Among the numerous application fields of HMMs, there is a
growing interest within the context of e-Health to gain insight
into an individual’s health status based on relevant biomarker
data. Physical activity (PA) is receiving much attention as an
important biomarker of the sleep-wake cycle and circadian tim-
ing system, which is closely associated with our physical and
mental health (Roenneberg and Merrow 2016). PA can be easily
and objectively measured in a non-obtrusive way under normal
living conditions using accelerometry or actigraphy through
wearable sensing devices. Huang et al. (2018) investigated PA
using a HMM with circadian-clock driven transition proba-
bilities and, amongst various circadian parameters of interest,
they proposed a novel model-derived circadian parameter for
monitoring and quantifying a subject’s circadian rhythm. An
advantage of a further Bayesian formulation is that the mod-
ularity of its components can be used to perform inference
rigorously even in a more complex hierarchical HMM model.
As a further contribution based on our proposed Ansatz, we
develop a hierarchical conditional HMM that may be applied to
(i) characterize the sleep-wake patterns in the overall PA data of
an individual and (ii) analyze sleep patterns of an individual in
a refined way through a “sub-HMM” that is conditional on the
“rest” state inferred from (i).

The article is structured as follows: Section 2 provides details
of a Bayesian formulation of the spline-based HMM, Section 3
details the structure of our proposed inference algorithms
including model selection on the number of states and summa-
rizes the performance of our methods in comparison to other
related methods under various simulation settings. Section 4
illustrates our methods on animal activity data and introduces
the conditional HMM approach that is applied to human PA
data from the Multi-Ethnic Study of Atherosclerosis (MESA).1
Section 5 provides a discussion and possible directions of further
work.

2. A Bayesian HMM with Spline-Based Emissions

We approximate the emission densities f1, . . . , fN , focusing on
univariate emissions, using mixtures of standardized cubic B-
spline basis functions of order O = 4 (Langrock et al. 2015).
The knots are located between boundary knots a and b (assumed
fixed), and we use RK = (r1, . . . , rK) to denote the interior
knot configuration shared across states, with the left and right
external knots set to a and b, respectively (Friedman, Hastie,
and Tibshirani 2001). Note that K = k corresponds to the case
of k + 4 B-spline basis functions, and we assume K ≥ 2 for
identifiability. Under these settings, fi is formulated as

fi(yt) =
K+4∑
k=1

ai,kBk(yt), i = 1, . . . , N, (1)

where Bk(y), k = 1, . . . , K+4, denotes the kth normalized (such
that it integrates to one) B-spline basis function of degree 3, and
the ai,k are the corresponding coefficients such that

∑K+4
k=1 ai,k =

1We refer to Chen et al. (2015) and Zhang et al. (2018) for more background
information on the MESA dataset.
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1 and ai,k ≥ 0 for all k = 1, . . . , K+4. In the time-homogeneous
case, that is, where the transition probabilities of the Markov
chain are constant over time, the resulting class of HMMs is
fully specified by the initial state distribution, δ = (δ1, . . . , δN),
with δi = P(x1 = i), the transition probability matrix, � =
(γi,j)i,j=1,...,N , with γi,j = P(xt = j|xt−1 = i), and the emis-
sion densities defined in (1). The joint (complete) likelihood of
observations y(n) = (y1, . . . , yn) and the hidden states x(n) =
(x1, . . . , xn) is

f (y(n), x(n)|K, RK , δ, AK , �) = δx1

n∏
t=2

f (xt|xt−1, �)

n∏
t=1

fxt (yt),

(2)
where here, and throughout this article, we use f (·|·) as a generic
notation to represent conditional densities as specified by their
arguments and AK denotes the set of spline coefficients ai,k, i =
1, . . . , N, k = 1, . . . , K + 4. Integrating out the hidden states the
marginal likelihood can be evaluated in O(N2n) steps using the
forward algorithm (in the form of Zucchini, MacDonald, and
Langrock 2016), via the matrix product expression

f (y(n)|K, RK , δ, AK , �) =
∫

f (y(n), x(n)|K, RK , δ, AK , �)dx(n)

= δP(y1)�P(y2) · · · �P(yn)1,
(3)

where P(yt) is a diagonal matrix with ith diagonal entry given by
fi(yt) and 1 is a column vector of dimension N of ones.

To complete the Bayesian formulation of the model, we
assume the following factorization of the complete joint density

f (K, RK , δ, AK , �, y(n), x(n)) = f (K)f (δ)f (�)f (RK |K)f (AK |K).
×f (y(n), x(n)|K, RK , δ, AK , �).

