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Abstract7

There always exist multiple uncertainties including random uncertainty, interval uncertainty, and fuzzy8

uncertainty in engineering structures. In the presence of hybrid uncertainties, the hybrid uncertainty9

propagation analysis can be a challenging problem, which suffers from the computational burden of10

double-loop procedure when numerical simulation techniques are employed. In this work, a novel11

method for efficient hybrid uncertainty propagation analysis with the three types of uncertainties is12

proposed. Generally, multi-fidelity surrogate models, such as Co-Kriging, can greatly improve the13

computational efficiency by leveraging information from a low-fidelity model to build a high-fidelity ap-14

proximate model. However, the traditional multi-fidelity surrogate model methods always calculate the15

hybrid uncertainty propagation result by combining with several numerical simulation techniques. This16

process can introduce post-processing errors unless unlimited number of samples are used, which is im-17

possible in engineering application. In order to address this issue, the analytical solutions of the output18

mean and output variance are derived based on the Co-Kriging, and the resulting mean and variance19

are both random variables. Moreover, a new adaptive framework is established to strengthen the esti-20

mation accuracy of the hybrid uncertainty propagation result, by combining the augmented expected21

improvement function and the derived mean random variable. Several applications are introduced22

to demonstrate the effectiveness of the proposed method for solving hybrid uncertainty propagation23

problems.24
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1. Introduction27

Uncertainty is pervasive in engineering practice due to the inevitable variability of structures. These28

uncertainties in inputs can have a significant impact on responses of interest. Thus, uncertainty propaga-29

tion analysis, which aims to quantify the uncertainties in the output that propagate from the input, has30

become a crucial foundation of uncertainty quantification, such as reliability-based design optimization31

(RBDO) [1, 2] and robust design optimization (RDO) [3, 4]. However, how to assess this propagation of32

uncertainty remains a challenge due to the increasing complexity of engineering structures. To this end,33

many uncertainty propagation approaches have been investigated, including simulation-based methods34

[5, 6], Taylor series expansion-based methods [7, 8], numerical integration-based method [9, 10], and35

surrogate model-based methods [11, 12], etc.36

Generally, the notion of uncertainty can be divided into two distinct classes: aleatory and epistemic37

uncertainties [13, 14]. Aleatory uncertainty, also termed as inherent uncertainty, describes the natural38

randomness of structural system. This type of uncertainty is irreducible and it is usually handled by39

probabilistic methods. Epistemic uncertainty, on the other hand, stems from scarce experimental data40

or insufficient information. As more knowledge or samples become available, this type of uncertainty41

can be reduced. For aleatory uncertainty, random variables with precise probability distributions are42

used to characterize input uncertainties. For epistemic uncertainty, because available information is43

imprecise, evidence theory (also known as Dempster–Shafer theory), fuzzy set theory, interval theory,44

etc., are usually adopted to represent input parameters.45

Monte Carlo simulation (MCS) [15] is a traditional simulation-based method, the results of which are46

widely used as a reference to verify the accuracy of other methods due to its simplicity and robustness.47

However, for MCS, as well as some improved simulation-based methods (e.g., subset simulation (SS),48

importance sampling (IS), directional simulation (DS), line sampling (LS), etc.), the prohibitive com-49

putational cost is still a limitation, especially when a single simulation is time-consuming and multiple50

uncertainties coexist. Over the past few decades, some research has been done on uncertainty propaga-51

tion problems involving only one type of uncertainty. For example, Rao and Berke [16] applied interval52
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analysis to uncertain structures. Lee and Chen [17] performed a comparative study on the performances53

of some uncertainty propagation methods. In the work of Wei et al. [18], polynomial chaos expansion54

constructed with points of monomial cubature rules is proposed for uncertainty propagation. Long et55

al. [19] presented an interval analysis method for the fatigue crack growth life prediction. Liu et al.56

[20] provided a non-probabilistic uncertainty propagation method, where the uncertain parameters are57

modeled using the ellipsoidal convex set. Wang and Matthies [21] proposed a modified parallelepiped58

model for the non-probabilistic uncertainty propagation. Remarkably, one of the most common sce-59

narios in engineering is where the two uncertainties mentioned above exist simultaneously. Therefore,60

the development of practical methods for hybrid uncertainty propagation analysis needs to be focused.61

Jiang et al. [22] reviewed four main research directions in probability-interval hybrid uncertainty anal-62

ysis. Pedroni et al. [23] applied the joint hierarchical propagation of hybrid uncertainty to a model63

for the risk-based design of a flood protection dike. In the work of Wang and Matthies [24–26], some64

uncertain models and numerical computing methods were presented for hybrid uncertainty propagation65

analysis. Dang et al. [27] developed a Bayesian framework for propagating hybrid uncertainties. Long66

et al. [28] presented a unified framework to address the hybrid uncertainty problems under four types67

of uncertainties, i.e., probabilistic, evidence, fuzzy and interval uncertainties. Despite the significant68

progress mentioned above, research on hybrid uncertainty analysis methods is still at a preliminary69

stage, and most research considers only two types of uncertainties. Due to the increasing complexity70

of structures, efficient methods that can accommodate more than two types of uncertainties for hybrid71

uncertainty analysis are desirable.72

Although the surrogate model is widely used in uncertainty analysis, the computational burden of73

constructing a surrogate model can still be heavy when a single simulation is extremely time-consuming.74

Furthermore, even resorting to surrogate model, hybrid uncertainty propagation is still generally per-75

formed using numerical methods, which inevitably introduce post-processing errors. To avoid the post-76

processing errors, Shi et al. [29] derived the analytical solutions of the output mean and variance based77

on the Kriging model for RDO. Chen et al. [30] proposed an adaptive method for uncertainty analy-78
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sis based on the Kriging model associated with analytical solutions of the output mean and variance.79

However, the above methods are not applicable to uncertainty propagation for multi-fidelity models,80

and the above methods cannot deal with hybrid uncertainty problems. Co-Kriging [31, 32], as a typical81

multi-fidelity surrogate model, can make a good trade-off between accuracy and efficiency. Based on the82

Co-Kriging model, this paper aims to develop a fully decoupled adaptive method for hybrid uncertainty83

propagation analysis involving three types of uncertainties, i.e., random, interval and fuzzy variables.84

The novelty of this study can be summarized as follows. First, based on the Co-Kriging model, the85

analytical solutions for the output mean and the output variance are derived, which can be computed86

efficiently without additional simulation. These analytical solutions are still random variables, and are87

explicit functions with respect to epistemic variables. Second, a new adaptive framework for hybrid88

uncertainty propagation is established in which the variance of the output mean is also analytically89

derived to measure the modeling uncertainty and enable active learning. In this framework, update90

samples are determined sequentially for high-fidelity (HF) and low-fidelity (LF) simulation. Third,91

two new convergence criteria are designed to terminate the adaptive process when a desired level of92

accuracy for the bounds on the output mean and the output variance is achieved. To the best of our93

knowledge, these analytical solutions have not been derived before. The proposed method requires only94

a few samples to compute the analytical solutions of the output mean and output variance, and can95

avoid the post-processing errors in hybrid uncertainty propagation analysis.96

The outline of this paper is as follows. Section 2 provides a detailed formulation of the problem97

considered in this paper. Then, a fully decoupled adaptive method for hybrid uncertainty propagation98

analysis is presented in Section 3. Four case studies are investigated in Section 4 to demonstrate the99

effectiveness and efficiency of the proposed method. Finally, the conclusions are given in Section 5.100

