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Abstract

In stochastic dynamics, ensuring the structural reliability of buildings and structures is

of paramount importance, especially when subjected to environmental loads such as wind

or earthquakes. To adequately address these loads and the uncertainties associated with

them, it is often necessary to utilise advanced load models, frequently expressed using a

power spectral density (PSD) function. The construction of these load models becomes

challenging when only limited data is available and meaningful statistics cannot be reliably

derived. To address this issue, safety bounds are commonly used in load models to account

for uncertainties. Many PSD functions, such as the Clough-Penzien model, are described by

parameters with a physical background and can therefore reflect the real case. The aim of

this work is to expand these physical parameters in order to account for uncertainties. For

this purpose, bootstrapping is used to derive more reliable statistics. By introducing a scaling

parameter that allows for flexibility, bounds of the data set can be derived. Consequently,

suitable PSD models are fitted to the derived bounds. The PSD function is thus represented

by intervals for its physical properties instead of relying on discrete values. When applying

such a bounded load model to a structure, advanced interval propagation schemes can be

utilised to bound the failure probability.

Keywords: Power spectral density function, Random vibrations, Stochastic processes,

Stochastic dynamics, Uncertainty quantification.

1



1. Introduction1

The ever-increasing demands for safer and more robust structures have led researchers2

and engineers to explore new avenues in the assessment of structural reliability. Traditional3

design approaches that rely solely on deterministic methods can fail to recognise the profound4

impact of uncertainties that occur in real-world scenarios. Stochastic dynamics [1, 2, 3, 4] and5

structural reliability [5, 6] offer a useful approach to model and integrate loads and material6

properties probabilistically or imprecisely, allowing for a more comprehensive understanding7

of structural behaviour under random excitations, such as earthquakes or wind loads.8

The power spectral density (PSD) function [7, 8] is a key tool in the study of stochastic9

dynamics and plays a crucial role in evaluating the response of structures subjected to ran-10

dom excitations. It provides a representation of a stochastic process in the frequency domain11

or for more realistic cases in the time-frequency domain [9, 10, 11], which result in so-called12

evolutionary PSD (EPSD) functions. It enables to understand the distribution of power13

across different frequencies. The PSD function provides a relationship between the time14

domain and the frequency domain and enables easier analysis of structures under stochastic15

loads. By applying the concept of the PSD function, engineers can transform the prob-16

lem of evaluating the structural response to random loads into a simpler frequency domain17

problem. This transformation facilitates the identification of critical resonant frequencies18

and enables the design of structures with better resistance to vibrations caused by dynamic19

loads. Including the PSD function in structural reliability analysis allows for a more realistic20

representation of the loads. Real world dynamic loads, such as earthquakes, wind loads or21

ocean waves have random characteristics in terms of both amplitude and frequency content.22

The PSD function allows for capturing these statistical characteristics and take them into23

account in reliability assessment to ensure that structures are designed to withstand cer-24

tain dynamic excitations. Despite its merits, working with the PSD function may present25
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challenges, particularly when dealing with non-stationary processes or limited experimental26

data. Addressing these challenges requires innovative techniques in signal processing and27

statistical analysis, as well as advancements in data-driven approaches to estimate the PSD28

function accurately.29

In cases where the availability of data is limited, it is important construct robust models30

for the PSD function, thus an adaptable approach becomes imperative. Three distinct31

avenues can be identified for addressing this challenge: (i) a strictly data-driven methodology32

without explicitly incorporating physical principles, (ii) a purely physics-based approach,33

reliant solely on theoretical formulations without direct data influence and (iii) a synergistic34

approach that combines data-driven and physics-based aspects. In this research, the third35

approach is selected due to its potential to combine the strengths of data-driven techniques36

with the physical principles of PSD functions and corresponding stochastic processes. This37

strategy not only accommodates limited data scenarios, but also takes advantage of the38

improved performance that can be achieved by incorporating available physical knowledge39

into the modelling process. The aim is to provide a comprehensive framework that uses40

the advantages of both data and physics-based knowledge to construct reliable and accurate41

PSD models, thereby contributing to an understanding of the underlying system dynamics.42

While stochastic dynamics and structural reliability offer a promising approach for de-43

signing new structures, several challenges arise when dealing with real-world data, especially44

in the context of estimating PSD functions and assessing structural reliability. Often, only45

limited experimental data or historical records are available, leading to uncertainties es-46

pecially in estimating a reliable PSD function. The lack of data can affect the accuracy47

of PSD estimation and thus lead to incorrect reliability analysis. Measurement errors and48

uncertainties are a critical aspect as they can significantly affect the accuracy and relia-49

bility of experimental data used for analysis and design. These uncertainties arise from50

various sources, such as equipment limitations, sensors which may calibrated inaccurately,51

environmental conditions or simply due to the digitisation of data [12]. Understanding and52

quantifying these uncertainties is critical to perform reliable probabilistic analyses. Some53

general approaches in the field of uncertainty quantification have already been carried out.54
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These can be broadly divided into probabilistic approaches [13], interval approaches [14] or55

imprecise probabilities [15]. More specifically, approaches for problems under limited data56

can be tackled by [16, 17] or many more.57

The main focus of many works is to establish reliable bounds for a given set of data58

or parameters. Some approaches in this area have already been addressed. The bounding59

of the failure probability based on different interval parameters of PSD models has been60

carried out in [18]. A large set of accelerograms was utilised in [19] to determine different61

representations of PSD function. In [20], a limited number of PSD functions are used to62

determine an upper and lower bound using radial basis function networks. However, it is63

crucial to question the reliability of such bounds, especially when dealing with limited data.64

This paper addresses the problem of uncertain bounds. It aims to increase the credibility65

of limited data approaches by addressing the reliability of the resulting bounds. On many66

occasions, the available data is limited, thereby requiring an assessment of the accuracy of67

the bounds. This approach attempts to address these concerns and introduce flexibility in68

the definition of these bounds.69

The goal of this work is to determine bounds for the physical parameters of an analytical70

