
Journal of Manufacturing Systems 72 (2024) 424–436

A
0
l

Contents lists available at ScienceDirect

Journal of Manufacturing Systems

journal homepage: www.elsevier.com/locate/jmansys

Technical paper

A modular artificial intelligence and asset administration shell approach to
streamline testing processes in manufacturing services
Hamood Ur Rehman a,b,1, Fan Mo a,∗,1, Jack C. Chaplin a, Leszek Zarzycki b, Mark Jones b,
Svetan Ratchev a

a Institute for Advanced Manufacturing, University of Nottingham, Nottingham, Nottinghamshire, NG8 1BB, United Kingdom
b TQC Automation Ltd., Nottingham, Nottinghamshire, NG3 2NJ, United Kingdom

A R T I C L E I N F O

Keywords:
Leak testing
Asset administration
Low-cost industrial digitalization and control
Modular artificial intelligence

A B S T R A C T

The increasing demand for personalized products and cost-effectiveness has highlighted the necessity of
integrating intelligence into production systems. This integration is crucial for enabling intelligent control that
can adapt to variations in features, parts, and conditions, thereby enhancing functionalities while reducing
costs. This research emphasizes the incorporation of intelligence in testing processes within production
systems. We introduce a novel approach for controlling testing functionality using an asset administration shell
enriched with modular artificial intelligence. The proposed architecture is not only effective in controlling
the execution behavior through services but also offers the distinct advantage of a modular design. This
modularity significantly contributes to the system’s adaptability and scalability, allowing for more efficient
and cost-effective solutions as different machine-learning models may be substituted to meet requirements.
The effectiveness of this approach is validated through a practical use case of leak testing, demonstrating the
benefits of the modular architecture in a real-world application.
1. Introduction

The fourth industrial revolution, also known as Industry 4.0 (I4.0),
continuously transforms the manufacturing landscape. The conver-
gence of computer engineering, communication, and information tech-
nologies fosters a revolution within manufacturing systems that propels
the industry into a new era of intelligent manufacturing [1,2]. This
modern approach integrates advanced technologies such as artificial
intelligence, the Internet of Things, big data analytics, knowledge
graph and cloud computing to create a highly efficient and productive
manufacturing ecosystem [3,4].

Intelligent manufacturing requires the application of technologies
such as machine learning [5], reinforcement learning [6], and cloud
computing [7] to enable devices and machines to adjust their behavior
in response to diverse circumstances and requirements, based on previ-
ous experiences and learning capabilities [8]. These technologies can be
integrated to make intelligent decisions in production processes [9,10].
Some reconfiguration frameworks that incorporate this integration are
proposed to meet product change requirements [11,12].

In the context of I4.0, the Reference Architectural Model Industrie
4.0 (RAMI 4.0), as per Schweichhart’s Ref. [13], is a pivotal model.
These objects are known as the Asset Administration Shell (AAS). The

∗ Corresponding author.
E-mail address: fan.mo@nottingham.ac.uk (F. Mo).

1 These authors contributed equally to this work.

AAS enables standardized interaction with other digital systems. This
interaction does not require low-level access to sensors and actuators.
The goal of the AAS in I4.0 is to provide a minimal but sufficient
description of each asset. These descriptions can then be manipulated
and influenced to achieve a specific objective.

This concept of AAS is at its early stage of adoption in the I4.0
paradigm and needs validation through industrial use cases to demon-
strate that it can be successful in production process control. This
validation is also vital to elaborate on the needs of production process
control that must be fulfilled by an AAS. To date, three types of AAS
can be defined [14]:

• Type 1 Asset Administration Shells (AASs) are serialized files,
e.g., XML or JSON files, that contain static information.

• Type 2 AASs exist as run-time instances. They are hosted on
servers, contain static information, and may also interact with
other components.

• Type 3 AASs extend to type 2 AAS by implementing an ac-
tive behavior, i.e., they can start to communicate and negotiate
autonomously, much like an agent system.
vailable online 23 December 2023
278-6125/© 2023 The Authors. Published by Elsevier Ltd on behalf of The Societ
icense (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jmsy.2023.12.004
Received 20 August 2023; Received in revised form 23 November 2023; Accepted
y of Manufacturing Engineers. This is an open access article under the CC BY

13 December 2023

https://www.elsevier.com/locate/jmansys
https://www.elsevier.com/locate/jmansys
mailto:fan.mo@nottingham.ac.uk
https://doi.org/10.1016/j.jmsy.2023.12.004
https://doi.org/10.1016/j.jmsy.2023.12.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmsy.2023.12.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Manufacturing Systems 72 (2024) 424–436H.U. Rehman et al.
Fig. 1. Asset administration shell representation of an asset with its main components for I4.0 compliant communication with IoT infrastructure within a production facility.
This research work presents a demonstration case for the potential
of Type 2 AAS on production systems, guidance on integration with
I4.0 technologies, and the objectives to be fulfilled in an AAS to achieve
control. It addresses the practical aspect of AAS by demonstrating the
implementation of AASs in a testing process in a production system.
A testing process is a manufacturing process where a part or product
is subjected to conditions it might encounter during service to ensure
correct functionality. Examples include functional testing of electrical
circuits, stress testing of assemblies, and gas or liquid leak testing
of volumes. Testing processes are particularly important for small to
medium enterprises (SMEs) [10], which often provide low-volume,
highly bespoke products. Testing processes are highly dependent on the
part or product being tested, and it can become difficult for companies
to manage small batches of variable products. This motivates a call
to digitalize and control these processes with low-cost, simple, and
standards-compliant solutions.

For this research, it is assumed that a serialized file of Type 1 AAS is
present (in JSON or XML) to represent the asset and can be instantiated
as a run-time instance (registered in the AAS registry, hosted on the
server, and can load data). This research project works to examine
changes in behavior regarding assets by utilizing services (Machine
Learning) that use the AAS to control the behavior of a production
process. This research builds upon our previously published confer-
ence paper titled ‘‘Service-based Approach to Asset Administration
Shell for Controlling Testing Processes in Manufacturing’’, which was
presented at the 10th IFAC Conference on Manufacturing Modelling,
Management, and Control (MIM 2022) [15].

The structure of the paper is as follows: Section 1 introduces the
concept of asset administration shell and presents the research work,
Section 2 presents some background work, Section 3 elaborates on
the concept of integration of asset administration shells with control
services, and Section 4 demonstrates the application on a leak testing
use-case. Finally, Section 5 concludes the work and outlines future
directions.

2. Background

2.1. Asset administration shell

As depicted in Fig. 1, an administrative shell is composed of four
major components [16], namely: component manager, manifest, header
section, and body section.
425
• The Digital Factory (DF) Header Section contains the globally
unique identifiers for an AAS and its represented asset.

• The DF Body Section is composed of multiple submodels, each
representing a distinct part of the asset’s operation.

