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Abstract 

Sepsis is a heterogenous condi�on defined as life-threatening organ dysfunction caused by a 

dysregulated host response to infection. For some, sepsis presents as a predominantly 

suppressive disorder, whilst others experience a pro-inflammatory condi�on which can 

culminate in a ‘cytokine storm’. Frequently, pa�ents experience signs of concurrent hyper-

inflamma�on and immunosuppression, underpinning the difficulty in direc�ng effec�ve 

treatment. Although intensive care unit mortality rates have improved in recent years, one-

third of discharged pa�ents die within the following year. Half of post-sepsis deaths are due 

to exacerba�on of pre-exis�ng condi�ons, whilst half are due to complica�ons arising from a 

deteriorated immune system. It has been suggested that the intense and dysregulated 

response to infec�on may induce irreversible metabolic reprogramming in immune cells. As 

a cri�cal arm of immune protec�on in vertebrates, altera�ons to the adap�ve immune 

system can have devasta�ng repercussions. Indeed, a marked deple�on of lymphocytes is 

observed in sepsis, correla�ng with increased rates of mortality. Such sepsis-induced 

lymphopenia has profound consequences on how T cells respond to infec�on but equally on 

the humoral immune response that is both elicited by B cells and supported by dis�nct CD4+ 

T follicular helper (TFH) cell subsets. The immunosuppressive state is further exacerbated by 

func�onal impairments to the remaining lymphocyte popula�on, including the presence of 

cells expressing dysfunc�onal or exhausted phenotypes. This review will specifically focus on 

how sepsis destabilises the adap�ve immune system, with a closer examina�on on how B 

cells and CD4+ TFH cells are affected by sepsis and the corresponding impact on humoral 

immunity. 
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Sepsis 1 

The inflammatory response to infection is a fundamental aspect of immune protection,  2 

aiming to rapidly combat the invading pathogen whilst causing minimal damage to the host 3 

(1). Under homeostasis, this is a tightly controlled network, and inflammation wanes 4 

following resolution of infection. However, the response is not always proportionate to the 5 

threat, and an exaggerated reaction can lead to tissue damage, organ failure, and death (2). 6 

Indeed, sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host 7 

response to infection (3). Sepsis is a heterogenous condi�on in which the clinical 8 

presenta�on can vary substan�ally between pa�ents, in part because it can be triggered by 9 

different pathogen types, even though the majority of cases are bacterial (4). However, in a 10 

large propor�on of cases, the infec�ous organism cannot be iden�fied, with many clinical 11 

manifesta�ons of sepsis deemed ‘culture-nega�ve’ in rou�ne tests (5-8). The health and 12 

func�onal state of the immune system plays an important role in dicta�ng suscep�bility to 13 

sepsis and the subsequent prognosis. Sepsis in vulnerable popula�ons tends to present as a 14 

predominantly suppressive disorder due to an already dampened immune system (9). 15 

Pa�ents show reduced capacity to clear the primary infec�on and indeed any opportunis�c 16 

pathogens secondary to the ini�al insult. Such protracted immunosuppression renders 17 

pa�ents highly suscep�ble to nosocomial infec�ons, proving a dominant cause of death. A 18 

retrospec�ve trial inves�ga�ng an associa�on between survival and microbial burden found 19 

a significant correla�on between late death and posi�ve blood-culture results, par�cularly 20 

regarding opportunis�c pathogens (10). At the other end of the spectrum, some individuals 21 

experience a predominantly pro-inflammatory condi�on which culminates in a ‘cytokine 22 

storm’. Commonly regarded as the hallmark of sepsis, such a response triggers a mul�tude 23 

of innate pathways including the complement and coagula�on cascades, which in turn 24 

release addi�onal pro-inflammatory mediators (11, 12). The resul�ng endothelial leakage 25 

and intravascular coagula�on contribute to systemic damage which itself can be life-26 

threatening. This type of response is typical of sepsis in otherwise young and healthy 27 

individuals (13). If the infec�on is not brought under control, pa�ents frequently experience 28 

signs of concurrent hyper-inflamma�on and immunosuppression (2, 14). This paradoxical 29 

phenomenon underpins the difficulty in direc�ng effec�ve immunomodulatory treatment in 30 

sepsis.  31 



 Sepsis is es�mated to be the cause of 1 in 5 deaths worldwide (15), iden�fying it as a 32 

bigger threat to life than cancer. Now recognised as a global health priority by the World 33 

Health Organiza�on (16), sepsis can affect anyone with the highest-risk groups including the 34 

elderly, the immunocompromised, pregnant women, and also the very young. Indeed, 35 

sta�s�cs from 2017 have demonstrated that almost half of global sepsis cases occurred in 36 

children (15). In addi�on, socioeconomic class is one of the greatest risk-factors, with 85% of 37 

cases and sepsis-related deaths occurring in low- and middle-income countries (15). 38 

Although intensive care unit (ICU) mortality rates have improved in recent years, 40% of 39 

survivors are re-hospitalised within 90 days of discharge, and a striking one-third of 40 

discharged pa�ents die within the following year (17). Half of post-sepsis deaths are due to 41 

exacerba�on of pre-exis�ng condi�ons (18), whilst half are explained by a deteriora�on of 42 

health status as a complica�on of sepsis, recently coined ‘post-sepsis syndrome’. One-sixth 43 

of survivors experience post-sepsis syndrome with at least one cogni�ve, psychological, or 44 

physical impairment, and indeed are more prone to recurrent infec�on, renal failure, and 45 

cardiovascular episodes than matched pa�ents hospitalised for other diagnoses (17). As 46 

such, sepsis poses a significant medical and financial burden on healthcare services 47 

worldwide, with the Na�onal Health Service in the United Kingdom alone es�mated to face 48 

annual costs of >£1 billion (19). Although late-mortality and long-term symptoms following 49 

sepsis are well-studied, the causes of sequelae are poorly understood (20). It has been 50 

suggested that the intense and dysregulated response to infec�on may induce irreversible 51 

metabolic reprogramming, manifes�ng in mul�ple organs.  Such altera�ons may divert 52 

metabolism in immune cells, changing how they interact with their microenvironment and 53 

respond to subsequent s�muli (21-23).  54 

Prompt interven�on is crucial to increase chances of survival. Aside from ini�al 55 

infec�on control, modula�on of the immune system is a key aspect of treatment in sepsis 56 

(24). There have been no major therapeu�c breakthroughs in the last 30 years, with current 57 

strategies targe�ng general aspects of the immune system rather than specifically targe�ng 58 

individual elements (25, 26). Although promise has been shown in mul�ple pre-clinical trials, 59 

treatments o�en fail to advance past the stage of large-scale randomised clinical trials. This 60 

failure is due in part to the vast range of disorders with diverse characteris�cs that are 61 

encompassed by the term ‘sepsis’. The resul�ng inappropriate selec�on of pa�ents results in 62 

treatments that have shown poten�al in early studies being disregarded. The overall effect 63 



poses a huge challenge in transla�ng research to clinical prac�ce. As a dysfunc�onal 64 

response to infec�on by defini�on, there is an essen�al requirement to uncover the 65 

mechanisms underpinning the destabilisa�on of the immune response to infec�on in sepsis, 66 

to explore new targets for drug development and produce effec�ve ways of modula�ng the 67 

immune system long-term post-recovery. Surprisingly, clinical trials blocking excessive 68 

inflamma�on have proved unsuccessful in reducing mortality rates (27). Instead, recent work 69 

has suggested more promise in exploring therapies aiming to restore the ac�vity of 70 