PSD function, such as the Kanai-Tajimi PSD [21, 22] model or the Clough-Penzien PSD71

model [23]. This is carried out by a data-driven bootstrapping approach for the quantifi-72

cation of uncertainties. The key aspect of this approach is the introduction of a scaling73

parameter that allows the setting of bounds based on expert knowledge and statistical prop-74

erties of the data set. This allows for the selection of more conservative or less conservative75

bounds, providing some flexibility in the modelling of the bounds. To illustrate the practi-76

cality of this method, consider the following scenario: Data have been collected from only77

one monitoring station in an area where the construction of new buildings is planned. By78

using the existing data from the measuring station, it is possible to define intervals for the79

physical parameters. Consequently, best-case and worst-case scenarios can be created for80

this location, enabling informed decision-making and better planning and including site-81

specific information, such as the soil properties. Further, by fitting physical based models82

to the data, uncertainties due to PSD estimators can be reduced.83
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This work is organised as follows: In Section 2 some preliminaries necessary for this84

work will be introduced. The proposed procedure for developing a load model accounting85

for uncertainties is illustrated in Section 3 for the stationary case and for the non-stationary86

case, where both, the separable and non-separable EPSD will be utilised. Real data records87

are utilised in Section 4 to derive the bounds and to show the methods feasibility and88

flexibility for real world cases. The work concludes in Section 5 with some final remarks.89

2. Preliminaries90

In this section, a brief overview of the fundamental concepts essential for the context of91

this work is provided.92

2.1. Stochastic processes93

The Wiener-Khintchine theorem (e.g. [3, 11, 7]) is an important relation in the field of94

stochastic processes. It establishes a fundamental link between the power spectral density95

(PSD) function SX(ω) of a signal and its autocorrelation function RX(τ) with τ as time lag.96

The theorem states that the Fourier transform of the autocorrelation function of a stochastic97

process is equal to the PSD function of that signal98

SX(ω) =
1

2π

∫ ∞

−∞
RX(τ)e

−iωτdτ, (1)

while the inverse Fourier transform yields the vice versa result99

RX(τ) =

∫ ∞

−∞
SX(ω)e

iωτdω. (2)

The theorem is particularly useful when dealing with random or stochastic signals where100

conventional time-domain analysis does not provide sufficient insight. It allows to analyse the101

frequency content of signals and to understand how their power is distributed over different102

frequencies. By transforming the signal into the frequency domain, dominant frequency103

components can be identified and the spectral properties of the signal can be investigated.104

While the Wiener-Khintchine theorem establishes a theoretical relationship between the PSD105

and autocorrelation function, PSD estimators play a crucial role in practical applications.106
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The theorem assumes that the signal is wide-sense stationary and has an infinite length107

in time, which is not fulfilled in real world applications. Further, the theorem holds for108

stationary processes only. Earthquakes, for instance, have a strongly transient character, so109

that other techniques have to be resorted to.110

2.1.1. PSD and EPSD estimation111

In this section, PSD estimation for both stationary and non-stationary PSDs, often112

referred to as EPSDs, is briefly described. The stationary PSD estimation can be computed113

using the periodogram, for instance, which is based on the discrete Fourier transform [8].114

The periodogram is given to be115

ŜX(ωk) =
1

Nt

∣∣∣∣∣
Nt−1∑
t=0

xte
− i2π

Nt
kt

∣∣∣∣∣
2

, (3)

where ŜX denotes the PSD estimate, Nt is the number of points in time, xt is the value of the116

t-th time instant and k is the integer frequency for ωk =
2πk
T
, where T is the total length of117

the time record. Other methods to estimate the stationary PSD are, for instance, Bartlett’s118

method [24, 25] or Welch’s method [26]. Since these methods work by segmenting and119

averaging the time signal, they usually provide smoother estimates than the periodogram.120

As stochastic processes often have an inherent non-stationary character (e.g. earthquakes121

have a short term transient behaviour), the estimation of the EPSD will result in a more122

reliable and more realistic representation. The EPSD is a transformation from time domain123

to time-frequency domain and accounts for temporal changes in the frequency content of124

the process. Various methods for estimating the EPSD are available, including but not125

limited to the short-time Fourier transform, the Priestley method [9], and Wavelet-based126

methods [27, 28]. However, in this work, the recently developed multi-taper S-transform127

(MTST) [29, 30] will be utilised as it yields results in a good resolution and is able to reduce128

the estimation variance. The MTST estimation is given to be129

ŜX(ω, t) =
1

M

M−1∑
m=0

s∗m(ω, t)s
T
m(ω, t), (4)
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where the S-transform sm(ω, t) and its complex conjugate sm(ω, t)
∗ of a non-stationary130

stochastic process U(t) is131

sm(ω, t) =
∞∑

k=−∞

Ψm(ω, k∆t− t)U(k∆t)e−i2πωk∆t∆t. (5)

In this equation, the orthogonal time-frequency Hermite windows Ψ0(ω, t) for the zeroth-132

order is133

Ψ0(ω, t) = π−0.25
√
w(ω)e−0.5w2(ω)t2 , (6)

while Ψ1(ω, t) for the first-order yields134

Ψ1(ω, t) =
√
2π−0.25w1.5(ω)te−0.5w2(ω)t2 , (7)

and any higher order Ψm(ω, t) for m > 1 is135

Ψm(ω, t) =

√
2

m
w(ω)tΨm−1(ω, t)−

√
m− 1

m
Ψm−2(ω, t). (8)