The assumption that the parameters associated with the
observed and hidden process are a-priori independent is
commonly adopted in Bayesian HMMs. We use a uniform
prior on {2, . . . , Kmax} for K, with Kmax fixed to 50 in our
examples2 where a preliminary study suggested that this was
large enough to cover the support of K. For the knot positions,
we propose that the rk are taken to be the kth order statistics
of K independent uniform random variables on [a, b], that is
f (RK |K) = K!/(b − a)K . The state-specific spline coefficients
(ai,1, . . . , ai,K+4), i = 1, . . . , N, are reparameterized as ai,j =
exp(ãi,j)/

∑K+4
l=1 exp(ãi,l), ãi,j ∈ R, so that the positivity and

unit sum constraints will not hinder the design of our RJ moves.
The fact that the ãi,j are not identifiable is not a concern as we
are only interested in the ai,j, which are identifiable, and in this
way the mixing of the MCMC may be improved (Cappé, Robert,
and Rydé 2003). We choose to use a log-gamma prior with shape
parameter ζ and rate parameter 1 on the ãi,j, that is exp(ãi,j) ∼
Gamma(ζ , 1), giving a symmetric Dirichlet, that is Dir(ζ , . . . , ζ )
distribution on the corresponding (ai,1, . . . , ai,K+4). We choose
a vague Gamma(1, 1) hyperprior3 on ζ to reflect our uncertainty
on ζ and our prior belief of sparse distributions on the spline

2Clearly larger default values, including the sample size n, may be used
instead and the estimation results do not appear to be sensitive to its choice
as long as Kmax is large enough.

3In our experiments we did not find the values of these hyperparameters to
be very influential, and other reasonable values may be used.

coefficients (when ζ < 1). For the transition probability matrix
we followed the literature (see, e.g., Rydén 2008) assuming
that the rows are a-priori independent, each of which has a
vague Dirichlet prior (γi,1, . . . , γi,N) ∼ Dir(1, . . . , 1), i =
1, . . . , N, where we assume that the initial distribution4 is fixed
and uniform on {1, . . . , N}. Thus the complete joint density
incorporating the reparameterization can be rewritten as

f (ζ , K, RK , ÃK , �, y(n), x(n))

= f (ζ )f (K)f (�)f (RK |K)f (ÃK |K, ζ )

×f (y(n), x(n)|K, RK , ÃK , �), (4)

where ÃK represents the set of ãi,k (i = 1, . . . , N, k = 1, . . . , K +
4). We remark that in cases where N is large, using state-specific
knot configurations for emissions may be preferred over a shared
knot configuration across states, and our Bayesian model can be
readily adapted. See supplementary Section A.6 for more details.

3. Inference

Our aim is to obtain samples from the posterior distribution of
(K, RK , AK , �, ζ , x(n)|y(n)), which can be achieved by simulating
from the joint posterior density defined via (4). To allow
for model searches between parameter subspaces of different
dimensionality, we develop a RJMCMC algorithm which
combines a Metropolis-within-Gibbs sampler with trans-
dimensional moves generated by births and deaths of knot
points. The structure of our algorithm is listed in Algorithm 1,
where bK = I(K = 2) + 0.5 × I(3 ≤ K < Kmax) and I(·) is
the indicator function (therefore bK = 0.5 for 3 ≤ K < Kmax).
The RJMCMC algorithm is conditioned on the cardinality N
noting that model selection will be addressed in Section 3.3.
Steps (a)–(e) propose moves within a dimension while the last
step proposes a birth or death of a knot point which changes
the model dimension. We now outline the rules for each of the

Algorithm 1: Reversible jump MCMC algorithm for
spline-based HMMs

Initialize K, RK , ζ , ÃK , � ;
for i=1, …, T do

(a) update the hidden state sequence x(n);
(b) update the transition probability matrix �;
(c) update the knot location vector RK ;
(d) update the set of B-spline coefficients AK (via ÃK);
(e) update the hyperparameter ζ ;
draw U ∼ U(0, 1);
if U < bK then

consider the birth of a knot point in the B-spline
representation in (1);

else
consider the death of a knot point in the B-spline
representation in (1);

end
end

4Note that it is not possible to estimate it consistently as there is only one
unobserved variable associated with it.
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updating steps while further details of this algorithm together
with an extension assuming state-specific knots are provided in
the supplementary Section A.6.

3.1. Within-Model Moves

The moves in steps (a) and (b) are of Gibbs type whereas those
in steps (c) to (e) are of Metropolis-Hastings (MH) type, all of
which are conditioned on the current number of knot points
K. In step (a), x(n) can be simulated exactly and efficiently from
its full conditional distribution, f (x(n)|y(n), K, RK , AK , �), via a
standard FFBS procedure with transition matrix � and emission
densities fi(yt) given in (1) (see e.g., Cappé, Moulines, and Rydén
2005). In step (b), the rows of � are conditionally independent
and are updated from their conjugate Dirichlet posterior

(γi,1, . . . , γi,N) ∼ Dir(1 + ni,1, . . . , 1 + ni,N), i = 1, . . . , N,

where ni,j denotes the number of transitions from state i to j
in x(n). In step (c) a knot rk∗ is chosen uniformly from the
set of existing knots {r1, . . . , rK} and proposed to be moved
to a candidate point, rc, which is generated from a normal
distribution with mean rk∗ and standard deviation τ1, truncated
to [a, b] (DiMatteo, Genovese, and Kass 2001). The proposal in
step (d) is generated by a random walk on the reparameterized
spline coefficients ãi,j (i = 1, . . . , N; j = 1, . . . , K + 4), that
is ã′

i,j = ãi,j + ηi,j, where ηi,j ∼ N (0, τ 2
2 ). In step (e), we

update ζ via a log-normal random walk log(ζ ′
) = log(ζ ) + ν,

where ν ∼ N (0, τ 2
3 ). To allow for automatic tuning of the

variance parameters τ1, τ2, and τ3, we adopt a simple well-used
adaptive MCMC scheme based on a stochastic approximation
procedure (Atchade et al. 2011), without incurring additional
computational burden. More details are given in supplementary
Section A.