‘exhausted’ or suppressed immune cells (28).   71 

 72 

The adap�ve immune system 73 

The immune response to infec�on by harmful pathogens in vertebrates u�lises two main 74 

components, the innate and adap�ve immune systems, which cooperate to help eliminate 75 

the infec�on and restore homeostasis. The innate immune system provides a rapid defence 76 

strategy that responds to infec�ous insult in a non-specific manner to quickly address the 77 

threat (29). Although a vital first line of defence, the use of patern- and damage-recogni�on 78 

receptors restricts cells of the innate immune system to recogni�on of highly conserved 79 

microbial structures. Instead, the adap�ve immune system supports the ini�al innate 80 

response through the incorpora�on of cellular (T cells) and humoral (an�bodies produced by 81 

B cells) components that generate a highly specific response to invading pathogens (29). In 82 

addi�on, the adap�ve immune system is able to establish immunological memory and 83 

dis�nguish foreign an�gens from self. Autoimmune condi�ons with devasta�ng effects may 84 

arise through impaired ability to separate self from non-self, demonstra�ng the power of the 85 

adap�ve immune system (30, 31).  86 

Adap�ve immunity is governed by classes of highly specialised T cells and B cells, 87 

which develop via a common lymphoid progenitor (32, 33). Both T cells and B cells possess a 88 

diverse repertoire of an�gen-sensing receptors that are generated through the 89 

rearrangement of receptor gene segments during soma�c recombina�on. The process, 90 

which occurs in the bone marrow for B cells and the thymus for T cells, gives rise to naïve 91 

cells which enter the circula�on and peripheral lymphoid �ssues to patrol for foreign 92 

an�gens. Two main types of conven�onal T cells exist: CD8+ T cells which kill infected cells 93 

following an�gen recogni�on, and CD4+ T cells which support CD8+ T cell responses and 94 

an�body-genera�ng B cells, amongst other func�ons (34-36).  95 



In sepsis, a marked deple�on of T cells and B cells is observed, correla�ng with 96 

increased rates of mortality (14, 37-39). Such lymphopenia occurs during the onset of sepsis 97 

and has been found to persist up to 28 days post-admission to intensive care (40-42). The 98 

majority of sepsis-related deaths occur when lymphopenia is evident, which can persist for 99 

years, exposing survivors to opportunis�c bacterial infec�ons and reac�va�ng herpesviruses 100 

(43, 44). T cells appear to be dispropor�onately affected by sepsis with CD4+ T cells known to 101 

decline to levels seen in pa�ents with AIDS (40). Consequently, B cells tend to cons�tute a 102 

greater percentage of remaining lymphocytes, although this does not necessarily translate 103 

to enhanced B cell ac�vity as a combina�on of sustained inflamma�on by high an�gen-load 104 

and cytokine ac�vity results in func�onal changes to remaining cells (40). As such, it has 105 

been shown that B cells from pa�ents with sep�c shock lose their prolifera�ve capacity and 106 

display a CD21lowCD95high phenotype associated with B cell exhaus�on (45).  107 

The main causes of lymphopenia in sepsis are not fully understood, nor why this can 108 

recover in some pa�ents and not in others. Sepsis-associated apoptosis is thought to be a 109 

leading cause of T cell and B cell deple�on during sepsis (14, 37, 46-48). Indeed, post-110 

mortem analyses of spleens from sep�c pa�ents showed significantly higher levels of 111 

caspase-3 ac�vity compared to non-sep�c pa�ents (46). Other poten�al mechanisms 112 

underpinning the observed deple�on of lymphocytes are rela�vely understudied but include 113 

reduced produc�on of precursor cells. One study reported a significant deple�on of 114 

haematopoie�c stem cells in a mouse model of group A Streptococcus-induced sepsis, which 115 

was associated with severe immunological stress and early mortality (49). Addi�onally, a 116 

separate study in humans showed that persistent lymphopenia following cease of ini�al pro-117 

apopto�c ac�vity correlated with a reduc�on in common lymphoid progenitor cells caused 118 

by osteocyte abla�on in sep�c pa�ents (50). Alterna�vely, a reduced pool of peripheral 119 

lymphocytes could in part be due to increased recruitment to infected �ssues, as has been 120 

observed in acute lung injury and chronic inflammatory disorders (51-53). Such sepsis-121 

induced lymphopenia has profound consequences on how T cells respond to infec�on but 122 

equally on the humoral immune response that is both elicited by B cells and supported by 123 

CD4+ T follicular helper (TFH) cells. The immunosuppressive state is further exacerbated by 124 

func�onal impairments to the remaining lymphocyte popula�on, including the presence of 125 

cells expressing dysfunc�onal or exhausted phenotypes (14, 45, 54-56) (Figure 1). The 126 

majority of studies examining the state of immune dysfunc�on during sepsis in humans 127 



involve analysis of peripheral blood samples, with findings summarised in Table 1. This 128 

review will specifically focus on how sepsis destabilises the adap�ve immune system, with a 129 

closer examina�on on how B cells and CD4+ TFH cells are affected by sepsis and the 130 

corresponding impact on humoral immunity. 131 

 132 

B cells 133 

The emergence of adaptive immunity dates back 500 million years, with the added 134 

protective value of a specific combinatorial receptor system increasing survivability in 135 

vertebrates (57). Within this time, B cells have evolved several strategies for increasing the 136 

diversity of their receptors, enabling identification of almost any antigen (58). In addition to 137 

the initial rearrangement of receptor segments during somatic recombination, B cells 138 

increase their receptor variability through processes such as somatic hypermutation, gene 139 

conversion, and class-switch recombination (59). These processes vastly amplify the 140 

immunoglobulin repertoire and contribute to a fine-tuned adaptive response. During 141 

development in the bone marrow, Pax5 is known to be the master transcription factor 142 

behind B cell lineage commitment, acting alongside E2A, EBF1 and IKZF1 (60, 61). Pax5 is a 143 

key regulator of many genes important for B cell adhesion and migration (CD55, CD157, 144 

CD97, Sdc4, CD44), and signalling (PTEN) (62, 63). This has been demonstrated in Pax5 145 

deficient mice which have a complete absence of mature B cells in the periphery, with a 146 

separate study showing ‘dedifferentiation’ of B cells to a common haemopoietic progenitor 147 

under conditional Pax5 deletion (64, 65). Immature, ‘transitional’ B cells exit the bone 148 

marrow to reach full maturity at peripheral lymphoid sites, completing their development 149 

(66). 150 

B cells can be divided into sub-types distinguished by their phenotype and 151 

individualised functions (67). Naïve B cells have traditionally been described either as B-1 B 152 

cells, or conventional B-2 B cells, and together they fulfil a range of critical roles in both the 153 

innate and adaptive immune system to assist with antimicrobial defence (68). While the 154 

majority of the literature describing B-1 B cells is based on data from mice, a population of 155 

CD20+ CD27+ CD43+ CD70− cells has been identified in humans which fulfil key functions 156 

characteristic of murine B-1 B cells (69), including the secretion of natural immunoglobulin 157 

in the absence of antigenic stimulation (70). These antibodies have a low affinity for 158 

pathogens, but nonetheless confer initial protection in an innate-like response. The role of 159 



B-1 B cells in humans remains to be clearly defined. However, they may play an important 160 

role in bacterial clearance since a subpopulation of CD5− B-1 B cells can generate antibodies 161 

against capsular antigens of Streptococcus pneumoniae (71). To this end, their reported 162 

decline with age may play a part in increased susceptibility to infection (69, 72).  163 