2. Formulation of the problem101

In traditional uncertainty propagation analysis, only random variables are employed to measure102

the input uncertainty of structures. Nonetheless, when hybrid uncertainties are present in structures,103
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the uncertainty analysis becomes more complicated. In this study, we address the hybrid uncertainty104

propagation with the coexistence of three distinct types of input uncertainties, namely, random, interval,105

and fuzzy variables.106

2.1. Interval and fuzzy variables107

Generally, a large number of samples is required to obtain the exact probability distribution of the108

input parameter, but in practice this is difficult to achieve due to the huge computational or economic109

burden. In fact, closed intervals (i.e., the range of variation), which are easier to obtain, are often used110

to represent uncertain parameters in many cases. Remarkably, there is no assumption of probability111

distribution for interval variables, of which the bounds are determined based on engineering experience.112

The interval variable Y is defined as follows [33]:113

Y ∈ [Y L, Y U ], Y m =
Y L + Y U

2
, Y r =

Y U − Y L

2
(1)

where Y L, Y U , Y m and Y r denote the lower bound, the upper bound, the midpoint, and the radius of114

Y , respectively.115

Fuzzy variables are related to fuzzy sets which are first introduced by Zadeh [34]. Let Z be a fuzzy116

variable, which is a set mathematically defined by the following pair:117

Z = {⟨z, m(z)⟩| z ∈ Ω, m(z) ∈ [0, 1]} (2)

where z is the general elements of the fuzzy set, Ω is the definition domain of the fuzzy set, and118

m(z) : Ω → [0, 1] is the membership function. It should be noted that the value of m(z) represents the119

membership degree of z in the fuzzy set. In other words, it represents the degree of possibility that the120

fuzzy variable takes the value of z. m(z) = 0 means that element z is not included in the fuzzy set,121

while m(z) = 1 means that element z is fully included in the fuzzy set. m(z) between 0 and 1 means122

that element z is partially included in the fuzzy set.123

The α-cut approach plays an important role in the implementation of fuzzy arithmetic. Given a cut124

5



level α, the α-cut of a fuzzy set can be denoted as [35]:125

Zα = {z |m(z) ≥ α, z ∈ Ω, 0 ≤ α ≤ 1} (3)

which is a set consisting of the elements z whose membership values m(z) are equal to or greater than126

the cut level α. For a certain cut level α, the corresponding set Zα can be regarded as an interval127

variable ZI
α:128

ZI
α = [ZL

α , Z
U
α ] =

{
z ∈ Ω |ZL

α ≤ z ≤ ZU
α

}
(4)

where ZL
α and ZU

α represent the lower and upper bounds of ZI
α, respectively. There are various types129

of membership functions that define distinct forms of fuzzy variables, and the triangular membership130

function is used in this paper. The triangular membership function is described by piecewise linear131

segments:132

m(z) =



z − a

b− a
if a ≤ z ≤ b

c− z

c− b
if b ≤ z ≤ c

0 otherwise

(5)

Intuitively, Fig. 1 shows a triangular membership function and the α-cut interval ZI
α. In this context,133

fuzzy sets can be seen as a generalization of interval variables, and both of them are usually used to134

describe epistemic uncertainty.

a b c
z

( )m z

0

1



LZ
UZ

Figure 1: Diagram of the triangular membership function of fuzzy variable Z

135
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2.2. Statement of hybrid uncertainty propagation analysis136

For a hybrid uncertainty problem, there are multiple types of variables, and the relationship between137

the input parameters and the response of interest can be described by the performance function g:138

G = g(X,Y ,Z) (6)

where G denotes the response of interest, X = [X1, X2, ..., XnX
]T is the nX-dimensional input vector of139

random variables, Y = [Y1, Y2, ..., YnY
]T denotes the nY -dimensional input vector of interval variables,140

and Z = [Z1, Z2, ..., ZnZ
]T denotes the nZ-dimensional input vector of fuzzy variables. In this setting,141

the uncertainties in the inputs are propagated to the response G, which is also a random variable under142

arbitrary values of interval and fuzzy variables. In engineering practice, it is usually difficult to obtain143

the exact probability density function (PDF) of the response because the input random variables may144

follow different types of distributions and the performance function is often nonlinear.145

In this study, the primary objective is to assess the effect of uncertainties in the inputs on the146

response G through the analytical expressions of the output mean ug(y, z) and the output variance147

σ2
g(y, z), which are functions of the values of interval and fuzzy variables:148

ug(y, z) =

∫
ΩX

g(x,y, z)fX(x)dx (7)

149
σ2
g(y, z) =

∫
ΩX

[g(x,y, z)− ug(y, z)]
2fX(x)dx (8)

where fX(x) is the joint PDF, ΩX denotes the value domain of X, and x, y, z are the realization of150

X, Y , Z, respectively. Furthermore, due to the presence of interval and fuzzy variables, the output151

mean ug(y, z) and the output variance σ2
g(y, z) are no longer crisp values, but intervals at each cut152

level α.153
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3. The proposed method154

3.1. Performance approximation with Co-Kriging155

As an extension of Kriging, Co-Kriging has attracted a great deal of attention in the field of engi-156

neering [36, 37]. It is an multi-fidelity surrogate model that combines the HF and LF models to provide157

a trade-off between accuracy and efficiency. The conventional single-fidelity Kriging model requires158

that all samples are from the HF model, where computational burden is still a limitation when the159

simulation is extremely time-consuming. In this regard, Co-Kriging uses a limited number of expensive160

HF samples and more relatively cheap LF samples to construct an multi-fidelity model. Denote the161

model input as ξ, and the Co-Kriging prediction can be expressed as [38]:162

Se (ξ) = ρSc (ξ) + Sd (ξ) (9)

where Sc (ξ) denotes the LF Kriging prediction, Sd (x) denotes Kriging model of the difference between163

HF and LF model predictions, and ρ is a scaling factor. Let Dc = (ξ(1)c , ξ(2)c , ..., ξ(nc)
c )T denote an164

nc-by-n matrix consisting of nc LF samples whose responses are yc = (y
(1)
c , y

(2)
c , ..., y

(nc)
c )T, De =165

(ξ(1)e , ξ(2)e , ..., ξ(ne)
e )T denote an ne-by-n matrix consisting of ne HF samples whose responses are ye =166

(y
(1)
e , y

(2)
e , ..., y

(ne)
e )T, and n is the dimension of the sample points. The covariance matrix of Co-Kriging167

is expressed in block form as:168

C =

 σ2
cΨ c (Dc,Dc) ρσ2

cΨ c (Dc,De)

ρσ2
cΨ c (De,Dc) ρ2σ2

cΨ c (De,De) + σ2
dΨd (De,De)

 (10)

where σ2
c and σ2

d are the process variances of the LF and HF Kriging models, respectively, Ψ c and Ψd169

are the correlation matrix of LF and HF Kriging models, respectively. Based on the LF Kriging model170

constructed fromDc and yc, σ
2
c and Ψ c can be obtained by the maximum likelihood estimation (MLE),171

while σ2
d and Ψd are obtained based on the difference Kriging model. To this end, the difference d is172

defined as:173

d = ye − ρyc (De) (11)
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where yc (De) denotes the responses of LF model at samples De. Then, σ
2
d and Ψd can be determined174

based on the difference Kriging model constructed from De and d.175

After all parameters are estimated, at an arbitrary unknown point ξ, the prediction of Co-Kriging176

is available, which is a random variable. The mean value can be expressed as follows:177