• The Component Manager links the AAS to a repository of sub-
models, their description, and their functions. It administers the
submodels of the assets. The Component Manager manages and
provides access to the Internet of Things (IoT) network of the
production facility using a service-oriented architecture.

• The Manifest is present in both the header and body sections
of AAS. It can be considered as the directory of data content.
Specifically, it contains the meta-information serving to provide
meaning to the data from AAS.

Submodels depict the various facets of an asset, represented as per
the standard discussed in [17]. These submodels contain the infor-
mation encapsulating the asset’s functionality, i.e., an asset can have
submodels for maintenance, operation, and security among others. In a
production facility, the AAS can be connected to a network that acts
as a bridge between the physical world and the digital. Compatible
AAS protocols and channels can be queried through services, and these
services can then use the AAS to execute behavior [18,19].

Although the structure of AAS is becoming standardized, the method
by which they are used remains variable. In [20], a standard method
to realize AAS is studied, formulating an AAS model capable of repre-
senting IEC 61131-3 programs, their interactions with Programmable
Logic Controllers (PLCs), and other components in the controlled plant.
In [21], a framework for connecting existing equipment to external
networks is introduced; the asset management shell serves as a bridge
simplifying network communication. In [22], an AAS approach is pro-
posed that integrates with a condition monitoring service. In [16],
when considering the possible impact on PLC operation, a distributed
AAS is utilized to enhance performance. There are several ways to use
the AAS, as discussed in the work by [23].

AAS is a key enabler of the digitalization of processes and does so in
a low-cost, modular, and standards-compliant way that can be adopted
by SMEs. Currently, AAS has some limitations, particularly a lack of a
standardized approach for the direct adoption of AAS into production
processes [21]. A lack of examples of their application in controlling
production processes in production systems also hinders adoption. This
research work addresses this lack of applications and standardization
in production processes by targeting testing processes in a production
system in manufacturing.



Journal of Manufacturing Systems 72 (2024) 424–436H.U. Rehman et al.

i
f

2.2. Modular AI and tabular machine learning

Modular AI is an approach in the realm of artificial intelligence that
breaks down a complex AI system into smaller, specialized components,
often referred to as modules [24]. Each of these modules is designed
to handle a specific task or a set of related tasks. This can range from
various forms of data processing to more intricate functionalities such
as decision-making or prediction. The modular structure facilitates a
manageable design, efficient implementation, and effective manage-
ment of complex AI systems. One of the key advantages of this approach
is its inherent flexibility and extensibility [25], which allows for the
integration of a variety of techniques, methodologies, and technologies,
including emerging machine learning methods.

Tabular Machine Learning (TML) is one such method that can be
seamlessly integrated into a modular AI system. TML refers to the
application of machine learning models to structured, tabular data. This
form of data consists of rows, representing individual observations, and
columns, indicating different features or attributes of these observa-
tions. This type of data is ubiquitous and can be found in various fields
such as finance, healthcare, and manufacturing, among others [26].

In TML, machine learning models, including but not limited to,
linear regression [27], logistic regression [28], decision trees [29], and
gradient-boosting machines [30], are applied to predict a target vari-
able based on a set of features. The choice of these models is dependent
on the problem’s specific requirements, such as the nature of the target
variable, the data distribution, and the model’s interpretability.

Furthermore, TML often involves a process known as feature engi-
neering [31]. This process involves creating new, more informative fea-
tures from the existing ones to improve the model’s predictive perfor-
mance. This often requires domain knowledge to develop meaningful
features.

When integrated within a modular AI system, TML acts as a modular
component that can handle specific tasks related to structured, tabular
data. For instance, in the context of manufacturing, a TML module
could be developed to predict the outcome of leak tests based on
various parameters such as product dimensions, material properties,
and manufacturing conditions.

The integration of TML within a modular AI system is not only about
using TML to solve a specific problem but also about the flexibility
it offers. By treating TML as a separate, interchangeable module, it is
possible to switch between different datasets or even machine learning
models, enhancing the adaptability and versatility of the AI system.

In this research, we delve deeper into the application of TML for
leak testing, where it serves as a modular component within a larger
AI system. In this application, an interchangeable dataset or a modular
machine learning model can be employed to predict the leak testing
outcomes, demonstrating the power of the Modular AI approach. This
also offers opportunities for further research and development, as
new techniques or algorithms can be incorporated into the system as
separate modules, allowing the system to evolve and improve over
time.

3. Service based control of asset administration shell

To intelligently control testing processes, a service-based control
framework is used that integrates asset administration shells. This
framework can support the standardized application of AAS to man-
ufacturing systems. This framework requires interaction between five
components: the testing system, asset administration shell, simulation
service, client services, and orchestration service. The testing system
performs the functionality, while AAS contains all information on
the asset. The simulation service generates a simulation statement by
nteracting with a model to determine the best possible settings for the
unctionality based on goals provided by the user. The client services

execute the functionality by interacting with the production system and
the AAS using the orchestration service. The orchestration service drives
426
and controls the asset by guiding the execution of functionality through
client services (see Table 1).

The client services receive the instructions from the orchestration
service, load required information from the AAS, make changes to
the production system as desired, and execute the skills through API
(Application Programming Interface) calls retrieved from the AAS func-
tionality submodel. These calls act as instructions to the asset to execute
a skill (corresponding to a step of the testing operation). An overview
of the asset administration components and their interaction is given
in the following subsections.

3.1. Component descriptions of the asset administration shell and services

The AAS integration with the testing process is illustrated briefly
in Fig. 2. The services drive the functionality of the production system
by coordinating among themselves and by interacting with information
from the asset administration shell. There can be multiple client ser-
vices interacting with the asset administration shell. E.g., a simulation
service can be a client service that is responsible for simulation along
with a functionality service responsible for executing the operation. If
multiple operations are possible by the systems, like a robot capable
of marking and gripping, each will be represented by a different client
service. Individual components and their functionalities of the services
and the AAS are detailed as follows;

3.1.1. Testing process
As defined in the introduction, the testing process subjects a part

to operational conditions to test it for a pass/fail based on criteria.
Part, feature, and conditional variations (i.e., changing priorities and
requirements) are examples of operation conditions that impact the
operation of the testing process. Further, these tests must be carried
out in a certain sequence with specific conditions per product/customer
requirements. The sequence includes steps such as adjusting the con-
figuration and executing the test but may also include aspects such as
establishing connections with other assets and accessing data. Condi-
tions act as parameters for each of the steps in the sequence. This may
include how to set and change testing parameters (e.g., within a certain
range), the number of iterations for the testing, or the address of data
sets for comparison.

3.1.2. Asset administration shell
The server shell contains all the information about the physical

asset. It includes the related parameters, expressions, configurations,
and settings representing the physical entity. It also contains the API
calls necessary for executing the skills. It is the digital representation
of the asset.