 Conventional B-2 B cells constitute the majority of mature B cells, and are further 164 

categorised dependent on their localisation and role (73). A subset described as marginal 165 

zone (MZ) B cells are considered to be innate-like cells, expressing polyreactive B cell 166 

receptors (BCRs) capable of binding multiple microbial ‘patterns’ (74). As such, these cells 167 

are strategically positioned in regions prone to frequent microbial exposure such as mucosa 168 

and the skin, although circulating MZ B cells have also been reported (75). Their name 169 

describes their predominant localisation to a specialised area of the spleen positioned 170 

between the circulation and lymphoid compartment. This region, known as the marginal 171 

zone, allows rapid activation of MZ B cells upon interaction with pathogens in the blood 172 

(76). Their importance in bacterial infections is depicted in individuals following 173 

splenectomy, with studies reporting increased risk of infection by encapsulated bacteria (77, 174 

78). Their function has been linked to regulation of neutrophil recruitment to the spleen in 175 

the early stages of infection, with a study demonstrating MZ B cell-deficient mice to be 176 

more susceptible to Staphylococcus aureus (S. aureus) infection than wildtype (WT) mice 177 

(79).  178 

 Although B cells possess the ability to modulate multiple aspects of immune 179 

protection through cytokine secretion and their action as antigen presenting cells, they are 180 

most commonly associated with their role in antibody production (68). Follicular (FO) B cells 181 

constitute another type of conventional B-2 B cell, occupying the greatest percentage of all 182 

B cell lineages. FO B cells differ from MZ B cells through their expression of a highly specific, 183 

monoreactive BCR (80). The fate of precursor cells into FO or MZ B cell subtypes is dictated, 184 

in part, by the strength of BCR signalling (81), with stronger signalling favouring precursors 185 

to follow the FO B cell differentiation pathway. FO B cells are freely circulating cells that 186 

home to secondary lymphoid organs, such as lymph nodes and the spleen, where they may 187 

differentiate into plasmablasts or short-lived plasma cells upon activation by antigen (82). 188 

Antibodies secreted by these cells only display moderate affinity for antigen, but 189 

nonetheless are important for facilitating early protection (83). Alternatively, activation may 190 

trigger vigorous B cell proliferation, resulting in the formation of specialised microstructures 191 



within the B cell follicles known as germinal centres (GCs) (84). GCs provide the primary site 192 

for the interaction of B cells with specialised T cells (i.e. CD4+ TFH cells) that support the 193 

generation of high-affinity, long-lasting antibodies and memory cells (82). This system is 194 

critical to establish sustained humoral protection against pathogens and underpins the 195 

mechanism of protection of most successful vaccines (85). Under typical conditions, B cells 196 

form the foundation of the immune system, modulating the action of other cells through 197 

both direct interactions and chemical signals (86). In sepsis, these relationships come under 198 

threat. As the centre of homeostasis, functional changes to B cells offset the entire 199 

landscape of the immune system. 200 

 201 

B cells and sepsis 202 

The observed lymphopenia in sepsis appears to be non-homogenous amongst B cell 203 

subsets. Indeed, one study observed a marked plasmacytosis in patients with septic shock 204 

compared to healthy controls, which seemingly contradicts the literature reporting 205 

decreased concentrations of circulating immunoglobulin (45). Specifically, the levels of IgM 206 

in the sera of sepsis patients have been found to negatively correlate with assessments of 207 

disease severity, notably Sequential Organ Failure Assessment (SOFA) and Acute Physiology 208 

and Chronic Health Evaluation (APACHE) II scores (87).  Additionally, ex vivo stimulated B 209 

cells from the same patients displayed reduced capacity to produce IgM (87). In line with 210 

these findings, higher plasma concentrations of IgM within the first 24 hours of sepsis have 211 

been found to differentiate survivors from non-survivors, highlighting a key protective role 212 

of IgM, particularly in fighting Gram-negative infections (39). Low IgM levels have also been 213 

associated with a reduction in the frequency of resting memory B cells, the effect of which 214 

was more pronounced in non-survivors (88). A meta-analysis of studies investigating 215 

hypogammaglobulinaemia in sepsis found that as many as 70% of cases experienced low 216 

levels of circulating IgG on the day of diagnosis, although an association with clinical 217 

outcome remains to be clearly defined (89). A reduction in general immunoglobulin levels 218 

early in infection may, in part, be due to a decline in B-1 B cells. As innate-like producers of 219 

natural antibodies, B-1 B cells are suggested to play an important role in compensating for 220 

the delay in an FO B cell-mediated adaptive immune response (90). Early release of low-221 

affinity immunoglobulin by B-1 B cells may infer critical protection in situations where the 222 

infectious pathogen has spread to the bloodstream early in infection (91). The frequency of 223 



B-1 B cells has been shown to significantly decline in a murine model of sepsis (92). The 224 

same group found that adoptive transfer of B-1 cells restored IgM levels and significantly 225 

reduced lung injury compared to WT mice (93). In addition to the local and systemic 226 

increase in IgM, this result was achieved through attenuation of pro-inflammatory cytokine 227 

release and apoptosis, suggesting additional protective roles of B-1 B cells in the response to 228 

infection (93). Sepsis-induced changes to B-1 B cells in humans remain to be characterised 229 

but could have therapeutic value if data are consistent with observations in mice.  230 

Despite these findings, the relationship between circulating immunoglobulin levels 231 

and mortality in sepsis has proved controversial. Indeed, initial serum IgG levels have been 232 

reported to be both positively and negatively associated with clinical outcome (94, 95). A 233 

multicentre study measuring IgG1, IgM and IgA levels on the first day of severe sepsis or 234 

septic shock found that low concentrations of all three antibody types had the highest odds 235 

ratio for death (27). Conversely, the ALBIOS trial found that high IgA and IgG levels at sepsis 236 

onset were significantly predictive of both 28- and 90-day mortality (96). In this trial, low 237 

levels of IgG on day 1 were associated with higher risk of secondary infections. These 238 

findings again reflect the heterogenous nature of sepsis, and such variation is likely 239 

attributed to subjects experiencing different degrees of inflammation or 240 

immunosuppression at the point of testing. Low concentrations of circulating antibodies are 241 

indicative of a dampened adaptive response, and so may underpin mortality through a 242 

reduced capacity to clear infection. An association between high immunoglobulin levels and 243 

mortality in some patients could be explained by the ability of IgG and IgM to activate 244 

innate pathways such as the complement cascade, exacerbating an existing state of 245 

hyperinflammation through complement-dependent cytotoxicity (97). Additionally, immune 246 

cells such as macrophages, neutrophils and natural killer cells express receptors that bind 247 

the Fc portion of antibodies, and so may facilitate the exaggerated host-response through 248 

antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis in 249 

the presence of high levels of circulating immunoglobulin (97). Clearly, gaps remain in 250 

defining the association between circulating immunoglobulin and clinical outcome in sepsis. 251 

