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Abstract

Accurate forecasts of ambulance demand are crucial inputs when planning and deploying staff and fleet.
Such demand forecasts are required at national, regional, and sub-regional levels, and must take account of
the nature of incidents and their priorities. These forecasts are often generated independently by different
teams within the organization. As a result, forecasts at different levels may be inconsistent, resulting in
conflicting decisions and a lack of coherent coordination in the service. To address this issue, we exploit the
hierarchical and grouped structure of the demand time series and apply forecast reconciliation methods to
generate both point and probabilistic forecasts that are coherent and use all the available data at all levels of
disaggregation. The methods are applied to daily incident data from an ambulance service in Great Britain,
from October 2015 to July 2019, disaggregated by nature of incident, priority, managing health board, and
control area. We use an ensemble of forecasting models and show that the resulting forecasts are better than
any individual forecasting model. We validate the forecasting approach using time series cross validation.

Keywords: healthcare, emergency services, forecast reconciliation, ambulance demand, regression

1. Introduction

A failure to match available resources to demand in Emergency Medical Services (EMS) results in patient
flow problems, with serious consequences for patients, staff, and the entire care system (Ekström et al., 2015;
Rostami-Tabar and Ziel, 2022). Demand forecasting in EMS helps service planners to avoid the mismatch,
potentially providing massive savings in costs and lives, and leading to better patient outcomes. Accurate
daily demand forecasting enables planners and decision-makers to manage resources to meet anticipated
patients, reconfigure units, and redeploy staff and vehicles as necessary.

Demand forecasts at EMS are typically required at multiple levels of an organization to inform various
planning and decision-making processes (Hulshof et al., 2012). There are some planning processes at the
national level (strategic and long-term) such as workforce resource planning and budgeting; sub-national,
regional, or healthcare level (tactical and medium-term) such as temporary capacity expansions, resource
sharing; and hospital or station level (operational and short-term) such as planning rosters for staff and
ambulance deployment. Demand forecasts might also be required at different levels for a specific area
of interest such as the nature of demand or the priority level. Moreover, the time series data in EMS has
an inherent hierarchical and grouped structure to support such forecasting requirements. Demand for
emergency medical services at the national level can be disaggregated in a geographical hierarchy into
sub-national, regions, health boards, and stations/hospitals, or divided into groups such as the nature of
incidents or demand priority. Forecasts produced at both higher and lower levels of hierarchies are necessary
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for effective decision-making in EMS. For example, control area EMS forecasts can inform strategic decisions
about how to allocate limited resources to lower levels, such as health boards and stations/hospitals. At
the lower levels, hospitals or ambulance stations could use such forecasts to plan for staffing and resource
allocation, ambulance dispatching, staff-to-shift assignment, staff rescheduling based on the anticipated
volume and priority and nature of incidents. Additionally, generating forecasts at lower levels could
potentially improve the accuracy of the high-level forecasts, by providing more detailed information on the
nature and priority of incidents. This could help to identify patterns in demand that may not be apparent at
the higher level. Therefore, employing forecasting techniques that consider the hierarchical and/or grouped
patterns of time series in EMS aligns naturally, offering the possibility to enhance forecast accuracy and
facilitate coordination.

To illustrate the problem, let’s consider a very simple example where we have an EMS provider with a
national level of governance, and two regions (A and B), each with a health board and a station. There is a
total national budget to be split between the regions in proportion to the forecast number of incidents in
each region. The two regions have very different incident patterns, and so must be forecast using different
models. However, the data are noisy at regional level, so the national forecasts are best obtained by summing
the demand from the two regions. The resulting national forecasts are not equal to the sum of the regional
forecasts, and so are not coherent. In fact, the national forecasts show a decreasing trend in demand, and
so the national governing body decides to cut the budget for the next year. But neither of the regional
forecasts shows a trend, and so the regions argue that the budget cut is unfair. In addition, Region A has
much more variable demand than Region B, and so to cope with periods of peak demand, Region A needs
to hold more resources in reserve. So the budget distribution needs to be made in a way that ensures
the probability of each region being unable to meet demand is equal. Our solution to this problem is to
use a hierarchical forecasting approach that ensures the forecasts are probabilistically coherent. Then any
trends or other forecast characteristics at national level will also be reflected in the regional forecasts, and
the probabilistic forecasts allow for the different levels of uncertainty in the two regions. Budget can be
allocated by controlling the probability of demand exceeding available resources, rather than being simply
in proportion to the expected demand.

Despite a large number of studies dedicated to forecasting for EMS (Shi et al., 2022; Gul and Celik, 2020;
Ibrahim et al., 2016; Wargon et al., 2009), the hierarchical data structure has been largely ignored, and the
main focus has been on producing independent (base) forecasts at a single level. Generating independent
forecasts can result in a lack of consistency and coordination, and therefore leads to less effective planning
and decision making.

With hierarchical forecasting, plans at any level are based on coherent forecasts and therefore can be aligned.
Implementing and sustaining improvements in EMS require alignments and coordination between different
stakeholders, without which teams operate in isolation leading to conflicts, duplication work, rework, or
work that runs counter to the overall goal to improve the quality of delivery service. Hierarchical forecasting
framework can be used as a tool to improve coordination between teams across the care services at the
national, sub-national, regional and local levels. The hierarchical forecasting approaches not only create
consistent forecasts but are usually also more accurate than the independent (base) forecasts (Hyndman
et al., 2011). To our knowledge, there has been no previous research involving hierarchical and grouped
forecasting in the entire field of forecasting for healthcare management.

In this paper, we address this gap by investigating the application of hierarchical forecasting approaches in
the EMS using daily time series of attended incidents from 2015 to 2019 in a major ambulance service in
Great Britain. The data has hierarchical and grouped structures, with hierarchies at the national, control
(i.e. sub-national), and health board (i.e. regional) levels, as well as groups by priority and nature of incidents.
We produce consistent point forecasts and forecast distributions for all levels over 84 days horizon, which is
critical for an effective planning and associated risk management. We compare the point and probabilistic
forecast accuracy of the independent forecasts, bottom-up and optimal reconciliation approaches. We first
generate independent/base forecasts using Exponential Smoothing State Space (ETS), Poisson regression
using Generalized Linear Model (GLM) and tscount (TSGLM), a simple empirical distribution and an
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ensemble method, followed by applying bottom-up and optimal reconciliation approaches. Forecast
performance is assessed by the Mean Absolute Scaled Error (MASE) and Mean Squared Scaled Error (MSSE)
for point forecasts and Continuous Ranked Probability Scores (CRPS) for the probabilistic forecasts. This
paper complies with reproducibility principles (Stodden and Miguez; Boylan et al., 2015). We provide
the R codes for the proposed models and benchmarks. Therefore, they can be applied to any healthcare
service (e.g., emergency department, primary or social care) subject to the time series having a hierarchical
and/or grouped structure. While our research focuses on emergency medical services, it is important to
emphasize the suggested framework’s adaptability, which expands its relevance to a variety of service
sectors such as supply chains, tourism, finance, and call centers. Our approach can be generalized in cases
with hierarchically structured and/or grouped time series data, which is common in many service sectors.