ŷe (ξ) = µ̂+ cT(ξ)C
−1 (y∗ − 1µ̂) (12)

where178

µ̂ =
1TC−1y∗

1TC−11
(13)

179

c(ξ) =

 ρσ2
cψc (Dc, ξ)

ρ2σ2
cψc (De, ξ) + σ2

dψd (De, ξ)

 (14)

y∗ = [yT
c ,y

T
e ]

T is the response vector of LF and HF samples, and ψ refers to a column vector of180

correlations between samples and ξ. Note that the subscripts ⟨c⟩, ⟨e⟩ and ⟨d⟩ in this paper indicate181

whether the parameters used are from the LF, HF, or difference Kriging models, respectively. The182

variance of the prediction is expressed as:183

s2e (ξ) = ρ2σ2
c + σ2

d − cT(ξ)C−1c(ξ) (15)

The reader can refer to [31] for more details about the derivation. In this study, the Gaussian correlation184

function shown below is used:185

ψθ

(
ξ, ξ

′
)
= exp

{
−

n∑
k=1

θ(k)
(
ξ(k) − ξ

′(k)
)2
}

(16)

where θ(k) (k = 1, 2, ...n) are the correlation parameters.186

3.2. Uncertainty Propagation Solution of Output Mean187

In this method, if the input random variables do not follow normal distributions, an isoprobabilistic188

transformation should first be applied to transform the original input variables into independent ones189

in standardized normal space, i.e., U = T (X), where U = [U1, U2, ..., UnX
]T is the vector of standard190
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normal variables. Then, Eq. (6) can be rewritten as follows:191

G = g(T−1(U),Y ,Z) = G(U ,Y ,Z) (17)

Two types of transformations can be used, the Rosenblatt and Nataf transformations [39, 40]. For192

convenience of expression, let W =
[
UT,Y T,ZT

]
and P =

[
Y T,ZT

]
. Because the output mean and193

the output variance are functions of y and z, the Gaussian correlation function (as shown in Eq. (16))194

of LF Kriging model can be rewritten as follows:195

ψc

(
w,w

′
)
= exp

{
−

nX∑
k=1

θ(k)c

(
u(k), u

′(k)
)2

−
nY +nZ∑
k=1

θ(nX+k)
c

(
p(k), p

′(k)
)2
}

= exp

{
−

nX∑
k=1

θ(k)c

(
u(k), u

′(k)
)2
}
exp

{
−

nY +nZ∑
k=1

θ(nX+k)
c

(
p(k), p

′(k)
)2
}

= γuc

(
u,u

′
)
γpc

(
p,p

′
)

(18)

where w and w
′
are two arbitrary realizations of W , u and u

′
are two arbitrary realizations of U , p196

and p
′
are two arbitrary realizations of P . Similarly, the correlation function of the difference Kriging197

model can be expressed as follows:198

ψd

(
w,w

′
)
= exp

{
−

nX∑
k=1

θ
(k)
d

(
u(k), u

′(k)
)2
}
exp

{
−

nY +nZ∑
k=1

θ
(nX+k)
d

(
p(k), p

′(k)
)2
}

= γud

(
u,u

′
)
γpd

(
p,p

′
) (19)

In this setting, the matrices of LF and HF training samples are Dc = (w
(1)
c ,w

(2)
c , ...,w

(nc)
c )T and199

De = (w
(1)
e ,w

(2)
e , ...,w

(ne)
e )T, respectively. Then, we employ the mean of Co-Kriging prediction ŷe (w)200

to replace the real response G to obtain the analytical expression of the output mean ug(y, z). It should201

be noted that ug(y, z) is also a random variable after the replacement, whose mean mĝ(y, z) can be202

estimated by substituting Eqs. (12), (18) and (19) into Eq. (7):203

mĝ(y, z) =

∫
ΩU

[
µ̂+ cT(w)C

−1 (y∗ − 1µ̂)
]
fU (u)du

= µ̂+

{∫
ΩU

cT(w)fU (u)du

}
F c

(20)
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where204

F c =
[
C−1 (y∗ − 1µ̂)

]
(21)

205

c(w) =

 ρσ2
cψc (Dc,w)

ρ2σ2
cψc (De,w) + σ2

dψd (De,w)



=



ρσ2
cγuc(u

(1)
c ,u)γpc(p

(1)
c ,p)

ρσ2
cγuc(u

(2)
c ,u)γpc(p

(2)
c ,p)

...

ρσ2
cγuc(u

(nc)
c ,u)γpc(p

(nc)
c ,p)

ρ2σ2
cγuc(u

(1)
e ,u)γpc(p

(1)
e ,p) + σ2

dγud(u
(1)
e ,u)γpd(p

(1)
e ,p)

...

ρ2σ2
cγuc(u

(ne)
e ,u)γpc(p

(ne)
e ,p) + σ2

dγud(u
(ne)
e ,u)γpd(p

(ne)
e ,p)



(22)

ΩU denotes the value domain of U , and fU (u) is the joint PDF of U with the corresponding mean206

vector and covariance matrix being b and B, respectively.207

To calculate the integral in Eq. (20), rewrite the vector c(w) into two parts, where γ
(i)
c (i = 1, 2, ..., nc)208

are the first nc elements in c(w), and γ
(j)
e (j = 1, 2, ..., ne) are the last ne elements in c(w). Then,209

γ
(i)
c fU (u) (i = 1, 2, ..., nc) can be expressed as follows:210

γ(i)
c fU (u) = ρσ2

c (2π)
n
2 |Ac|

1
2 f (i)

cc (u) fU (u) γpc
(
p(i)c ,p

)
(23)

where211

f (i)
cc (u) = (2π)−

n
2 |Ac|−

1
2 exp

{
−1

2

(
u(i)

c − u
)T
A−1

c

(
u(i)

c − u
)}

(24)

and Ac = diag

(
1

2θ
(1)
c

, 1

2θ
(2)
c

, ..., 1

2θ
(nX)
c

)
. Similarly, γ

(j)
e fU (u) (j = 1, 2, ..., ne) can be expressed as follows:212

γ(j)
e fU (u) = (2π)

n
2

(
ρ2σ2

c |Ac|
1
2 f (j)

ce (u) γpc
(
p(j)e ,p

)
+ σ2

d |Ad|
1
2 f

(j)
de (u) γpd

(
p(j)e ,p

))
fU (u) (25)
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where213

f (j)
ce (u) = (2π)−

n
2 |Ac|−

1
2 exp

{
−1

2

(
u(j)

e − u
)T
A−1

c

(
u(j)

e − u
)}

(26)

214

f
(j)
de (u) = (2π)−

n
2 |Ad|−

n
2 exp

{
−1

2

(
u(j)

e − u
)T
A−1

d

(
u(j)

e − u
)}

(27)

and Ad = diag

(
1

2θ
(1)
d

, 1

2θ
(2)
d

, ..., 1

2θ
(nX)
d

)
, respectively. f

(i)
cc (u), f

(j)
ce (u), f

(j)
de (u) and fU (u) are four215

joint Gaussian PDFs about the nX-dimension random variable U , and the product of two Gaus-216

sian PDFs generates another un-normalized Gaussian PDF [41]. Accordingly, the three products, i.e.,217

f
(i)
cc (u) fU (u), f

(j)
ce (u) fU (u), and f

(j)
de (u) fU (u) can be derived as follows [41]:218

f (i)
cc (u) fU (u) = (2π)−

n
2 |Ac +B|−

1
2 exp

{
−1

2

(
u(i)

c − b
)T

(Ac +B)−1 (u(i)
c − b

)}
f ′
U (u) (28)