As the AAS is instantiated, it is registered in the registry (if present
for deployment) and hosts its submodels managed by the Component
Manager (Figs. 3 and 8).

3.1.3. Simulation service
The simulation component consists of a digital twin, acting as a dig-

ital representation of the physical asset in the production system. This
is the data that goes from the physical asset to the simulation environ-
ment. Data is represented using AAS, capturing the production system
information. The simulation environment supports multiple data repre-
sentations for different assets and employs optimization algorithms to
determine the best possible configurations under set key performance
indicators (KPIs). The optimized configuration is then loaded into the
production system for execution. Communication between the physical
and digital representations and optimization library can be established
using protocols like OPC UA, MQTT, or TCP/IP.

The KPI is set within the simulation environment, which then
selects the appropriate ML model. Using the optimization library, the
simulation environment determines the optimal values for specific



Journal of Manufacturing Systems 72 (2024) 424–436H.U. Rehman et al.
Table 1
Asset administration shell and services description for testing process in production system.

Component Description

Simulation service Uses modular ML AI models to simulate goal behavior and sends simulation statements.
Orchestration service Receives orchestration statements and coordinates execution of skills through client services.
Client services Executes skills using API calls obtained from the asset administration shell based on instructions from the orchestration service.
Asset administration shell Acts as a digital twin for the asset, hosting skill API calls and storing asset data.
Fig. 2. Elaborated representation of asset administration shell integration for testing process in the production system.
Fig. 3. Generic asset administration shell representation (left). Skill submodel is developed, submodel elements contain the skill API calls along with pertaining data that can be
used by the client services. The component manager is deployed when the submodels are listed (right).
functionality. The resulting values are then received and loaded into the
production system, enabling the execution of the desired functionality.

The simulation service hosts the digital twin as a simulation model.
External or local servers can host the simulation model, connected to
storage or a Machine Learning pipeline (see Fig. 4).

A reward function uses performance metrics to determine if the ac-
tion taken moves the production system state towards the optimization
427
goal. The metrics used could include time, cost, energy consumption,
and quality.

The actions defined within the simulation service act on the model
to reach the goal guided by the reward function. Simulation continues
until an endpoint is reached. Namely, the provided conditions or goal
become true. The efficacy of the simulation depends on the design of
the reward function.



Journal of Manufacturing Systems 72 (2024) 424–436H.U. Rehman et al.
Fig. 4. Generating the simulation statement by simulation service. The model operates to reach the goal provided, dependent on the outcome required. The intermediate states are
stored and combined to formulate a simulation statement sent to the orchestration service.
Fig. 5. Proposed workflow for machine learning in the production system for low-powered production systems.
3.1.4. Modular AI
The proposed architecture aims to provide machine learning capa-

bilities for predicting the values of variables in parameters to execute
functionality in testing systems. Workflows are introduced as a gener-
alized approach to applying machine learning in production system use
cases, focusing on efficient results for value determination. These work-
flows serve as a foundation for integrating machine learning services,
providing an abstract viewpoint while keeping the implementation
modular and emphasizing the overall implementation rather than ML
component specifications. TML is one example of such workflow that
is deployed in the research.

Accumulating data from the production system is crucial, and rel-
evant inputs and outputs must be defined as features. The approach
utilizes the availability of off-the-shelf training code to determine val-
ues. As the training code exists, standard off-the-shelf approaches or
custom-designed techniques can be employed for inference.

Fig. 5 illustrates the prediction mechanism using this approach.
As training code is available, the user-developed code processes the
training data, evaluates the model, and predicts the values. Multiple
models can be swapped, hence making it modular, to determine the
best-suited model for the application.

Fig. 6 introduces a generalized approach for predicting values using
custom-designed techniques. Training code is deployed based on the
training data, and techniques like hyperparameter tuning and Tensor-
Flow/Keras can be employed. This approach allows for the integration
and modeling of diverse production system models based on custom de-
signs. The resulting models can be deployed on endpoints for real-time
processing and serving.

Within the proposed modular AI architecture, TML is a crucial
component. As a type of machine learning that focuses on struc-
tured, tabular data, TML is aptly equipped to handle the complexity
and diversity of data found in many industrial processes, including
testing systems. It efficiently manages high-dimensional data and in-
tricate inter-variable relationships, making it well-suited for predicting
outcomes of leak tests based on many parameters.
428
Fig. 6. Illustration of the mechanism for the prediction of values using the modular
AI approach.

In the context of this modular AI approach, the incorporation of
TML enhances the system’s capability to learn from the rich, high-
dimensional data generated in production systems. By doing so, it
provides accurate predictions for leak test outcomes. The modularity



Journal of Manufacturing Systems 72 (2024) 424–436H.U. Rehman et al.
Fig. 7. Orchestration service description with its components.
of the AI system enables seamless swapping or upgrading of the TML
model as required, thus offering a significant level of flexibility and
adaptability. Therefore, the integration of TML into the modular AI
system yields a robust and flexible tool for managing testing processes
within production systems.

3.1.5. Orchestration service
The orchestration service guides the execution of skills on the asset

through client services (Fig. 7). It receives the simulation results from
the digital twin and transforms them into an orchestration statement.
The statements are expressions that contain the information the services
need for the execution of a skill. The process of developing these,
the governing rules, and their behavior are explained in [32]. The
Orchestration service passes the orchestration statement through its
two main components: the condition check and the skill execution.

1. Condition Check: For each individual skill requested, the ser-
vice establishes the availability of that particular skill for the
testing process. This is queried from the asset administration
shell by the orchestration service. A sequence of executable skills
is sent to the next component of the orchestration service.

2. Skill Execution: The skills are executed in the presented se-
quence. This execution is carried out by the client service for
each skill. The skill execution component finds and instructs the
respective client service to execute the skill for testing.

3.1.6. Client services
The client services encapsulate the skill execution and the manner

of skill execution. The client services requests from the AAS the API
calls needed to execute the skills. These are contained within the
corresponding property of the skill submodel along with the pertaining
data values from ML AI models (Fig. 3). Client services execute these
skill API calls. They can also change the settings on an asset and
update them as needed in the AAS and the production system, ensuring
real-time representation of the settings of the production system in
the AAS. Client services offer a way to control the behavior of skill
execution. These are called ‘‘client services’’ as they act as a liaison
between the execution functionality of the testing process and the asset
administration shell. Client services are separate software components
that interact with the AAS to execute test functionality as per guidance
from the orchestration service. The stand-alone nature of client services
ensures modularity and versatility in offering services.