2.1.2. Stochastic process generation136

For the generation of stochastic processes used in simulations, the spectral representation137

method (SRM) [31] can be utilised. The method requires an analytical or estimated expres-138

sion of a PSD function S(ω) and yields a stochastic process Xt in time domain, carrying the139

spectral characteristics of the underlying PSD function. SRM reads as follows140

Xt =
√
2
Nω−1∑
n=0

(2S(ωn)∆ω)1/2 cos(ωnt+ φn), (9)

where n = 0, 1, . . . , Nω − 1, Nω as the number of frequency components, ∆ω as frequency141

discretisation, ωn = n∆ω as frequency coordinates, the φn’s describe independent random142

phase angles in the range [0, 2π] and t is the time vector.143

Equivalently, non-stationary stochastic processes can be generated based on an underly-144

ing EPSD function S(ω, t) by an extension of SRM to its non-stationary case [32]. In this145

case, the stationary PSD function S(ωn) is replaced by its non-stationary equivalent S(ω, t)146

Xt =
√
2
Nω−1∑
n=0

(2S(ωn, t)∆ω)1/2 cos(ωnt+ φn). (10)
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2.2. Bootstrap sampling147

Bootstrap sampling is a resampling technique widely employed in statistics and machine148

learning to address the challenge of estimating the sampling distribution of a statistic or149

making inferences about a population based on a single sample, see for instance [33]. It150

has since become a fundamental tool in data analysis. The basic idea behind bootstrap151

sampling involves generating numerous “pseudo-samples” from the original samples by ran-152

domly selecting data points from it with replacement. Each pseudo-sample may contain153

duplicate observations and omit others, effectively mimicking the randomness of drawing154

samples from the population. By calculating the statistic of interest (e.g., mean, median,155

confidence interval) for each of these pseudo-samples and examining the distribution of these156

bootstrap statistics, analysts can make robust inferences about the population or assess the157

variability of their estimates. Bootstrap sampling is particularly advantageous because it158

does not rely heavily on assumptions about the population’s distribution and can be applied159

to various statistical problems, offering a versatile tool for data analysis.160

3. Method development161

To enhance the statistical robustness of the limited PSD functions, a bootstrapping ap-162

proach applied to individual frequencies was employed. This method involved generating163

pseudo-samples, often referred to as bootstrap samples, through random sampling with re-164

placement. These pseudo-samples simulate multiple instances of the original data, allowing165

for a more comprehensive assessment of the variability in spectral estimates. By applying166

bootstrapping independently to each frequency component in the PSD functions, more reli-167

able estimates of statistical quantitites, such as mean and standard deviation, for instance,168

can be obtained. This resampling technique offers a powerful means of assessing the vari-169

ability of spectral estimates, particularly in regions where the only limited data is available.170

The resulting bootstrapped statistics, based on these pseudo-samples, not only provide a171

comprehensive understanding of the central tendencies and uncertainties associated with172

each frequency but also enable the computation of more reliable maximum and minimum173
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spectra. This method effectively mitigates problems associated with limited data sets, which174

contributes to the overall robustness of the spectral analysis, enhancing the credibility of175

the findings.176

The bootstrap sampled minimum spectrum SBS
min and maximum spectrum SBS

max are177

SBS
min(ωn) = min(SBS

i (ωn)) ∀ i ∈ NBS (11)

and178

SBS
max(ωn) = max(SBS

i (ωn)) ∀ i ∈ NBS, (12)

withNBS as number of bootstrap samples. Similarly, the standard deviation of the bootstrap179

samples will be determined from all bootstrap samples180

σBS
min(ωn) =

√√√√ 1

NBS − 1

NBS∑
i=1

(SBS
i (ωn)− SBS

min(ωn))
2

(13)

and181

σBS
max(ωn) =

√√√√ 1

NBS − 1

NBS∑
i=1

(SBS
i (ωn)− SBS

max(ωn))
2
. (14)

By introducing a scaling factor λ, the augmented bounds result in182

Saug(ωn) = SBS
min(ωn)− λσBS

min(ωn) (15)

and183

S
aug

(ωn) = SBS
max(ωn) + λσBS

max(ωn). (16)

The equations presented here demonstrate the procedure for PSD functions. When using184

EPSD functions, the same approach can be used, whereby the respective functions are ex-185

tended by the time parameter. The scaling factor λ ∈ R has to be determined by the analyst186

and shall be selected properly, in the optimal scenario with the integration of expert knowl-187

edge. Some suggestions on how to choose λ are given in Section 3.1. Handling the bounds188

in such a way offers several advantages: flexibility, case-dependent adjustment, iterative ap-189

proach. If the scaling factor λ is chosen too large, negative values in the augmented bounds190
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can occur. Since spectral densities are non-negative by nature, those can simply be set to191

zero.192

Separate upper and lower bound optimisations are performed to fit a PSD model Smodel
193

and its corresponding set of parameters θ to the augmented bounds determined by boot-194

strapping. The objective function for the optimisation is specified by the least squares195

solution between the augmented bounds and the chosen model. The optimisation for the196

lower bounds in the stationary case reads197

f (θ) =min
θ

Nω∑
n=1

(
Saug(ωn)− Smodel (ωn,θ)

)2
, (17)

while the upper bound can be optimised via198

f
(
θ
)
=min

θ

Nω∑
n=1

(
S
aug

(ωn)− Smodel
(
ωn,θ

))2
. (18)

In case a more realistic EPSDs is utilised, the optimisation for the lower bound yields199

f (θ) =min
θ

Nω∑
n=1

Nt∑
m=1

(
Saug(ωn, tm)− Smodel (ωn, tm,θ)

)2
, (19)

whereas the upper bound can be optimised by200

f
(
θ
)
=min

θ

Nω∑
n=1

Nt∑
m=1

(
S
aug

(ωn, tm)− Smodel
(
ωn, tm,θ

))2
. (20)