It is likely that there is no clear consensus, and perhaps categorising patients based on a 252 

range of clinical observations including plasma immunoglobulin levels amongst other 253 

parameters may provide better prognostic value and guidance for treatment. 254 



 Beyond an�body produc�on, B cells can also modulate the immune response to 255 

infec�on through their ability to act as a professional an�gen presen�ng cells (APCs) (73). As 256 

professional APCs, B cells are armed with the necessary tools to capture and present 257 

processed an�gen to T cells. As such, B cells prime and expand an�gen-specific T cells, a 258 

crucial step for genera�on of a specific immune response. B cells express both major 259 

histocompa�bility complex (MHC) I and II molecules, thus enabling them to interact with 260 

an�gen-specific CD4+ and CD8+ T cells (73). In this way, B cells can trigger both TH1 and TH2 261 

responses to suit the context. One mode of ac�on is through the direct presenta�on of 262 

an�genic pep�des to T cells following capture and internalisa�on of pathogens (98). Direct 263 

presenta�on is dependent on the an�genic specificity of B cells, defined by their 264 

clonotypically expressed BCR. Alterna�vely, B cells may cross-present free-floa�ng an�gen 265 

from the extracellular matrix to CD8+ T cells (99). This dual ability is cri�cal for cellular 266 

responses against viruses and tumours, where the an�gen-presen�ng B cells are not directly 267 

infected.  268 

Following T cell receptor (TCR)-mediated recogni�on of MHC-restricted an�gens on 269 

the B cell surface, an immunological synapse is established that promotes T cell ac�va�on 270 

and drives signals for prolifera�on, differen�a�on, and survival. This synap�c connec�on is 271 

strengthened by interac�ons between co-s�mulatory molecules on both cell types, notably 272 

CD80/CD86 on B cells with CD28 on T cells (100). These interac�ons induce expression of 273 

addi�onal cos�mulatory molecules including CD40 on B cells, as well as adhesion molecules 274 

such as LFA-1 and its ligand ICAM-1, that support the process of an�gen presenta�on (101). 275 

Finally, the appropriate effector phenotype is achieved through differen�al cytokine 276 

secre�on, polarising the immune response (102). For example, secre�on of interferon-γ (IFN-277 

γ) and interleukin-12 (IL-12) induce signalling cascades which result in T-bet transcrip�on 278 

and differen�a�on towards a TH1 phenotype, important for clearance of intracellular 279 

pathogens such as viruses and certain bacteria (103). Secre�on of IL-4 induces transcrip�on 280 

of GATA-3 and subsequent commitment to a TH2 phenotype, important in the response to 281 

extracellular infec�ons by parasites and helminths (103). Other cytokines such as 282 

transforming growth factor-β (TGF-β), IL-6, IL-21 and IL-23 support differen�a�on of 283 

alterna�ve helper subsets including TH17 cells, and lesser-defined phenotypes including TH9, 284 

and TH22 cells (104). During sepsis, the expression of MHC II molecules, including human 285 

leukocyte an�gen-DR (HLA-DR) has been shown to decrease on B cells, altering their ability 286 



to present pep�des to T cells (105). This effect has been observed in sepsis pa�ents at the 287 

�me of admission to ICU and persists in samples taken at a follow-up �me of 8 days (105). A 288 

reduc�on in HLA-DR expression acts to impair the ability for B cells to func�on as 289 

professional APCs, lessening their ability to trigger an�gen-specific responses in T cells. In 290 

addi�on, expression of CD40 was significantly reduced on B cells in sep�c pa�ents at ICU 291 

admission compared to healthy donors (41). No difference in CD40 expression was observed 292 

between surviving and non-surviving pa�ents, however the expression of co-s�mulatory 293 

molecule CD80 was found to be significantly higher in non-survivors of sep�c shock at ICU 294 

admission (41). The expression normalised a�er 3 days, sugges�ng an enhanced ability to 295 

s�mulate T cells very early in infec�on, which perhaps contributes to the hyper-296 

inflammatory state associated with early mortality.  297 

 In addi�on to an�gen presenta�on for s�mula�on of T cells, B cells themselves can 298 

act as cellular effectors (106). During infec�on, B cells mediate changes in the inflammatory 299 

response through an acquired ability to secrete effector cytokines such as IFN-γ, tumour 300 

necrosis factor-α (TNF-α) and IL-17 (107). Transcriptome analyses in murine models of sepsis 301 

show B cells with dis�nct gene expression profiles, with notable altera�ons in the expression 302 

of genes for several cytokines (108). In par�cular, increased expression of pro-inflammatory 303 

cytokines such as IL-3, IFN-γ, TNF-α and IL-6, and reduced expression of an�-inflammatory 304 

cytokines such as IL-10 and TGF-β1 (108). In addi�on to driving systemic inflamma�on, 305 

secre�on of cytokines can polarise T cells towards specific helper phenotypes as detailed 306 

above (103). In a murine caecal liga�on and puncture (CLP) model of sepsis, B cell deficient 307 

(µMT) mice showed reduced concentra�ons of inflammatory cytokines in sera compared to 308 

WT mice, which was not replicated in T cell deficient (TCR αβ−/−) mice (109). These data 309 

indicate a role of B cells in triggering an early inflammatory response in sepsis, with further 310 

experiments showing the importance of such cytokine produc�on on successful bacterial 311 

clearance. Splenic MZ B cells have been shown to produce large quan��es of IL-6 and the 312 

chemokine CXCL10 a�er lipopolysaccharide (LPS) challenge in vivo in mice (110). The 313 

significance of such a pro-inflammatory response was inves�gated in mice lacking IL-6-314 

producing MZ B cells (MZ B-IL-6-KO). These mice produced significantly lower amounts of 315 

serum IL-6 and CXCL10 and demonstrated improved survival compared with WT mice (110). 316 

Furthermore, administra�on of an an�-IL-6 receptor (IL-6R) an�body shortly following 317 



intravenous injec�on of Escherichia coli (E. coli) or the induc�on of CLP resulted in prolonged 318 

survival compared to mice treated with a control an�body (110). These results indicate a 319 

pathogenic role of IL-6 in exacerba�ng endotoxic shock in sepsis. This finding does not 320 

contradict earlier findings that IL-6 plays an an�-inflammatory role very early in sepsis (109), 321 

as injec�on of an�-IL-6R at �me-points concurrent with LPS or E. coli injec�on did not affect 322 

the survival of mice. At the very early stages of sepsis, IL-6 produc�on by B cells may not 323 

augment the inflammatory response to toxin, with delayed onset of its pathogenic role. In 324 

addi�on to IL-6, IL-3 produc�on by B cells in a mouse model of abdominal sepsis has been 325 

reported to poten�ate inflamma�on through enhanced produc�on of monocytes and 326 

neutrophils, with IL-3 deficiency inferring protec�on (111). These findings correlated with 327 

observa�ons in humans showing an associa�on between high plasma IL-3 levels and 328 

mortality (111). Despite the reported pro-inflammatory signatures of B cells in sepsis, 329 

strategies aiming to modulate cytokine levels have failed to prove beneficial (112). Paterns 330 

of cytokine release change throughout the course of disease, and so �ming of administra�on 331 

is likely an important considera�on for these types of therapies (109). Inves�ga�ons into IL-6 332 

blocking early in infec�on s�ll show promise (113).  333 

 334 

Regulatory B (BREG) cells 335 

BREG cells represent a specialised subtype of B cells that can suppress T cells and the ac�on of 336 

other pro-inflammatory cells through the produc�on of IL-10, IL-35 and TGF-β (114). BREG 337 

cells, cons�tu�ng less than 1% of PBMCs in humans, show heterogeneity in the expression 338 

of surface proteins and indeed may differen�ate into dis�nct subsets dependent on the 339 

inflammatory s�muli to which they are exposed (115). For example, studies have reported 340 

CD19+CD25hi BREG cells that support T regulatory (TREG) cell func�on in vitro in co-culture 341 

experiments, but also several popula�ons of BREG cells which suppress an an�-tumour 342 

response in cancer such as those expressing granzyme B in solid tumour infiltrates, and 343 