3.2. Overview of skill execution in testing processes

The execution of skills in a testing process by using AAS and services
can be presented as follows;

3.2.1. Skill representation
Each of the skills (corresponding to a step of the testing operation)

is encapsulated as a property of the ‘‘Skill’’ submodel of the AAS. These
skills are operations that an asset can be requested to perform in the
testing process. The properties of the AAS in the submodel represent the
skill of the asset that could be executed in the form of API calls. It also
contains information about the data on skills that could be executed,
present in the manifest.
429
3.2.2. Skill selection
The skill order is controlled by the orchestration service through

a statement received by the simulation service. The client services
get the API calls through the property of the skill submodel and the
related data values and use them to execute the behavior requested
by the orchestration service. Each client service is responsible for one
skill per asset. These client services also contain information about the
behavior of the particular skill. Fig. 8 presents an overview of the AAS
integration architecture.

3.2.3. Value update
In test systems, the values need to be configured for specific prod-

ucts and conditional requirements. In the proposed approach, these
values are determined and updated using modular AI deployment. The
values are updated through the following steps:

• Data Collection: Data is collected from the production through
the connected AAS. The captured information relates to the state
of the system, functionality, and configuration. The connected
AAS provides a digital footprint of the asset.

• Digital Twin Simulation: The digital twin receives the data from
the physical asset along with the objective. The current Digital
Twin is simulated to reach the objective, and the best action is
formulated as an orchestration statement. The simulation envi-
ronment can handle multiple data representations and supports
optimization through software libraries.

• Optimization Algorithms: The simulation environment uses
optimization algorithms to analyze the data and determine the
production system’s best configuration settings. These algorithms
consider key performance indicators (KPIs) such as time and cost
to infer the optimal configuration.

• Communication and Integration: The communication between
the physical asset, digital representation, and optimization li-
brary is established using communication methods such as OPC
UA, MQTT, or TCP/IP. This enables the exchange of data and
configuration updates between the different components of the
system.

• Real-Time Configuration Update: As the optimization algorithm
selects the optimal configuration settings, the resulting configu-
ration is loaded into the production system through APIs or PLC
control.

The production system can continuously monitor its state, capture
relevant data, simulate different configurations, optimize based on
predefined KPIs, and update the configuration settings in real-time.
This enables the system to adapt and self-configure according to chang-
ing requirements and optimize its performance based on the desired
objectives.

3.2.4. Condition determination
In test systems, the condition of the state and configuration setting

can be determined through information captured in AAS. Services
can use these conditions to determine the possibilities of functionality
execution. For instance, functionality depends on certain safety inter-
locks, i.e., states that can be queried through AAS. These conditions
encapsulate the status quo of all components that make up the system.



Journal of Manufacturing Systems 72 (2024) 424–436H.U. Rehman et al.
Fig. 8. Asset administration shell integration approach for testing processes. Control is guided through services, through skill and simulation submodels containing API calls and
simulation data, respectively.
Fig. 9. Condition determination through AAS to ascertain status through control logic
for decision-making on production systems.

Fig. 9 captures the condition-checking behavior, where the service
queries the state through AAS. These services determine the status quo
through control logic by referencing the properties of the submodel.
430
This provides a means of formulating multi-criteria decision-making
in production system execution. This approach presents an advantage
over the traditional control approach, as a state can be queried without
being referenced to I/O signals.

3.2.5. Skill execution
The client services execute skills through API calls retrieved from

the skill submodel. System functionality is achieved through this exe-
cution. The AAS contains a set of skills that are available to execute.
Client services load instances of these skills as required. The client
service, instructed by the orchestration service, requests the execution
of skill using the API on the production system and waits until the
execution is completed. After the event of skill execution, the pro-
duction system updates the status of skill execution in the property
of the skill submodel. This terminates the client skill request, and
the orchestration service proceeds to the next skill execution through
a corresponding client service. Integrating AAS submodels and client
services ensures modularity, scalability, and extensibility. For a single
asset, there is a single AAS but many client services, where each client
service represents a skill that could be triggered by loading the API calls
from the AAS. Each client service, however, can trigger only one skill.

The orchestration service, operating as a standalone service, exe-
cutes the skills through client services, updating regularly to account
for different requirements. These requirements can be a change in the
sequence of skill execution or the manner of skill execution, such as
skill execution with a value change. This update can be done manually
by the user or received as a result of the simulation service.



Journal of Manufacturing Systems 72 (2024) 424–436H.U. Rehman et al.
Fig. 10. Role of AAS integration approach in functionality execution with changing scenarios; part variation, feature variation, and conditional variation.
This approach can address scenarios such as part variation, feature,
and conditional variation. Fig. 10 illustrates the AAS and the services
in each scenario and the manner in which they coordinate for skill
execution during operation.

The AAS and services interact at different stages of the testing
process, depending on the requirements that need to be fulfilled. These
requirements, as fulfilled, can be witnessed as the result of the testing
or as the change in the values in settings.

4. Integration approach deployment for a leak testing use case

4.1. Problem statement

The demonstration for the asset administration shell integration
is carried out on an industrial dry-air leak testing system (Micro-
Application Leak Test System – MALT) developed by an SME (TQC
Automation Ltd.). The industrial production system consists of a testing
system connected to a Raspberry Pi that acts as a gateway device. A
JAVA-based AAS development and deployment framework (BaSyx [33]
and AAS Explorer) is used to demonstrate the approach.

In the process of leak testing, the leakage flow rate in the part under
test is determined. Parameters for leak-testing, connection settings
for the production system, and calibration settings for the connected
instrumentation are configured through a user interface. The testing
process is initialized by filling the part under observation with a testing
medium or putting it in a state of vacuum. The part is stabilized over
time under pressure or vacuum. The pressure change is measured and
used to calculate the leakage flow rate in the part being tested. Pressure
change or its proportional leakage flow rate value is used to determine
pass or fail for the part.

4.2. AAS representation for leak-test system

To represent the MALT leak test use case in the production system,
capturing all the relevant information related to executing the leak
test functionality is necessary. By using the AAS standard, we utilized
a vendor-neutral approach to capturing this information. The AAS
standard is utilized to capture the configuration specific to the leak test
functionality in MALT (see Fig. 11).
431
The configuration for the leak test functionality is in terms of vari-
ables, their relationships, and constraints. These variables represent the
configuration settings, while relationships are established through allo-
cations and links. The AAS representation of the leak test functionality
is linked to the production system (MALT) through an interface. As the
AAS is updated, the connected production system is also updated via
the interface, enabling dynamic configuration changes to be reflected
in the MALT system.

The AAS representation for MALT consists of submodels (see Fig. 12)
such as ‘‘Skill’’, ‘‘Settings’’, ‘‘Result’’, and ‘‘Calibration’’. The ‘‘Settings’’
submodel contains information about the parameters that need to be
configured for executing the functionality, including their range and
dependencies. The interface in MALT is capable of updating its con-
figuration through each submodel, allowing for selective configuration
updates without providing the entire AAS. However, strict structural
requirements must be met for the submodel provided to the interface,
as interfaces to the production systems adhere to strict structural
requirements for submodels.

