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Abstract
Within manufacturing there is a growing need for autonomous Tool Condition Monitoring (TCM) systems, with the ability
to predict tool wear and failure. This need is increased, when using specialised tools such as Diamond-Coated Burrs (DCBs),
in which the random nature of the tool and inconsistent manufacturing methods create large variance in tool life. This
unpredictable nature leads to a significant fraction of a DCB tool’s life being underutilised due to premature replacement.
Acoustic Emission (AE) in conjunction with Machine Learning (ML) models presents a possible on-machine monitoring
technique which could be used as a prediction method for DCB wear. Four wear life tests were conducted with a ∅1.3 mm
#1000 DCB until failure, in which AE was continuously acquired during grinding passes, followed by surface measurements
of the DCB. Three ML model architectures were trained on AE features to predict DCB mean radius, an indicator of overall
tool wear. All architectures showed potential of learning from the dataset, with Long Short-Term Memory (LSTM) models
performing the best, resulting in prediction error of MSE = 0.559 μm2 after optimisation. Additionally, links between AE
kurtosis and the tool’s run-out/form error were identified during an initial review of the data, showing potential for future work
to focus on grinding effectiveness as well as overall wear. This paper has shown that AE contains sufficient information to
enable on-machine monitoring of DCBs during the grinding process. ML models have been shown to be sufficiently precise
in predicting overall DCB wear and have the potential of interpreting grinding condition.
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1 Introduction

Real-time Tool Condition Monitoring (TCM) is becoming
more desirable within the manufacturing industry to combat
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the costs associated with tool wear and failure. Tool wear
not only impacts the machined surface quality and machin-
ing precision but also the process efficiency, with 20% of
machine tool downtime being a result of tool failure [1]. This
problem is exacerbated when utilising specialised tools com-
monly found within the grinding sector. Diamond-Coated
Burrs (DCBs) are used extensively in the manufacture of
high hardness ceramic or glass components, with complex
forms preventing the use of traditional grinding wheels. Sim-
ilarly, to traditional machine tooling, DCBs come in a variety
of sizes, profiles, grits and construction types. Dissimilarly
however, DCBs have large variation in tool life between
tools of the same specification. As small diameter mono-
layer tools, the grinding behaviour changes throughout each
DCB’s life and it is not possible to dress DCBs to achieve
low run-out [2, 3]. Additionally the electroplating fabrication
method causeswheel parameters such as: grain density, spac-
ing and protrusion height all to follow a normal distribution,
in which the standard deviation increases with decreasing
tool diameter [4]. These factors and inherent variation make
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predictive monitoring of a DCB’s Remaining Usable Life
(RUL) difficult without offline measurement. As such, it is
typical for only 50-80% of the tool life to be utilised [5].
DCBs are categorised by their manufacturing method, elec-
troplated or sintered. Electroplated DCBs are mono-layer
tools, in which a singular layer of diamond grains are plated
to the tool’s core with a nickel bondingmaterial, Fig. 1 shows
the diamond grains (black) protruding from the nickel bond
material (grey). Due to the increase in costs of sintered DCBs
above the micro level, electroplated tools are more widely
used. Utilised as "mill-grinding" tools DCBs share charac-
teristics from both grinding wheels and end mills. Recent
work has shown that DCB tools wear via similar mecha-
nisms found in grinding wheels, mainly grain fracture and
pullout [6, 7]. The monitoring of these tools however is very
limited. Huang et al. [8] is the only study to explore this area,
in which the impact of differing DCBwear states on acquired
Acoustic Emission (AE) features was investigated. Ampli-
tude of both the AE time domain and specific frequency
ranges were shown to be affected by tool wear state, sug-
gesting this could form the basis for a monitoring system
of DCBs. But with limited tool wear measurements during
one wear test, the work does not show how the tool’s evolu-
tion affects AE and whether these features are common for
multiple DCBs during different tests.

1.1 Background

1.1.1 Grinding wear

Grinding applications have long been a key area of study
for TCM systems due to their complicated and random
nature, when compared to conventional machining pro-
cesses. Grinding tool wear is the result of the culmination
of many individual interactions between abrasive grains and

Fig. 1 SEM image of an unused #1000 ∅1.3 mm Electroplated DCB

the workpiece material [9]. Three main mechanisms dom-
inate the wear process of grinding tools: attritous wear,
micro/macro grain fracture and bond fracture [10, 11]. Attri-
tous wear involves the flattening/dulling of abrasive grains
due to insufficiently large grinding forces for fracture. Grain
micro fracture is the favourable wear mechanism enabling
the tool to stay sharp with a slow but consistent wear rate.
Grain macro-fracture differs by breaking the grain into larger
fragments, implying the complete removal of the grain is
imminent and rapidly accelerates tool wear. Bond wear
occurs mainly through removed material debris and can lead
to grain pullout [11, 12].

Overall, tool wear results from a combination of all three
wearmechanisms, making the grinding tool’s end of life hard
to identify. Excessive grinding forces and out of tolerance
workpieces both suggest a grinding wheel has reached end
of life [13]. But, without a skilled operators involvement or
direct measurement it is difficult to ascertain a tool’s wear
state. As a result, a grinding tool’s RUL is normally quan-
tified by either volumetric loss, radial wear or time spent
grinding [9, 14]. These threemetrics are limited because they
are not informed by the current tool’s wear state potentially
leading to large under/over predictions of a tool’s RUL.

1.1.2 Sensing methods: acoustic emission

Current tool wear measurement techniques are classified by
their sensingmethods. Directmethods utilise optical or phys-
ical means to measure tool wear, whereas indirect methods
infer the wear from a variety of sensors such as AE, vibra-
tion, cutting force, spindle power and contact resistance [15].
Whilst indirect methods are typically less precise, they are
favourable over direct methods within the manufacturing
industry for twomain reasons: difficultly to opticallymeasure
within amachine environment, and the expense ofmeasuring
with respect to both time and cost [16].