219

f (j)
ce (u) fU (u) = (2π)−

n
2 |Ac +B|−

1
2 exp

{
−1

2

(
u(j)

e − b
)T

(Ac +B)−1 (u(j)
e − b

)}
f ′′
U (u) (29)

220

f
(j)
de (u) fU (u) = (2π)−

n
2 |Ad +B|−

1
2 exp

{
−1

2

(
u(j)

e − b
)T

(Ad +B)−1 (u(j)
e − b

)}
f ′′′
U (u) (30)

where f ′
U (u), f ′′

U (u) and f ′′′
U (u) are also joint Gaussian PDFs with the mean vectors ū′, ū′′, ū′′′ and221

covariance matrices Q′, Q′′, Q′′′, in which Q′ = Q′′ =
(
A−1

c +B−1
)−1

, Q′′′ =
(
A−1

d +B−1
)−1

, ū′ =222

Q′
(
A−1

c u
(i)
c +B−1b

)
, ū′′ = Q′′

(
A−1

c u
(j)
e +B−1b

)
, and ū′′′ = Q′′′

(
A−1

d u
(j)
e +B−1b

)
, respectively.223

Substituting Eq. (28) into Eq. (23), Eq. (29) and (30) into Eq. (25), the integral in Eq. (20) can224

be obtained by:225

∫
ΩU

cT(w)fU (u)du =
[
β(1)
c , β(2)

c , ..., β(nc)
c , β(1)

e , β(2)
e , ..., β(ne)

e

]
=

[
β(i)

c ,β
(j)
e

]
(i = 1, 2, ..., nc; j = 1, 2, ..., ne)

= β

(31)

where226

β(i)
c = ρσ2

c |Ac|
1
2 |Ac +B|−

1
2 exp

{
−1

2

(
u(i)

c − b
)T

(Ac +B)−1 (u(i)
c − b

)}
γpc

(
p(i)c ,p

)
(32)
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227

β(j)
e = ρ2σ2

c |Ac|
1
2 |Ac +B|−

1
2 exp

{
−1

2

(
u(j)

e − b
)T

(Ac +B)−1 (u(j)
e − b

)}
γpc

(
p(j)e ,p

)
+σ2

d |Ad|
1
2 |Ad +B|−

1
2 exp

{
−1

2

(
u(j)

e − b
)T

(Ad +B)−1 (u(j)
e − b

)}
γpd

(
p(j)e ,p

) (33)

Substituting Eq. (31) into Eq. (20), the analytical solution of mĝ(y, z) can be estimated as follows:228

mĝ(y, z) = µ̂+ βF c (34)

It should be pointed out that all parameters in Eq. (34) are available based on the constructed Co-229

Kriging model. Given a value of p (i.e., (y, z)), the mean of the performance function can be estimated230

analytically.231

In the above derivation, the mean of ug(y, z) is derived by replacing the real response G with the232

mean of the Co-Kriging prediction ŷe (w), where epistemic uncertainty is introduced. In the following233

text, we will also derive the analytical solution of the variance of ug(y, z), which is adopted to measure234

the epistemic uncertainty in ug(y, z).235

The variance of ug(y, z) is defined as follows:236

s2ĝ (y, z) =

∫
Ωĝ

[∫
ΩU

ĝ (u,y, z) fU (u) du−mĝ (y, z)

]2
f (ĝ) dĝ

=

∫
Ωĝ

[∫
ΩU

[ĝ (u,y, z)−mĝ (y, z)] fU (u) du∫
ΩU ′

[ĝ (u′,y, z)−mĝ (y, z)] fU ′ (u′) du′

]
f (ĝ) dĝ

=

∫
ΩU

∫
ΩU ′

cov ((u,y, z) , (u′,y, z))fU (u) fU ′ (u′) dudu′

(35)

where ĝ (u,y, z) is the Co-Kriging model approximation of G, Ωĝ and f (ĝ) denote the value domain237

and the PDF of ĝ. Based on Eq. (15), the prediction covariance cov (w,w′) is expressed below:238

cov (w,w′) = ρ2σ2
cψc (w,w

′) + σ2
dψd (w,w

′)− cT(w)C
−1c(w′)

(36)

13



Substituting Eqs. (18), (19), (31) and (36) into Eq. (35), s2ĝ (y, z) can be rewritten as follows:239

s2ĝ (y, z) =ρ
2σ2

c

∫
ΩU

∫
ΩU ′

γuc (u,u
′)fU (u) fU ′ (u′) dudu′

+ σ2
d

∫
ΩU

∫
ΩU ′

γud (u,u
′)fU (u) fU ′ (u′) dudu′ − βC−1βT

(37)

in which
∫
ΩU

∫
ΩU ′

γuc (u,u
′)fU (u) fU ′ (u′) dudu′ and

∫
ΩU

∫
ΩU ′

γud (u,u
′)fU (u) fU ′ (u′) dudu′ are given240

as [42, 43]:241 ∫
ΩU

∫
ΩU ′

γuc (u,u
′)fU (u) fU ′ (u′) dudu′ =

∣∣2Ac
−1B + I

∣∣− 1
2 (38)

242 ∫
ΩU

∫
ΩU ′

γud (u,u
′)fU (u) fU ′ (u′) dudu′ =

∣∣2Ad
−1B + I

∣∣− 1
2 (39)

Finally, the analytical solution of s2ĝ (y, z) is obtained as follows:243

s2ĝ (y, z) = ρ2σ2
c

∣∣2Ac
−1B + I

∣∣− 1
2 + σ2

d

∣∣2Ad
−1B + I

∣∣− 1
2 − βC−1βT (40)

3.3. Uncertainty Propagation Solution of Output Variance244

In order to obtain the analytical solution of the output variance σ2
g(y, z) defined in Eq. (8), we still245

resort to the mean of Co-Kriging prediction, and Eq. (8) can be rewritten as follows:246

σ2
g(y, z) =

∫
ΩU

[g(u,y, z)− ug(y, z)]
2fU (u)du

=

∫
ΩU

[
g2(u,y, z) + u2g(y, z)− 2g(u,y, z)ug(y, z)

]
fU (u)du

=

∫
ΩU

[
g2(u,y, z)− u2g(y, z)

]
fU (u)du

=

∫
ΩU

[
ŷ2e (u,y, z)− u2g(y, z)

]
fU (u)du

= µ̂2 + 2µ̂βC−1βTF c − u2g(y, z) + F
T
c

[∫
ΩU

c(w)c
T
(w)fU (u)du

]
F c

(41)

where u2g(y, z) can be estimated by Eq. (34), c(w)c
T
(w) is a block matrix expressed as follows:247

c(w)c
T
(w) =

γcc γce

γec γee

 (42)
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in which γcc is an nc-by-nc matrix with the (i, j)-th entry [γcc]ij = γ
(i)
c γ

(j)
c , γce is an nc-by-ne matrix248

with the (i, j)-th entry [γce]ij = γ
(i)
c γ

(j)
e , γec is the transpose matrix of γce, and γee is an ne-by-ne matrix249

with the (i, j)-th entry [γee]ij = γ
(i)
e γ

(j)
e .250

Take the (i, j)-th entry of matrix γcc as an example, the resulting integral is calculated as follows:251