In these equations θ and θ represents the particular set of parameters needed for the specific201

model. Once the model and the corresponding parameters are fitted to the augmented202

bounds, interval parameters result which can be used to sample individual PSD functions203

in subsequent simulations. Thus, the best-case or worst-case scenario can be determined204

within the framework of a reliability analysis.205

3.1. Selection of the scaling parameter λ206

The scaling parameter plays a pivotal role in enhancing the adaptability of models for207

bounding purposes. However, it is crucial to exercise caution when selecting its value, as ar-208

bitrary choices may lead to undesirable consequences. An excessively high scaling parameter209
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can result in unreasonably large bounds, thereby increasing the failure probability beyond210

acceptable limits, which contradicts the intended outcome. Conversely, an inadequately211

small parameter fails to adequately quantify or incorporate uncertainties into the model. To212

address this challenge, this study explores a potential solution to establish an appropriate213

scaling parameter by examining the characteristics of generated stochastic processes. This214

approach aims to provide deeper insights into the scaling parameter’s properties prior to215

conducting simulations.216

To address the challenge of determining a suitable scaling parameter, the study pro-217

poses an approach that involves a comprehensive examination of the stochastic processes218

generated within the model. Through a comprehensive examination of these processes, a219

deeper understanding of the scaling parameter’s behaviour and characteristics is sought.220

This understanding is crucial in ensuring that the chosen scaling parameter aligns with the221

desired level of uncertainty representation. Furthermore, the possibility of comparing the222

scaling parameter with established seismic metrics like peak ground acceleration (PGA) is223

investigated. This comparison allows to leverage existing knowledge of the statistical prop-224

erties of the stochastic processes from which the model is derived and to assess the scaling225

parameter’s appropriateness in the context of specific ground motions occurring within the226

study area. Such an integrative approach enhances the ability to make informed decisions227

regarding the scaling parameter’s value, ultimately leading to more robust and accurate228

simulations.229

3.2. Artificial examples230

The procedure is illustrated covering different cases with artificially generated data, in231

particular for a stationary PSD model, a non-separable EPSD model and a separable EPSD232

model. Each of the three limited data sets was generated using an analytical PSD/EPSD233

model to reflect the underlying physics. From this, artificial stochastic processes were gener-234

ated using SRM (Eq. 9 or Eq. 10). These were considered as “recorded data”, at least for the235

artificial examples, and transformed into the frequency domain (Eq. 3) or time-frequency236

domain (Eq. 4) via the corresponding estimators. Based on these resulting ensemble of237
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PSD/EPSD functions, the previously described approach will be illustrated. Further, these238

examples serve for comparison and validation if the feasible parameters were found. In all239

cases, a number of 10,000 bootstrap samples were generated based on the limited data set240

to obtain reliable statistics.241

3.2.1. Stationary power spectral density function242

In the stationary case two typical models used are the Kanai-Tajimi PSD model [21, 22]243

and the Clough-Penzien PSD model [23]. The Kanai-Tajimi PSD model reads as244

SKT
(
ω,θKT

)
= S0 ·

ω4
g + 4ζ2gω

2
gω

2(
ω2
g − ω2

)2
+ 4ζ2gω

2
gω

2
, (21)

with θKT = [S0, ωg, ζg]. The Kanai-Tajimi PSD model passes a white noise process through245

a linear soil filter determined by the natural frequency ωg and damping ζg, respectively,246

while S0 determines the spectral intensity, see for instance [34]. A drawback of the Kanai-247

Tajimi PSD model is that velocity and displacement are not defined for frequencies which248

tend to zero, i.e. ω → 0. To overcome this issue, the Clough-Penzien model was defined by249

expressing the Kanai-Tajimi PSD function with an additional filter determined by frequency250

ωf and damping ζf251

SCP
(
ω,θCP

)
= S0 ·

ω4(
ω2
f − ω2

)2
+ 4ζ2fω

2
fω

2
·

ω4
g + 4ζ2gω

2
gω

2(
ω2
g − ω2

)2
+ 4ζ2gω

2
gω

2
, (22)

with θCP = [S0, ωg, ζg, ωf , ζf ], see [23, 34] for instance.252

In this example, the Clough-Penzien PSD model will be utilised due to its realistic253

behaviour. Three stochastic processes are generated based on the Clough-Penzien PSD254

model utilising the parameters S0 = 1, ωf = 0.5π, ζf = 0.6, ωg = 5π and ζg = 0.6, which are255

adopted from [35], while the upper cut-off frequency is set to ωu = 80 rad/s. The resulting256

ensemble of PSDs is depicted in Fig. 1.257

The augmented bounds are derived using Eqs. 15 and 16 with scaling parameter λ = 1.5.258

The specific optimisation problems to be solved for lower and upper bound are259

f
(
θCP

)
=min

θCP

Nω∑
n=1

(
Saug (ωn)− SCP

(
ωn,θ

CP
))2

(23)
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Figure 1: Ensemble of the Clough-Penzien PSDs.

Table 1: Identified parameters for the Clough-Penzien PSD model.

S0 ωf ζf ωg ζg

SCP (ω,θCP ) 0.7517 1.7680 0.4809 13.9162 0.5666

SCP (ω,θ
CP

) 1.2407 1.3413 0.7552 16.7373 0.6270

and260

f
(
θ
CP
)
=min

θ
CP

Nω∑
n=1

(
S
aug

(ωn)− SCP
(
ωn,θ

CP
))2

. (24)

An example of this procedure is depicted in Fig. 2, while the fitted parameters are given in261

Table 1. The corresponding objective function values are f
(
θCP

)
= 7.6833 and f

(
θ
CP
)
=262

9.4891. The relatively high values can be explained by the highly variant PSD functions263

in Fig. 2. The resulting bounds deliver very smooth results, while the derived augmented264

bounds are relatively variant. The general shape is captured well by the optimised bounds.265

266

3.2.2. Non-separable evolutionary power spectral density function267

An example for a non-separable EPSD function is given in [36], for instance, which is268

used in a generalised form in this work269

Snon−sep
(
ω, t,θnon−sep

)
= S0

(
ω

ωg

)2

ectt2 exp

(
−
(

ω

ωg

)2

t

)
. (25)
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Figure 2: Example of the Clough-Penzien model fitted to the augmented bounds with scaling parameter

λ = 1.5.