3.2. Birth and Death Moves

The birth and death moves allow for increasing or decreasing the
number of knots, or equivalently, the number of B-spline basis
elements. Our design extends the ideas of DiMatteo, Genovese,
and Kass (2001) and Sharef et al. (2010) to the framework of
HMMs. Suppose that the current model has knot configuration
(K, RK), we make a random choice between birth or death with
probabilities bK and dK = 1 − bK , respectively. In the birth
move, we select a knot, rb∗ , at random from the existing knots
and create a candidate new knot, rc, by drawing from a normal
distribution (truncated to [a, b]) with mean rb∗ and standard
deviation τ(RK , b∗), where τ is chosen as a function having the
form (rb∗+1 − rb∗−1)

α and α is a positive real constant. The
intuition here is that a new knot is more likely to be needed in
locations where existing knots are relatively “dense”. To complete
the birth step we update the corresponding spline coefficients,
which now has dimension K + 5 for each state. Here, our design
is guided by the deterministic knot insertion rule described in
De Boor (2001) which allows a new knot to be inserted without
changing the shape of the overall B-spline curve, noting that
this exact relationship becomes approximate in our context as
we are working with normalized basis functions. We extend the
scheme by adding more degrees of freedom in order to meet

the dimension matching condition required for the validity of
the RJMCMC algorithm. More specifically, for the birth of a
candidate knot point rc ∈ (rn∗ , rn∗+1), the associated spline
parameters ã′

i,j, for i = 1, . . . , N, are created as

ã
′
i,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ãi,j 1 ≤ j ≤ n∗ + 1
cjãi,j + (1 − cj)ãi,j−1 n∗ + 1 < j < n∗ + 4
uiãi,j + (1 − ui)ãi,j−1 j = n∗ + 4
ãi,j−1 n∗ + 4 < j ≤ K + 5

(5)

where cj = (rc − rj−4)/(rj−1 − rj−4) and ui
iid∼ U(0, 1). Here

the ã′
i,j are generated using the deterministic rule in De Boor

(2001), except for ã′
i,n∗+4 where we introduce one degree of

freedom through ui. This way of updating allows us to effec-
tively use knowledge from current spline parameters, while also
allowing for a possible improvement on the fit resulting from
the introduction of a new knot point. This design can also
be related to the idea of “centering” reversible jump proposals
proposed in Brooks, Giudici, and Roberts (2003) where current
and proposed parameters produce similar likelihoods.

Next, consider the death of a knot point from the current knot
configuration (K, RK). A knot, rd∗ , is chosen at random from
the set of existing knots {r1, . . . , rK} and then deleted. The spline
parameters associated with this move are updated according to
the inverse transformation of (5):

ã
′
i,j =

⎧⎪⎪⎨
⎪⎪⎩

ãi,j 1 ≤ j ≤ d∗
ãi,j−(1−cj)ã′

i,j−1
cj

d∗ < j < d∗ + 3
ãi,j+1 d∗ + 3 ≤ j ≤ K + 3

where cj = (rd∗ − rj−4)/(rj−1 − rj−4). The parameters for the
state process remain unaltered in either birth or death move.5

3.3. Bayesian Model Selection: Estimating the
Cardinality N

While it is theoretically possible to extend Algorithm 1 by intro-
ducing an additional reversible jump step on the number of
states, or by using a product space search algorithm to sam-
ple from the joint posterior of parameters from all competing
models (e.g., Carlin and Chib 1995), it is challenging to design
computationally practical trans-dimensional algorithms in the
HMM setting due to the large and complex parameter space.
Another potential strategy is to use Dirichlet process based
priors for the transition matrix, which allows for a potentially
infinitely large state space (see e.g., Fox et al. 2011). However,
combining such a framework with the spline-based emission
model would pose significant computational challenges. Instead,
we propose to perform model selection based on the marginal
likelihood, also known as “evidence”

5We note the difference between our birth and death proposals to those in
Sharef et al. (2010) (see eq. 3.1 therein), who propose a parameterization
where the transformation acts on the exponentials of the spline coefficients
(restricted to be positive). Such a scheme may be problematic as the pro-
posed parameters from the death step based on the deterministic rules are
not guaranteed to be positive.
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f (y(n)|N = j) =
∫

f (y(n)|θ j, N = j)f (θ j|N = j)dθ j,

j = 1, . . . , M, (6)

where θ j is the parameter set (excluding x(n)) associated with the
j-state model, f (y(n)|θ j, N = j) is the observed likelihood given
in (3) and M denotes some maximum number of states that we
want to consider. Given prior model probabilities P(N = j) and
evidences, the posterior model probabilities can be computed
using Bayes’ theorem. Following Bayesian decision theory we
can pick the model that gives the highest posterior probability,
that is N∗ = argmaxk=1,...,MP(N = k|y(n)). For most models of
interest (including HMMs), however, the integral in (6) has no
closed-form expression and needs to be approximated. Various
Monte Carlo based approximation schemes have been proposed,
see Friel and Wyse (2012) and Llorente et al. (2020) for recent
reviews.