The remainder of this article is structured as follows: In Section 2, we provide a brief review of the literature
and discuss its limitation to position our work; in Section 3, we present the experiment design describing the
data set, forecasting methods and forecast evaluation metrics. In Section 4, we discuss the hierarchical time
series forecasting approaches to generate both point and probabilistic forecasts. In Section 5, we present and
discuss our results; in Section 6, we summarize our findings and present ideas for future research.

2. Research background

Emergency medical services (EMS) are a critical component in the delivery of urgent medical care to
communities. An effective service delivery requires accurate resource planning that generally relies on
demand forecasts at operational, tactical, and strategic levels. There is a substantial number of studies on the
application of time series forecasting in the Emergency Medical Services. For example, Ibrahim et al. (2016)
provide an extensive review of the models used in forecasting call volume arrivals. Another important area
is related to forecasting ambulance demand. Although the definition of demand might not be always clearly
stated, this is typically referring to a situation where a physical resource has been deployed to respond
to an incident. This might be also called attended incidents. Another demand related variable is verified
incidents; these are all incidents that require an action: either by sending a physical vehicle, responding via
the Clinical Support Desk, requesting an external provider to respond to it, or forwarding it to other channels
such as police, firefighters, or general practitioners. Our study is aligned with this stream of literature.
Another similar area that has received considerable attention is Emergency Department forecasting; we refer
interested readers to Shi et al. (2022), Gul and Celik (2020), and Wargon et al. (2009) for extensive reviews
of the relevant literature. In this section, we provide a brief review of studies on forecasting ambulance
demand in EMS.

There are generally two main streams of research related to forecasting ambulance demand in EMS: (i)
the first stream focuses on the application of time series methods and regression approaches to forecasting
aggregate ambulance demand (Vile et al., 2012; Sasaki et al., 2010); and (ii) the second stream considers
forecasting EMS demand in finer temporal and geographical granularities by employing temporal-spatial
prediction methods (Zhou and Matteson, 2016; Zhou, 2016). The focus of our study is related to the first
stream of research.

Sasaki et al. (2010) develop a multivariable regression model to estimate future EMS demands. In addition
to the historical demand, the population census for different age groups and counts of the number of
companies employing more than five people are included in the regression. The census variables describe
groups who are more likely to need an ambulance. A stepwise ordinary least squares regression analysis is
used for estimating the parameter and generating forecasts. The only performance measure reported in this
study is R2, which is not an effective measure of forecast accuracy (Armstrong, 2001, p457). The research
design of this study is not rigorous and the study is not reproducible. Vile et al. (2012) explore using a
Singular Spectrum Analysis (SSA) method to generate forecasts of the EMS demand at the national level for
7-day, 14-day, 21-day, and 28-day forecast horizons using data provided by an ambulance service in Great
Britain. The performance of this approach is compared to Auto-Regressive Integrated Moving Average
(ARIMA) and Holt-Winters time series methods using Root Mean Squared Error (RMSE). They concluded
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that point forecasts generated by SSA are more accurate for longer-term, but that ARIMA and Holt-Winters
performance is superior for shorter-term horizons. Vile et al. (2016) further develop a decision support
system to integrate forecasts generated by SSA. However, the study does not compare and contrast the
performance of forecasting methods based on utility measures such as cost, resource utilization and response
time. The tool contains options that allow generating forecasts at various levels of granularity; however, it
ignores the structure of the hierarchical and grouped relationships, preventing aligned decision making
and coordination. Al-Azzani et al. (2021) utilises data from the Welsh Ambulance Service to explore the
forecast accuracy of four forecasting approaches: ARIMA, Holt Winters, Multiple Regression, and Singular
Spectrum Analysis (SSA) in predicting call volume demand. The aim is to compare these approaches with
the current method across various planning horizons (7 days, 30 days, and 90 days) for both total call volume
and category-specific demand. Forecast accuracy performance is evaluated using root mean square error
(RMSE) and mean absolute percentage error (MAPE). The findings indicate that ARIMA performs the best
in predicting weekly and monthly demand. However, when it comes to long-term demand, the SSA method
proves to be the most effective. Ibrahim et al. (2016) conducted a case study to assess the effectiveness of
multiple forecasting methods: the multiplicative univariate forecasting model (MU), univariate mixed-effects
model (ME), and two variations of bivariate mixed-effects models (BME). Call centre data were utilized to
forecast for periods of 1, 7, and 14 days ahead, using only a limited dataset of 42 days. The performance
of these forecasting methods was evaluated using two metrics: RMSE for point forecasts and coverage
probability for the 95% prediction interval. The findings indicate that the ME consistently produces the
most accurate point forecasts. On the other hand, BME models demonstrate superior coverage probabilities
when forecasting for one day or one week ahead. For a two-week leading period, MU shows better coverage
probability.

Hermansen and Mengshoel (2021) investigate forecasting EMS demand in a high Spatio-temporal resolu-
tion of 1km2 spatial regions and 1-hr time intervals using total incidents in Oslo, Norway, from 1 January
2015 to 11 February 2019. They used multi-layer perceptron (MLP) and long short-term memory (LSTM)
models to forecast the EMS demand, and compare the results to simple aggregation methods and baselines.
The point forecast accuracy is evaluated using Mean Absolute Error (MAE) and Mean Squared Error (MSE),
and the forecast distribution is measured by Categorical Cross-Entropy. They found that Neural Network
models performed better in producing point forecasts, while a distribution baseline method based on the
spatial distribution of the incidents across all time steps provided more accurate forecast distributions.
Zhou (2016) proposed three methods based on Gaussian mixture models, kernel density estimation, and
kernel warping to predict hourly data 4 weeks ahead for a 1km2 spatial region. Two years of incidents from
Toronto, Canada (years 2007 and 2008 with 391,296 events) and Melbourne, Australia were used to build
the model and examine the performance on test data using mean negative log-likelihood. They show that
forecasts generated by the proposed methods were significantly more accurate than the current industry
practice (a simple averaging formula). Grekousis and Liu (2019) investigated the combination of spatial
analysis methods with data mining techniques based on an improved Hungarian algorithm and a MLP
neural network to identify the most likely locations of future emergency events. The proposed approach was
tested using data from 2851 events attended by the EMS in Athens, Greece, over 24 weeks. They showed
that 23% of real emergency events lie within 50 meters of the predicted ones and nearly 70% of the real
emergency events lie no further than 150 meters away, which is rather accurate given the granularity of the
problem at the city level.

Table 1 provides a summary of some studies in the literature on forecasting in Emergency Medical Services.
We note a number of limitations in the literature of EMS forecasting, that encourage us to undertake this
research. These limitations are summarized as following:

1. Current studies ignore the inherent hierarchical and/or grouped structure of the time series data,
and the relationship between series at different levels of hierarchy. While the hierarchical forecasting
methodology has been developed and applied in various domains over the past 10 years (Panagiotelis
et al., 2023), it has never been explored in this area.

2. Current research is mainly concerned with generating point forecasts at a single level of hierarchy.
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There is a lack of studies considering the entire forecast distribution of daily ambulance demand for the
whole hierarchy to better represent the uncertainty of future demand, providing a risk management
tool for planners.

3. Reproducibility is still a major challenge in EMS forecasting, as it is unlikely that any reader can
reproduce prior studies without the help of the authors of those papers.