CD19+CD24+CD38+ cells in breast cancer (116-118). It is generally accepted that their 344 

suppressive ability is enhanced under highly inflammatory condi�ons to limit further 345 

damage, for example in the case of autoimmune condi�ons (119-121). Although sepsis is 346 

generally characterised by a protracted lymphopenia, the balance of subsets within the total 347 

popula�on of B cells is disturbed. In a CLP model of sepsis in mice, an increase in the 348 

frequency of BREG cells was one of the first observable changes, exacerba�ng an 349 



immunosuppressive state (122). Conversely, BREG cells can play a protec�ve role, with 350 

reduced number and func�on correla�ng with the development of severe sep�c shock in 351 

mice exposed to endotoxin (108). Human pa�ents with sepsis have decreased numbers of 352 

BREG cells compared to controls, with frequency nega�vely correla�ng with likelihood of 353 

sep�c shock (123). In fact, the levels of BREG cells over the first week post-admission to ICU 354 

appear to have par�cular prognos�c value in elderly pa�ents with sepsis (124). The same 355 

was observed in neonates, with an increase in BREG cells posi�vely correla�ng with survival 356 

(125). Following the onset of sep�c shock, there is an increase in cells expressing a BREG-like 357 

cell phenotype, and an associated increase in IL-10 produc�on mirroring the observed 358 

immunosuppressive state (45). Together, these findings suggest a protec�ve role of the 359 

immunosuppression elicited by BREG cells early in sepsis, perhaps aiding against deaths 360 

caused by overwhelming inflamma�on and consequent sep�c shock. In surviving pa�ents, 361 

however, BREG cells may �p towards a pathogenic func�on through con�nued promo�on of 362 

an immunosuppressive state in the midst of other cells becoming anergic and unable to 363 

respond to subsequent s�muli. 364 

 365 

The poten�al of B cells in clinical prac�ce 366 

Given the numerical and func�onal changes exhibited by B cells during sepsis, and the 367 

associa�on of certain altera�ons with morbidity and mortality, it is unsurprising that B cells 368 

have been the focus of several studies inves�ga�ng prognos�c biomarkers and therapeu�c 369 

targets. For example, one group suggested that a low percentage of CD23+ B cells at ICU 370 

admission enables discrimina�on between survivors and non-survivors with a sensi�vity of 371 

90.9% (41), whilst another demonstrated poor prognos�c survival outcome in pa�ents with 372 

low IgM levels within the ini�al 24 hours of sepsis onset (126). In terms of treatment, 373 

supplementa�on of specific B cell subsets that are depleted or dysfunc�onal during sepsis 374 

may restore immune func�on. For example, adop�vely transferring B-1 cells could replenish 375 

natural immunoglobulin and suppress excessive inflamma�on (92, 93). Although levels of 376 

circula�ng immunoglobulin have proved controversial in dicta�ng disease course, 377 

considerable aten�on has been given to the use of intravenous immunoglobulin (IVIG) as an 378 

approach to modulate inflamma�on in sepsis, par�cularly in neonatal cases (127). Although 379 

IVIG therapy is an approved treatment for mul�ple condi�ons of immune dysregula�on, 380 

including Kawasaki disease which is o�en difficult to differen�ate from sepsis during the 381 



early stage of onset (128), IVIG has proved unsuccessful in reducing mortality in several large 382 

randomised controlled trials of pa�ents with sepsis (129-132). Poten�al limita�ons to trials 383 

include choice of subjects and �ming of treatment; with discrepancy in the literature 384 

repor�ng circula�ng immunoglobulin levels and prognosis in pa�ents with sepsis, treatment 385 

needs to be more specific and personalised. A method of first iden�fying the state of 386 

immunosuppression in pa�ents may enable guided selec�on for trials, and generate more 387 

promising results (133). The failure of clinical trials has resulted in guidance against the use 388 

of IVIG in sepsis and sep�c shock. Despite this, several studies have reported benefits of 389 

IgM- and IgA-enriched immunoglobulin administra�on (134) and indeed, such prepara�ons 390 

are widely used in addi�on to other treatments in sep�c shock to enhance immune func�on 391 

(135). The poten�al benefit of their combined administra�on has been suggested to stem 392 

from their dual ac�on in both the bloodstream and mucosal surfaces. The overarching 393 

consensus for best clinical prac�ce remains a personalised approach, with guidelines for 394 

dosage and �ming of administra�on highly dependent on the clinical phenotype.  395 

 396 

CD4+ TFH cells  397 

The process of pathogen-specific antibody production is reliant on help signals provided by 398 

specialised CD4+ TFH cells, which interact with B cells in the GCs of secondary lymphoid 399 

organs (136). GCs provide the primary site for high affinity antibody production via somatic 400 

hypermutation and class switching of B cells (84). CD4+ TFH cells govern the movement of B 401 

cells throughout the GC, and determine which cells are selected for differentiation into long-402 

lived plasma cells and memory B cells. Not only are CD4+ TFH cells crucial for supporting B 403 

cells, they play a critical role in GC formation and maintenance (84). CD4+ TFH cells were first 404 

described in the early 2000s, following work observing a unique CXCR5+ subset of CD4+ T 405 

cells in tonsillar tissue (137, 138). These cells were shown to express several markers 406 

important for B cell activation, indicating their involvement in tonsillar immune responses. 407 

Co-culture with naïve B cells demonstrated their capacity to induce class-switched antibody 408 

production, which was replicated and built-upon in subsequent studies (139). However, at 409 

this time, CD4+ TFH cells were not widely accepted as being distinct from TH1 or TH2 cells as 410 

the transcription factor driving their differentiation was unknown. Years later, CD4+ TREG and 411 

CD4+ TH17 cell types were characterised, based on the identification of lineage-determining 412 

transcription factors for these populations (FOXP3 for TREG cells and RORγt for TH17 cells). It 413 



was not until 2009, when the discovery of BCL-6 as a transcription factor essential for GC 414 

generation and high affinity antibody production allowed recognition of these cells as an 415 

individual CD4+ T cell type, acknowledging their distinct role as follicular B cell helpers (140-416 

142). 417 

 The GC is divided into two compartments described as the light zone and dark zone, 418 

so called due to their histological appearance (84). These zones form distinct sites for 419 

separation of the steps involved in the GC reaction. Within the light zone, B cells present 420 

antigen-MHC class II complexes to CD4+ TFH cells. In return, select B cells receive co-421 

stimulation and survival signals from CD4+ TFH cells to encourage migration to the dark zone. 422 