This model can be described by the parameters θnon−sep = [S0, c, ωg]. For generating the270

ensemble of EPSDs, the parameters S0 = 1, c = −0.15 and ωg = 5π are utilised.271

The specific optimisation problems to be solved for lower and upper bound with a scaling272

parameter of λ = 2 are273

f
(
θnon−sep

)
= min

θnon−sep

Nω∑
n=1

Nt∑
m=1

(
Saug(ωn, tm)− Snon−sep

(
ωn, tm,θ

non−sep
))2

(26)

and274

f
(
θ
non−sep

)
= min

θ
non−sep

Nω∑
n=1

Nt∑
m=1

(
S
aug

(ωn, tm)− Snon−sep
(
ωn, tm,θ

non−sep
))2

. (27)

An example of this procedure is depicted in Fig. 3, while the corresponding optimised275

parameters are given in Table 2. Although it may appear that the optimised bounds closely276

resemble the augmented bounds, this is challenged by the notably high objective function277

values of f
(
θnon−sep

)
= 200.8499 and f

(
θ
non−sep

)
= 4406.5. Despite these values, these278

bounds can still be considered for further analysis. The optimised bounds rely on the shape279

of the estimated EPSDs, which can exhibit a strong non-smooth behaviour, resulting in high280

objective values. However, the objective is to obtain approximate EPSD bounds that can281

be effectively utilised in simulations, thus those bounds are reasonable.282
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Figure 3: Comparison of augmented bounds and derived lower bound (left) and upper bound (right) for

the non-separable EPSD model. The transparent representation shows the augmented bounds, the non-

transparent ones are the fitted EPSDs. For both a scaling parameter of λ = 2 was utilised.

Table 2: Identified parameters for the non-separable EPSD model.

S0 c ωg

Snon−sep
(
ω, t,θnon−sep

)
0.1086 -0.1106 18.1903

Snon−sep
(
ω, t,θ

non−sep
)

2.1590 -0.1508 15.6480

3.2.3. Separable evolutionary power spectral density function283

A separable EPSD consists of a stationary PSD model, such as the Clough-Penzien284

model, and a time-modulating function, which will be multiplied with each other. The285

resulting separable EPSD function yields286

Ssep(ω, t) = Sstationary(ω)g(t)2. (28)

The separable EPSD may offer more flexibility as the number of parameters in this specific287

case is higher than in the previous example. Further, this model can be adapted to different288

data sets or scenarios by replacing either the stationary PSD model Sstationary or the time-289

modulating function g(t). In the following example, the Clough-Penzien PSD described290

above (Section 3.2.1) will be utilised in combination with the time-modulating function291

g1(t) = k
(
e−at − e−bt

)
, (29)
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with k as the scaling factor and a and b as shape parameters. The parameters utilised here292

are k = 4, a = 0.25 and b = 0.5. For reference, other time-modulating functions can be293

found Appendix A.294

The resulting separable EPSD for this example yields295

Ssep (ω, t,θsep) = SCP
(
ω,θCP

)
g1
(
t,θt

)2
, (30)

with θCP = [S0, ωg, ζg, ωf , ζf ], θ
t = [k, a, b] and thus θsep = [θCP ,θt]. The derivation of the296

bounds is carried out with a scaling factor of λ = 2. The optimisation problems are thus297

f (θsep) =min
θsep

Nω∑
n=1

Nt∑
m=1

(Saug(ωn, tm)− Ssep (ωn, tm,θ
sep))2 (31)

and298

f
(
θ
sep
)
=min

θ
sep

Nω∑
n=1

Nt∑
m=1

(
S
aug

(ωn, tm)− Ssep
(
ωn, tm,θ

sep
))2

. (32)

The resulting bounds are depicted in Fig. 4, while the corresponding parameters are given299

in Table 3. The objective function values are f (θsep) = 491.5593 and f
(
θ
sep
)
= 7329.4.

Figure 4: Comparison of augmented bounds and derived lower bound (left) and upper bound (right) for the

separable EPSD model. The transparent representation shows the augmented bounds, the non-transparent

ones are the fitted EPSDs. For both a scaling parameter of λ = 2 was utilised.

300

Here again, the derived bounds seem not to match well with the augmented bounds and301

again quite high objective values can be obtained. However, as before it can be argued that302

those bounds rely on the EPSD estimates, which are hardly ever smooth. Thus, although303

obtaining high objective values, the derived bounds can be used for further analysis.304
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Table 3: Identified parameters for the separable EPSD model.

S0 ωf ζf ωg ζg k a b

Ssep (ω, t,θsep) 6.3859 9.5180 0.0702 17.7419 0.1057 10.8965 0.2593 0.2574

Ssep
(
ω, t,θ

sep
)