We propose to approximate the evidence of a spline-based
HMM by using a harmonic mean estimator (Gelfand and Dey
1994), which allows direct estimation of the evidence using the
simulation output and thus is straightforward to implement. The
estimator relies on the simple fact that for any proper density
function h, we have for the expectation

Eθ j|y(n)

[ h(θ j)

f (θ j)f (y(n)|θ j)

]

=
∫ h(θ j)

f (θ j)f (y(n)|θ j)
f (θ j|y(n))dθ j = 1

Mj
,

where Mj = ∫
f (θ j)f (y(n)|θ j)dθ j. A Monte Carlo approximation

of the evidence is thus obtained as

M̂j =
{

1
T

T∑
i=1

h(θ
(i)
j )

f (θ (i)
j )f (y(n)|θ (i)

j )

}−1
,

where θ
(i)
j is the ith sample simulated from the posterior

f (θ j|y(n)). This estimator enjoys a finite variance if
∫

h2(θ)/

(f (θ)f (y(n)|θ))dθ < ∞, that is h(θ) must have lighter tails than
f (θ)f (y(n)|θ) (DiCiccio et al. 1997). To ensure this we follow
Robert and Wraith (2009) and Marin and Robert (2009) to
construct an appropriate density h based on truncated highest
posterior density (HPD) regions derived from the MCMC
samples. The resulting estimator is known as a truncated
harmonic mean estimator and has been successfully used
in various other model settings, see for instance Durmus,
Moulines, and Pereyra (2018) and Acerbi et al. (2018). More
specifically, we define a sample-based 100β% HPD region as
(omitting the dependence on the index of state j for clarity)
H̃β = {θ (i) : f (θ (i))f (y(n)|θ (i)) > q̃β}, where q̃β is the empirical
upper β quantile of the (f (θ (i))f (y(n)|θ (i))) produced in the
output of the MCMC. Here we propose to construct the density
h as

h(θ) = 1
V(ξ)βT

∑
j:θ (j)∈H̃β ,dim(θ (j))=dim(θ)

I(d(θ (j), θ) < ξ),

where V(ξ) is the volume of a ball centered at θ with radius ξ

(small), dim(·) is the dimensionality of the argument and d(·, ·)
is a suitable distance measure. It is easy to check that h is a

proper density function and has a finite support, noting that in
our context the parameter space of θ = (K, ζ , RK , AK , �) is a
union of subspaces of varying dimension. Our proposal h can
be viewed as a histogram-like nonparametric estimator of the
posterior f (θ |y(n)) based solely on samples in the HPD regions.
Note that V(ξ) does not need to be computed as it cancels out
when computing posterior model probabilities, provided that ξ

is fixed across models.

3.4. Performance in Simulations

To thoroughly evaluate the empirical performance of our pro-
posed adaptive spline (adSP) Bayesian methodology, we con-
ducted simulation studies in various hypothetical and realistic
settings. Here we briefly summarize the design and results,
with additional details provided in supplementary Sections B
and C.

We first compared our adSP with three other relevant can-
didate methods: (i) the frequentist P-spline (fpSP) approach of
Langrock et al. (2015), (ii) a Bayesian adaptive P-spline approach
(bpSP) that, to the best of our knowledge, represents the first
implementation within HMMs, and (iii) a frequentist Gaussian
mixture-based HMM (GMM) motivated by Volant et al. (2014).
Our comparison is based on estimation accuracy, using two
criteria, namely the average Kullback-Leibler divergence (KLD)
from the true emission distributions, and the decoding accu-
racy/error, quantified via the proportion of correctly/incorrectly
classified states, as well as computational cost. We generated arti-
ficial data from four simulation models with emissions exhibit-
ing features such as multi-modality, skewness, heavy-tailedness
and excess kurtosis. Model 1 is a 2-state HMM with a normal
and a normal mixture emission as considered in Langrock et al.
(2015). Model 2 is a 3-state HMM with a unimodal positively
skewed emission distribution in state 1, a bimodal distribution
in state 2, and a unimodal negatively skewed distribution in
state 3. Model 3 is motivated by the bimod model considered
in Yau et al. (2011) with emissions using a mixture of a Laplace
and a generalized Student’s t distribution. Model 4 corresponds
to the trimod case of Yau et al. (2011), a 2-state HMM with
emissions specified as a mixture of three well-separated normal
distributions. Models 3 and 4 pose the most serious challenges,
even when the correct number of states is assumed to be known
as in Yau et al. (2011).

First, we verified the performance of our model selection
method, which is based on the marginal likelihood, for the two
Bayesian approaches, adSP and bpSP. We found that the adSP
method identified the correct number of states in all 60 replicates
for each of the four simulation models, with averaged posterior
probability of the correct model equal to one. In contrast, bpSP
had a lower accuracy and underestimated the number of states
in some repetitions. Furthermore, comparing the performance
of the four methods across the simulation models for fixed cardi-
nality N, we conclude that the proposed adSP method is the only
method that performs consistently well in all scenarios, with
a particular advantage in decoding. Within the spline-based
methods, adSP and bpSP had roughly comparable accuracy in
the easier settings (Models 1 and 2), while the advantages of
using adSP became apparent in the more challenging scenarios
(Models 3 and 4) where bpSP suffered from poor mixing or
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Figure 1. Left, middle and right panels show the histogram of 15s-averaged lODBA values along with the estimated emission densities (weighted according to their
proportion in the stationary distribution of the estimated Markov chain) obtained from our method (N = 3), Langrock et al.’s method (N = 3) and the 9-state model,
respectively. Here the state labels are sorted according to their mean lODBA levels.