4. Another limitation is related to the generated forecasts not being on the sample space of non-negative
counts. Since actual ambulance counts cannot be negative or non-integer, ambulance demand forecast
distributions should reflect the data. Of course, point forecasts represent means, so they should be
non-negative, but may be non-integer. While this might not be an issue when producing forecasts at a
single level, producing non-negative count forecasts in a hierarchical/grouped structure is challenging
and requires further investigation in the future.

This paper concerns the problem of hierarchical forecasting in EMS and generates and evaluates both point
and probabilistic forecast across different levels of the hierarchy, hence addressing some important gaps
identified in the literature.
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Table 1: Summary of some studies on forecasting in Emergency Medical Services

Reference Year Variable Horizon Method Metric Probabilistic Reconciliation Reproducibility

Current study 2023 Ambulance
demand

84 days Stationary,
Exponential
Smoothing State Space
(ETS), Poisson
regression using
Generalized Linear
Model (GLM) and
tscount (TSGLM), a
simple empirical
distribution and an
ensemble method

MASE, MSSE,
CRPS

YES YES YES

Al-Azzani et al. 2021 Call volume 7 , 30 , 90
days

ARIMA, Holt Winters,
Multiple Regression,
and Singular Spectrum
Analysis

RMSE, MAPE NO NO NO

Haugsbø et al. 2021 Ambulance
demand in
Spatio-
temporal

1hour MLP, LSTM MAE, MSE,
Cross-Entropy

YES NO NO

Grekousis et al. 2019 Locations of
incidents

1 hour MLP and Hungarian
algorithm

RMSE NO NO NO

Ibrahim et al. 2016 Call volume 1, 7 , 14
days

multiplicative
univariate forecasting,
univariate
mixed-effects,
bivariate mixed-effects
model, and bivariate
mixed-effects

RMSE, prediction
interval coverage

Partial NO NO

Vile et al. 2012 Ambulance
demand

7, 14, 21,
28 day

Singular Spectrum
Analysis, ARIMA,
Holt-Winters

RMSE NO NO NO

Sasaki et al. 2010 Ambulance
demand

5 years OLS regression R^2 NO NO NO
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3. Experiment setup

Planners in the ambulance service work with a planning horizon of 6 weeks. That is, planning is generally
frozen for the next 42 days, so any forecasts will only affect plans for the time period beyond the next 42 days.
Consequently, the forecast horizon in this study is 2 × 42 = 84 days ahead, with performance evaluation
assessed based on the last 42 days and not the whole forecast period. The forecasts are produced for various
training and test sets using time series cross-validation (Hyndman and Athanasopoulos, 2021).

In the following section, we discuss the dataset, describe the forecasting methods used to generate base
forecasts, and present the point and probabilistic accuracy measures.

3.1. Data

The dataset used in this study is from a major ambulance service in Great Britain. It contains information
relating to the daily number of attended incidents from 1 October 2015 to 31 July 2019, disaggregated by
nature of incidents, priority, the health board managing the service and the control area (or region). Figure 1
depicts both the hierarchical and grouped structure of the data. Figure 1a illustrates the nested hierarchical
structure based on control area and health board and Figure 1b shows the grouped structure by priority and
the nature of incident.

All country

Central & West North South & East

HD SB PO BC CV CT AB

(a) Hierarchical structure: Attended incidents in the whole country are disaggregated
into 3 control areas and then into 7 different healthboards, anonymized using two
letters (e.g. AB)

(b) Grouped structure: Incidents could be grouped into priority
(i.e. Red, Amber & Green) and the nature of attended incident
(i.e. there are 35 different nature of incidents including chest
pain, breathing problems, heart attack, stroke, and so on). The
symbol * refers to the crossed attributes between hierarchical and
grouped levels.

Figure 1: The hierarchical and grouped structure of attended incidents (ambulance demand).

Table 2 also displays the structure of data with the total number of series at each level. At the top level, we
have the total attended incidents for the country. We can split these total attended incidents by control area,
by health board, by priority or by nature of incident. There are 3 control areas breakdown by 7 local health
boards. Attended incident data are categorized into 3 priority classes of red, amber, and green. There are
also 35 different nature of incidents such as chest pain, stroke, breathing problem, etc. In total, across all
levels of disaggregation, there are 1530 time series.

Given the total number of time series, direct visual analysis is infeasible. Therefore, we first compute
features of all 1530 time series (Kang et al., 2017) and display the strength of trend and weekly seasonality
strength in Figure 2. Each point represents one time series with the strength of trend in x-axis and the
strength of seasonality in y-axis. Both measures are on a scale of [0,1].

In this paper, the strength of trend and seasonality were calculated using the “STL” (Seasonal and Trend
decomposition using Loess) decomposition method, as described by Bandara et al. (in press). STL is a
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Table 2: Number of time series in each level for the hierarchical & grouped structure of attended incidents

Level Number of series

All country 1
Control 3
Health board 7
Priority 3
Priority * Control 9

Priority * Health board 21
Nature of incident 35
Nature of incident * Control 105
Nature of incident * Health board 245
Priority * Nature of incident 104

Control * Priority * Nature of incident 306
Control * Health board * Priority * Nature of incident (Bottom level) 691
Total 1530

Note:
Due to certain combinations of the nature of incident with other variables, there is a lack
of representation in the dataset. As a result, for example, instead of the calculation 3 * 35
= 105, it would be modified to 3 * 35-1 = 104.

widely used and flexible method for decomposing time series data into trend, seasonal, and remainder
components. The decomposition of a time series yt is written as yt = Tt + St + Rt, where Tt is the smoothed
trend component, St is the seasonal component and Rt is a remainder component. The strength of trend is
defined as:

FT = max

(

0, 1 −
Var(Rt)

Var(Tt + Rt)

)

For strongly trended data, the seasonally adjusted data should have much more variation than the remainder
component. Therefore Var(Rt)/Var(Tt + Rt) should be relatively small. But for data with little or no trend,
the two variances should be approximately the same.

The strength of seasonality is defined similarly:

FS = max

(

0, 1 −
Var(Rt)

Var(St + Rt)

)

.

series with seasonal strength FS, close to 0 exhibits almost no seasonality, while a series with strong
seasonality will have FS close to 1 because Var(Rt) will be much smaller than Var(St + Rt).

It is clear that there are some series showing strong trends and/or seasonality, corresponding to series at
the higher levels of the hierarchy. The majority of series show low trend and seasonality. These are time
series belonging to the bottom series, series related to the nature of incidents for a given control, health
board and priority level. Bottom series are dominated by noise with little or no systematic patterns.

In addition to displaying the trend and seasonality strength (Hyndman and Athanasopoulos, 2021), we
also visualize a few time series at various levels of aggregation. Figure 3 reveals different information such
as trend, seasonality, and noise. For example, some series depict seasonality and trend, whereas some other
series report low volume of attended incidents and entropy, making them more volatile and difficult to
forecast. At the level on nature of incidents combined with categories of other levels, there are many series
that contain zeros with low counts. As such, the data set represents a diverse set of daily time series patterns.
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Figure 2: The strength of the trend and weekly seasonality in the time series of attended incidents. The scatter plot shows a total of
1530 data points, with each point corresponding to a specific time series.