7.7352 2.1889 0.4689 15.7403 0.4450 33.0126 0.3176 0.3299

3.3. Discussion on derived bounds305

It is important to note that the parameters identified for the upper bound may not nec-306

essarily represent the uppermost values within their respective intervals. This observation307

is particularly pertinent in the context of specific models, such as the Clough-Penzien PSD308

model. In certain scenarios, increasing these parameters may unexpectedly lead to a reduc-309

tion in the size of the PSD function itself. This counterintuitive behaviour can be attributed310

to the complex mathematical relationships inherent to the model, where higher parameter311

values may result in a more restricted or focused PSD function, rather than an expansion312

of its bounds.313

An issue that arose during this investigation involved the generation of samples within314

predefined parameter bounds, some of which occasionally extended beyond these bounds,315

refer to Fig. 5. While this may initially seem counterintuitive, it’s crucial to emphasise316

that the primary objective is to establish bounds for the underlying physical parameters,317

rather than strictly constraining the raw data itself. The focus lies in bounding the values318

associated with the physical characteristics of the system under examination.319

In summary, the issue of samples occasionally exceeding parameter bounds aligns with320

the overarching goal of bounding the physical attributes of the system. Furthermore, it un-321

derscores the complexity of specific models, where adjusting parameter values may yield un-322

expected outcomes. Understanding and addressing these intricacies are essential for achiev-323

ing accurate and meaningful results in the simulations.324

In some cases the objective function values seem extremely high. In addition, the shapes325

of the augmented bounds compared to the ones derived through minimisation and opti-326

mising the parameters of the physical model often exhibits large differences due to the327

non-smoothness of the estimated PSD functions. Both issues can be explained very easily.328

17



0 10 20 30 40 50 60 70 80
Frequency (rad/s)

0

0.5

1

1.5

2

2.5

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (

m
2
/s

3
)

Bounds
First sample
Second sample

Figure 5: Example of generated samples which intersect the derived bounds.

The estimated PSDs and EPSDs have an immensely spiky behaviour, i.e. they often jump329

between high and low values between two frequency / time-frequency points. The fitted330

function, however, is smooth. By using the least squares as the objective function, this331

makes it impossible, nor desirable, to fit the function to the data perfectly. The function332

acts like a smoother of the data. Thus, it is logical that there are always high differences333

between the extreme value jumps. In the averaged sense, however, the fitted function adapts334

well. To overcome this issue, other PSD estimators may be used. For the stationary case335

Bartlett’s method [24, 25] or Welch’s method [26], as mentioned in Section 1, might be336

suitable, which usually result in a much smoother representation of the PSD and thus also337

most likely in a lower objective function.338

However, the goal was to find, and specifically bound the respective parameters in order339

to capture the uncertainties induced by the limited data and the EPSD estimation process.340

For all cases, the PSD model and both EPSD models, bounded parameters can be derived.341

However, the parameters θ utilised for generating the underlying ensembles are not always342

bounded by the derived interval parameter sets θI , however, this is also not a significant343

issue as the interaction of various parameters can influence these and thus deviate signifi-344

cantly from the original parameters. The objective was to identify parameters capable of345

characterising both the upper and lower bound of the spectral densities, and this objective346
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has been successfully accomplished.347

It’s important to consider that in certain instances, it can be advantageous to pre-process348

the data appropriately. Too many spectral densities close to 0 in a large range, especially349

in the EPSD, can lead to undesired results and negatively influence the fitting. Large areas350

with spectral densities close to 0 also push the value of the objective function down very351

quickly, so that the optimisation algorithm quickly lies in a local minimum. Therefore, it is352

advisable to reduce the data set to the range where high spectral densities are obtained, i.e.353

the important range, and to cut off the parts where those densities are very close to zero (for354

example S(ω, t) ≤ 10−5). This has the advantage that only the relevant spectral densities355

are considered in the fitting. Overall, this procedure has no disadvantages compared to356

fitting the entire range, since the determined parameters will be entered into an analytical357

function and the cut-off ranges can thus easily be included in the analytical function again.358

4. Application to real data records359

Within this section, the proposed method is put into practice using real data records to360

demonstrate its applicability in real-world scenarios. The examples given in Section 3.2.1-361

3.2.3 are merely illustrative of the proposed method, as artificially generated data are always362

constructed in some way and therefore reflect reality only to a certain extent. For the sake of363

brevity, only the resulting bounds and their corresponding parameters are presented for each364

of the three types of PSD functions, i.e. the stationary PSD function, the non-stationary365

non-separable EPSD function and the non-stationary separable EPSD function.366

In this work, gradient-based optimisation algorithms are used to improve the efficiency367

and convergence of optimisation tasks. These algorithms use gradient information to itera-368

tively adjust parameters and thus facilitate the fast determination of optimal solutions. The369

approach is particularly effective for smooth and continuous objective functions.370

The data set used in this work is the well-known El Centro earthquake, see for in-371

stance [37]. The data set consists of two records in time domain, i.e. the record in north-372

south direction and the record east-west direction, which are transformed to the frequency373
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Table 4: Identified parameters for the Clough-Penzien PSD model fitted to the stationary El Centro data

estimated with the periodogram.

S0 ωf ζf ωg ζg

λ = 0
SCP

(
ω,θCP

)
0.0006 1.9286 0.5510 12.9481 0.6291

SCP
(
ω,θ

CP
)

0.0016 1.0148 0.8452 12.6517 0.5864

λ = 1
SCP

(
ω,θCP

)
0.0004 2.0145 0.5514 11.5749 0.7840

SCP
(
ω,θ

CP
)

0.0021 0.9164 0.8761 12.6874 0.5749

λ = 2
SCP

(
ω,θCP

)
0.0003 2.0461 0.5315 11.3969 0.7883

SCP
(
ω,θ

CP
)

0.0027 0.8679 0.8912 12.7090 0.5681

domain by Eq. 3 for the stationary case and by Eq. 4 for the non-stationary case, respectively.374

The ensembles are depicted in Fig. 6.
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Figure 6: Ensemble of the PSDs and EPSDs of the El Centro earthquake.

375

The derivation of the bounds and their corresponding parameters for the estimated PSDs,376

i.e. for the stationary case, is described briefly in the following. The Clough-Penzien PSD377

model (Eq. 22) is utilised for fitting. The scaling parameter to obtain the augmented bounds378

is chosen to be λ ∈ {0, 1, 2}. The parameters derived by the proposed approach are given379

in Table 4, while the corresponding bounds are depicted in Fig. 7. The objective function380

values for the resulting bounds are given in Table 5.381

For a more realistic representation, the non-separable EPSD function in Eq. 25 is fitted382

to the augmented bounds of the El Centro EPSD functions, again with scaling parameter383

λ ∈ {0, 1, 2}. The results for λ = 0 can be obtain in Fig. 8, while the identified bounded384
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Table 5: Objective function values for the resulting bounds of the stationary case.