Of the indirect monitoring methods, AE has become one
of the most promising and widely used methods for grind-
ing process monitoring [17]. The AE technique utilises the
phenomenon in which as a material experiences a perma-
nent change from damage, energy is spontaneously released
in the form of elastic waves. These high frequency elastic
waves are monitored and recorded to form the basis of AE
monitoring. Unlike most other acquisition methods, AE can
be generated by very small interactions between the tool and
workpiece. Lee [18] was able to identify changes between
brittle and ductile regimes in an atomic force microscope
based nanomachining operation with traditional AE analy-
sis techniques utilising both AE time and frequency domain
features. Pandiyan and Tjahjowidodo [19] identified chang-
ing material removal mechanisms (rubbing, ploughing and
cutting) of a single aluminium oxide abrasive grain, from the
Short Time Fourier Transform (STFT) of acquired continu-
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ous AE. AE’s high signal/noise ratio and sensitivity at the
micro scale, both of which stem from AE’s inherent high
frequency content (ranging from 10 kHz - 2.5 MHz), make
it desirable when compared to other sensing methods which
are typically limited at extremely small depths of cut [20–
22]. The higher frequency range of AE prevents machine
noise from dominating the acquired signals, isolating the
microscale machining mechanisms within noisy machining
environments [23, 24]. AE sensor choice, coupling and loca-
tion all impact the acquired signals. High frequency signals,
such as AE, attenuate with distance and surface boundaries,
consequentlyAE sensors operate bestwhenmounted as close
to the source as possible. Typically within machine tools,
AE sensors are bonded to the workpiece directly [25, 26],
the work-holding device [17, 27] or spindle head [28, 29].
Additionally it is possible to acquire AE with coolant as a
transmission pathway [30, 31].

As a result AE is well-suited to the monitoring of machin-
ing processes at the precision level, stemming from its ability
to detect microscale deformation mechanisms within noisy
machining environments, leading many researchers to utilise
AE for grinding applications. Yesilyurt et al. [17] monitored
plunge grindingwithAE, andwas able to identify healthy and
burn-damaged conditions from time-frequency processing
methods. Additionally, the sensitivity of AE allowed changes
in operating conditions, depth of cut and infeed rate, to be
identified. When cutting conditions were changed the fre-
quency spectra’s shape remained consistent but its power at
certain peaks were altered. Wan et al. [26] identified high
correlation frequency bands between 0 - 300 kHz from AE
signals collected during the grinding of alumina ceramics.
Signal features were then extracted and a random forest opti-
misation algorithm then enabled the prediction of grinding
wheel wear states. Leading to a classification accuracy of
90.6%, when using features from within these frequency
bands. Bi et al. [27] employed linear discriminant analysis
(LDA) in which samples of AE from tools of varying wear
levels were projected into a low-dimensional feature space.
LDAwas capable of showing division between states ofwear,
and with the addition of sub-states allowed the real-time pre-
diction ofwear state based solely on samples from the current
grinding wheel.

1.1.3 Monitoring and prediction approaches

To effectively predict traditional grindingwheel wear a range
of methods have been developed consisting of physics-based
models and data-driven/statistical models [32]. Physics-
based models require in-depth knowledge of the system to
generate models based on the fundamental failure mecha-
nisms. Accurate analytical models are rare due to the com-
plexity and incomplete understanding of the wear process,
and as such are typically limited in scope and applications.

Data-driven models require significant data in order for the
models to be trained, but require little expertise about the
process [33]. Due to the random nature of grinding pro-
cesses, statistical or data-driven models are more commonly
employed and successful as the models can easily be updated
in real-time when the process inherently changes [32, 34].
Additionally, as the increase of collected data to monitor
machine tools becomes more prevalent, advancements in
Machine Learning (ML) and deep learning methods that
can exploit this information are highly desirable [35]. ML
approaches stand out within the data-driven category, com-
prising of manymethods and architectures all of which allow
for the training of a model based on inputted raw data or
extracted features. A range of ML architectures have been
employed and validated within TCM, for a variety of prob-
lems. The most popular category of which are Artificial
Neural Networks (ANNs), mainly Multi-Layer Perceptron
(MLP), Recurrent Neural Network (RNN) and Convolu-
tional Neural Network (CNN). MLP neural networks are a
standard yet effective architecture for a range of applica-
tions, being capable of handling large datasets and multiple
inputs. Defined as a feed-forward neural network comprised
of at least three fully-connected ("Dense") layers: an input
layer, hidden layer/s and an output layer. Abu-Mahfouz
[36] demonstrated the capability of an MLP architecture
to classify the type and state of wear of twist drills based
on vibration signals. A combination of time and frequency
domain features were extracted and used as inputs, leading
to a classification rate of 80% in drill wear type. A detec-
tion model for grinding wheel burn from AE was developed
by Wang et al. [37]. Two feature groups from AE were
selected as inputs to MLP models, autoregressive features
and averaged statistical properties, from which regions of
burn could easily be identified, even when trained on a small
dataset. Moia et al. [38] used three AE time domain statis-
tics, including AErms , to classify grinding wheel condition.
AE was acquired during the dressing process, leading to a
mean classification error of < 0.3%. However, a limitation
of this application, was the binary classification states of
dressed or un-dressed. A different approach was taken by
Nakai et al. [39], in which MLP regression models were
optimised for radial grinding wheel wear, allowing a con-
tinuous range for prediction. The study also compared the
effect of differing sensor inputs and features, with the three
best performing model all utilising only AE based features.
Prediction percentage errors of < 4.8% across three depth
of cuts were achieved, but due to the required dataset size
training occurred offline.