We consider several forecasting models that account for the diverse patterns of the time series across the
entire hierarchy. In developing the forecasting models, the time series of holidays are also used in addition
to the attended incidents. We use public holidays, school holidays and Christmas Day and New Year’s Day
as predictors of incident attended. These types of holidays will affect peoples’ activities and may increase or
decrease the number of attended incidents.

3.2. Forecasting methods

Given the presence of various patterns in the past attended incidents, we consider three different forecasting
models to generate the base forecasts. Once the base forecasts are produced, hierarchical and grouped time
series methods are used to reconcile them across all levels. We briefly discuss forecasting models in the
following sections, and the hierarchical forecasting methods are discussed in Section 4.

Stationary: We start with a simple forecasting approach, assuming that the future days will be similar
to past days. We use the empirical distribution of the past daily attended incidents to create the forecast
distribution of future attended incidents. We have chosen this “stationary” method as a benchmark due to
its widespread usage and simplicity, making it easily understandable for users. Forecasts serve as inputs for
various decision-making systems that frequently employ simulations, wherein it is common to utilize the
empirical distribution of demand as a forecast. Additionally, the stationary method has shown surprisingly
high accuracy. Hence, any forecasting approach that can offer superior results compared to the stationary
method would validate its practical use, otherwise there is no necessity for employing more complex
methods.

Exponential Smoothing State Space model (ETS): ETS models (Hyndman and Athanasopoulos, 2021)
can combine trend, seasonality, and error components in a time series through various forms that can be
additive, multiplicative or mixed. The trend component can be none (“N”), Additive (“A”) or damped
(“Ad”); the seasonality can be none (“N”), Additive (“A”), or multiplicative (“M”); and the error term can
be additive (“A”) or multiplicative (“M”). To forecast the attended incidents at each level, we use the ets()

function in the forecast package (Hyndman et al., 2022; Hyndman and Khandakar, 2008) in R. To identify
the best model for a given time series, the ets function uses the corrected Akaike’s Information Criterion
(AICc).
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Figure 3: Daily time plot of attended incidents at various levels. X-axis shows the date of incidents, consisting of 1400 data points
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much overplotting. Each time plot .
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In our study, we use an automated algorithm to determine the suitable configuration for the trend,
seasonality, and error terms in each time series. Specifically, we utilize the ets() function in the forecast
package of R, which employs Akaike’s Information Criterion (AIC) to identify the optimal model for each
time series. Given the large number of time series we work with (1530), it is impractical to manually select
the appropriate form for each component in every time series. Consequently, the automated algorithm
selects the best model based on the unique characteristics of each individual time series. As a result, a
combination of additive or multiplicative forms for the components are employed, depending on the specific
attributes of each time series.

Despite the popularity and the relevance of automatic ETS in this study, it may produce forecast distri-
butions that are non-integer and include negative values, although the number of attended incidents is
always integer and non-negative. When using ETS, a time series transformation approach could be used to
generate strictly positive forecasts, although forecast distributions will still be non-integer. An alternative is
to use forecasting models that produce integer, non-negative forecasts. In the following section we present
Generalized Linear Models (GLMs) and Poisson time series regression to produce count base forecasts.

Generalized Linear Model (GLM): GLMs are a family of models developed to extend the concept of linear
regression models to non-Gaussian distributions (Faraway, 2016). They model the response variable as a
particular member of the exponential family, with the mean being a transformation of a linear function of
the predictors. One of the models that is frequently used in practice to generate count forecasts is Poisson
regression.

Suppose the time series is denoted by y1, . . . , yT , then the Poisson GLM can be written as

yt ∼ Poisson(λt)

where log(λt) = x′
tβ,

and xt is a vector of covariates, β is a vector of coefficients, and λt is the mean of the Poisson distribution. In
our model, these include cubic splines for the time trend, day-of-week dummy variables (from Monday
to Sunday), Fourier terms to capture the yearly seasonality, dummy variables indicating public holidays
(1 when is a public holiday, 0 otherwise), school holidays (1 when is a school holiday, 0 otherwise), and
Christmas Day (1 when is Christmas Day, 0 otherwise) and New Year’s Day (1 when is New Year’s Day, 0
otherwise). The Fourier terms are as defined in Hyndman and Athanasopoulos (2021, Section 7.4). This
model takes account of weekly seasonality and annual seasonality. Monthly seasonality in time series data
is extremely rare, and it does not exist in the ambulance demand used in this study. There is no reason for
occurrences to occur more frequently at certain times of the month than others.

We fit a Poisson regression model using the function glm() from the stats package in R, with the argument
family = poisson to specify that we wish to fit a Poisson regression model with a log link function.

Poisson Regression using tscount (TSGLM): We also consider another Poisson regression model that
takes into account serial dependence. This model captures the short-range serial dependence by including
autoregressive terms in addition to the same covariates that were used in the GLM model. To distinguish
this from the previous GLM model, we will refer to this model as TSGLM.

The Poisson TSGLM is similar to the GLM, with an additional autoregressive component accounting for
serial dependence. The term serial dependence refers to instances in which the number of incidents on a
current day correlates with the number of incidents on previous days.

yt ∼ Poisson(λt)

where log(λt) = (y′
t−k, x′

t)β,

and yt−k is a vector of k lagged values. The TSGLM model explicitly accounts for serial dependence by
including lagged values (i.e., past values) of the ambulance demand in the model. This is important in EMS
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forecasting because it allows the model to capture patterns in the data that are dependent on the past values
of the time series, which might not be captured via the predictor variables.

We use the tsglm() function in the tscount package in R (Liboschik et al., 2017) to model the attended
incidents. Again, the logarithmic link function is used to ensure that the mean of the Poisson distribution is
always positive.

Provided accidents occur independently, they will inherently follow a Poisson distribution (Feller, 1991,
p156–158). Hence, it is reasonable to assume a Poisson distribution in this context. To account for changes
over time, we incorporate trend and seasonality covariates, as well as public holiday effects, allowing the
mean of the Poisson distribution to vary. However, it is important to note that if there are additional factors
influencing the mean of the Poisson distribution that are not accounted for in our model, we might observe
over- or under-dispersion in the data.

Ensemble method: Finally, one effective strategy for improving forecast accuracy includes the simultaneous
application of multiple forecasting methods on a given time series, followed by combining the forecasts
rather than relying on separate forecasts generated by each individual method (Clemen, 1989). In this paper,
we use an ensemble method that combines the forecasts generated from the Stationary, ETS, GLM, and
TSGLM models using a simple average to form a mixture distribution (Wang et al., in press).

To generate forecast probability distributions using the above methods, we use a form of bootstrapping,
described in Panagiotelis et al. (2023). This involves simulating 1000 future sample paths from each of the
models by bootstrapping the model residuals, taking into account the cross-sectional correlations between
the different aggregated and disaggregated series. In this way, we can generate an empirical distribution
of forecasts for each model. The ensemble forecast distribution is a simple mixture of these empirical
distributions.

It is important to emphasize that the aim of this study is not to provide an exhaustive compilation of
forecasting models or to promote a particular model class. Instead, we have developed a flexible framework
that can accommodate any forecasting model. Our primary objective is to demonstrate its practicality
and effectiveness in integrating base forecasts from any model and generating coherent forecasts within a
hierarchical structure.