∫
ΩU

γ(i)c γ(j)c fU (u) du =
(
ρσ2

c (2π)
n
2 |Ac|

1
2

)2
[∫

ΩU

f (i)
cc (u)f

(j)
cc (u)fU (u)du

]
γpc

(
p(i)c ,p

)
γpc

(
p(j)c ,p

)
= ρ2σ4

c |Ac|H1

(
u(i)

c

)
H2

(
u(j)

c

)
γpc

(
p(i)c ,p

)
γpc

(
p(j)c ,p

)
(43)

where252

H1

(
u(i)

c

)
= |Ac +B|−

1
2 exp

{
−1

2

(
u(i)

c − b
)T

(Ac +B)−1 (u(i)
c − b

)}
(44)

253

H2

(
u(j)

c

)
= |Q′ +Ac|−

1
2 exp

{
−1

2

(
ū′ − u(j)

c

)T
(Q′ +Ac)

−1 (
ū′ − u(j)

c

)}
(45)

Similarly, the integral of the (i, j)-th entry of matrix γce can be obtained as follows:254

∫
ΩU

γ(i)c γ(j)e fU (u) du

=ρ3σ4
c (2π)

n |Ac|
[∫

ΩU

f (i)
cc (u) f (j)

ce (u)fU (u) du

]
γpc

(
p(i)c ,p

)
γpc

(
p(j)e ,p

)
+ ρσ2

cσ
2
d (2π)

n |Ac|
1
2 |Ad|

1
2

[∫
ΩU

f (i)
cc (u) f

(j)
de (u)fU (u) du

]
γpc

(
p(i)c ,p

)
γpd

(
p(j)e ,p

)
=ρ3σ4

c |Ac|H1

(
u(i)

c

)
H2

(
u(j)

e

)
γpc

(
p(i)c ,p

)
γpc

(
p(j)e ,p

)
+ ρσ2

cσ
2
d |Ac|

1
2 |Ad|

1
2 H1

(
u(i)

c

)
H3

(
u(j)

e

)
γpc

(
p(i)c ,p

)
γpd

(
p(j)e ,p

)

(46)

where255

H3

(
u(j)

e

)
= |Q′ +Ad|−

1
2 exp

{
−1

2

(
ū′ − u(j)

e

)T
(Q′ +Ad)

−1 (
ū′ − u(j)

e

)}
(47)
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Once again, the integral of the (i, j)-th entry of matrix γee is given as follows:256

∫
ΩU

γ(i)e γ(j)e fU (u) du

= ρ4σ4
c (2π)

n |Ac|
[∫

ΩU

f (i)
ce (u) f (j)

ce (u) fU (u) du

]
γpc

(
p(i)e ,p

)
γpc

(
p(j)e ,p

)
+ ρ2σ2

cσ
2
d (2π)

n |Ac|
1
2 |Ad|

1
2

[∫
ΩU

f (i)
ce (u) f

(j)
de (u) fU (u) du

]
γpc

(
p(i)e ,p

)
γpd

(
p(j)e ,p

)
+ ρ2σ2

cσ
2
d (2π)

n |Ac|
1
2 |Ad|

1
2

[∫
ΩU

f (j)
ce (u) f

(i)
de (u) fU (u) du

]
γpc

(
p(j)e ,p

)
γpd

(
p(i)e ,p

)
+ σ4

d (2π)
n |Ad|

[∫
ΩU

f
(i)
de (u) f

(j)
de (u) fU (u) du

]
γpd

(
p(i)e ,p

)
γpd

(
p(j)e ,p

)
= ρ4σ4

c |Ac|H1

(
u(i)

e

)
H4

(
u(j)

e

)
γpc

(
p(i)e ,p

)
γpc

(
p(j)e ,p

)
+ ρ2σ2

cσ
2
d |Ac|

1
2 |Ad|

1
2 H1

(
u(i)

e

)
H5

(
u(j)

e

)
γpc

(
p(i)e ,p

)
γpd

(
p(j)e ,p

)
+ ρ2σ2

cσ
2
d |Ac|

1
2 |Ad|

1
2 H1

(
u(j)

e

)
H5

(
u(i)

e

)
γpc

(
p(j)e ,p

)
γpd

(
p(i)e ,p

)
+ σ4

d |Ad|H6

(
u(i)

e

)
H7

(
u(j)

e

)
γpd

(
p(i)e ,p

)
γpd

(
p(j)e ,p

)

(48)

where257

H4

(
u(j)

e

)
= |Q′′ +Ac|−

1
2 exp

{
−1

2

(
ū′′ − u(j)

e

)T
(Q′′ +Ac)

−1 (
ū′′ − u(j)

e

)}
(49)

258

H5

(
u(j)

e

)
= |Q′′ +Ad|−

1
2 exp

{
−1

2

(
ū′′ − u(j)

e

)T
(Q′′ +Ad)

−1 (
ū′′ − u(j)

e

)}
(50)

259

H6

(
u(i)

e

)
= |Ad +B|−

1
2 exp

{
−1

2

(
u(i)

e − b
)T

(Ad +B)−1 (u(i)
e − b

)}
(51)

260

H7

(
u(j)

e

)
=

∣∣∣Q′′′
+Ad

∣∣∣− 1
2
exp

{
−1

2

(
ū

′′′ − u(j)
e

)T (
Q

′′′
+Ad

)−1 (
ū

′′′ − u(j)
e

)}
(52)

Substituting Eqs. (43), (46) and (48) into Eq. (41) gives the analytical solution of the output variance261

σ2
g(y, z), which is an explicit function of p (i.e., (y, z)).262

3.4. Adaptive hybrid uncertainty propagation263

Recall that the primary goal is to estimate the output mean ug(y, z) and the output variance264

σ2
g(y, z), where epistemic uncertainty is introduced by the Co-Kriging model prediction. Hence, the265

active learning strategy should focus on reducing the epistemic uncertainty in ug(y, z) and σ2
g(y, z).266
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Based on the augmented expected improvement (AEI) function [44], an adaptive framework is estab-267

lished, where two stopping criteria are proposed for the single loop active learning. The analytical268

solutions for the mean and variance of ug(y, z) given in Eqs. (34) and (40) are employed to facilitate269

the identification of new points:270

AEI (p) = (mĝ(p
∗∗)−mĝ(p)) Φ

(
mĝ(p

∗∗)−mĝ(p)

sĝ (p)

)
+ sĝ (p)φ

(
mĝ(p

∗∗)−mĝ(p)

sĝ (p)

)
(53)

where p∗∗ is determined by:271

p∗∗ = argmax [−mĝ(p)− csĝ (p)] (54)

with c = 1; Φ (·) and φ (·) are the cumulative distribution function (CDF) and the PDF of the standard272

normal distribution, respectively.273

The computational steps of active learning are elaborated as below:274

Step 1: Generation of candidate sample set Ω for random variables. In this paper, the Sobol’s275

quasi-random sequence [45] is employed to generate low-discrepancy candidate samples of size NΩ in276

standard normal space.277

Step 2: Construction of the Co-Kriging model based on training samples Dc and De for LF and278

HF models. To ensure the uniformity of the initial samples and to capture the global approximation279

behavior of Co-Kriging, Latin Hypercube Sampling (LHS) is performed to generate initial training280

samples, where the cut level α of the fuzzy variables is set to 0 for sampling. Then, the real responses281

yc and ye of the LF and HF models at training samples are obtained.282

Step 3: Calculation of the upper and lower bounds for the output mean ug(y, z) and the output283

variance σ2
g(y, z) at each cut level. Based on Eqs. (34) and (41), the bounds of ug(y, z) and σ