CNNs are a widespread and advanced deep learning
method, having been successful for computer vision, image
recognition and classification tasks. CNNs require 2-Dimen-
sional input data, which typically takes the form of images.
Through three main layers convolutional, pooling and fully-
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connected, CNNmodels are able to classify 2D data based on
similar patterns or features [35, 40]. Gouarir et al. [41] used
an encoded representation of each force component as inputs
for a singular CNN. Force data was taken from a milling
operation using a 6 mm ball nose end mill over 315 cutting
passes. The CNN was trained to classify the data into three
states (rapid initial wear, uniform wear and failure wear),
leading to an overall accuracy of 90% without any feature
extraction or selection having taken place. However, due to
the shorter nature of the initial and failure wear states, mis-
classification rates were higher when labelling data in these
categories. Bi et al. [25] utilised a CNN model for grind-
ing wheel classification based on raw AE waveform inputs.
The selected model contained two convolutional layers, a
max-pooling layer and two additional fully-connected lay-
ers before the output layer, leading to a prediction accuracy
of > 90%. This result however is of more interest as the
authors used 19 prediction labels representing 19 sequential
wear states, instead of three states. Additionally Bi et al. [25]
visualised the outputs of the two convolutional layers, which
indicated the layers focused on differing frequency ranges of
AE (150-200 kHz and 0-50 kHz respectively). Showing the
capability of CNNs to extract differing AE components from
the raw time-domain signal. Recently the use of CNN mod-
els has allowed for the direct use of time-frequency domain
representations, such as the STFT and various wavelet trans-
form methods, potentially allowing a more informationally
dense input feature [42–45].

A limitation of both MLP and CNN models is their lack
of consideration for the temporal nature of certain input data
types.RNNswere developed to fill this void, enablingmodels
to have access to the history of previous inputs. This mem-
ory allows RNNs to learn representations across sequenced
or time-series data [46]. Long Short-Term Memory (LSTM)
models have prevailed as the most useful and applicable
RNN, allowing long-term and short-term dependencies to
be captured [47]. LSTMs have been applied to a range of
problems, including speech recognition [48], genome mod-
elling [49] and natural language processing [50]. Zhao et al.
[32] compared multiple ML architectures against both basic
and deep LSTMmodels for regression of flank wear of a ball
nose end mill. The dataset comprised of input data of force
and vibration signals collected duringmilling, and flankwear
measurements were conducted offline after every cut as the
desired output.Without feature selection deep LSTMmodels
(comprising of 21-21-28 LSTM cells) performed well across
the twometrics, root mean squared error of 13.73 and amean
absolute error of 10.73 across three datasets.When compared
with the entire measured dataset the trained model showed
the capability to predict and follow the trend of wear across
the whole cycle. Guo et al. [51] applied a similar experimen-
tal procedure to grinding wheel wear. With a combination
of data from force, vibration and acoustic emission sensor, a

LSTM model was able to achieve a root mean squared error
of 0.240 and a R2 score of 0.994. This is a large improve-
ment in prediction scores compared to Zhao et al. [32] but
does require the selection and processing of input features
prior to training.

Based on the presented literature this is the first paper
to utilise ML for TCM on this type of tool supported by
directwearmeasurements. A series of four tool life testswere
conducted, allowing the collection of AE and wear measure-
ments throughout a DCB’s life. During all grinding passes,
an AE sensor mounted to the workpiece was used as an indi-
rect sensing method and acquired AE throughout, with DCB
circumferential surface profiles measured immediately after
each pass. A Renishaw NC4 system was utilised to measure
surface profiles within the machine tool, negating the need to
remove the tool from the spindle for direct measurements, a
key point to maintain consistent levels of run-out throughout
the test. Existing techniques were utilised to train prediction
models for regression analysis using MLPs, MLP with slid-
ing windows and LSTMs, to predict the expected tool wear
from AE features. The performance of each model archi-
tecture was evaluated with repeated Cross-Validation (CV)
techniques from which they were compared. With the over-
arching aim of validating existing ML techniques for an AE
based TCM system to be applied to DCB monitoring. Over-
all, a means of effective monitoring and prediction of DCB
tool wear during grinding was demonstrated with the hope
to improve the efficiency and quality of the DCB grinding
process whilst reducing costs.

2 Methods

This section presents the methodology in order to acquire
the relevant AE and tool wear data, as well as the techniques
utilised to develop and evaluate the predictive TCM models.

2.1 Experimental procedure

To gain sufficient data for the supervised learning process,
four tool life tests were conducted. Every test started with
a new DCB and concluded when total tool failure was
detected, in between which the tool repeated the same grind-
ing operation and underwent periodic surfacemeasurements.
A Genentech ∅1.3 mm #1000 DCB tool was used in each
test, grinding silicon carbide workpieces. To capture a com-
prehensive dataset, each tool was run until failure, ensuring
data was acquired during the tool’s final wear stage [10, 52].
Tool failure was determined by a reduction in tool length ≥
0.5 mm between consecutive grinding passes, measured by a
Renishaw NC4+ blue optical tool setter [53]. This indicates
a complete failure of the tool.
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Throughout all four tests the grinding parameters and tool
specifications were kept constant, detailed in Table 1. As a
result, variations in the total number of cuts completed in
each test were the effect of differing initial tool conditions or
varying wear rates, during the test.

To wear the DCB a side milling grinding operation was
selected, it allowed for easier observation of the workpe-
ice surface post-grinding and is a good representation of
a common mill-grinding operation used with DCBs [54–
56]. Figure 2 shows the side milling operation with labelled
dimensions from Table 1. A cut comprised of a single grind-
ing pass across the 20 mm width of the workpiece, L .
Grinding was conducted in a Jingdiao VT600 A12Smachine
centre, operating with a water-based coolant to prevent ther-
mal degradation of the diamond tools.