3.3. Performance evaluation

To evaluate the performance of the various forecasting approaches, we split the data into a series of ten
training and test sets. We use a time series cross-validation approach (Hyndman and Athanasopoulos, 2021),
with a forecast horizon of 84 days, and each training set expanding in 42-day steps. The first training set uses
all data up to 2018-04-25, and the first test set uses the 84 days beginning 2018-04-26. The second training
set uses all data up to 2018-06-06, with the second test set using the following 84 days. The largest training
set ends on 2019-05-09, with the test set ending on 2019-07-31. Model development and hyper-parameter
tuning is performed using the training data and the errors are assess using the corresponding test set. While
we compute forecast errors for the entire 12 weeks, we are most interested in the last 42 days of each test set,
because that corresponds to how forecasts are generated for planning in practice. Forecasting performance
is evaluated using both point and probabilistic error measures.

The error metrics provided below consider a forecasting horizon denoted by j, representing the number
of time periods ahead we are predicting. In our study, this forecasting horizon ranges from 1 to 84 days,
j = 1, 2, . . . , 84.

Point forecast accuracy is measured via the Mean Squared Scaled Error (MSSE) and the Mean Absolute
Scaled Error (MASE). The Mean Absolute Scaled Error (MASE) (Hyndman and Koehler, 2006; Hyndman
and Athanasopoulos, 2021) is calculated as:

MASE = mean(|qj|),
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where

qj =
ej

1

T − m

T

∑
t=m+1

|yt − yt−m|

,

and ej is the point forecast error for forecast horizon j, m = 7 (as we have daily seasonal series), yt is
the observation for period t, and T is the sample size (the number of observations used for training the
forecasting model). The denominator is the mean absolute error of the seasonal naive method in the fitting
sample of T observations and is used to scale the error. Smaller MASE values suggest more accurate forecasts.
Note that the measure is scale-independent, thus allowing us to average the results across series.

A related measure is MSSE (Hyndman and Athanasopoulos, 2021; Makridakis et al., 2022), which uses
squared errors rather than absolute errors:

MSSE = mean(q2
j ),

where,

q2
j =

e2
j

1

T − m

T

∑
t=m+1

(yt − yt−m)
2

,

Again, this is scale-independent, and smaller MSSE values suggest more accurate forecasts.

Using scale-independent measures, such as MASE and MSSE, enables more appropriate comparisons
between time series at different levels and scales, as these measures are not influenced by the magnitude
of the data. This is of particular importance in our study, as we work with time series at various levels of
hierarchy, with varying scales, resulting in different magnitudes of error. By employing scale-independent
measures, we can meaningfully assess the forecast accuracy across the entire hierarchy, ensuring a more
robust comparison.

To measure the forecast distribution accuracy, we calculate the Continuous Rank Probability Score (Gneiting
and Katzfuss, 2014; Hyndman and Athanasopoulos, 2021). It rewards sharpness and penalizes miscalibration,
so it measures overall performance of the forecast distribution.

CRPS = mean(pj),

where

pj =
∫ ∞

−∞

(

Gj(x)− Fj(x)
)2

dx,

where Gj(x) is the forecasted probability distribution function for forecast horizon j, and Fj(x) is the true
probability distribution function for the same period.

Calibration refers to the statistical consistency between the distributional forecasts and the observations. It
measures how well the predicted probabilities match the observations. On the other hand, sharpness refers
to the concentration of the forecast distributions — a sharp forecast distribution results in narrow prediction
intervals, indicating high confidence in the forecast. A model is well-calibrated if the predicted probabilities
match the distribution of the observations, and it is sharp if it is confident in its predictions. The CRPS
rewards sharpness and calibration by assigning lower scores to forecasts with sharper distributions, and to
forecasts that are well-calibrated. Thus, it is a metric that combines both sharpness and miscalibration into a
single score, making it a useful tool for evaluating the performance of probabilistic forecasts.

CRPS can be considered an average of all possible Winkler scores (Winkler, 1972; Hyndman and Athana-
sopoulos, 2021, Section 5.9) or percentile scores (Hyndman and Athanasopoulos, 2021, Section 5.9), and thus
provides an evaluation of all possible prediction intervals or quantiles. A specific prediction interval could
be evaluated using a Winkler score. Certain situations may also require assessing accuracy for a particular
quantile, such as lower (e.g 5%) or higher (e.g. 95%) quantiles. In such cases, a percentile score becomes
useful in meeting this specific requirement.
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4. Hierarchical and grouped time series forecasting techniques

There are many applications in healthcare, and in particular in EMS, where a collection of time series is
available. These series are generally hierarchically organized based on multiple levels such as area/region,
health board and/or are aggregated at different levels in groups based on nature of demand, priority of
demand, or some other attributes. While series could be strictly hierarchical or only grouped bases on some
attributes, in many situations a more complex structures arise when attributes of interest are both nested
and crossed, having hierarchical and grouped structure. This is also the case for our application as discussed
in Section 3.1.

4.1. Independent (base forecast)

A common practice in healthcare (and EMS) to predict hierarchical and grouped series relies on producing
independent forecasts, also refereed to as base forecasts, typically by different teams as the need for such
forecasts arise. We observe n time series at time t, across the entire hierarchical and grouped structure,
written as yt. The base forecasts of yT+h given data y1, . . . , yT are denoted by ŷh for h steps-ahead for all n
series (n = 1530 in this study). Forecasts generated in this way are not coherent.

4.2. Reconciliation methods

Traditionally, approaches to produce coherent forecasts for hierarchical and grouped time series involve
using bottom-up and top-down methods by generating forecasts at a single level and then aggregating or
disaggregating. Top-down methods require having a unique hierarchical structure to disaggregate forecasts
generated at the top level by proportions. However, given that we have multiple grouped attributes
combined with the hierarchical structure, there is no unique way to disaggregate top forecasts. Hence
the top-down approach cannot be used in our application. The recommended approach is to use forecast
reconciliation (Hyndman et al., 2011). In the following sections, we first discuss some notation, and then
present bottom-up and forecast reconciliation approaches used in this study to generate coherent forecasts.

4.2.1. Notations

Let bt be a vector of nb bottom-level time series at time t, and let at be a corresponding vector of na = n − nb

aggregated time series, where
at = Abt,

and A is the na × nb “aggregation” matrix specifying how the bottom-level series bt are to be aggregated to
form at. The aggregation matrix A is determined by the structure of the hierarchy. It maps the bottom-level
time series to the corresponding higher-level time series. For example, if there are two bottom-level series,
and one aggregated series (equal to the sum of the two bottom-level series), then A =

[

1 1
]

.

The full vector of time series is given by

yt =

[

at

bt

]

.

This leads to the n × nb “summing” or “structural” matrix given by

S =

[

A

Inb

]

such that yt = Sbt.

The term “bottom-level series” relates to the most disaggregated series within the hierarchical and grouped
time series structure. For instance, in Table 2, each distinct combination of values in Control area (e.g. South
& East), Health board (e.g. CV), Priority (e.g. Green), and Nature of incident (e.g. Chest pain), corresponds
to one individual time series. In the dataset at hand, there are 691 unique combinations, resulting in 691
bottom level time series. The “aggregate time series” describes how these bottom-level series are combined
to create higher-level series. For instance, to obtain the incidents at the national level (i.e. all country level),
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the time series are aggregated across all Control areas, Health boards, Priorities, and Natures of incidents.
Any desired aggregation level can be achieved based on the data structure, utilizing the bottom-level series
available.