convergence issues. Although fpSP was found to have better
convergence than bpSP, it yielded lower accuracy than adSP in
almost all cases. The GMM method performs well when the
true emissions were close to Gaussian or Gaussian mixtures,
but its performance was weak when emissions possessed non-
Gaussian properties (e.g., skewness or heavy tails). The choices
of its associated hyperparameters are influential to the results
(overfitting or over-penalization), which is in agreement with
previous findings (Baudry and Celeux 2015; Fan, Wang, and
Bouguila 2021). It also suffered from serious convergence issues
in challenging scenarios like Model 4. In terms of computational
efficiency, the adSP was generally the second most efficient
approach after GMM, while bpSP was the most computationally
costly. It is important to note that when calculating the com-
putational time for the frequentist approaches, that is fpSP and
GMM, the additional time required for performing uncertainty
quantification of the parameters was not included. In practice
this poses a significant computational burden, especially for
fpSP, while it is provided by the Bayesian methods without extra
cost.

We considered two additional simulation scenarios to further
assess the applicability of our proposed methods (see supple-
mentary Section C). We examined the robustness of adSP in the
presence of misspecified transition dynamics, where data were
generated using either a semi-Markov or non-homogeneous
state process. We also tested the feasibility and scalability of
the algorithm based on state-specific knot configurations in
handling systems with a larger cardinality N. In both cases, our
proposed methods showed strong performance in estimation
accuracy and efficiency.

4. Applications

4.1. Analysis of Oceanic Whitetip Shark Acceleration Data

HMMs provide a useful tool for modeling animal movement
metrics to study the dynamic patterns of an animal’s behavioural
states (e.g., resting, foraging or migrating) in ecology (Langrock
et al. 2012, 2018). Here we consider a time series of the overall
dynamic body acceleration (ODBA) collected from an oceanic
whitetip shark at a rate of 16 Hz over a time span of 24 hr. A
larger replicate dataset was analyzed in Langrock et al. (2018).
For our analysis, the raw ODBA values are averaged over
nonoverlapping windows of length 15 sec and log transformed

(lODBA), resulting in a total of 5760 observations. The marginal
distribution of the transformed data is shown in Figure 1. We
modeled the lODBA values using our adSP with cardinality set
to N = 3 as in Langrock et al. (2018), who present biological
reasons for this assumption. Implementational details of the
MCMC algorithm are provided in supplementary Section D.
Figure 1 (left panel) shows the estimated emission densities
(obtained as in supplementary Section B.1) along with pointwise
95% credible intervals. The posterior modal number of knots is
13, with P̂(K = 13|data) = 0.689. For comparison, we also fitted
a B-spline HMM using the method of Langrock et al. (2018),
where we have set K = 39 to ensure enough flexibility and
selected λ = (300, 1, 400) for the smoothing parameters based
on our experiments. While the resulting transition probability
estimates and the density fits seem to be comparable between
the two approaches (see Figure 1 middle panel), their method
uses approximately three times the number of parameters as
our method for estimating the emissions, for which we expe-
rienced numerical stability issues during estimation.6 There-
fore, the bootstrap-based uncertainty quantification approach
would be challenging and costly to implement, whereas we
obtained posterior uncertainties for the parameters at no
extra cost.

The computational feasibility and stability of the proposed
algorithm allowed us to increase the value of N and perform
model selection. Preliminary runs indicated that N > 5 was
likely to be favored, so we used adSP with state-specific knots
along with the marginal likelihood approach described above.
Using a discrete uniform prior over {2, . . . , 10}, the posterior
modal number of states was estimated to be N = 9, with a
posterior probability of 1, thus the data strongly support a con-
siderably larger number of states than was originally assumed
in Langrock et al. (2018). In addition, individual emissions of
the 9-state model now appear unimodal (see right panel of
Figure 1). This is interesting: apart from investigating the bio-
logical interpretation of these states, our results suggest that one
might consider fitting a fully parametric HMM with standard
unimodal forms of emission densities for N = 9. Further
detailed results of the application to the shark data can be found
in supplementary Section D.

6This finding is consistent with our experience in the simulation studies.
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4.2. A Conditional HMM for Analysing Circadian and Sleep
Patterns in Human PA Data

4.2.1. The Model
The use of PA data obtained from wearable sensors for mon-
itoring circadian rhythm and sleep pattern outside laboratory
settings is well justified (Ancoli-Israel et al. 2015; Quante et al.
2018). We next use our proposed Ansatz to introduce a condi-
tional hidden Markov model in its general form and illustrate
the method using publicly available human PA data from MESA.
The conditional HMM consists of a “main model” to charac-
terize the general pattern of the overall time series, and a “sub-
HMM” that is invoked based on a specific state i of the main
model with NS possible sub-states. Without loss of generality, we
set i = 1 and for simplicity omit this subscript in what follows.
The posterior distribution of the parameters in the sub-HMM
can be expressed as

f (θS|y(n)) =
∫

f (θS|x(n), y(n))f (x(n)|y(n))dx(n), (7)

where θS is the parameter set for a NS-state sub-HMM, x(n) is
the hidden state sequence associated with the main-HMM and
we assume that

f (θS|x(n), y(n)) ∝ f (θS)f (y(n)|θS, x(n)). (8)