After every grinding pass, the tool’s surface wasmeasured
by the Renishaw NC4+. Circumferential surface profiles
weremeasuredwithout changing or removal of the tool, elim-

Table 1 Test specification

Grinding Parameters

Grinding Machine Jingdaio VT600 A12S

Machining Operation Side Milling

Cutting Speed, n 98 m/min

Feedrate, V f 60 mm/min

Depth of Cut - Axial, ap 5 mm

Depth of Cut - Radial, ae 0.03 mm

Grinding Length, L 20 mm

DCB Specification

Tool Geometry Cylindrical

Type Electroplated Mono-layer

Tool Diameter ∅ 1.3 mm

Mesh size #1000

Abrasive Grain Size 15 μm

Workpiece Specification

Material Green Silicon Carbide

Bond type Vitrified

Dimensions 100x20x10 mm

Grain Size 240

Knoop Hardness 2840 kgfmm−2

Relative Toughness 1.6

Coolant Specification

Coolant Supergrind Ultra

Supplier Morris Lubricants

Type Synthetic Water-based

Concentration 2.5 - 3.0%

Operating Temperature 18◦C
Flow rate 4 Lmin−1

Fig. 2 Diagram of a DCB side milling the SiC workpiece

inating changing levels of run-out between the spindle and
tool collet. Each circumferential measurement was taken at
halfway up the axial depth of cut, ap (2.5 mm from the end
of the tool). This measurement location is recommended by
Renishaw as standard operating procedure, minimising the
chance of not measuring the region of interest, due to thermal
drift or misalignment.

To record the AE, a MISTRAS Wideband Differential
(WD) sensor [57] was bonded with silicon sealant to the
workpeice’s top surface. Figure 3 shows the position of the
AE sensor in relation to theworkpiece and grinding face. The
mounting position was chosen to minimise signal attenua-
tion without compromising ease of attachment. WD sensors
have high sensitivity across a wide bandwidth 100 - 900 kHz
with minimal dropoff outside this range, which is beneficial
when the frequency content of the signal is unknown. Dur-
ing each grinding pass AE was sampled continuously at 2
MHz by a National Instruments PXI oscilloscope, having
been conditioned by a MISTRAS 2/4/6 pre-amplifier prior
to acquisition. The pre-amplifier filtered the AE through a 0
- 1200 kHz bandpass filter as well as amplifying with a gain

Fig. 3 Dimensioned silicon carbide workpiece model with AE sensor
shown
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of 20 dB. To ensure the AE system was set up correctly and
the mounting position was adequate, prior to all tests a Hsu-
Neilson pencil lead break test was conducted both next to the
sensor and at the cutting face [58]. Figure 4 shows overall
layout of equipment within the machine tool.

2.2 Approach for TCM regressionmodel

Wear tests following the experimental procedure in Sec-
tion 2.1 record continuous AE during each grinding pass
followed by measuring the tool’s wear state, enabling a
predictive regression model to be produced with these two
measurements as the input and outputs respectively. Mean
radius was chosen as the regression target from the tool mea-
surements, as the best indicator of RUL following the trend
of a typical wear cycle, detailed in Section 3.1. This choice is
relevant as volumetric loss of grinding wheels is a common
metric for RUL within manufacturing [9, 14]. The aim of
the developed models was to predict the given overall DCB
wear, a product of the mean tool radius, after a given pass
with solely AE inputs.

2.2.1 Pre-processing

Prior to models being trained, the data first was pre-
processed, split and normalised. It is common for AE data
to be represented as simplified extracted features, acting as a
basic method of dimensionality reduction [59]. With careful
selection, these extracted features have been shown to con-
tain sufficient information to discriminate between different

Fig. 4 Labelled experimental layout within the machine tool

damage modes and sources [60, 61]. From each AE signal,
four time domain and three frequency domain features were
extracted. Table 2 shows the extracted time domain features.
The partial power from 3 different 1 kHz frequency bins (10,
35 and 134 kHz) were extracted from the power spectrum
density (PSD) of each signal. These frequency bins were
chosen based on their pearson correlation coefficient with
the target feature. The Fast Fourier Transform (FFT) was
used to transform the time domain AE signals into the fre-
quency domain, with a Hanningwindow of 1000 samples per
window. From which the PSD is calculated as the modulus
squared of the FFT [62–64]. Each featurewas calculated only
during the period of grinding, shown by the trigger points in
Fig. 5.

To get a true evaluation of any MLmodel, the dataset was
then randomly split into a training and validation set, with
20% of the data being reserved only for validation scoring.
After which the data was normalised to a range between 0-
1 using Eq. 1, a common technique when the features are
of vastly different scales. Importantly the validation data
was scaled based on minimum and maximum values from
the training set, avoiding contamination between the two
datasets.

X ′ = X − Xmin

Xmax − Xmin
(1)

2.2.2 Model architecture

With the collected dataset, the frequent wear measurements
enabled the problem to be framed as supervised regression
in place of the more commonly utilised classification tech-
niques for TCM. Three different ANN architectures were
selected, optimised and evaluated: MLP, MLP with sliding
time window (MLP_WIN) and LSTM.

MLP models are a simple and well researched form of
ANN, and as such are the ideal baseline for comparison of
other architectures or novel processing techniques.MLPs are
feed-forward networks comprising of at least three layers of
perceptrons/neurons; the input layer, the hidden layer/s and
the output layer. Figure 6 shows a diagrammatic represen-
tation of the MLP architecture, displaying each layer and

Table 2 AE time domain features

AE time domain feature Formula

Root Mean Square (AErms )
√

1
n

∑n
i=1 yi 2

Peak Amplitude (AEypeak ) max ‖yi‖
Kurtosis (AEκ )