SCP
(
ω,θCP

)
SCP

(
ω,θ

CP
)

λ = 0 1.0593e-04 4.4814e-04

λ = 1 8.5038e-05 9.9150e-04

λ = 2 5.8963e-05 0.0018
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Figure 7: Comparison of the derived bounds for the El Centro data with the Clough-Penzien PSD model

with λ = {0, 1, 2}.
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Table 6: Identified parameters for the non-separable EPSD model fitted to the El Centro data.

S0 c ωg

λ = 0
Snon−sep

(
ω, t,θnon−sep

)
0.002 -0.1875 25.2118

Snon−sep
(
ω, t,θ

non−sep
)

0.0035 -0.2003 23.7434

λ = 1
Snon−sep

(
ω, t,θnon−sep

)
0.0012 -0.1826 26.6382

Snon−sep
(
ω, t,θ

non−sep
)

0.0044 -0.2007 23.4602

λ = 2
Snon−sep

(
ω, t,θnon−sep

)
0.0007 -0.1778 27.3245

Snon−sep
(
ω, t,θ

non−sep
)

0.0053 -0.201 23.2628

parameters are given in Table 6 and corresponding objective function values in Table 7.385

Figure 8: Comparison of augmented bounds and derived lower bound (left) and upper bound (right) for

the non-separable EPSD model. The transparent representation shows the augmented bounds, the non-

transparent ones are the fitted EPSDs. For both a scaling parameter of λ = 0 was utilised.

To also illustrate the flexibility of the separable EPSD, the fitting of the augmented386

EPSD bounds of the El Centro earthquake is illustrated for the same case, again with387

scaling parameter λ ∈ {0, 1, 2}. The respective bounds for λ = 0 are depicted in Fig. 9, the388

corresponding parameters are given in Table 8 and the objective function values are given389

in Table 9.390
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Table 7: Objective function values for the resulting bounds of the non-separable case.

Snon−sep
(
ω, t,θnon−sep

)
Snon−sep

(
ω, t,θ

non−sep
)

λ = 0 0.0536 0.1262

λ = 1 0.0354 0.2169

λ = 2 0.027 0.3388

Table 8: Identified parameters for the separable EPSD model fitted to the El Centro data.

S0 ωf ζf ωg ζg k a b

λ = 0
Ssep (ω, t,θsep) 1.1687 1.4511 0.7412 12.5965 0.5936 3.5507 0.1907 0.1867

Ssep
(
ω, t,θ

sep
)

1.0449 0.6871 1.7915 11.6559 0.6725 0.043 0.0403 1.4999

λ = 1
Ssep (ω, t,θsep) 1.4939 1.8465 0.4303 13.8734 0.4555 5.969 0.1903 0.1889

Ssep
(
ω, t,θ

sep
)

1.0072 0.8368 1.7974 10.9627 0.7089 0.0518 0.0403 1.5

λ = 2
Ssep (ω, t,θsep) 1.0825 1.8953 0.304 13.5149 0.3557 3.1845 0.1921 0.1898

Ssep
(
ω, t,θ

sep
)

1.0353 0.9821 1.7989 10.3706 0.7338 0.0588 0.0404 1.5

Table 9: Objective function values for the resulting bounds of the separable case.

Ssep (ω, t,θsep) Ssep
(
ω, t,θ

sep
)

λ = 0 0.0467 0.0686

λ = 1 0.0313 0.1286

λ = 2 0.0245 0.2146
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Figure 9: Comparison of augmented bounds and derived lower bound (left) and upper bound (right) for the

separable EPSD model. The transparent representation shows the augmented bounds, the non-transparent

ones are the fitted EPSDs. For both a scaling parameter of λ = 0 was utilised.

4.1. Comparison with imprecise power spectral density391

In the pursuit of solving complex problems and achieving desired outcomes, it is often392

imperative to evaluate and compare different methods or approaches. This section aims into393

a comprehensive comparison of the proposed method with the imprecise PSD, proposed by394

some of the authors of this work. The imprecise PSD is an approach to bound a limited set395

of PSD functions in order to capture the uncertainties. The approach is described briefly396

in Appendix B, while the reader is referred to [20] for a detailed overview. The comparison397

of both methods will result in valuable insights into their respective efficiency, and suitability398

for specific scenarios. Through a critical analysis of their principles, implementation, and399

real-world performance, this examination seeks to assist decision-makers and analysts in400

making informed choices when choosing between these two approaches. The comparison is401

made for illustrative purposes and for the stationary case only, since the imprecise PSD is402

currently available for the stationary case only. As data set, the stationary PSDs determined403

from the El Centro earthquake will be utilised, see Fig. 6.404

The proposed method is employed alongside the fitting of the Clough-Penzien PSD func-405

tion with scaling parameter λ ∈ {4, 5, 6}. This is compared directly to the imprecise PSD,406

where NB = 8 basis functions are utilised to derive the bounds. As it can be seen from407
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Figure 10: Comparison of the fitted Clough-Penzien spectrum with scaling parameter λ ∈ {4, 5, 6} and the

imprecise PSD with NB = 8.

Table 10: Energy of the bounded PSDs derived by the Clough-Penzien PSD function and the imprecise

PSD.