4.2.2. Bottom-up (BU) and linear reconciliation methods

Bottom-Up is a simple approach to generate coherent forecasts. It involves first creating the base forecasts
for the bottom-level series (i.e., the most disaggregated series). These forecasts are then aggregated to the
upper levels which naturally results in coherent forecasts. The BU approach can capture the dynamics of the
series at the bottom level, but these series may be noisy and difficult to forecast. The approach uses only
the data at the most disaggregated level, and so does not utilize all the information available across the
hierarchical and grouped structure.

The bottom-up (BU) approach is constrained by its reliance solely on base forecasts from a single level of
aggregation at the bottom level. While it does result in consistent forecasts, the BU approach lacks forecast
reconciliation since no reconciliation is performed.

Forecast reconciliation approaches bridge this gap by combining and reconciling all base forecasts to
generate coherent forecasts. This technique utilizes all the base forecasts produced within a hierarchical
structure to create consistent forecasts at every level of the hierarchy. As a result, it goes beyond relying solely
on base forecasts from a single level of aggregation, and instead leverages all available information at each
level to generate forecasts that minimize the total forecast variance of the set of coherent forecasts. Linear
reconciliation involves projecting the base forecasts onto the coherent space. It is derived by minimizing
the sum of the variances of the reconciled forecasts subject to the resulting forecasts being coherent and
unbiased (Wickramasuriya et al., 2019).

Linear forecast reconciliation methods can be written (Wickramasuriya et al., 2019) as

ỹh = S(S′W −1S)−1W −1ŷh,

where W is an n × n positive definite matrix, and ŷh contains the h-step forecasts of yT+h given data to time
T. When Wh is the covariance matrix of ŷh, the resulting forecasts are optimal in the sense that the sum of
the variances of the reconciled forecasts is minimized, provided the base forecasts ŷh are unbiased. However,
Wh is difficult to estimate, and so there have been various suggested approximations to Wh, leading to
different types of reconciliation such as Ordinary Least Squares (OLS), Weighted Least Squares (WLS) and
Minimum Trace (MinT).

Ordinary Least Squares (OLS) is the simplest and most commonly used method. In this approach, the
estimation of W is based on the assumption that all the errors are uncorrelated and have equal variance,
and that multi-step forecast variances are proportion to one-step forecast variances. Then, W is simply the
identity matrix multiplied by a constant factor. The main weakness of this approach is that it does not take
account of the different scales of the base time series; the aggregated series will usually have higher variance
than the disaggregated series, simply because the values are larger, but OLS treats all series the same. A
strength of the approach is that it is simple, and does not involve estimating a covariance matrix.

Weighted Least Squares (WLS) is an extension of OLS where the variance of the errors is assumed to be
heteroscedastic, i.e., different for each series. But it assumes that the errors of each series are uncorrelated
with each other, and that multi-step forecast variances are proportion to one-step forecast variances. In this
approach, W is defined as a diagonal matrix with the variance of the errors on the diagonal. The intuition
behind WLS is that it assigns higher weight to series with smaller error variance, and thereby takes into
account the different scales of the base time series. The main weakness of this approach is that it ignores the
relationships between series. A strength of WLS is that it is relatively easy to compute W as it is based only
on error variances which are readily estimated.

Minimum Trace (MinT) is a further generalization where W is defined as the covariance matrix of the
one-step base forecast errors. So it takes account of both the scale of each series, and the relationships
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between the series. But it still assumes that multi-step forecast variances are proportion to one-step forecast
variances. The main weakness of this approach is that it is difficult to estimate the full covariance matrix,
even of the one-step errors. In practice, we usually need to use a shrinkage estimate where the off-diagonal
elements are shrunk towards zero.

We use the implementation of these methods in the fable package in R in the experiment.

Certainly, other approaches can be applied to hierarchical forecasting problems Pennings and Van Dalen
(2017) and Villegas and Pedregal (2018) proposed the idea of using a state space model to ensure consistent
forecasts. However, when dealing with larger hierarchies, these models encounter difficulties in estimating
covariance matrices. In contrast, our approach provides a clear advantage by allowing the incorporation
of different forecasting methods for the base forecasts, and even accommodating distinct methods for
individual series. The decoupling of time series models from the reconciliation step adds significant
flexibility in exploring a wide range of models.

5. Results and discussion

In this section, we compare the forecasting performance of the Stationary, ETS, GLM, and TSGLM models
along with the ensemble, using base forecast and Minimum Trace (MinT) reconciliation methods. We have
also computed the forecast accuracy for Ordinary Least Square (OLS) and Weighted Least Square (WLS)
approaches, along with bottom-up forecasting. However, they are not reported here because their accuracy
is outperformed by MinT. We should also note that forecasts, and consequently their corresponding errors,
are generated for the entire hierarchy and they could be reported at any level, if required. But to save
space, we have reported only the top level (Total), the bottom level, and the levels corresponding to Control
areas and Health boards. The latters are chosen because this is where decision-making takes place, so these
forecasts are the most important.

The overall forecasting performance is reported in Table 3, in which the average forecast accuracy over
horizons 43–84 days (corresponding to the planning horizon) is presented per model, method, and the
hierarchical level. Reported forecast accuracy is averaged across all forecast horizons, rolling origins, and
series at each level. Table 3 presents both point and probabilistic forecast accuracy at total, control area,
health board and bottom-level series. Point forecast performance is reported using MASE and MSSE, while
probabilistic forecast accuracy is reported using CRPS. The bold entries in each table identify a combination
of method and model that performs best for the corresponding level (i.e. each column), based on the smallest
values of accuracy measures.

Table 3 shows that forecast reconciliation (i.e. MinT) improves point forecast accuracy at the higher levels
of the hierarchy including total, control area and health board. However, it does not result in accuracy
improvement at the bottom-level series, for which base forecasts are more accurate. This might be due to the
noisy structure of time series at the bottom level, and possibly due to very different patterns in the aggregated
series. It is also clear from Table 3 that the ensemble method improves forecast accuracy at total, control
area and health board. However, this does not remain valid for bottom series where different individual
methods perform best, depending on the accuracy measure. While the forecast reconciliation approach
aims to enhance forecast accuracy, its effectiveness is not guaranteed, especially if the bottom-level series
exhibit excessive noise and lack systematic patterns. Despite this, reconciling forecasts at the bottom level
can offer advantages by generating coherent forecasts that facilitate alignment in planning across various
teams within an organization, promote better coordination, and prevent conflicting decisions. Moreover,
even when dealing with noisy and irregular bottom-level series, reconciliation can still improve forecast
accuracy at higher levels of the hierarchy by leveraging the information available across the hierarchy.
Therefore, although the bottom-level forecasts may not be highly accurate on their own, reconciling them
with higher-level forecasts can still provide a more consistent view of future demand and potentially yield
more accurate forecasts at other levels.
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Table 3: Average forecast performance calculated on the test sets at forecast horizons h = 43, . . . , 84 days, with time series cross
validation applied to attended incident data. The test set consists of 462 days. The best approach is highlighted in bold. Point forecast
accuracy is measured using MASE and MSSE, while probabilistic forecast accuracy is measured using CRPS.