1
n

∑n
i=1 (yi−ȳ)4

σ 4

Skewness (AEγ )
1
n

∑n
i=1 (yi−ȳ)3

σ 3
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Fig. 5 Raw AE signal from Test 3 Cut 10 with trigger points displayed
by vertical dashed red lines

neuron connections. For a given neuron in layer k it is con-
nected to each neuron in the previous layer k − 1, forming
a fully-connected or "dense" layer, as seen in Fig. 6. Each
input to every neuron is separately weighted, before the sum
is added to a bias term and passed through an activation func-
tion, φ. The activation function allows for the introduction
of non-linearity into the model, a vital component of MLPs
success. The computation of the output for a fully connected
layer, is shown in Eq. 2:

hW ,b(X) = φ(XW + b) (2)

In which X represents the matrix of inputs to the layer,W
the matrix of weights and b the bias vector [65]. The choice
of activation function, φ, has a large impact on the hidden
layers capability to learn representations and the type of pre-
dictions the output layer can create. There are a wide range
of common functions, most notably the logistic sigmoid, the
hyperbolic tangent function and the Rectified Linear Activa-
tion (ReLU) [66]. Through the optimisation of bothW and b

Fig. 6 MLP diagram showing layers and connections

with a gradient descent algorithm, to minimise the loss func-
tion, MLP models can approximate almost all continuous
functions if sufficiently complex [67]. In this work a vec-
tor of the seven AE selected features collected during each
grinding pass are used as inputs into the MLP, to predict the
subsequent DCB mean radius.

Within MLP models there are no feed-back connections,
in which the outputs of layers or neurons are fed back into
itself. RNNs utilise this idea of sharing parameters across the
model to work with sequential data. This small inclusion of
cyclic connections allows RNNs to map the whole history of
previous inputs to each output [68]. Currently the most effec-
tive and utilised architecture forworkingwith sequenced data
are LSTMmodels. Developed by Hochreiter and Schmidhu-
ber [46] to remedy the vanishing gradient problem [69], the
ability of LSTMmodels to generalise across large time steps
allow it to represent both short and long term dependencies,
a significant improvement from classic RNNs.

Data inputted into LSTM models is formatted as a 3D
matrix of shape: (batch size, time steps, input features),where
batch size relates to the number of sequences to input from
the database, time steps is the length of each inputted feature
sequence and input features are the number of data features
used formodel training. Of these three parameters, time steps
is the most important when optimising LSTM models, as it
effects the amount of history the LSTM has to generalise
from [70]. Increasing the length of each individual sequence
available to the LSTM allows it to generalise longer term
dependencies, with the impact of increasing the number of
internal iterations of each LSTM cell [71, 72].

LSTM cells are comprised of two memory states: a short-
term hidden state, ht and a long-term cell state, ct , three
sigmoid decision gates (forget, input, and output gates) and
an additional single layer ANN. A LSTM can contain mul-
tiple layers of many cells, in which every cell recursively
loops over each input sequence. Figure 7 shows the inter-

Fig. 7 LSTM cell schematic
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nal architecture of a LSTM cell and the recursive process of
training.

The three decision gates decide what information within
the sequence should be stored, thrown away or used. All three
gates are a single fully-connected layer, with a sigmoid acti-
vation function, σ . Based on the previous time steps’ hidden
state, ht−1, and the current input vector, xt , each gate outputs
a vector with values between 0-1, indicating the irrelevance
or relevance of the corresponding values. These gate vectors
are then used to scale their respective sequences, resulting
in either the removal or persistence of values within the
sequence. The forget gate vector, f t , input gate vector, i t
and output gate vector, ot are calculated with the following
equations:

f t = σ(W f · [ht−1, xt ] + b f ) (3)

i t = σ(W i · [ht−1, xt ] + bi ) (4)

ot = σ(Wo · [ht−1, xt ] + bo) (5)

Following the recursive flow of sequences within the
LSTM cell, shown in Fig. 7, at each time step, t , the previous
time steps’ cell state, ct−1, is first scaled by the forget gate
vector, f t . This step controls the long-termmemory up to the
previous time step, allowing the meaning and importance of
the long-term history to be modified before additional infor-
mation is added.

Next i t is used to evaluate which values are going to be
stored in the cell state. The additional single layer ANN, util-
ising the hyperbolic tangent function, tanh, is used to analyse
both xt and ht−1 and output the current time steps’ tempo-
rary cell state, c̃t . From which, c̃t is then scaled via i t and
added to ct−1, to create the current updated cell state, ct .

c̃t = tanh(W c̃ · [ht−1, xt ] + bc̃) (6)

ct = ct−1 · f t + W c̃ · i t (7)

These two operations are key as they control the addition
of information to the long term memory of the LSTM cell,
through both the input gate filtering and the temporary cell
state computation.

Finally, ot is used to determine which parts of ct should
be filtered out to create this time steps’ main output, yt and
short-term memory, ht . Prior to filtering with ot , ct is passed
through an additional tanh function to scale the data between
-1 and 1.

ht = tanh(ct ) · ot (8)

Both MLP and LSTM models have distinct benefits and
drawbacks. MLP models are highly capable and due to their
relative simplicity are quick to train. But MLPs lack LSTM
models’ ability to generalise across previous inputs limiting
their capability when working with sequenced data. With the
hope of combining the the benefits of each architecture, the
capability of a MLP_WIN [73, 74] was also investigated. By
applying a sliding time window to the input data, the same
level of history present in each LSTM input can be inputted
into aMLPmodel. Comparing to the 3D input data of LSTM
models, the MLP_WIN input matrix is reshaped to a 2D
shape of (batch size, time steps × input features) [75]. The
squeezed dataset is then used as the input for a MLP model,
which due to the increased amount of available information
typically requires a more complex or deep architecture.

2.2.3 Optimisation and evaluation

Each model’s hyper-parameters were optimised using the
grid search methodology with repeated k-fold CV as an
evaluation technique [76, 77]. The list of predefined hyper-
parameters to be searched over are specified in Table 3. Each
model’s iteration performancewas evaluated via three regres-
sionmetrics;mean-squared error (MSE),mean absolute error
(MAE) and the coefficient of determination (R2), fromwhich
the best parameters and model architecture can be chosen
based on prediction error and repeatability.