We refer to the second term in (8) as the “conditional likelihood”
for the sub-HMM. The key idea here is that by conditioning on
state 1 of the main-HMM, we want to restrict the observations
that contribute to the likelihood to only those associated with
the time points where xt = 1, while also maintaining the
temporal dependence of these observations. To achieve this, we
could simply treat observations {yt : xt 
= 1} as “missing data”.
This strategy offers the advantage that the resulting conditional
likelihood can be easily evaluated in the HMM framework. More
specifically, let (t1, . . . , tT1) be the collection of time points in
ascending order such that xtj = 1, j = 1, . . . , T1. Using the
notation of Section 2, we have

f (y(n)|θS, x(n)) = f (yt1 , . . . , ytT1
|θS)

=
∑

xt1 ,...,xtT1

f (yt1 , . . . , ytT1
, xt1 , . . . , xtT1

|θS)

= δP(y1)�P(y2) · · · �P(yn)1

, (9)

where P(yt) = INS , the identity matrix of dimension NS, for
t 
= t1, . . . , tT1 . The last row of (9) takes the same form as
the marginal likelihood of a standard HMM, and therefore, the
standard forward algorithm can be used to efficiently evaluate
the conditional likelihood. Note that the uncertainty regarding
the state classification is properly taken into account, as the state
sequence will be integrated out to obtain the marginal posterior
as defined in (7), on which our inference for the sub-HMM will
be based.

It should be pointed out that our conditional HMM approach
is different from what is called the hierarchical HMM (see
e.g., Adam et al. 2019) in that for the latter, a joint model is
formulated for multiple observed processes at different temporal
resolutions, each of which is modeled via a hidden Markov
process and the process at the coarser level determines the onset
of a specific finer level process for each epoch. In contrast, our

method may operate on a single time scale and allows us to refine
our analysis of a chosen state. It is also important to note that
fitting the main HMM with N+NS −1 states will not necessarily
split state 1 of the original model into NS sub-states as desired,
whereas in our framework we control this directly through the
conditioning.

In our application we are interested in studying sleep from
accelerometer data, where state 1 corresponds to the lowest
activity state that contains the sleep bouts. However, accelerom-
eter data often contain a large number of zeros during a rest
or sleep state (Ae Lee and Gill 2018), which could cause issues
for the spline-based model. To address this, we assume a “zero
inflation” of the emissions at both HMM levels7

fxt (yt) = wxt ,1δ0 + wxt ,2f B
xt (yt),

where xt indicates the underlying state at time t, wxt ,1 represents
the state-specific zero weight such that 0 ≤ wxt ,1 ≤ 1 and
wxt ,1 +wxt ,2 = 1, δ0 is the Dirac delta distribution and f B

xt (yt) is a
spline-based emission density as defined in Section 2. Following
Gassiat, Cleynen, and Robin (2016a) we can establish identifia-
bility of the resulting HMM provided that at most one wxt ,1 is
equal to one and that {δ0, f B

1 , . . . , f B
N } are linearly independent.

In our analysis these conditions are always satisfied.

4.2.2. Application to the MESA Dataset
To illustrate our proposed method, we consider two example
subjects, A and B, corresponding to subjects 921 and 3439 in the
MESA dataset, respectively, who both have no diagnosed sleep
related diseases. Subjects wore an actigraph (Actiwatch Spec-
trum) on the non-dominant wrist for one week and activity was
measured in each 30-sec epoch by counting the number of times
movement intensity crossed a threshold. The resulting values
reflect the overall activity intensity in each epoch. Additionally,
each subject undertook a polysomnography (PSG) session for
one night during the monitoring period. PSG is a multi-sensor
approach that collects multiple physiological signals from the
body and is considered as the gold standard of measuring sleep
(Berry et al. 2012). Wake and four sleep stages (N1, N2, N3,
and REM) were identified for every 30-sec epoch using the
criteria set out by the American Academy of Sleep Medicine.
Among these, N1 and N3 correspond to light and deep sleep,
respectively, while N2 is an intermediate stage. N1, N2, and N3
are collectively referred to as non-REM stages (Berry et al. 2012).
The REM stage is physiologically distinct from the other stages
and associated with dreaming (Stein and Pu 2012). Typically,
individuals go through the four stages several times during a
night’s sleep. For the main-HMM, we used 5-min averaged PA
and set N = 3 as in Huang et al. (2018).8 For the sub-HMM
we assume 2 sub-states, 1.1 and 1.2, to potentially capture the
ultradian oscillations between higher and lower intensity of
movement during sleep. Such were found in accelerometer data

7The model can be easily adapted to applications where further discrete mass
points for low observations are needed.