Method Model Total Control areas Health boards Bottom

MSSE
Base Stationary 1.139 1.059 1.047 1.019
Base ETS 0.963 0.930 0.899 1.038
Base GLM 0.910 0.940 0.923 1.002
Base TSGLM 0.911 0.939 0.924 1.005
Base Ensemble 0.782 0.856 0.876 1.008
MinT Stationary 1.138 1.059 1.047 2.651
MinT ETS 0.877 0.916 0.915 1.289
MinT GLM 0.848 0.901 0.902 2.493
MinT TSGLM 0.852 0.903 0.903 2.513
MinT Ensemble 0.753 0.844 0.872 2.260

MASE
Base Stationary 1.169 1.056 1.062 1.031
Base ETS 0.979 0.875 0.816 0.975
Base GLM 0.813 0.897 0.875 1.009
Base TSGLM 0.822 0.901 0.875 1.050
Base Ensemble 0.599 0.729 0.774 0.993
MinT Stationary 1.168 1.057 1.062 2.095
MinT ETS 0.785 0.852 0.845 0.994
MinT GLM 0.720 0.827 0.837 1.803
MinT TSGLM 0.722 0.833 0.839 1.851
MinT Ensemble 0.560 0.706 0.765 1.557

CRPS
Base Stationary 30.387 10.882 5.500 0.302
Base ETS 14.309 6.074 3.476 0.244
Base GLM 15.396 6.253 3.576 0.244
Base TSGLM 15.316 6.227 3.575 0.245
Base Ensemble 12.978 5.727 3.430 0.243
MinT Stationary 30.368 10.902 5.498 0.313
MinT ETS 13.515 5.967 3.547 0.243
MinT GLM 13.839 5.917 3.453 0.246
MinT TSGLM 14.000 5.947 3.455 0.248
MinT Ensemble 12.585 5.728 3.426 0.247
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Table 3 presents the accuracy of the forecast distributions measures by CRPS, which considers both
forecasting reliability and interval sharpness. The smaller the value of CRPS, the better the comprehensive
performance. We observe that forecast reconciliation results in forecast improvement for the total and
health board level. CRPS is almost identical at the control area and botom levels. Base forecasts are
slightly better at the control area level, while reconciliation is marginally accurate than base at the bottom
level. The ensemble method is also more accurate for higher levels, but ETS performs well at the bottom
level. Table 3 also indicates that reconciliation using Mint generates accurate distributional forecasts. The
marginal improvement in the average probabilistic forecast accuracy at the bottom level might be due to the
reconciliation method giving improved forecast accuracy in the tails of the forecast distribution, which are
critical for managing risks.

Overall, our results indicate that forecast reconciliation using the MinT method provides reliable forecasts
and improves upon the base (unreconciled) forecasts at all levels except the bottom-level series. But even
there, forecast reconciliation using MinT improves accuracy in the tails of the distribution.
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Figure 4: Average accuracy by week for 12 weeks using MinT reconciliation. The total number of days used to calculate the accuracy in
the test set is 462. Forecasts are generateled every 42 days, therefore we use 11 samples to calculate the average accuracy. CRPS is
relative to a stationary Empirical Cumulative Distribution Function (ECDF). MASE and MSSE are relative to the corresponding values
for the training set.

In addition to the overall forecast accuracy presented in Table 3, we also report the point and probabilistic
forecast accuracy measures for each forecast horizon in Figure 4. The figure focuses on the hierarchical levels
important for decision-making including total, control area, and health board; however, the accuracy could
be calculated for any level. We only illustrate the results of the MinT method, given its strong performance
described in Table 3. For illustration purposes, we report the average weekly forecast accuracy instead of the
daily forecast horizon, as this reduces the visual noise in the figure. Thus, the x-axis shows horizons from
week 1 (h = 1, . . . , 7) to week 12 (h = 78, . . . , 84). The forecast horizon from week 7 to week 12 corresponds
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to the upcoming planning horizon, which is used by planners and decision-makers. For both the point
forecast and distributional accuracy we can see that the ensemble approach performs best across almost all
horizons, with the biggest differences at the highest levels of aggregation. It is important to highlight that,
all forecasting models outperform the stationary empirical distribution that is used as a benchmark for both
point and probabilistic forecasts.

Despite using Poisson regression models to create count distributions of attended incidents for the base
forecasts, it is important to note that the reconciled forecast distributions do not maintain a count format. In
practical scenarios, there might be a need to use integer forecasts. Count forecast reconciliation is an active
area of research, and it would be interesting to explore how our approach could be adapted to generate
count-reconciled probabilistic forecasts in future studies. Rounding the forecasts is one possible solution
to this problem. However, the impact of rounding on forecast accuracy varies depending on the level of
hierarchy and the scale of the data. In situations with high volume demand, the effects of rounding may be
negligible, and forecast accuracy calculations can overlook integer effects. On the other hand, in low-volume
demand settings, such as forecasts at the bottom level of the hierarchy, integer (rounding) effects may have a
more noticeable influence on forecast accuracy.

5.1. An illustration of probabilistic forecast for EMS demand

In this section, we provide an illustrative example of a probabilistic forecast for future demand, of the total
attended incidents in the SB health board. Due to the complexity of including such plots in the manuscript
for the entire hierarchy and 84 days ahead, only one example is presented here. However, it is feasible to
generate these plots for the entire hierarchy and for any forecast horizon if necessary.}

In practice, point forecasts are commonly used, but they have limitations as they ignore the uncertainty
associated with the forecast. The future is inherently characterized by an irreducible level of uncertainty.
Being prepared entails considering alternate courses of action. Probabilistic forecasts offer an alternative
approach to anticipate future demand. Rather than providing a single value, they assign likelihoods to all
possible demand outcomes, acknowledging that different numbers of attended incidents are possible, but
with varying likelihoods.

The purpose of probabilistic forecasting, as demonstrated in Figure 5 and Figure 6, is to quantify uncertainty.
Figure 5 depicts the forecast distribution of total incidents in one health board over a 7-day period. It also
gives the point forecast as well as the 80% and 90% prediction intervals. Figure 6 zooms in on the first day
to show the histogram more clearly, illustrating the range of possible outcomes and their likelihood.

Decisions based on these forecasts could focus on the tails of the distribution: unexpectedly high demand
leading to crowding and inefficiency, or unexpectedly low demand resulting in wasted resources. Such
forecasts are valuable tools for decision-makers and planners, especially when dealing with low-probability,
high-cost situations. Different EMS managements may have varying risk attitudes depending on resource
availability, making it crucial to consider the entire distribution when making decisions. For instance,
these forecasts enable management to calculate the probability of demand exceeding a certain threshold of
available resources (e.g., 90%), which can serve as an informative early warning measure for overcrowding.

It is important to note that while point forecasts and prediction intervals can be obtained from the
probabilistic forecasts, the reverse is not possible. A single number cannot be used to directly derive a
probabilistic forecast. Prediction intervals, although helpful in indicating possible ranges, do not provide
information on the probabilities of low or high demand.