MAE gives an average difference between the actual and
predicted values, and acts as a good representation of a
model’s general prediction capabilities. Equation 9 is used
to calculate MAE:

MAE = 1

n

n∑
i=1

∥∥∥Yi − Ŷi
∥∥∥ (9)

where,Yi is the observed value, Ŷi is the predicted value and n
is the observation sample size.However,MAE is not effective
at identifying large errors or outliers, especially when the
number of samples, n, is large. MSE heavily penalises large
prediction errors, and as such is an effective loss function

Table 3 Hyper-parameters evaluated during cross-validation

Hyper-parameter Values

No of Layers [1, 2, 3, 4]

No of Neurons [32, 64, 128, 256]

Loss [MSE, MAE]

Batch Size [5, 10, 20]

Dropout Rate [0.01, 0.1, 0.2, 0.5]

Sequence Length1 [5, 10, 15]

1Excluding MLP model
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Fig. 8 Optimisation and evaluation process diagram

for regression models [78]. Equation 10 is used to calculate
MSE:

MSE = 1

n

n∑
i=1

(Yi − Ŷi )
2

(10)

The R2 score represents the proportion of variance result-
ing from themodel. Therefore indicating howwell the model
will predict on unseen samples. Equation 11 is used to cal-
culate R2:

R2 = Residual Sum of Squares

Total Sum of Squares

R2 =

n∑
i=1

(Yi − Ŷi )
2

n∑
i=1

(Yi − Ȳ )
2

(11)

Figure 8 shows the optimisation process, in which the
training data is used to determine the optimal hyper-
parameters during the CV process. After being determined
the best parameters can then be used to build a new model
which is trained on all the training data. Final scoring of the

Fig. 9 DCB circumferential surface measurements during test 4, every
fourth measurement displayed

model is then conducted with the validation data, as well as
repeating the CV process with the training data.

Repeated k-fold CV was used in all instances where
previously mentioned. K-fold CV involves the process of
randomly splitting the data into k splits, from which a model
is trained on (k−1) of the splits, with one split used for scor-
ing the model. The process is then repeated, rotating which
split is used as the evaluation data, until all the data has been
used. Repeated k-fold CV involves repeating this process n
times, leading to different splits to be created each repetition.
The process results in a distribution of scores, from which
the mean and standard deviation are commonly used as indi-
cators of the model’s overall performance.

3 Results

Four wear tests were conducted, all of which resulted in a
different total of grinding passes and final DCB wear states,
detailed in Table 4. Prior to the training of prediction models,
the AE and DCB wear measurements were explored with
the aim of identifying insights about the wear process or
correlations between the two data sources.

Table 4 DCB wear test overviews

Test No No of grinding passes Workpiece volume removed DCB mean radius
(mm3) Initial (mm) Final (mm) Wear (%)

1 213 6.39 0.676 0.636 5.91

2 163 4.89 0.662 0.635 4.08

3 176 5.28 0.674 0.610 9.50

4 158 4.74 0.665 0.610 8.27
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Fig. 10 Tested DCBs (1-4) from left to right

3.1 Tool wear

When aligned the NC4 surface measurements show the
degradation of the DCB throughout the wear test. Fig-
ure 9 shows the DCB circumferential surface measurements
acquired with the NC4 system, throughout test 4. Enabling
the degradation of the DCB’s surface during the fourth test
to be observed. In Fig. 9 a "crater" can be seen developing as
the grinding progresses, eventually encompassing half of the
DCB’s surface. The forming of surface craters was observed
in all tests conducted, of which three encompassed greater
than 40% of the tool’s circumference. Large scale diamond
grain pull-out could trigger the rapid development of craters,
resulting in the large step heights present on the tool sur-
face. Wear rate will accelerate within the transition regions,
between crater troughs and the nominal tool surface, as a
result of the areas being more prone to macro fracture. The
final state of each test’s DCB can be seen in Fig. 10. Each
tool failed in small localised bands in which the inner core
was exposed during grinding.

Figure 11 shows the extracted DCB measurements from
the surface profiles. The mean and peak radius of the DCB
are representations of the tool’s RUL, whilst the form error
and run-out of the DCB show the geometric error of the mea-
sured surface. The mean and peak radius plots both follow
the traditional three phase wear cycle of rapid initial wear in,
followed by a phase of slow steady wear, ending with rapid
failure until total tool failure [52, 79]. Themean radius shows
a smoothed trend when compared to the peak radius in Fig.
11, whilst still enabling the clear sectioning of wear phases.
Validating the choice of DCB mean radius as the optimal
regression target. The mean and peak radius plots in Fig. 11
also confirm that DCBs follow the traditional wear cycle of
machining tools. The formation of surface craters can also
be identified from Fig. 11 by the sudden rise in form error
of the DCB seen in all tests. Additionally Fig. 11 also shows
the large amount of variation in initial tool state and overall
tool life of DCBs. The initial levels of run-out varied signif-
icantly with a range of 13 μm between the tests conducted,
andwhilst the nominal radius of each tool was 0.65mm, each
tool did not reach that radius until at least cut 100. During
the four tests, it also was observed that the overall final wear
of the tools did not equate to the total volume of workpiece
material removed, as seen in Table 4.

3.2 Acoustic emission

Analysis of the AE signals were carried out in both time and
frequency domains.

3.2.1 Time domain analysis

Of the extracted time domain features the AE Root-Mean
Square (AErms) and kurtosis (AEκ ) of the continuous AE

Fig. 11 DCB measurements extracted from NC4 during each wear test
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Fig. 12 AE kurtosis throughout each test with corresponding DCB run-out and form error

signals were of most interest. Both showing potential to be
utilised as a DCB condition indicator.