8One could first perform model selection with the marginal method intro-
duced earlier. However, for comparison and since model selection is not the
main theme of this application we use the settings of Huang et al. (2018).
They found that N = 3 tended to be the optimal choice in parametric HMM
modeling of this kind of data, which, furthermore, consistently over many
individuals, assigned the rest/sleep periods to night times
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Figure 2. Left: Results from main-HMM fitted to 5-min averaged PA data over a monitoring period of 7 days (Top panel: data with colors indicating the locally decoded
state at each time; bottom panel: cumulative posterior probability of the state at each time, that is P(xt ≤ i|θ , y(n)); i = 1, 2, 3). Right: Results of sub-HMM fitted to the
30-sec PA data, focusing on the one-night PSG monitoring period (Top panel: locally decoded state at each time; bottom panel: corresponding cumulative probability of
each sub-state at each time. Data in red represent those assigned to states outside of state 1 by the local decoding result for the main-HMM).

by Winnebeck et al. (2018) who concluded that they correspond
to the circa 120-min periodic transitions between the Non-
REM and REM stages of sleep. However, their Ansatz could not
account for a stochastic oscillating pattern. We based inference
for the sub-HMM on the finest possible time resolution of the
raw 30-sec PA counts to focus on the detail of activity during
sleep. The implementational details of the MCMC algorithm are
provided in supplementary Section E.

The left panels of Figure 2 depict the 5-min averaged PA
data for subjects A and B, along with the locally decoded states
and the cumulative posterior probabilities of the three states at
each time point (i.e., P(xt ≤ i|θ̂ , y(n)); i = 1, 2, 3) under the
fitted main-HMMs. State 1 (in blue) is characterized by periods
of immobility, usually occurring at night time. Other states (in
pink and red shades) usually correspond to day-time activities
of varying intensity, which depend on the subject’s lifestyle and
may be interrupted by daytime naps, as seen for subject B. The
estimated main-HMM suggests that subject A has a more active
lifestyle and a more regular sleep-wake routine, with no signifi-
cant sleep disruptions during the monitoring period. In contrast,
subject B appears to suffer from a more disturbed circadian
rhythm. These visual impressions are supported by estimating
additional HMM-derived parameters that can be used to quan-
tify an individual’s circadian rhythm, such as the dichotomy I <

O and rhythm indices (computed as in Huang et al. 2018), where
lower values indicate more disrupted circadian rhythms. For B,
these values were 96.4% and 0.553 while A had higher values
of 99.4% and 0.774, respectively. These findings are consistent
with the sleep questionnaires completed by the subjects, where
B reported having generally restless sleep and sometimes having
trouble falling asleep. We also evaluated the performance of our
main-HMM in classifying sleep (state 1) versus wake (states
2 and 3) by comparing its decoding output to PSG-derived

sleep/wake labels (available for one night) on an epoch-by-epoch
basis, where the PSG stage for each 5-min epoch are determined
by the most frequent stage of the corresponding ten 30-sec
bins in the raw PSG labels. Our main-HMM achieved state-of-
the-art performance in terms of overall accuracy, sensitivity for
sleep (proportion of true sleep epochs identified correctly) and
specificity for wake (proportion of true wake epochs identified
correctly), with values of 88.2%, 100%, 70.7% for subject A and
89.9%, 94.4%, and 79.5% for B, respectively. The relatively lower
accuracy for detecting wake is expected as there are usually
in-bed times before falling asleep or gentle sleep interruptions
that are characterized by low or no activity. Our main-HMM
provides useful quantitative summaries of an individual’s rest-
activity profile, as proposed in a parametric approach in Huang
et al. (2018), but with the added benefit of a more flexible
modeling of the emissions. The parameter γ̂1,1 is of particular
interest for circadian and sleep analysis as low values suggest
interrupted or fragmented sleep and thus a low quality of sleep,
which is another indicator of circadian disruption. For subject B,
the posterior mean for γ1,1 was 0.916, which is lower than 0.98
obtained for subject A.

The right panels of Figure 2 show the locally decoded time
series of the 30-sec PA data during the PSG monitoring period
along with the cumulative probability of the two sub-states. As
observed, for both subjects, the transitions between and the
times spent in the two sub-states are highly stochastic. State
1.1 has a high probability of observing zero, with a posterior
mean of zero weight ŵ1.1,1 of 0.908 and 0.963 for subjects A
and B, while state 1.2 captures a moderately higher level of
activity where the posterior mean ŵ1.2,1 for A and B are 0.325
and 0.463, respectively. To investigate the link between the sub-
states in our HMM and the true sleep stages from PSG, we
computed the proportion of the five PSG stages (wake, N1, N2,
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Table 1. Composition of the states of the sub-HMM with respect to PSG stages.

Subject sub-state Wake N1 N2 N3 REM

Subject A 1.1 0.155 0.098 0.569 0.038 0.14
1.2 0.568 0.162 0.176 0 0.095

Subject B 1.1 0.174 0.167 0.529 0.051 0.078
1.2 0.264 0.224 0.398 0 0.114

Table 2. Proportions of time spent in different PSG stages during sleep for the
example subjects.

Subject Wake N1 N2 N3 REM

Subject A 0.21 0.105 0.519 0.035 0.132
Subject B 0.369 0.143 0.394 0.03 0.066

N3, REM) contained in each of the two HMM sub-states (see
Table 1).9 We can see that while both sub-states contain a mix
of all the PSG stages, only state 1.1 contained any deep sleep
stages (N3) and had smaller proportions of wake and light sleep
stages (N1) compared to state 1.2. This can also be seen by
looking at the percentage of the PSG stages decoded as State
1.1, which are (23.8%, 82.1%, 96.1%, 100%, 92.9%) for subject A
and (26%, 67.4%, 77%, 100%, 67.9%) for subject B for (wake, N1,
N2, N3, REM). In contrast, State 1.2 tends to be associated with
lighter sleep stages as well as disruptions into wake which were
not identified by the main-HMM. We therefore anticipate that
state 1.2 provides additional useful information regarding the
sleep quality of a subject.