The AAS submodels provide detailed information for executing leak
test functionality in the MALT production system. These submodels in-
clude ‘‘Calibration’’, ‘‘Results’’, and ‘‘Skill’’. The ‘‘Calibration’’ submodel
captures sensor calibration data. The ‘‘Results’’ submodel stores test
results. The ‘‘Skill’’ submodel contains API calls and configuration data.
This data is crucial for executing functionality. Thanks to the AAS rep-
resentation, we can dynamically configure the leak test functionality.
This ensures accurate configuration settings. It also provides a seamless
information flow between the digital and physical systems.

4.3. Digital twin for leak-test system

The developed AAS functions as a digital representation of the
physical asset, thereby serving as a digital twin of the leak-test system.
For a leak-test execution, the associated services query the relevant
information, as per product requirement, from the AAS submodels.
Fig. 13 provides an illustration of this process.

The goal of the test is provided by the user to the simulation service
that generates the simulation statement. This statement is fed to the
orchestration service. An example of a simulation statement from the
simulation service is:

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 = ⟨𝑏𝑎𝑠𝑖𝑐 ∶ 𝑃 ∶
𝑀𝐿



Journal of Manufacturing Systems 72 (2024) 424–436H.U. Rehman et al.
Fig. 11. AAS for MALT.
Fig. 12. Detail of each submodel to execute ‘‘leak test’’ functionality.
𝑃𝑀𝐿⟩.⟨𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ∶ 𝑀𝑎𝑥𝑇 𝑒𝑠𝑡𝑃 𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑃𝑀𝐿⟩.

⟨𝑠𝑡𝑎𝑏 ∶ 𝑃𝑀𝐿⟩.⟨𝑓𝑖𝑙𝑙 ∶ 𝑃𝑀𝐿⟩.

⟨𝑝𝑎𝑟𝑎𝑚 ∶ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ∶ 𝑃𝑀𝐿⟩.⟨𝑒𝑥𝑒𝑐𝑢𝑡𝑒⟩ (1)

In leak testing, we provide the goal to ‘‘execute’’ a test. Conditions were
provided for the simulation. The sequence of execution is followed by
the combination passed from the simulation statement. The parameter
(𝑃𝑀𝐿) for the simulation statement is determined from the machine
learning application and then simulated for the leak test case. The
parameters are updated in the system for execution.
432
4.4. Execution

The orchestration statement acts as a soft controller, guiding the
execution of skills from one state to another.

𝑂𝑟𝑐ℎ𝑒𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 = [𝑏𝑎𝑠𝑖𝑐].[𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛].

[𝑠𝑡𝑎𝑏].[𝑓𝑖𝑙𝑙].[𝑝𝑎𝑟𝑎𝑚].[𝑒𝑥𝑒𝑐𝑢𝑡𝑒] (2)

The ‘‘basic’’ client service starts the connection with the testing
system, the ‘‘condition’’ service uses conditions to change the testing
parameters, and stabilization time is adjusted through the ‘‘stab’’ client
service. The ‘‘fill’’ and ‘‘param’’ client services change the fill time



Journal of Manufacturing Systems 72 (2024) 424–436H.U. Rehman et al.
Fig. 13. Simulation service querying information from AAS to determine simulation statement based on goals from user and product information. The Machine Learning application
determines the parameters.
Fig. 14. The leak testing setup: (a) the cylinder volumes under testing (b) MALT testing system, a part of the test bench for general leak testing (c) Interface for leak testing;
asset administration shell drives the execution through client services.
and any parameters (taken as arguments), respectively. The ‘‘execute’’
client service executes the test on the target part. Giving a client
service responsibility for individual skills gives the capability to define
testing for different parts depending on the statement presented by the
simulation service.

The client services contain information on the manner in which
each skill for leak testing needs to be executed. The client service takes
in leak testing data from the AAS submodel and produces changes as
desired. The desired change in settings by each client service is loaded
through an API call from the AAS skill submodel, and execution of
the leak testing skill is instantiated. The leak testing process is carried
out until the orchestration service reaches the complete state. The
execution interface for the testing process is given in Fig. 14.

This approach provides a control mechanism for executing testing
processes controlled through services. The services utilize the Type 2
AAS representation to produce behavioral change, directing control
of the testing process. The AAS deployed for leak testing follows the
AAS standard, making it extensible and modular. As the approach uses
a single AAS, it makes the approach modular and cost-effective as
multiple individual component requirements need not be addressed.
433
4.5. Modular machine learning application

The machine learning application for this research is developed
using a modular approach, which entails breaking down the application
into separate, self-contained components. The application is structured
into several modules, each responsible for a specific aspect of the
process: Data Preparation, Model Training and Testing, and Visualization.
This modular architecture conforms to the principle of separation of
concerns, allowing each module to carry out a distinct function in-
dependent of the others. Such a design is not only efficient but also
improves the maintainability and understandability of the system.

A vital role of this modular machine learning application is to
determine the parameters used by simulation services to assess the
system functionality before other services update these parameters onto
the leak test system. The queried parameters’ values are derived from
the AAS submodels and processed by our machine-learning applica-
tion. This modular approach permits easy modification and expansion,
promoting adaptability to evolving research requirements.

This application aims to train a model capable of predicting leak test
outcomes, categorized into four classes: 0 (Fail - Test Pressure High), 1
(Pass), 2 (Fail - Test Pressure Low), and 3 (Fail).



Journal of Manufacturing Systems 72 (2024) 424–436H.U. Rehman et al.
Fig. 15. Visualization of the original dataset using the t-SNE method.

4.5.1. Data preparation
The first module of the machine learning application is the data

preparation module. In many diverse fields, such as finance, marketing,
healthcare, and more, tabular data is the most common form of data
used for machine learning. It comprises structured data that is made up
of rows and columns, similar to a spreadsheet or a relational database.
Each row of the table represents a single instance, and each column in
the table represents a feature or attribute of the instance. The data is
usually a mixture of numerical and categorical variables.

The model’s training uses a dataset (which is transferred already
into a tabular form) from the MALT at TQC, comprising 9076 unique
configurations of leak tests. Each configuration is defined by 12 pa-
rameters: Volume, Initialisation Delay, Test Pressure (mbar), Vent
Off Delay, Fill Time, Stabilisation Time, Isolation Delay, Measuring
Time, Venting Time, Offset Compensation, Alarm Leak Rate (mm3/s or
mbar/s), and Alarm Differential Pressure (Pa or mbar). Each configura-
tion is associated with an outcome belonging to one of the four classes.
These features constitute the inputs for our machine learning model.
Modular data preparation allows for handling diverse data sources and
types, making it adaptable to various scenarios.