2
g(y, z)284

at each cut level α can be collected by discretizing interval and fuzzy variables.285

Step 4: Stopping criterion. In this paper, two efficient convergence criteria are established to stop286

the iteration. The first stopping criterion is defined as the maximum coefficient of variation (Cov) of287

ug(y, z) at the lower and upper bounds:288
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[
Cov(1), Cov(2), ..., Cov(n)

]
max

≤ e1 (55)

where Cov(i) (i = 1, 2, ..., n) denote all the Cov of ug(y, z) at the lower and upper bounds, and e1 is289

the error threshold. The first criterion can measure the accuracy of the lower and upper bounds of the290

output mean. In addition, the second criterion considers the maximum value of the AEI function:291

max (AEI (p)) ≤ mĝ(p
∗∗) · e2 (56)

where e2 is a user-specified value. The left term in the second stopping criterion indicates by how much292

the maximum improvement is expected to be greater than mĝ(p
∗∗) and reflects the level of epistemic293

uncertainty in the Co-Kriging model. If both of the stopping criteria are consecutively satisfied for 2294

iterations, stop the Co-Kriging update and return the bounds of ug(y, z) and σ
2
g(y, z). Otherwise, go295

to step 5.296

Step 5: Identification of the update point. The values of the interval and fuzzy variables for the297

new point (denoted as (y∗, z∗)) are adaptively determined by maximizing the learning function AEI298

shown in Eq. (53). The values of the interval and fuzzy variables are then fixed, and determine the299

values of the random variables from Ω by maximizing the expected improvement (EI) function based300

on LF and HF predictions:301

EIc (x) =
(
ymin
c − yc(x,y

∗, z∗)
)
Φ

(
ymin
c − yc(x,y

∗, z∗)

sc (x,y∗, z∗)

)
+sc (x,y

∗, z∗)φ

(
ymin
c − yc(x,y

∗, z∗)

sc (x,y∗, z∗)

)
(57)

302

EIe (x) =
(
ymin
e − ye(x,y

∗, z∗)
)
Φ

(
ymin
e − ye(x,y

∗, z∗)

se (x,y∗, z∗)

)
+se (x,y

∗, z∗)φ

(
ymin
e − ye(x,y

∗, z∗)

se (x,y∗, z∗)

)
(58)

where ymin
c and ymin

e are the minimum values of the responses yc and ye, respectively, sc and se are the303

standard deviation of LF and HF predictions, respectively. If the maximum value of EIc (x) is larger304

than that of EIe (x), the values of the random variables is determined as the point x∗ corresponding to305

the maximum of EIc (x), and add the new point (x∗,y∗, z∗) to the LF samples. Otherwise, the point x∗
306

corresponding to the maximum of EIe (x) is selected and add the new point (x∗,y∗, z∗) to HF samples.307
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The flowchart of the proposed approach is shown in Fig. 2.

Discretize interval variables and fuzzy variables in each membership level

Construct the Co-Kriging model based on the current 

training samples and their responses

Calculate the analytical solutions of the mean and variance of the performance 

function, and obtain the lower and upper bounds

Generate candidate samples in standard space, and generate 

training samples for LF and HF models 

Estimate the real responses of training samples

Generation of samples 

Construction of Co-Kriging model

           Analytical solutions

Identify new sample                     and the 

corresponding fidelity level

Identify               by combine the AEI function and 

the mean random variable 

Identification of new samples

     The first criterion:

The second criterion:

Stopping criteria

Return the final results

Is stopping criterion 

satisfied?

Add the new point into LF or 

HF training samples

Yes

No

Figure 2: Flowchart of the proposed method

308

4. Illustrative Examples309

In this section, four examples are investigated to validate the efficiency and accuracy of the proposed310

method, including a mathematical example, a roof truss structure, a planetary transmission gear and a311

frame structure. In each example, the scaling factor ρ is set to 1, and the candidate sample size NΩ is set312

to 105. For interval and fuzzy variables, 11 α-cut levels are assigned uniformly to fuzzy variables, and313

300 discrete points are generated between the bounds of interval and fuzzy variables at each cut level.314

The results of the proposed active learning method are obtained over 30 independent runs, and the315

average results are compared with the reference results obtained by MCS and with the results obtained316

without active learning (i.e., construct a Co-Kriging model using all the training samples required by317

the proposed method, and directly estimate the bounds of ug(y, z) and σ
2
g(y, z)).318
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4.1. Example 1: A mathematical example319

The first example is a mathematical problem which is modified from [46]. In this example:320

gh (X, Y, Z) = sin

(
5X1

2

)
− (X1Z + 4) (X2 − 1)

20
+ Y

gl (X, Y, Z) = sin

(
5X1

2

)
− (0.9X1Z + 4) (0.9X2 − 1)

20
+ 0.9Y

(59)

where gh(·) and gl(·) denote the HF and LF models, respectively. In this example, two independent321

random variables, one interval variable and one fuzzy variable are included. The details of these322

uncertain variables are listed in Table 1.323

In this example, 20 HF samples and 20 LF samples are generated to construct the initial Co-Kriging324

model. The error threshold e1 and e2 are set to 0.005. Fig. 3 shows the lower and upper bounds of the325

output mean ug and the output variance σ2
g at each membership level. It is observed that the proposed326

method has a very good performance in estimating the intervals of the output mean ug and the output327

variance σ2
g , while the results without active learning are not accurate enough. In particular, the bounds328

of σ2
g obtained without active learning deviate significantly from the reference. Table 2 summarizes the329

comparative results obtained by different methods, where ε (ug) and ε (ug) are the maximum relative330

errors of the lower and upper bounds of ug, ε
(
σ2
g

)
and ε

(
σ2
g

)
are the maximum relative errors of the331

lower and upper bounds of σ2
g . It can be seen that the results obtained without active learning have332

the largest error for the upper bound of σ2
g , which is 7.90% corresponding to the membership level 0.333

The maximum relative error of ug obtained by the proposed method is 0.36% corresponding to the334

membership level 1, while the maximum relative error of σ2
g is 0.44% corresponding to the membership335

level 1. Compared to MCS, the function calls of the proposed method are greatly reduced, requiring336

only 32 evaluations of the HF model and 58 evaluations of the LF model. In addition, through kernel337

density estimation, the PDFs of the output obtained by the three methods at two different points of338

interval and fuzzy variables are plotted in Fig. 4. It can been seen that the estimated PDFs of the339

proposed method are almost identical to the reference PDFs, while the PDFs obtained without active340

learning are less accurate. Thus, the proposed method has prominent performance in terms of efficiency341
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and accuracy.342

Table 1: Uncertain variables in Example 1.

Uncertain variables Distribution types Parameter 1 Parameter 2

X1 Normal 1.5 1

X2 Normal 2.5 1

Y Interval 2 2.5

Z Fuzzy Triangular (1.5, 2, 2.5)

For the random variable, parameter 1 and 2 are the mean and standard devi-
ation, respectively; for the interval variable, parameter 1 and 2 are the lower
and upper bounds, respectively; for the fuzzy variable, parameter 1 and pa-
rameter 2 are the type of membership function and the function parameters
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Proposed method
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Figure 3: The bounds of the mean ug and variance σ2
g in Example 1

Table 2: Comparative results in Example 1.