Such signals include IL-21, IL-4, and IL-10 secreted by CD4+ TFH cells (143, 144). IL-21 induces 423 

transcription of activation-induced cytidine deaminase in B cells, an essential factor for 424 

somatic hypermutation (145). This process involves the introduction of BCR point mutations 425 

to generate cells with a range of affinities for antigen. The somatically hypermutated B cells 426 

then return to the light zone, where those with highest affinity for antigen are positively 427 

selected for proliferation and survival. Further signalling via co-stimulatory molecules, IL-21, 428 

and IL-4, initiates their return to the dark zone for isotype class-switching (84). Class-429 

switched B cells may then either differentiate into plasma cells to secrete high-affinity 430 

antigen-specific antibodies or instead become long-lived memory B cells. After fulfilling their 431 

role, CD4+ TFH cells leave the GC and may either enter a GC in a neighbouring follicle, or re-432 

enter the same GC. Alternatively, CD4+ TFH cells may downregulate BCL-6 and enter the 433 

blood stream as memory CD4+ TFH cells.  434 

Expression of inducible co-stimulator (ICOS) on CD4+ TFH cells is important for all 435 

stages of differentiation and maintenance. Initially, ICOS on pre-CD4+ TFH cells binds to ICOS 436 

ligand (ICOSL) on dendritic cells to initiate priming and migration towards the B cell zone of 437 

the GC. Later, ICOS/ICOSL signalling between CD4+ GC-TFH cells and B cells ensures 438 

maintenance of CD4+ TFH cells for supporting antibody production. Other markers essential 439 

for CD4+ TFH cell function include OX40 and CD40 ligand (CD40L). Expression of both proteins 440 

is upregulated following activation of CD4+ TFH cells, promoting their accumulation at the T-B 441 

border where they bind their ligands on cognate B cells (146, 147). Bidirectional signalling 442 



results in IL-21 secretion to assist with B cell activation and proliferation, and GC 443 

maintenance (148). 444 

Tight regulation of the GC reaction is necessary to prevent generation of 445 

autoantibodies (149, 150). A fine balance is required to enable effective humoral immunity, 446 

whilst maintaining self-tolerance. One arm of control is achieved by a specialised subset of 447 

CD4+ TREG cells known as T follicular regulatory (TFR) cells (151). CD4+ TFR cells are similar to 448 

CD4+ TFH cells in that they express BCL-6 and CXCR5 but are distinguished by their expression 449 

of FOXP3. CD4+ TFR cells supress both CD4+ TFH and B cells to regulate the GC reaction (128, 450 

152). The mechanisms underpinning suppression remain to be completely elucidated, but 451 

one known method involves expression of the co-inhibitory receptor cytotoxic T 452 

lymphocyte-associated antigen 4 (CTLA-4), which functions to dampen co-stimulatory 453 

interactions between cognate CD4+ TFH and B cells (153). In addition, CD4+ TFR cells suppress 454 

IL-21 and IL-4 transcripts in CD4+ TFH cells, two cytokines vital for the selection of high-455 

affinity antibodies in the GC (154).  456 

CD4+ TFH cells and sepsis 457 

Although multiple studies have reported defects in humoral immunity in cases of severe 458 

infection and sepsis, these have  largely focussed on B cells and alterations in 459 

immunoglobulin release (37, 41, 155). For patients showing reduced levels of circulating 460 

immunoglobulin, proposed mechanisms include an impaired activation-capacity of 461 

plasmacytes, with increased expression of markers indicative of an exhausted phenotype 462 

(82). Secondary lymphoid organs from septic patients have been demonstrated to have a 463 

lower cellular density than those from healthy controls, encompassing the total follicular B 464 

cell population, but also follicular dendritic cells and CD4+ TFH cells (37, 156). These findings 465 

are consistent with a decline in circulating CD4+ TFH cells, and correlate with reduced B cell 466 

numbers and increased mortality (156). Despite these findings, a mechanism whereby 467 

impaired B cell maturation could be attributed to changes in the CD4+ TFH cell population has 468 

yet to be determined. Considering the close relationship between B cells and CD4+ TFH cells 469 

in the GC, and the dependency of follicular B cells on signals from CD4+ TFH cells for 470 

proliferation and survival, it seems plausible that a lacking humoral response could stem 471 

from insufficient support. Data from a murine model of sepsis showed blunted 472 



differentiation and class-switching of B cells in septic mice compared to controls, with 473 

reduced expansion and differentiation of CD4+ TFH cells following immunisation (157). 474 

Additionally, the importance of CD4+ TFH cells in supporting an antigen-specific B cell 475 

response has been demonstrated in ‘immune educated’ mice which, compared to standard 476 

laboratory mice, present a diverse repertoire of memory T cells (158). Following induction of 477 

CLP-induced sepsis, increased IL-21 production was indicative of increased functionality in 478 

CD4+ TFH cells, which in turn were able to reverse the sepsis-induced decline in splenic B cells 479 

seen in controls. Such an effect was accompanied by enhanced follicular B cell and GC 480 

development (158). These results demonstrate the critical role of CD4+ TFH cells in 481 

supporting antigen-specific B cell responses in conditions of inflammation. The commonly 482 

observed alterations in B cell development and functionality reported in humans suggest a 483 

potential defect in this relationship in sepsis. A lack of functional CD4+ TFH cells could induce 484 

apoptosis of B cells, through a loss of BCR signalling.  485 

 The underlying mechanisms driving changes in CD4+ TFH cells that could explain 486 

defects in immunoglobulin secretion are poorly characterised. Conditions of persistent 487 

stimulation during severe bacterial and viral infections have been well-reported to drive 488 

‘immunoparalysis’ in remaining T cells, describing an inability to mount or support an 489 

effective immune response (157). In a study of the response to SARS-CoV-2 infection and 490 

vaccination, the neutralising antibody response robustly correlated with the frequency and 491 

phenotypic polarisation of circulating CD4+ TFH cells (159). Specific subsets of circulating 492 

CD4+ TFH cells have been described, distinguished by their differential expression of the 493 

chemokine receptors CXCR3 and CCR6. Such subsets exhibit the behaviour of TH1, TH2 or 494 

TH17 cells, coined TFH1 (CXCR3+CCR6−), TFH2 (CXCR3−CCR6−), and TFH17 (CXCR3−CCR6+) cells 495 

respectively (160). High titres of SARS-CoV-2 spike-specific or neutralising antibodies have 496 

consistently been associated with the frequency of TFH1 cells, with variability in reported 497 

relationships between antibody responses and TFH2 or TFH17 cells across studies (161-163). 498 

The phenotype of circulating CD4+ TFH cells has been reported for several other viral 499 

infections or vaccinations, with no clear consensus on an overarching subgroup best 500 

equipped for supporting antibody production. For example, TFH1 and TFH17 cells were found 501 

to predominate in non-responders to influenza virus vaccination, with a skewed IL-2/IL-21 502 

axis incapable of supporting B cells (164). In contrast, an increase in the frequency of TFH17 503 

cells was demonstrated to correlate with enhanced antigen-specific antibody production 504 



following vaccination against Ebola virus (165). Data in patients with human 505 

immunodeficiency virus (HIV) show a positive correlation between the frequency of TFH2 506 

cells and the development of broadly neutralising antibodies, whilst TFH2 cells have been 507 

reported to impede an antiviral humoral response in chronic Hepatitis B virus infection (166, 508 

167). These varied findings potentially suggest a pathogen-specific aspect to the usefulness 509 

of different CD4+ TFH cell subgroups in supporting B cells. Although many groups have 510 

reported skewing of CD4+ TFH subsets in a virus-specific context, there are substantial gaps in 511 

the literature in the case of bacterial infections and sepsis. Based on the data, it seems clear 512 

that measurement of CD4+ TFH cell frequencies in sepsis alone may be insufficient to explain 513 

a dampened ‘helper’ response, and that phenotypic differences in CD4+ TFH cells could alter 514 

their overall functional capacity. A separate study demonstrated impaired function of CD4+ 515 

TFH cells in HIV-infected individuals, displaying downregulation of genes from immune- and 516 

GC-resident CD4+ TFH cell-associated pathways including c-MAF and its upstream mediators 517 

(168). These changes were associated with the resulting inefficient antigen-specific antibody 518 

response and death of memory B cells. Expression of c-MAF has been demonstrated as 519 

important in supporting BCL-6 expression in CD4+ TFH cells following immunisation (169). c-520 