To aid the training and evaluation process, the dataset is divided
into three subsets: a training set (64% of the total data), a validation
set (16% of the data), and a test set (the remaining 20%).

However, with high-dimensional data, understanding these relation-
ships can be challenging. For this reason, a two-dimensional representa-
tion of the dataset is created using the t-distributed Stochastic Neighbor
Embedding (t-SNE) method [34] for visualization purposes, as shown in
Fig. 15. This visualization highlights the necessity of applying machine
learning methods for effective classification.

4.5.2. Model training and testing
The model training process is encapsulated in the machine learning

application as a distinct module. This modular approach allows for
the machine learning model’s independent development, testing, and
optimization. The module takes the preprocessed tabular data as input
and is responsible for training the machine learning model.

The implementation of a Multilayer Perceptron (MLP) model [35]
for the classification task has yielded significant results. An early stop-
ping mechanism [36] is employed during training to prevent overfit-
ting and to improve computational efficiency. This mechanism halted
the training at the 348th epoch, as further training did not show
improvement in the validation accuracy.

The performance of the MLP model is depicted in Fig. 16, which
shows a consistent reduction in training loss, reaching a low point
of 0.0275. This decrease in loss indicates the model’s increasing pro-
ficiency in predicting the correct outcomes over the training epochs.
Alongside the decrease in loss, the model’s accuracy, representing the
proportion of correct predictions, also showed considerable improve-
ment. As illustrated in Fig. 17, the training accuracy of the model
434
Fig. 16. Training loss over epochs.

Fig. 17. Training accuracy over epochs.

Fig. 18. Validation and test accuracy over epochs.

peaked at an impressive 99.31%, demonstrating its effectiveness in the
classification task.

Additionally, the performance of the model on unseen data, as
measured by validation and test accuracy, is presented in Fig. 18. These
metrics provide insights into the model’s generalization capabilities
beyond the training data.

4.5.3. Visualization
The t-SNE is employed again post-training to visualize the trans-

formed dataset with the trained machine-learning model. As described
in Section 4.5.1, this technique is crucial for interpreting the high-
dimensional outputs of the model within a two-dimensional space,
particularly considering the 12 attributes involved. The effectiveness
of t-SNE lies in its ability to illustrate the clustering or separation of
data points after being processed by the model.

As depicted in Fig. 19, the t-SNE visualization post-training dis-
tinctly separates the four classes corresponding to the leak test out-
comes. This separation is a clear indication of the model’s capability in



Journal of Manufacturing Systems 72 (2024) 424–436H.U. Rehman et al.
Fig. 19. T-SNE visualization of the dataset after model training, demonstrating the
effective classification of leak test results.

accurately classifying each leak test configuration based on the defined
attributes.

In practical applications, this visualization demonstrates that the
trained machine learning model is capable of predicting the outcome
of new leak test configurations. These outcomes are classified into four
distinct categories: 0 (Fail - Test Pressure High), 1 (Pass), 2 (Fail - Test
Pressure Low), and 3 (Fail). The clarity in class separation shown in the
t-SNE plot post-training underscores the model’s effectiveness in such
predictions.

In conclusion, the modular machine learning approach implemented
in this research offers numerous benefits. It provides the flexibility
to adapt to new requirements and changes, enhances maintainability
by facilitating understanding and debugging, and improves scalability,
making it suitable for large-scale applications. Each module in the
pipeline, from data loading and preprocessing to model training and
performance evaluation, can be developed, tested, and optimized inde-
pendently, catering to a wide range of datasets and tasks. The modular
approach aligns with the future direction of machine learning, offering
a promising solution for complex and large-scale applications.

5. Conclusion and future work

Testing processes are highly variable depending on the part or prod-
uct being tested. Successful testing is typically dependent on human
experts and manual changes due to the complex process sequences
and conditions. This makes testing processes prime candidates for
digitalization and automation to reduce set-up time, costs, and errors.
Many SMEs are highly dependent on testing processes to validate their
low batches of high-value and bespoke parts or products. Any digital
solutions must, therefore, be low-cost to maximize impact, especially
for SMEs. AAS is the coming standard for digitalizing manufacturing
assets and maximizing modularity and interoperability. A static AAS is
inadequate for adapting to testing needs; type 2 is required.

This research showcases an application of a modular AI approach
integrated with Type 2 AAS for testing processes. The modular AI de-
sign offers significant benefits, as it enables the separation of different
components or modules in the system, each responsible for specific
functionality. Such an architecture greatly enhances the system’s flexi-
bility and scalability. It allows for easy adjustments and modifications
of individual modules without disrupting the entire system, which can
be particularly beneficial in adapting to evolving testing requirements.
Furthermore, the modular approach facilitates the maintenance and
troubleshooting processes, as issues can be isolated and addressed at
the module level.

This research incorporates tabular machine learning into a modular
AI system framework. Tabular machine learning is well-suited for deal-
ing with high-dimensional data. It also facilitates an understanding of
complex inter-dependencies among the multiple parameters involved in
435
the testing process. This ability contributes to the precise prediction of
leak test outcomes, thereby improving the reliability and effectiveness
of the testing process.

The integrated approach presented in this research contributes
significantly towards managing the functionality of testing processes
within production systems. It drastically reduces the setup time for
a new testing process, thereby accelerating the production cycle and
enabling faster time-to-market for products. Moreover, it minimizes the
need for continuous expert intervention to control the testing operation,
leading to substantial cost savings and efficient resource allocation.

In essence, the application of a modular AI approach, integrated
with Type 2 AAS and enhanced with the power of tabular machine
learning, offers businesses an efficient, cost-effective, and adaptable so-
lution for managing their testing operations. This can lead to improved
operational efficiency, cost savings, and, ultimately, enhanced business
competitiveness.

Three different types of services were presented in this research:
simulation service, orchestration service, and client services. The sim-
ulation service takes in a goal from the user and acts on a model to
define the best possible decision for the orchestration service in terms of
skills that need to be executed to reach the goal state. The orchestration
service is responsible for executing the skills by instantiating the client
services. The client service interacts with the AAS to execute the skills.
The development and deployment approach for AAS is presented, along
with integration with services.

In addition to the points discussed earlier, it is essential to empha-
size the particular advantages of a modular architecture in managing
large, complex, and continually evolving processes. The modular design
of AI systems, as demonstrated in this research, offers unparalleled
flexibility and adaptability. This is especially crucial in dynamic indus-
tries where testing requirements and processes frequently change. By
adopting a modular approach, each component of the system can be
independently modified, enhanced, or replaced without impacting the
overall system’s integrity. This not only ensures that the system remains
up-to-date with the latest technological advancements but also allows
it to adapt swiftly to new or evolving requirements.

Moreover, the modular architecture significantly simplifies the inte-
gration of new components and technologies. As the demands of testing
processes evolve, new modules can be seamlessly incorporated into
the existing system, ensuring that the system remains at the forefront
of technological efficiency. This approach also facilitates easier scal-
ing, making it suitable for both small-scale operations and large-scale
industrial applications.