Methods ε (ug) ε (ug) ε
(
σ2
g

)
ε
(
σ2
g

)
Function costs

MCS - - - - 105× 300 ×11

Proposed method 0.28% (α = 0.1) 0.36% (α = 1) 0.35% (α = 0) 0.44% (α = 1) 32HF+58LF

Without learning 1.93% (α = 1) 4.79% (α = 0) 6.87% (α = 1) 7.90% (α = 0) 32HF+58LF

4.2. Example 2: A roof truss343

As shown in Fig. 5, this example investigates a roof truss structure, which is modified from [47]. For344

this structure, the bottom boom and the tension bars are steel, while the top boom and the compression345

bars are reinforced by concrete. Assume that this roof structure is subjected to the uniformly distributed346
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Figure 4: The PDFs of the output in Example 1

load q, which can be equivalently transformed to the nodal load P = ql/4. We focus on the vertical347

deflection ∆C at the node C, where the HF and LF models are expressed as follows:348

∆h
C =

ql2

2

(
3.81

AcEc

+
1.13

AsEs

)
(60)

349

∆l
C =

q (l + 1)2

2

(
3.81

Ac (Ec + 1e7)
+

1.13

As (Es + 1e7)

)
(61)

where AS and Ac denote the cross-sectional area of the steel and concrete bars, respectively, ES and350

Ec denote their Young’s modulus, respectively. Table 3 gives the information of uncertain variables.351

For the truncated Gaussian distribution, the range values is between positive and negative 3 sigma352

intervals.353
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Figure 5: Schematic structural view of the roof truss

Initially, the number of training samples for the HF and LF models is set to 28 and 28, respectively.354

The error thresholds e1 and e2 are set to 0.005 and 0.0001 in this example. Three methods are applied355
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Table 3: Uncertain variables of the roof truss structure.

Uncertain variables Distribution types Parameter 1 Parameter 2

q (N/m) Truncated Gaussian 20000 1600

l (m) Truncated Gaussian 12 0.24

Es (N/m
2) Truncated Gaussian 1.2× 1011 8.4× 109

Ec (N/m
2) Truncated Gaussian 3× 1010 2.4× 109

As (m
2) Interval 9.2× 10−4 9.6× 10−4

Ac (m
2) Fuzzy Triangular (0.032, 0.034, 0.036)

Parameters 1 and 2 are the same as those in Table 1

to obtain the intervals of the output mean ug and the output variance σ2
g of the vertical deflection ∆C.356

The bounds of ug and σ
2
g are drawn in Fig. 6, Table 4 lists the maximum relative error and the function357

calls of different methods, and the PDFs estimated by the three methods are also plotted in Fig. 7. It358

can be seen in Fig. 6 that the lower and upper bounds of ug and σ2
g obtained by the proposed method359

are almost identical to the reference solutions, while the bounds of σ2
g estimated directly without active360

learning do not agree so well with the reference bounds obtained by MCS. From Table 4, the maximum361

relative error of the lower and upper bounds of ug caused by the proposed method are 0.10% and 0.12%,362

when the membership level is 0.4 and 0.7, respectively. Moreover, the maximum relative error of the363

bounds of σ2
g caused by the proposed method is 0.19%, which is smaller than that caused by the direct364

estimation without active learning. The function calls of the proposed method are 49 evaluations of365

HF models and 78 evaluations of LF models, while the function calls of MCS is 105×300×11. In Fig.366

7, it is observed that the PDF shapes obtained by the proposed method agree well with the reference.367

Accordingly, the proposed method can produce more accurate results than direct estimation without368

active learning, and can obtain the lower and upper bounds of ug and σ2
g with only a few HF samples.369

Table 4: Comparative results for the roof truss structure.

Methods ε (ug) ε (ug) ε
(
σ2
g

)
ε
(
σ2
g

)
Function costs

MCS - - - - 105× 300 ×11

Proposed method 0.10% (α = 0.4) 0.12% (α = 0.7) 0.19% (α = 0) 0.19% (α = 0) 49HF+78LF

Without learning 0.15% (α = 1) 0.15% (α = 0.7) 1.61% (α = 1) 1.50% (α = 0) 49HF+78LF
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Figure 6: The bounds of the mean and variance of the vertical deflection ∆C
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Figure 7: The PDFs of the vertical deflection ∆C

4.3. Example 3: A planetary transmission gear370

A planetary transmission gear system, as shown in Fig. 8, is studied to demonstrate the proposed371

method when dealing with a practical engineering problem. This gear system consists of a ring gear,372

three planet gears, and a sun gear that serves as the input gear. The pressure angle αk, module m373

and tooth width b for all gears are 20 degrees, 1.5mm and 30mm, respectively. The numbers of teeth374

for the sun gear, the planet gear and the ring gear are 36, 21 and 78, respectively. All gears are made375

of the same material. The Young’s modulus E, the Poisson’s ratio υ and the coefficient of friction f376

are random variables, while the transmitted torque T is a fuzzy variable. Table 5 lists the statistical377
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information of the uncertain variables. For the truncated Gaussian distribution, the range values is378

between positive and negative 3 sigma intervals. As shown in Fig. 9, the maximum contact stress379

σH on the planet gear is the response of interest, which is calculated by the finite element software380

ABAQUS. For the HF model, the initial and maximum increment sizes are 0.01. For the LF model,381

the initial and maximum increment sizes are set to 0.05 and 0.1, respectively. The simulation time for382

each run of the HF model is about 2 hours, while the simulation time for each run of the LF model is383

about 30 minutes.384

Figure 8: The planetary transmission gear

Table 5: Uncertain variables of the planetary transmission gear.

Uncertain variables Distribution types Parameter 1 Parameter 2

E (MPa) Lognormal 210000 10500

ν Truncated Gaussian 0.3 0.015

f Truncated Gaussian 0.05 0.0025

T (N ·mm) Fuzzy Triangular (2.95× 105, 3.0× 105, 3.05× 105)

Parameters 1 and 2 are the same as those in Table 1

Figure 9: The stress result of planetary transmission gear
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To perform MCS as the reference results, 100 HF samples are generated to construct a sparse385

polynomial chaos expansions (PCE) model with the maximum degree 4 to approximate the true finite386

element model. 10 HF samples are used as the test set, and the root mean square error (RMSE) is 0.003.387

In addition, the construction and update of Co-Kriging model are based on the sparse PCE model. In388

this example, 18 LF and 18 HF samples are chosen to construct the initial Co-Kriging model. The389

error threshold e1 and e2 are 0.002 and 0.0001. The lower and upper bounds of ug and σ2
g of maximum390

contact stress are shown in Fig. 10. The comparative results of this example are presented in Table391

6. The maximum relative errors of ug and σ2
g bounds introduced by the proposed method are 0.01%392

and 3.44%, respectively, both occurring at the membership level α = 0. Without active learning, the393

maximum relative errors of ug and σ
2
g bounds are 0.03% and 40.19%, respectively. In terms of accuracy,394

the average results of σ2
g have larger relative errors than the average results of ug. 84 evaluations of395

the HF model and 46 evaluations of the LF model are required by the proposed method, which is396

fewer than that by MCS. In this example, there are more HF points than LF points, which may be397

due to the lack of accuracy of the LF finite element model. In Fig. 11, the PDF shapes obtained by398

different methods are provided. It can be found that compared to the direct estimation without active399

learning, the proposed method can produce more accurate results of the output variance and the shape400

of the PDF. Thus, it is demonstrated the efficiency and accuracy of the proposed method for the hybrid401

uncertainty analysis of structures.402

Table 6: Comparative results for the planetary transmission gear.