MAF and BCL-6 are crucial for upregulation of CD40L and ICOS expression on CD4+ TFH cells 521 

as well as IL-21 signalling. Therefore, these transcriptional changes in HIV-infected 522 

individuals likely render CD4+ TFH cells incapable of positioning themselves correctly within 523 

the GC to interact with and support their cognate B cells (169). As HIV is a condition of 524 

chronic stimulation, it is plausible that sustained activation by high antigen load in sepsis 525 

could drive similar transcriptional changes in CD4+ TFH cells, rendering them incapable of 526 

supporting B cell development. The inadequate help provided by CD4+ TFH cells in HIV-527 

infected individuals has sparked interest into the role of CD4+ TFR cells in this context. In a 528 

study using an ex vivo model of tonsillar HIV infection and in vivo model of simian 529 

immunodeficiency virus infection in rhesus macaques, virus infection was associated with an 530 

expansion of suppressive CD4+ TFR cells, expressing increased levels of co-inhibitory 531 

receptors CTLA-4 and lymphocyte-activation gene 3 (LAG-3), and increased production of 532 

anti-inflammatory cytokines IL-10 and TGF-β (170). These cells were subsequently shown to 533 

impair CD4+ TFH function through inhibition of cell proliferation and production of IL-4 and IL-534 

21. The literature describing the role of CD4+ TFR cells in sepsis is sparse, however, could 535 

provide important insight into functional changes to CD4+ TFH cells if severe bacterial 536 



infections drive a similar expansion of CD4+ TFR cells as seen in HIV infection. Further studies 537 

are required to determine if this is the case for sepsis, but also to expand our knowledge of 538 

CD4+ TFH cell-mediated humoral immunity in the context of bacterial infections and sepsis 539 

(Figure 2). 540 

 541 

Alterations in other conventional and unconventional T cell types during sepsis 542 

Sepsis-induced changes to T cells have been widely studied and implicated as important 543 

factors in determining the overall response and likelihood of survival. The sepsis-driven 544 

lymphopenia disproportionately targets the pool of antigen-inexperienced T cells in both 545 

mouse models and human studies (171, 172). This has been attributed to both a thymic 546 

defect affecting the output of newly generated T cells, and the acquisition of memory-like 547 

characteristics in otherwise naïve cells (173). Such changes to the composition of the overall 548 

T cell repertoire contributes to increased susceptibility to secondary infections and may 549 

impair memory T cell generation (171, 172). In elderly patients, whose naive T cell pool is 550 

substantially reduced, destruction of this pool could cause long-term defects in mounting an 551 

effective immune response to new antigens (106, 174). Although naïve cells are particularly 552 

susceptible to sepsis-induced apoptosis and phenotypic changes, a numerical loss of existing 553 

memory CD4+ and CD8+ T cells has also been demonstrated (175, 176). Within the pool of 554 

memory CD4+ T cells, a preferential loss of ‘helper’ subpopulations including TH1, TH2 and 555 

TH17 cells shifts the balance towards a greater proportion of FOXP3+ TREG cells (176-178). 556 

TREG cells represent a subset of CD4+ T cells implicated in negative immunomodulation, and 557 

the effects of their representative increase has been debated. Mouse models have 558 

demonstrated that the relative increase in TREG cells is accompanied by an increased 559 

suppressive capacity. Indeed, TREG cells were shown to suppress T cell proliferation to a 560 

greater degree in septic mice than those in sham-injured mice, with particular suppression 561 

of TH1-type cytokine production (179). Additionally, TREG cells induced apoptosis of 562 

monocytes and neutrophils in a CLP mouse model of sepsis through either Fas/FasL 563 

signalling or IL-10 secretion (180). This enhanced suppression by TREG cells has been 564 

correlated with worsened severity, however, other studies have correlated increased TREG 565 

cell representation with an improved outcome and pathogen control (181, 182). 566 

Discrepancies may be due to timing of sample collection and infection course, with TREG cells 567 

perhaps proving beneficial in patients experiencing overwhelming inflammation, whilst 568 



damaging in cases of immune exhaustion. TREG cells have been suggested as a potential 569 

target for therapeutic intervention, however further analysis is necessary to determine 570 

approach (181, 183). 571 

The overall numerical reduction of CD4+ T cells is accompanied by functional defects, 572 

evidenced by increased rates of latent viral reactivation in septic patients (43, 44, 184, 185). 573 

A global, post-sepsis state of anergy has been proposed in CD4+ T cells, through evidence of 574 

little or no pro- or anti-inflammatory cytokine production being evident following anti-575 

CD3/CD28 stimulation in post-mortem spleen and lung samples (14). Additionally, studies 576 

have shown a reduction in proliferative capacity and lineage-specific transcription factor 577 

expression, affecting the regulation of CD4+ T cell subset differentiation (172, 186). These 578 

observations are in line with increased co-inhibitory receptor expression such as PD-1 CTLA-579 

4, LAG-3 and T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), altering 580 

how CD4+ T cells communicate with and modulate the responses of other immune cells (55, 581 

187). In a normal immune response, TH1, TH2 and TH17 cells provide help to naïve CD8+ T 582 

cells to ensure a highly controlled and functionally specific response (36). In addition, such 583 

signals promote clonal expansion upon re-encounter with antigen (188, 189). ‘Helpless’ T 584 

cells are instead destined for apoptosis. Decline of helper T cell populations during sepsis 585 

creates an environment in which CD8+ T cells could proceed to respond to antigen without 586 

CD4+ T cell help. This effect has been suggested to impair the early T cell effector response 587 

and contribute to a suppressive environment, through apoptosis of CD8+ T cells (188, 189). 588 

In addition, lack of CD4+ T cell help during primary infection results in memory CD8+ T cells 589 

which lack the capacity to respond during re-infection (36). Memory CD8+ T cells from 590 

survivors are prone to exhaustion during chronic infection, with reduced capacity to secrete 591 

pro-inflammatory cytokines and increased expression of co-inhibitory receptors (171, 190).  592 

 Research exploring sepsis-induced changes to T cells is largely focussed on 593 

conventional αβ T cells, with substantial gaps in the literature describing changes in 594 

unconventional T cell populations with antimicrobial functions, such as γδ T cells and 595 

mucosal-associated invariant T (MAIT) cells. As the first T cell population formed during 596 

embryonic development, γδ T cells constitute 0.5-5% of circulating CD3+ T cells in adult 597 

humans (191, 192). γδ T cells rapidly produce effector cytokines in response to bacterial 598 



infections and mediate protective immune responses against pathogenic microorganisms 599 

such as Mycobacterium tuberculosis (reviewed in (191)). Additionally, certain γδ T cells 600 

appear to possess potent antigen-presenting abilities during infections (193, 194). These 601 

unconventional T cells exist as two main populations in humans based on their encoded TCR 602 

δ-chain: Vδ1+ or Vδ2+ T cells.  Vδ2+ T cells constitute the majority of peripheral blood γδ T 603 

cells whilst Vδ1+ T cells are less frequent in the blood and are more abundant in epithelial 604 

and mucosal tissues such as the skin, intestine and uterus (191, 195-198). In humans, the 605 

number of circulating γδ T cells decline in patients with sepsis compared to healthy controls, 606 

with an imbalance of pro- or anti-inflammatory functional changes depending on the 607 

subtype (199-201). One study found an association between the degree of γδ T cell 608 

reduction and severity, whilst a separate study showed that impaired IFN-γ expression 609 

following in vitro antigen stimulation correlated with mortality (200, 202). Furthermore, the 610 

ability for γδ T cells to act as APCs is impaired during sepsis (203). These sepsis-induced 611 

effects on γδ T cells appear to be specific to Vδ2+ T cells as it has been reported that 612 

peripheral Vδ1+ T cells increase in frequency during sepsis and correlate with increasing 613 