In light of these benefits, future work will delve deeper into demon-
strating the efficacy of modular architecture in more complex and
larger-scale scenarios. The forthcoming research will focus on illus-
trating how this approach can effectively manage the intricacies and
challenges of more substantial and complex testing processes, fur-
ther solidifying the argument for its widespread adoption in industrial
settings.

Other future work involves expanding the submodel architecture
to incorporate other service components. Reinforcement Learning and
Machine Learning techniques can be explored for achieving multiple
goals as desired through swappable ML AI models. Service negotiation
behavior and transition approach from Type 2 AAS to Type 3 AAS
will be explored. As seen in the application in this research, AAS has
the potential towards optimizing industrial processes, workflows, and
resource utilizations. Its data-driven nature promotes adaptability and
integration with external services. More research will be carried out
in AAS with a focus on automation to bring down costs and promote
data-driven decision-making in the industry.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.



Journal of Manufacturing Systems 72 (2024) 424–436H.U. Rehman et al.
Acknowledgments

This research is supported by the DiManD Innovative Training
Network (ITN) project funded by the European Union through the
Marie Skłodowska-Curie Innovative Training Networks (H2020-MSCA-
ITN-2018) under grant agreement number no. 814078.

References

[1] Kostal P, Mudrikova A, Michal D. Possibilities of intelligent flexible manufactur-
ing systems. In: IOP conference series: Materials science and engineering, Vol.
659. IOP Publishing; 2019, 012035.

[2] Yang Bo, Pang Zhi, Wang Shilong, Mo Fan, Gao Yifan. A coupling optimization
method of production scheduling and computation offloading for intelligent
workshops with cloud-edge-terminal architecture. J Manuf Syst 2022;65:421–38.

[3] Pulikottil Terrin, Estrada-Jimenez Luis A, Abadía José Joaquín Peralta, Carrera-
Rivera Angela, Torayev Agajan, Rehman Hamood Ur, Mo Fan, Nikghadam-
Hojjati Sanaz, Barata Jose. Big data life cycle in shop-floor–trends and challenges.
IEEE Access 2023.

[4] Mo Fan, Chaplin Jack C, Sanderson David, Martínez-Arellano Giovanna,
Ratchev Svetan. Semantic models and knowledge graphs as manufacturing sys-
tem reconfiguration enablers. Robotics and Computer-Integrated Manufacturing
2024;86:102625.

[5] Sharp Michael, Ak Ronay, Hedberg Jr Thomas. A survey of the advancing use
and development of machine learning in smart manufacturing. J Manuf Syst
2018;48:170–9.

[6] Aggour Kareem S, Gupta Vipul K, Ruscitto Daniel, Ajdelsztajn Leonardo,
Bian Xiao, Brosnan Kristen H, Kumar Natarajan Chennimalai, Dheeradhada Vora-
mon, Hanlon Timothy, Iyer Naresh, et al. Artificial intelligence/machine learning
in manufacturing and inspection: A GE perspective. MRS Bull 2019;44(7):545–58.

[7] Rehman Hamood Ur, Pulikottil Terrin, Estrada-Jimenez Luis Alberto, Mo Fan,
Chaplin Jack C, Barata Jose, Ratchev Svetan. Cloud based decision making for
multi-agent production systems. In: Progress in artificial intelligence: 20th EPIA
conference on artificial intelligence, EPIA 2021, Virtual event, September 7–9,
2021, Proceedings 20. Springer; 2021, p. 673–86.

[8] McFarlane Duncan, Sarma Sanjay, Chirn Jin Lung, Wong ChienYaw, Ash-
ton Kevin. Auto ID systems and intelligent manufacturing control. Eng Appl Artif
Intell 2003;16(4):365–76.

[9] Zhong Ray Y, Xu Xun, Klotz Eberhard, Newman Stephen T. Intelli-
gent manufacturing in the context of industry 4.0: a review. Engineering
2017;3(5):616–30.

[10] Mo Fan, Rehman Hamood Ur, Elshafei Basem, Chaplin Jack C, Sanderson David,
Martínez-Arellano Giovanna, Ratchev Svetan. Efficient decision-making in SMEs:
Leveraging knowledge graphs with neo4j and AI vision. In: 1st workshop on low-
cost digital solutions for industrial automation at the University of Cambridge.
2023.

[11] Rehman Hamood Ur, Chaplin Jack C, Zarzycki Leszek, Ratchev Svetan. A frame-
work for self-configuration in manufacturing production systems. In: Doctoral
conference on computing, electrical and industrial systems. Springer; 2021, p.
71–9.

[12] Mo Fan, Querejeta Miriam Ugarte, Hellewell Joseph, Rehman Hamood Ur, Rez-
abal Miren Illarramendi, Chaplin Jack C, Sanderson David, Ratchev Svetan. PLC
orchestration automation to enhance human–machine integration in adaptive
manufacturing systems. J Manuf Syst 2023;71:172–87.

[13] Schweichhart Karsten. Reference architectural model industrie 4.0 (rami 4.0).
2016, An Introduction. Available online: https://www.plattform-i40.deI. 40.

[14] Wei Kang, Sun JZ, Liu RJ. A review of asset administration shell. In: 2019 IEEE
international conference on industrial engineering and engineering management
(IEEM). IEEE; 2019, p. 1460–5.

[15] Rehman Hamood Ur, Chaplin Jack C, Zarzycki Leszek, Mo Fan, Jones Mark,
Ratchev Svetan. Service based approach to asset administration shell for control-
ling testing processes in manufacturing. IFAC-PapersOnLine 2022;55(10):1852–7.
436
[16] Wenger Monika, Zoitl Alois, Müller Thorsten. Connecting PLCs with their asset
administration shell for automatic device configuration. In: 2018 IEEE 16th
international conference on industrial informatics (INDIN). IEEE; 2018, p. 74–9.

[17] Bedenbender H, Billmann M, Epple U, Hadlich T, Hankel M, Heidel R, Hiller-
meier O, Hoffmeister M, Huhle H, Jochem M, et al. Examples of the asset
administration shell for Industrie 4.0 components–basic part. ZVEI white paper,
2017.

[18] Wagner Constantin, Grothoff Julian, Epple Ulrich, Drath Rainer, Malakuti So-
mayeh, Grüner Sten, Hoffmeister Michael, Zimermann Patrick. The role of the
Industry 4.0 asset administration shell and the digital twin during the life cycle
of a plant. In: 2017 22nd IEEE international conference on emerging technologies
and factory automation (ETFA). IEEE; 2017, p. 1–8.

[19] Cavalieri Salvatore, Salafia Marco Giuseppe. Insights into mapping solutions
based on opc ua information model applied to the industry 4.0 asset
administration shell. Computers 2020;9(2):28.