Methods ε (ug) ε (ug) ε
(
σ2
g

)
ε
(
σ2
g

)
Function costs

MCS - - - - 105× 300 ×11

Proposed method 0.01% (α = 0) 0.01% (α = 0) 3.44% (α = 0) 1.16% (α = 0) 84HF+46LF

Without learning 0.03% (α = 1) 0.03% (α = 0.6) 33.04% (α = 1) 40.19% (α = 0) 84HF+46LF

4.4. Example 4: A two-bay ten-story frame structure403

A two-bay ten-story spatial steel frame structure is considered in this example, which requires the404

finite element analysis, as shown in Fig. 12. The OpenSees software is employed to model and analyze405
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Figure 10: The bounds of the mean and variance of the maximum contact stress σH
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Figure 11: The PDFs of the maximum contact stress σH

this frame structure, and the roof drift is adopted as the response of interest, which is symbolized as Dr.406

In this example, the slab of each floor is supposed to be rigid. The random variables include the Young’s407

modulus of the beams and columns (denoted as Eb and Ec, respectively), the cross-sectional area of the408

bottom column (denoted as Ac1), the cross-sectional area of the remaining columns (denoted as Ac2),409

and seven concentrated loads Fi (i = 1, 2, ..., 7). The interval variables consist of two concentrated loads410

F8 and F9. The load F10 and the cross-sectional area of the beam are fuzzy variables. Table 7 lists the411

statistical information of the uncertain variables. For the truncated Gaussian distribution, the range412

values is between positive and negative 3 sigma intervals. For the LF model, the load F10 is discarded.413
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To save computational time, the reference solution of MCS is performed using the Kriging model, with414

270 HF samples used as the training set and 30 HF samples used as the test set. The RMSE of the415

Kriging model is 0.049.416

68 LF and 68 HF training samples are generated to construct the initial Co-Kriging model. The417

error thresholds e1 and e2 are set to 0.005 and 0.0005, respectively. The lower and upper bounds of418

ug and σ2
g of Dr are shown in Fig. 13. It can be observed that as the membership level increases,419

the bounds of ug and σ2
g become narrower. Moreover, although the bounds of ug obtained by the420

proposed method and the direct estimation without active learning both agree well with the reference421

bounds, the bounds of σ2
g obtained by the proposed method are much more accurate than that obtained422

without active learning. The maximum relative error of the lower and upper bounds of ug and σ2
g are423

summarized in Table 8. The maximum relative error of the bounds of ug caused by the proposed method424

is 0.48% with the membership level α = 0, while the maximum relative error without active learning425

is 3.83%. The maximum relative error of σ2
g of the proposed method is 0.76% when the membership426

level is 0, while the maximum relative error without active learning is 17.07%. The total number of427

function calls is 115 evaluations of the HF model and 147 evaluations of the LF model, which is fewer428

than those required by MCS. When the fuzzy variable takes the value of the membership level of 1,429

the PDFs of Dr at two different values of the interval variable are drawn in Fig. 14. The results430

indicate that the proposed method can more accurately estimate the output mean and the output431

variance, as well as the output PDF. In summary, the proposed method demonstrates a high efficiency432

in hybrid uncertainty propagation analysis and is also applicable to the engineering problems with433

multiple epistemic uncertainties.434

5. Conclusions435

A novel decoupled method based on multi-fidelity active learning is proposed to deal with hybrid436

uncertainty propagation analysis under random, interval and fuzzy variables. The analytical solutions437

of the output mean and the output variance are derived based on the Co-Kriging model, where the438
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Figure 12: The two-bay ten-story frame structure

Table 7: The statistical information of uncertain variables for the frame structure.

Uncertain variables Distribution types Parameter 1 Parameter 2

Eb (MPa) Truncated Gaussian 3.25× 104 1.625× 103

Ec (MPa) Truncated Gaussian 3.25× 104 1.625× 103

Ac1 (m2) Truncated Gaussian 3.6× 10−1 1.8× 10−2

Ac2 (m2) Truncated Gaussian 1.6× 10−1 8× 10−3

F1 (N) Truncated Gaussian 2.5× 104 1.25× 103

F2 (N) Truncated Gaussian 2.7× 104 1.35× 103

F3 (N) Truncated Gaussian 2.9× 104 1.45× 103

F4 (N) Truncated Gaussian 3.1× 104 1.55× 103

F5 (N) Truncated Gaussian 3.3× 104 1.65× 103

F6 (N) Truncated Gaussian 3.5× 104 1.75× 103

F7 (N) Truncated Gaussian 3.7× 104 1.85× 103

F8 (N) Interval 3.5× 104 4.5× 104

F9 (N) Interval 4.0× 104 5.0× 104

F10 (N) Fuzzy Triangular (4.5× 104, 5.0× 104, 5.5× 104)

Ab (m
2) Fuzzy Triangular (2.0× 10−1, 2.4× 10−1, 2.8× 10−1)

Parameters 1 and 2 are the same as those in Table 1

Table 8: Comparative results for the spatial frame structure.

Methods ε (ug) ε (ug) ε
(
σ2
g

)
ε
(
σ2
g

)
Function costs

MCS - - - - 105× 300 ×11

Proposed method 0.48% (α = 0) 0.40% (α = 0.1) 0.76% (α = 0) 0.37% (α = 0) 115HF+147LF

Without learning 3.83% (α = 0) 1.44% (α = 1) 7.89% (α = 0) 17.07% (α = 0) 115HF+147LF

variance of the output mean is also derived to measure the uncertainty of the Co-Kriging model. Then,439

the analytical solutions for the mean and variance of the output mean are employed to enable an active440
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Figure 13: The bounds of the mean and variance of the roof drift Dr
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Figure 14: The PDFs of the roof drift Dr

learning framework. Finally, the Co-Kriging model update is terminated by considering the coefficient441

of variation of the output mean and the value of the learning function.442

Four examples are used to test the performance of the proposed method. From the comparative443

results of the four examples, the relative error of the output mean obtained by the proposed method is444

very small, while the relative error of the output variance is larger but still acceptable, and the proposed445

method produces more accurate results than the direct estimation without active learning. It is worth446

noting that this method can avoid the post-processing errors, and can be degraded to handle hybrid447

uncertainty propagation problems with only two types of uncertain variables. In addition, since the448
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analytical solutions of the output mean and output variance are derived based on Co-Kriging model,449

this method can deal with efficient hybrid uncertainty propagation for multi-fidelity problems, and the450

constructed framework can be further incorporated into the sensitivity analysis, RBDO and RDO. For451

example, in materials science, randomness is present in all materials at some level of resolution [48]. To452

achieve robust materials design, uncertainty has to be considered, and uncertainty propagation is one453

of the most important elements. While epistemic uncertainty in model parameters is usually ignored454

in conventional deterministic approaches [49], the proposed method can deal with hybrid uncertainty455

propagation for multi-fidelity models.456

In the construction of Co-Kriging model, hyper-parameters need to be estimated, where optimization457

is required. As the dimensionality increases, so does the number of parameters to be estimated, and458

high-dimensional optimization remains a challenge. It should be noted that our approach is based on459

Co-Kriging and is not exempt from this limitation. To deal with high-dimensional problems, dimension460

reduction methods [47, 50] can be incorporated into Co-Kriging to improve efficiency. This is the focus461

of our future work.462
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