Lower bound Upper bound

λ = 4 0.0518 0.5049

λ = 5 0.0407 0.5610

λ = 6 0.0343 0.6171

Imprecise PSD 0.0879 0.5837

Fig. 10, both methods yield approximately similar results. One important difference in both408

methods is, that the proposed method is a model fitting approach, while the imprecise PSD409

is a data-driven bounding approach of a set of PSD functions. Thus, it is reasonable to410

choose a larger λ for a meaningful comparison, than in the previous sections. The model411

derived by the proposed approach is thus more conservative compared to Section 4. In addi-412

tion, the proposed method delivers much smoother results, due to the fitting process, while413

the imprecise PSD results in more oscillating bounds, given by the fact that it is a bounding414

approach. However, qualitatively, similar bounds can be obtained, depending on the choice415

of λ. This fact is supported by the energy of the bounded PSDs, see Table 10. The energy416

is computed by summing up all individual PSD values for each frequency.417
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Figure 11: Comparison of the fitted Kanai-Tajimi spectrum with scaling parameter λ ∈ {4, 5, 6} and the

imprecise PSD with NB = 8.

Table 11: Energy of the bounded PSDs derived by the Kanai-Tajimi PSD function and the imprecise PSD.

Lower bound Upper bound

λ = 4 0.0499 0.5013

λ = 5 0.0365 0.5572

λ = 6 0.0336 0.6131

Imprecise PSD 0.0879 0.5837

In a second comparison, the Kanai-Tajimi PSD function (Eq. 21) will be utilised to418

derived the bounds of the El Centro PSD estimates with the proposed method. The bounds419

are derived by using a scaling parameter of λ ∈ {4, 5, 6}. Again, the imprecise PSD bounds420

with NB = 8 are utilised for a comparison. As it can be obtained from Fig. 11, the bounds421

of the Kanai-Tajimi PSD fit are very smooth, naturally for an analytical model. However,422

small but neglectable differences can be obtained, mostly due to the oscillating nature of423

the imprecise PSD. In general, a reasonably accurate approximation can be achieved, which424

is supported by the determined energy in Table 11.425
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5. Conclusions426

This study has introduced a robust methodology for the determination of interval pa-427

rameters within physically derived stationary and evolutionary PSDs models. The resulting428

bounded parameters offer a pivotal foundation for the assessment of upper and lower fail-429

ure probabilities as an integral part of structural reliability evaluations. Importantly, this430

approach is not limited to the PSD/EPSD models utilised in this work. It can be used431

with a wide range of models, making it flexible for different cases. Although this method432

is fast and efficient at optimising parameter bounds, a significant challenge is choosing the433

right model to match the data accurately. Since optimising the bounds is fast, it is worth434

considering using multiple models and picking the best-fitting one. In this work, primarily435

gradient-based optimisation algorithms have been utilised, which yielded in satisfactory re-436

sults. However, it is essential to acknowledge that optimisation problems of this nature often437

entail numerous local minima. Although no issues has been identified in this work, exploring438

alternative classes of optimisation methods, such as particle swarm optimisation, may prove439

advantageous, particularly when dealing with real-world data. Furthermore, the selection of440

an appropriately scaling parameter is of paramount importance. An excessively large scaling441

parameter can, depending on the specific characteristics of the system under investigation,442

lead to a bounded failure probability of pf = [0, 1]. While this outcome is theoretically cor-443

rect, it lacks meaningful information and falls short of aligning with the intended objectives444

of the proposed approach. Hence, the reasonable choice of the scaling parameter remains445

a pivotal consideration in the methodology, which ensures the practicality and relevance446

of the resulting failure probability assessments. An open issue is the efficient propagation447

of derived bounds through a system under investigation. Classical double-loop approaches448

may yield good results, however, for this class of problems advantageous solutions may be449

required. Future developments will focus on such an efficient propagation method of the450

bounds to obtain a bounded failure probability.451
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Appendix A. Time-modulating functions459

There are several time-modulating functions available in the literature, which may fit460

better to the problem at hand. See for instance [38, 39]. In contrast to the continuous461

time-modulating function given in Eq. 29, these envelope functions are piecewise-defined:462

g2(t) =



(
0.8 + 0.2 t

ta

)
for t < ta

1 for ta ≤ t ≤ tb(
tb
t

) 2
3 for t > tb

(A.1)

g3(t) =



(
t
ta

)2
for t < ta

1 for ta ≤ t < tb

exp (−α(t− tb)) for t ≥ tb

(A.2)

Appendix B. Imprecise power spectral density function463

The imprecise PSD function will be described in the following briefly. For a detailed464

overview refer to [20].465

A set of radial basis functions466

ϕi(x) = e−(||x−ci||·bϕi)
2

(B.1)
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constitute a radial basis function network467

y(x) =

NB∑
i=1

wi ϕi(||x− ci|| · bϕi
) + b0 x ∈ RNω . (B.2)

Such a network will be used to determine the bounded PSD model, the imprecise PSD.468

Therefore, the so-called basis power spectrum Sbasis is computed, which can be, for instance469

the midpoint spectrum470

Sbasis(ωn) =
1

2
(Smax(ωn) + Smin(ωn)) . (B.3)

With the resulting basis power spectrum a first approximation of the ensemble of PSD471

functions is derived, while the weights and bias can be obtained. To identify an upper and472

lower bound, the expression in Eq. B.2 will be reformulated473

Sopt(ωn;w
low) =

NB∑
i=1

wlow
i ϕi + b0,

Sopt(ωn;w
up) =

NB∑
i=1

wup
i ϕi + b0,

(B.4)

to modify the weights as part of an optimisation474

min
∣∣∣∣∣∣Sopt(ωn;w

up)− Sopt(ωn;w
low)
∣∣∣∣∣∣

s.t. Sopt(ωn;w
up) ≥ Smax(ωn)

Sopt(ωn;w
low) ≤ Smin(ωn)

Sopt(ωn;w
low) ≥ 0

wlow ≤ wup.

(B.5)

Thus, an upper bound Sopt and lower bound Sopt can be obtained.475
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