[20] Cavalieri Salvatore, Salafia Marco Giuseppe. Asset administration shell for PLC
representation based on IEC 61131–3. IEEE Access 2020;8:142606–21.

[21] Tantik Erdal, Anderl Reiner. Potentials of the asset administration shell of
Industrie 4.0 for service-oriented business models. Procedia CIRP 2017;64:363–8.

[22] Pethig Florian, Niggemann Oliver, Walter Armin. Towards Industrie 4.0 com-
pliant configuration of condition monitoring services. In: 2017 Ieee 15th
international conference on industrial informatics (Indin). IEEE; 2017, p. 271–6.

[23] Löcklin Andreas, Vietz Hannes, White Dustin, Ruppert Tamás, Jazdi Nasser,
Weyrich Michael. Data administration shell for data-science-driven development.
Procedia CIRP 2021;100:115–20.

[24] Mo Fan, Rehman Hamood Ur, Monetti Fabio Marco, Chaplin Jack C, Sander-
son David, Popov Atanas, Maffei Antonio, Ratchev Svetan. A framework for
manufacturing system reconfiguration and optimisation utilising digital twins and
modular artificial intelligence. Robot Comput-Integr Manuf 2023;82:102524.

[25] Quarantiello Luigi, Marzeddu Simone, Guzzi Antonio, Lomonaco Vincenzo.
LuckyMera: a modular AI framework for building hybrid NetHack agents. 2023,
arXiv preprint arXiv:2307.08532.

[26] Qiao Litao, Wang Weijia, Dasgupta Sanjoy, Lin Bill. Rethinking logic
minimization for tabular machine learning. IEEE Trans Artif Intell 2022.

[27] Shwartz-Ziv Ravid, Armon Amitai. Tabular data: Deep learning is not all you
need. Inf Fusion 2022;81:84–90.

[28] Westreich Daniel, Lessler Justin, Funk Michele Jonsson. Propensity score esti-
mation: machine learning and classification methods as alternatives to logistic
regression. J Clin Epidemiol 2010;63(8):826.

[29] Grinsztajn Léo, Oyallon Edouard, Varoquaux Gaël. Why do tree-based models
still outperform deep learning on typical tabular data? Adv Neural Inf Process
Syst 2022;35:507–20.

[30] Natekin Alexey, Knoll Alois. Gradient boosting machines, a tutorial. Front
Neurorobot 2013;7:21.

[31] Talukder Md Alamin, Islam Md Manowarul, Uddin Md Ashraf, Akhter Arnisha,
Hasan Khondokar Fida, Moni Mohammad Ali. Machine learning-based lung and
colon cancer detection using deep feature extraction and ensemble learning.
Expert Syst Appl 2022;205:117695.

[32] Rehman Hamood Ur, Chaplin Jack C, Zarzycki Leszek, Jones Mark, Ratchev Sve-
tan. Application of multi agent systems for leak testing. In: 2021 9th international
conference on systems and control (ICSC). IEEE; 2021, p. 560–5.

[33] BaSyx Eclipse. Eclipse BaSyx. Enabling Open Innov Collab 2022.
[34] Linderman George C, Rachh Manas, Hoskins Jeremy G, Steinerberger Stefan,

Kluger Yuval. Efficient algorithms for t-distributed stochastic neighborhood
embedding. 2017, arXiv preprint arXiv:1712.09005.

[35] Taud Hind, Mas JF. Multilayer perceptron (MLP). In: Geomatic approaches for
modeling land change scenarios. Springer; 2018, p. 451–5.

[36] Sitaula Chiranjibi, Ghimire Nabin. An analysis of early stopping and
dropout regularization in deep learning. Int J Concept Comput Inf Technol
2017;5(1):17–20.

http://refhub.elsevier.com/S0278-6125(23)00252-2/sb1
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb1
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb1
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb1
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb1
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb2
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb2
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb2
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb2
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb2
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb3
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb3
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb3
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb3
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb3
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb3
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb3
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb4
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb4
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb4
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb4
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb4
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb4
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb4
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb5
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb5
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb5
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb5
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb5
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb6
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb6
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb6
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb6
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb6
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb6
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb6
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb7
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb7
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb7
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb7
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb7
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb7
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb7
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb7
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb7
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb8
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb8
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb8
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb8
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb8
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb9
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb9
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb9
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb9
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb9
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb10
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb10
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb10
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb10
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb10
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb10
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb10
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb10
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb10
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb11
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb11
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb11
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb11
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb11
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb11
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb11
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb12
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb12
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb12
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb12
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb12
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb12
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb12
https://www.plattform-i40.deI
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb14
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb14
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb14
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb14
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb14
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb15
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb15
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb15
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb15
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb15
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb16
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb16
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb16
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb16
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb16
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb17
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb17
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb17
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb17
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb17
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb17
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb17
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb18
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb18
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb18
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb18
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb18
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb18
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb18
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb18
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb18
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb19
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb19
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb19
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb19
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb19
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb20
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb20
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb20
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb21
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb21
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb21
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb22
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb22
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb22
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb22
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb22
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb23
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb23
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb23
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb23
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb23
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb24
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb24
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb24
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb24
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb24
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb24
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb24
http://arxiv.org/abs/2307.08532
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb26
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb26
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb26
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb27
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb27
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb27
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb28
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb28
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb28
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb28
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb28
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb29
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb29
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb29
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb29
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb29
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb30
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb30
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb30
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb31
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb31
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb31
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb31
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb31
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb31
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb31
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb32
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb32
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb32
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb32
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb32
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb33
http://arxiv.org/abs/1712.09005
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb35
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb35
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb35
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb36
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb36
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb36
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb36
http://refhub.elsevier.com/S0278-6125(23)00252-2/sb36

	A modular artificial intelligence and asset administration shell approach to streamline testing processes in manufacturing services
	Introduction
	BACKGROUND
	Asset administration shell
	Modular AI and Tabular Machine Learning

	SERVICE BASED CONTROL OF ASSET ADMINISTRATION SHELL
	Component Descriptions of the Asset Administration Shell and Services 
	Testing Process
	Asset Administration Shell
	Simulation Service
	Modular AI
	Orchestration Service
	Client Services

	Overview of Skill Execution in testing Processes
	Skill Representation
	Skill Selection
	Value Update
	Condition determination
	Skill Execution


	INTEGRATION APPROACH DEPLOYMENT FOR A LEAK TESTING USE CASE
	Problem Statement
	AAS Representation for Leak-Test System
	Digital Twin for Leak-Test System
	Execution
	Modular Machine Learning Application
	Data Preparation
	Model Training and Testing
	Visualization


	Conclusion AND FUTURE WORK
	Declaration of competing interest
	Acknowledgments
	References