In EMS planning, future demand is just one aspect to consider. Other inputs, such as capacity, should also
be treated as probability distributions to adopt a probabilistic approach to planning. To extract valuable
insights and make informed decisions from probabilistic forecasts, specialized numerical tools are required,
as the forecasts themselves are typically represented as explicit probability density functions or Monte Carlo
generators.
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Figure 5: A graphical illustration of the forecast distribution of ambulance demand (i.e. total incidence attended) for the SB health
board for a horizon of seven days. For each day, we display the point forecast (black point), the histogram, and 80% (thick line) and
90% (thin line) prediction intervals. It also shows a portion of a historical time series as well as its fitted values.
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Figure 6: An illustrative example of the forecast distribution of ambulance demand (i.e. total incidence attended) for the SB health
board for one day ahead. This corresponds to the first forecast distribution in Figure 5. The horizontal axis shows all possible outcomes
that may occur, with their likelihood shown on the vertical axis. The point in the middle shows the point forecast. Two lines at the
bottom of the distribution highlights 80% (thick line) and 90% (thin line) prediction intervals.
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6. Conclusion

Forecasting problems at Emergency Medical Services often have inherent hierarchical and grouped struc-
tures. For example, looking at time series of arrival calls in a clinical desk service, Emergency Department
admissions, verified incidents, or attended incidents in a country, they could be disaggregated by various
attributes of interest. Total demand in the country could be disaggregated by region, then within each
region by health board, within each health board, by station/hospital, and so on down to the postcode area.
Alternative structures may arise when attributes of interest are crossed rather than nested. For example, the
total demand could be disaggregated by priority (e.g., Red, Amber, Green) or by the nature of incidents. It is
also natural to have a mixed structure, for example, the total demand could be disaggregated by priority
and by health board.

Despite the inherent hierarchical structure of the forecasting problem in EMS, the common practice is to
produce point forecasts for each time series independently. This practice may lead to a lack of coordination
and possibly undesirable and conflicting outcomes. Furthermore, due to the asymmetric impact of resource
allocation in this area, quantifying forecast uncertainty through probabilistic forecasts is also of value as it
enables planners to manage associated risks. In this paper, we investigate the application of hierarchical
forecasting methods for producing probabilistic forecasts of daily incidents attended up to 84 days ahead,
using different forecasting methods.

Our results indicate that forecast reconciliation in EMS can not only contribute to a more coordinated
approach to the planning and decision-making through producing coherent forecasts, but also it can re-
sult in forecast accuracy improvements. Our proposed forecasting models, combined with reconciliation
approaches, outperform the empirical distribution benchmark. We show that a substantial forecast im-
provement can be achieved at higher levels of aggregation by applying forecast reconciliation methods.
When a point forecast is of interest at the bottom level of the series, we observe that reconciliation may
not improve the forecast accuracy if the bottom series are noisy and lack systematic patterns. However,
forecast reconciliation may result in more accurate forecast results for bottom series, if we are interested in
the tails of forecast distribution rather than just center measures like mean (i.e. point forecast). Coherent
forecasts are also crucial for informing planning activities, and we demonstrate that the proposed models
produce coherent forecasts across all forecast horizons. Therefore, we recommend that forecast reconcili-
ation approaches be adopted for routine use in EMS, whenever hierarchical and/or grouped time series
data need to be forecasted. Moreover, we found that using an ensemble forecasting model, combining all
models developed in this paper, instead of using each individually, works remarkably well for our mixed
hierarchical & grouped structure.

Our research establishes a strong basis for future investigations and practical implementation in EMS.
Leveraging the hierarchical and grouped structure of demand time series, EMS can use this advanced
forecasting framework to generate coherent point and probabilistic forecasts, making the most of all
available data at every level of the hierarchy. We acknowledge that a forecast serves a greater purpose
beyond its mere existence, ideally enabling the best utility in terms of efficient allocation of medical
services, response time, and cost, all informed by the forecast. While we fully appreciate the importance of
evaluating forecast quality based on its impact on decision-making processes, it is essential to address the
data requirements and methodology involved in measuring this impact. For a comprehensive assessment
of the forecasts’ implications, access to additional data beyond ambulance demand, covering various
decision types, capacity information, constraints in the decision system, and more, becomes necessary. This
additional data would offer valuable insights into the specific decisions relying on the forecasts, resulting
in a more accurate evaluation of their impact on medical services. Furthermore, measuring the actual
impact of forecasts would necessitate an approach that goes beyond forecasting itself. This would involve
developing and implementing simulation models capable of replicating decision-making processes based on
the forecast inputs. These simulation models would then evaluate the quality of the final decisions, taking
into consideration the utilities that are particularly significant in the context of EMS.

Future research can build upon this study in several ways. In future investigations, we aim to explore this
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avenue by incorporating operational information, simulating decision processes, and assessing the decision
impact of this framework on utilities that are significant to the EMS. Linking forecasts with its utilities
(e.g. response time, allocation of medical services, resource utilization, cost, etc) can offer an opportunity
to maximize benefits through a more holistic planning approach. Aditionally, in our study, we employed
Poisson regression models to generate count distributions of attended incidents for the base forecasts.
However, it is essential to note that the reconciled forecast distributions are not counts. This observation
presents an interesting avenue for future research. Also, the dataset used in this study only includes
information on attended incidents, it would be valuable for future research to investigate the impact of
failed responses on EMS forecasting, if data on these incidents becomes available. It is also important to
note that our methodology for hierarchical time series forecasting can be applied to any time series data in
EMS, including those that may include failed responses.

Although our study primarily focuses on Emergency Medical Services, it is essential to emphasize that the
framework we propose has broad applicability across various service industries (Ostrom et al., 2010). Our
approach is particularly valuable in situations where time series data is structured hierarchically and/or
grouped, a common characteristic found in many sectors. This occurs when data can be naturally organized
into different levels of hierarchies or when dependencies and relationships exist among entities within the
system. For instance, in supply chains (Shugan and Xie, 2000), demand forecasting at different levels of the
distribution network, such as regional warehouses or retail stores, is vital for efficient inventory management
and minimizing stockouts. Our framework allows the reconciliation of forecasts, ensuring consistency and
alignment throughout the supply chain, leading to improved decision-making and operational efficiency.
In the financial industry (Kimes and Chase, 1998), where investments span multiple asset classes, geo-
graphical regions, or customer segments, our framework can be applied to forecast portfolio performance,
asset allocation, or customer demand. Similarly, in transportation, the framework supports forecasting
transportation demand at various levels, optimizing route planning and resource allocation. Likewise, in
the hospitality and tourism industry (Dekimpe et al., 2016), it facilitates forecasting demand rates at state,
regional, and department levels, enabling strategic pricing, capacity planning, and revenue management for
hotels and other travel-related businesses. Additionally, in call centers, accurate call volume forecasting at
different levels of the call center hierarchy or grouped structure is crucial for workforce management and
resource allocation. Implementing our framework, call centers can generate accurate forecasts for different
skill groups, shifts, and locations, ensuring efficient staffing and optimal service levels to meet customer
demands.

Reproducibility

To enhance transparency and reproducibility, we not only provide data and the code, but also the
entire paper that is written in R using Quarto. All materials to reproduce this paper is available at
github.com/bahmanrostamitabar/forecasting-emergency-medicine. The repository contains the raw data,
all R scripts used in experiments, the results used in the paper, as well as the quarto files for producing this
paper. Full instructions are provided in the repository.
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