The kurtosis of eachAE signal appeared to be intrinsically
linked to the DCB form error and run-out. The kurtosis of a

Fig. 13 AE RMS throughout each wear test

signal describes the tailedness of a distribution, which when
applied to continuous AE signals indicates the amount of the
signal having been measured at zero voltage. As the grinding
process is assumed to be an uninterrupted process, continu-
ous AE should be produced. Implying that an increase in the
recorded AEκ is due to interrupted surface contact between
the tool and workpiece. High levels of DCB run-out or form
error can lead to interrupted grinding due to loss of contact,
however tool wear could also present as a reason for inter-
rupted grinding. Therefore, the AEκ should be seen as an
indicator of a DCB’s overall condition rather than as a wear
indicator, as a result of the tool’s run-out, form error andwear
state. Figure 12 shows a comparison between the AEκ and
theDCB form error and run-out, in which a change in run-out
or form error is often accompanied by a change in AEκ . The
AEκ therefore acts as a good indicator of crater formation or
major wear. Figure 12 shows a change in trend in the AEκ at
each crater formation point, identified by the inflection point
of the form error plot.

The AErms during the wear tests are shown in Fig. 13,
it also appears to be an indicator of overall tool condition
by correlating well to the measured run-out and form error.
But unlike AEκ , it indicates the energy present within the
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Fig. 14 FFT of an AE signal within steady wear phase during each test

AE signal. High levels of run-out or form error will not only
create interrupted grinding, butwill also cause larger bursts of
AE to be generated, observed by increased levels of AErms .
This is seen in tests 1 and 2, during which a consistently
high level of run-out and form error leads to consistently
higher levels of AErms . Similarly to AEκ rapid changes in
form error and run-out can be identified through changes in
AErms , for example sharp increases in DCB form error and
run-out can be seen between cuts 100 - 150 in test 1 and cuts
75 - 100 in test 4 of Fig. 11, correlating to similar increases
of AErms over these regions in Fig. 13.

3.2.2 Frequency domain analysis

Figure 14 shows the FFT of a single measured AE signal
during each wear test, with Fig. 15 showing the spectro-
gram throughout each test’s duration. All four FFTs show
a similar trend, differing in amplitude at certain frequencies.

Importantly peaks and troughs are consistent in their fre-
quency across the four tests, such as at 100, 240, 291 and
520 kHz, implying a similar process has been used to gen-
erate the AE. The observed loss in amplitude is expected as
frequency increases, due to the higher attenuation rate for
high frequency signals over the distance between source and
sensor. Seen in Fig. 15 the amplitude at given frequencies are
not constant during the wear test, suggesting the frequency
content of the AE contains relevant information about the
tool’s changing wear level throughout the test. Compared
to the investigated AE time domain features, AE frequency
domain features showed a much higher level of correlation
to the DCB wear metrics. In particular the 35 kHz frequency
band, from the PSD in Fig. 15, had a 0.77 Pearson corre-
lation coefficient with DCB mean radius. From the selected
frequency domain partial powers the reduction in radius of
each tool during the steady state wear could be observed.
However, when the tool underwent unpredictable or large
changes, such as within the initial and rapid failure wear
stages, the frequency features did not correlate to any wear
metrics.

This lack of responsiveness to rapid changes would be a
major limitation of a soley frequencybasedTCMsystem.The
inclusion of AE time domain features, which were suggested
to be indicators of the changing error of each DCB, with the
frequency partial powers into a TCM system was hoped to
enable accurate predictions of wear across the whole tool
wear cycle.

3.3 MLmodels

Three predictive ANNs architectures were trained and opti-
mised based onmodels and processes detailed in Section 2.2.
Repeated k-fold CV was utilised with 10 repeats each con-
sisting of 10 splits, as recommended by current literature [76,
77], allowing comparisons of hyper-parameters to be based

Fig. 15 Spectrogram during the four wear tests
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Table 5 Optimised
hyper-parameters of the three
model architectures

Model Neurons Layers Loss Batch Dropout Sequence Activation Optimiser
Size Rate Length Function

MLP 128 3 MSE 20 0.01 - ReLu Adam

MLP_WIN 128 4 MSE 10 0.01 5 ReLu Adam

LSTM 64 2 (LSTM) MSE 10 0.1 15 ReLu Adam

1 (Dense)

on the scoring of 100 trained models for each iteration. As
a result of the optimisation process the hyper-parameters
that yielded the highest scoring and most consistent predic-
tions for each model are detailed in Table 5. Consistency
in scores during CV was prioritised over small average per-
formance gains, as repeatability is a key factor within large
scale manufacturing cases. Interestingly, theMLP_WIN per-
formed worse with increasing sequence length, unlike the
LSTM which improved significantly with small increases
in sequence length. This observation could signify that
the MLP_WIN is unsuitable for working with time-series
inputs, or that increases in sequence length require signif-
icant increases in model depth/complexity. One significant
improvement stemmed from the inclusion of a final dense
fully-connected layer after the LSTM layers within the
LSTM models. Figure 16 displays a sample loss plot of
each optimised model architecture, showing convergence
was reached by all models before 3000 epochs.