SOFA score and mortality (199). Additionally, the expression of the co-inhibitory receptors 614 

CTLA-4 and TIM-3 were increased on these peripheral Vδ1+ T cells which are thought to 615 

possess an immunosuppressive function (199).   616 

 MAIT cells are ‘innate-like’ αβ T cell populations that make up 1-10% of all T cells in 617 

blood and mediate rapid, protective immune responses against bacterial species with intact 618 

riboflavin biosynthesis pathways, including E. coli and S. aureus (192, 204-206). MAIT cells 619 

use semi-invariant αβ  TCRs to recognise ribityllumazine- and pyrimidine-based metabolite 620 

antigens from the riboflavin biosynthesis pathway, such as 5-OP-RU, that are presented by 621 

the non-classical MHC-like molecule, MR1 (207, 208). Such TCRs typically contain conserved 622 

usage of TCR α-chain variable gene 1-2 (TRAV1-2) paired with a biased pattern of TCR β-623 

chain variable (TRBV) genes, such as TRBV20-1, TRBV6-4 or TRBV6-2/6-3 (204, 209, 210). 624 

MAIT cell-deficient (Mr1−/−) mice demonstrate an enhanced susceptibility to bacterial 625 

infection (204) and increased mortality upon experimentally-induced sepsis (211). 626 

Furthermore, this and other studies found reduced frequencies of MAIT cells in human 627 

patients with sepsis (211-214). Whilst MAIT cells from these patients expressed more 628 

activation makers (e.g. CD69, CD38, HLA-DR), they also exhibited higher levels of co-629 



inhibitory receptors (e.g. LAG-3, TIM-3) and were functionally deficient (211, 212, 214). 630 

Indeed, in one study, such functional impairment of MAIT cells worsened over time during 631 

patient recovery from sepsis (212). Furthermore, the phenotypic status of MAIT cells in 632 

sepsis patients may serve as a possible prognostic marker as the percentage of HLA-DR+ 633 

MAIT cells has been shown to be effective in predicting mortality and patient APACHE II 634 

scores (214). Despite this knowledge, the impact of sepsis on MAIT cells and γδ T cells is 635 

poorly understood and also particularly understudied compared to more conventional αβ T 636 

cell populations. Data in mouse models of sepsis further illustrate the importance of MAIT 637 

cells and γδ T cells in modulating the host response to sepsis and their positive influence on 638 

survival (211, 215). Thus, further studies are required to expand our knowledge of sepsis-639 

induced alterations in MAIT and γδ T cell immunity and to determine their utility as a 640 

prognostic biomarker or as a target for therapeutic intervention. 641 

 642 

Conclusions 643 

Dysregulation of the adaptive immune system is a defining feature of sepsis, but the exact 644 

manifestation is widely variable between individuals. For this reason, developing novel 645 

therapeutics for sepsis has proved to be a challenge for over 30 years and, indeed, progress 646 

has been failing to meet the increasing demand as the burden of sepsis on hospitals 647 

worsens across the globe. A marked lymphopenia is a common feature across the literature; 648 

however, the phenotype of remaining cells is less well-defined. It is vital to develop a better 649 

understanding of the mechanisms underpinning the observed immune dysregulation to be 650 

able to suggest new targets for treatment or diagnostic biomarkers. Based on the diverse 651 

findings of several groups, it seems that considering sepsis as multiple separate conditions 652 

by grouping individuals displaying similar characteristics could show more promise for 653 

translating results to clinical practice. Patients frequently experience immunosuppression in 654 

some form during the course of sepsis, which can result in high susceptibility to secondary 655 

infections whilst hospitalised, and a decline in the long-term function of their immune 656 

system post-recovery. This may present as an impaired ability to produce high-affinity 657 

antibodies against pathogens, and as such may also have a negative impact on how 658 

individuals respond to vaccination post-sepsis. The relationship between CD4+ TFH cells and 659 

B cells in sepsis remains to be thoroughly addressed, and also how the regulation of CD4+ 660 



TFH cells by CD4+ TFR cells is affected in this setting. Further work in this area could provide 661 

important insight into the decline in antibody production observed in many cases, and 662 

uncover new targets for treatment or modulation of the adaptive immune system long-term 663 

post-discharge from ICU.  664 
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Figure Legends 724 



 725 

Figure 1: Destabilisa�on of the adap�ve immune system in sepsis. 726 

 727 

A marked lymphopenia is a common feature of pa�ents with sepsis, predominantly 728 

atributed to apoptosis of lymphocytes. Other suggested causes include reduced produc�on 729 

of precursor cells, and increased migra�on of lymphocytes to infected �ssues, thus reducing 730 

the frequency of circula�ng cells. Remaining cells are reported to exhibit phenotypic and 731 

func�onal altera�ons, including skewed cytokine produc�on, reduced HLA-DR expression in 732 

B cells and increased expression of co-inhibitory receptors on CD4+ T cells, which decline in 733 

number and provide inadequate help to CD8+ T cells. Equally, CD4+ TREG cells increase in 734 

propor�on, but whether this is posi�vely or nega�vely associated with prognosis has been 735 

debated. Furthermore, the benefit of immunosuppression elicited by BREG cells is not clearly 736 

defined. Immunoglobulin levels decline, but this has been reported to correlate with both 737 

improved and worsened outcomes across different studies. HSC: Haematopoie�c stem cell 738 

 739 

Figure 2: Suggested mechanisms of impaired CD4+ TFH cell ac�vity during sepsis 740 

 741 

During a normal response to infec�on (le� panel), CD4+ T cells are ini�ally primed by 742 

dendri�c cells, inducing transcrip�on of BCL-6 and subsequent expression of CXCR5 and 743 

other proteins important for migra�on to the B cell follicle, and genera�on of the germinal 744 

centre (GC). Within the GC, CD4+ TFH cells provide signals (IL-21, IL-4, IL-10) to B cells for 745 

soma�c hypermuta�on (SHM) and class-switch recombina�on (CSR), selec�ng those with 746 

highest affinity for an�gen to differen�ate into plasma cells or long-lived memory B cells. 747 

This process is regulated by CD4+ TFR cells. GC- CD4+ TFH cells may then downregulate BCL-6 748 

and enter the periphery as circula�ng memory cells, displaying different phenotypes through 749 

differen�al expression of CXCR3 and CCR6. During sepsis (right), mul�ple aspects of this 750 

process may be altered to result in inadequate B cell support. Suggested mechanisms 751 

include impaired transcrip�on of c-MAF and BCL-6, resul�ng in reduced migra�on to the 752 

follicle to interact with cognate B cells. This could result in downstream effects of reduced 753 

numbers of GC- CD4+ TFH cells with the correct protein expression profile needed to provide 754 

support. Alterna�vely, prolifera�on of CD4+ TFR cells may result in enhanced suppression of 755 

GC- CD4+ TFH cells. Both of these effects could result in a reduc�on in plasma cell 756 



differen�a�on and thus reduced an�body secre�on. Alterna�vely, skewed expression of 757 

CXCR3 and CCR6 on circula�ng CD4+ TFH cells could alter their cytokine signatures and 758 

subsequent ‘helper’ ability in the periphery. DZ: dark zone; LZ: light zone. 759 
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