The estimated transition probabilities of the fitted sub-HMM
provide a systematic quantitative summary which could be used,
for example, to compare sleep behaviour between subjects. For
subject A, the diagonal entries of � have posterior means (±1
standard deviation) of γ̂1.1,1.1 = 0.966 (±0.01) and γ̂1.2,1.2 =
0.665 (±0.056), and those for subject B are γ̂1.1,1.1 = 0.908
(±0.009) and γ̂1.2,1.2 = 0.727 (±0.047). B has a lower γ̂1.1,1.1
and higher γ̂1.2,1.2, indicating a higher probability of leaving state
1.1 and a longer expected staying time in state 1.2, which may
be associated with poorer sleep quality during the monitoring
period. Indeed, according to the MESA database, subject B has a
lower sleep efficiency 63.15% (computed from PSG) compared
to 66.37% for A. Our results are also consistent with Table 2,
which shows that subject B spent a larger proportion of sleep
time in wake and N1 stages while having a lower proportion
of time in the deeper N2 and N3 stages. The decoding and
state probabilities of the sub-HMM also allow us to investigate
the dynamic variation within and between bouts of sleep. For
instance, the fragmentation of the blue region in the state prob-
ability plots of Figure 2 suggests that subject A seems to expe-
rience more interruptions and lighter sleep during the earlier
phase of the sleep bout, whereas subject B suffers from sleep
interruptions and transitions to lighter sleep throughout the
entire bout. These observations are consistent with their own
reports in the sleep questionnaire and the PSG recordings during
the single night.

9Here we present only results for our two example subjects. Such an analysis
could be extended to include all MESA subjects but this is beyond the remit
of this article.

5. Summary and Further Discussion

In this article, we propose and develop a Bayesian methodol-
ogy for inference in spline-based HMMs, which offer attractive
properties compared to alternative nonparametric HMMs in
terms of simplicity in model interpretation and flexibility in
modeling. Our method allows for the number of states, N, to
be unknown along with all other model parameters including
the spline knot configuration(s). Compared with a P-spline-
based construction, we achieve a parsimonious and efficient
positioning of the spline knots via a RJMCMC algorithm, where
the knots can either be shared across states or be state-specific.
Model selection on N is based on the marginal likelihood,
which can be effectively estimated via a truncated harmonic
mean estimator under an easy-to-implement parallel sampling
scheme. Through extensive simulation studies, we demonstrated
the effectiveness and superiority of our proposed methods over
alternative comparators, including the Gaussian mixture based
HMM, the frequentist P-spline-based approach of Langrock
et al. (2015), and a Bayesian adaptive P-spline approach which
is investigated here for the first time. Importantly, the com-
putational efficiency and flexibility of our algorithm allows us
to deal with more states, which is a challenging problem even
for parametric approaches due to convergence problems with
increasing N. We highlight this advantage in the application to
the animal movement data and illustrate the use of our method
as a nonparametric approach for explorative data analysis.

The application to human PA data highlights the flexibility
of our Bayesian modeling approach that can be extended in a
relatively straightforward way to hierarchical scenarios such as
the conditional HMM. The extension to a hierarchical frame-
work of a sub-HMM within an overall HMM here allows us to
estimate many important parameters that characterize an indi-
vidual’s circadian rhythm, and to model the individual stochastic
dynamics of the rest state activity where the sub-states may be
associated with deeper and lighter or interrupted sleep stages.
Another feature of our method is that the algorithm operates in
an unsupervised manner, that is it does not require PSG labels
for learning the model, which is desirable in applied settings as
these labels are very costly or even impossible to acquire (Li
et al. 2020). The method developed here is thus of imminent
interest to sleep and circadian biology researchers using data
from wearable sensors.

Our modeling framework opens up several possible exten-
sions in further research. For instance, the homogeneous
assumption on the hidden Markov chain can be relaxed by
reparameterizing � in terms of the covariates via multinomial
logistic link functions (Zucchini, MacDonald, and Langrock
2016). Efficient MCMC inference can be achieved by incorpo-
rating the Polya-Gamma data augmentation scheme of Polson,
Scott, and Windle (2013), which was successfully applied to
parametric nonhomogeneous HMMs in Holsclaw et al. (2017),
into the present modeling framework. Our methodology can
also be extended in a relatively straightforward manner to
Markov switching (generalized) additive models as studied
in Langrock et al. (2017, 2018) using frequentist approaches,
where the splines can be used to model the functional effects
of the covariates instead of the emissions. Without the density
constraints on the spline parameters, the design of the RJMCMC
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algorithm can be simplified, and the efficiency of the resulting
algorithm may be further improved. We believe that the
advantages of using a Bayesian approach over a frequentist
penalized approach as observed in this article would carry
over to this context. Additionally, it would be interesting to
explore the combination of the modern deep-learning-based
methods, which excel at handling highly complex temporal
dependence in the series and using historical information
sets, with the conventional HMM probabilistic framework for
achieving better predictive ability while maintaining model
interpretability.

Supplementary Materials

Supplementary document: Provides additional details and results related
to the proposed methods, simulation studies, and case studies. (.pdf file)

Code: Contains the code used in the simulation studies and case studies.
(.zip file)
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