Table 6 shows the scores of all three optimised models,
when evaluated against trainingdata duringCVand the corre-
sponding validation data. The prediction scores show that all
threemodel architectures are capable of learning and predict-
ing DCB wear solely from AE features. From the prediction
scores shown in Table 6, it is clear that theMLP_WINmodel
produces the worst prediction accuracy of the three models,
indicated by it scoring worst in five out of the six metrics.
The model performs well on average indicated by its reason-

able MAE score, but often predicts a small number of large
error values inflating its MSE score. Figure 17 shows each
model’s predictions on the validation dataset compared to
the true measured value, and clearly shows the mentioned
anomalous predictions from the MLP_WIN model. Both the
LSTM and MLP models predict to a similar level of accu-
racy across the training sets, but the LSTM architecture is
able to score to a high level of precision when evaluated over
the validation set. This difference is the likely result of the
LSTM’s superior generalisation ability. A model capable of
generalising training input data effectively, will score well
on both previously seen and unseen input data. LSTM mod-
els recurrent nature and cell history allow them to excel at
generalising time sequence data [80]. This can be seen by
the best validation metric scores all being the result of the
LSTM architecture. Similar results of LSTM model predic-
tion accuracy have been presented albeit in different TCM
applications. R2 scores ranging between 0.994-0.999 were
achieved with similar LSTM architectures within high-speed
turning [81], milling of carbon fibre reinforced plastic [82]
and surface grinding [51]. However, all three models were
able to generalise sufficiently to score to a similar error level
whether using trainingor validation data.Awell trainedANN
must be able to generalise the input data and reach a high pre-
diction accuracy, but produce these scores repeatably even
when the training data is modified slightly. The stability of a
model is therefore crucial. Repeated k-fold CV also allowed

Fig. 16 Sample loss plots of each optimised model architecture
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Table 6 Evaluation scores of developed models from training data CV and validation data

Model CV Scores Validation Scores Training Rate

MAE (μm) MSE (μm2) R2 MAE (μm) MSE (μm2) R2 (epochs/s)

MLP 0.918 7.286 0.942 0.711 1.894 0.986 11.89

(±0.600) (±9.336) (±0.070)

MLP_WIN 1.043 11.86 0.902 0.699 5.237 0.960 12.49

(±0.451) (±14.95) (±0.112)

LSTM 0.696 7.541 0.928 0.441 0.559 0.997 1.37

(±0.395) (±7.377) (±0.066)

each model’s stability to be evaluated, the distribution in
training scores throughout the CV process was monitored for
each iteration. This results in an additional metric to evaluate
each model to be included in Table 6, the standard deviation
during CV of each training metric. The LSTM architecture
showed the lowest standard deviation across all three training
metrics, with theMLP architecture showing a similar level of
stability. A limitation of the LSTM model is its significantly
slower training time, by up to 12 times per epoch, depending
on its industrial application could be a major disadvantage
for an on-line system. A drawback of both the MLP and
MLP_WIN architectures which is not obvious solely from
their scores in Table 6, is their worsened predictions when
outside the steady state wear phase. This is likely a com-
pounded effect due to a limited number of samples within
the rapid failure phase of wear and these models’ worse
generalisation of the whole dataset. LSTM models have not
been shown to follow this observation, instead predicting
similar level of error throughout the whole range of inputs.
Nakai et al. [39] demonstrated an improved level of predic-
tion capability with MLP models utilising AE features when
investigating traditional surface grinding operations; MAE
values of < 0.25 μm ±0.650 were achieved across three
levels of depth of cut from a MLP model with three hidden

layers, suggesting that MLP models are still a highly effec-
tive architecture. Figure 18 shows the comparable prediction
ability of each model when asked to predict in sequence. It
shows clearly the improved prediction capability of LSTM
models for this application, showing little noise compared to
the actual measured values in contrast to the other architec-
tures.

4 Conclusion

This paper presents a viable process for the indirect monitor-
ing and prediction of electroplated DCB tool wear using AE
as a sensing technique. Through the completion of four wear
tests, both AE and tool surface measurements were obtained,
in order to train a regression ANN capable of predicting the
measured DCB mean radius, from seven extracted AE fea-
tures. ThreeMLmodel architectures were trained, optimised
and compared, with LSTM models performing best with a
MSE prediction error of < 0.6 µm.

The experimental procedure enabled the collection of
AE alongside tool surface measurements, during a grinding
based tool wear test. Four wear tests were conducted with

Fig. 17 Comparison of actual and predicted DCB mean radius values taken from the validation dataset
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Fig. 18 Predictive capability comparison of model architectures predicting DCB mean radius, across four wear tests

constant grinding parameters, in which a ∅1.3 mm #1000
DCB was worn by grinding a SiC workpiece. From in situ
tool wear measurements with a Renishaw NC4+ blue, the
DCB tools were shown to follow a traditional three-phase
wear cycle. But also indicated a large variance in run-out
and form error both initially and developed throughout the
tests.

Following processing of the AE signals, links were
observed between AE features, AEκ and AErms , and DCB
surface measurements, run-out and form error. Suggesting
both AE features are indicators of overall DCB condition
rather than absolute tool wear. Frequency domain analysis
showed varying levels of amplitude throughout the tests.
FFTs from each test showed similar trends, with local max-
ima occurring within the same frequency bands, implying a
comparable method of AE generation was used during each
test. Seven AE features were extracted from each recorded
signal, forming the input for ANN training.

Three differentML architectures were chosen for compar-
ison; MLP, MLP_WIN and LSTM. Each regression model
was trained to predict the measured DCBmean radius, a rep-
resentation of the tool’sRUL.Usinggrid searchwith repeated
k-fold CV for evaluation each model’s hyper-parameters
were optimised. Final evaluation results showed LSTMmod-
els produced the least variation during CV of the training
dataset, and scored best in all metrics on unseen validation
data. Leading to a prediction MSE of 0.559 µm when using
the optimisedLSTMmodel. LSTMmodelswhilst outscoring
the other models, took roughly 10 times longer to train per
epoch. Generalisation was also achieved by both the MLP
andMLP_WINmodels, but due to limitations in scope when
working with time-series data both achieved lower predic-
tion scores. With further tests and a larger training dataset,
both models could see significant improvements in scoring
metrics.

Future extension of this work could include the study of
DCB wear with a variety of grinding parameters, tool spec-

ifications and workpiece materials, to ensure the processes
and techniques are consistent for a broad range of scenar-
ios. Additionally, the models could be expanded to predict
tool run-out and form error, producing a well-rounded mon-
itoring technique encompassing wear and tool condition.
Further input features could be extracted from the AE with
more robust and automatic feature extraction techniques,
such those commonly found in image classification prob-
lems.
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