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Abstract

Two asymptotic solutions are presented for linear elastic thin, not nec-

essarily circular, cylindrical layers fully constrained by two rigid plates.

Other than being small, the plate displacements and rotations are not

restricted, and therefore, in general, a constrained layer is subjected to

combined stretching, bending, shearing, and twisting. The first solu-

tion is restricted to layers formed by compressible solids, whose Pois-

son’s ratio is not too close to one half. This solution is a superposition

of a polynomial field, valid in the bulk of the layer, and a corrective

field, which decays exponentially fast away from the cylindrical surface

and becomes negligible at distances comparable to the layer thickness.

The second solution is not restricted in terms Poisson’s ratio but it

is correct only to a leading order. This solution unifies leading-order

solutions for layers formed by compressible, nearly incompressible, and

incompressible solids. The unification involves a parameter character-

izing the competition between compressibility and thinness.

2



1 Introduction

This paper is concerned with asymptotic analysis of linear elastic thin cylin-

drical, not necessarily circular, layers fully constrained by two rigid plates

as shown in Figure 1. Other than being small, the plate displacements and

rotations are not restricted, and therefore, in general, the induced fields

are truly three-dimensional, as the layers deform by combined stretching,

bending, shearing, and twisting.

Our first objective is to construct a complete asymptotic solution for layers

formed by materials whose Poisson’s ratio ν is not too close to one half;

we refer to such materials as compressible solids. This solution will be

constructed as a superposition of polynomial fields, valid in the bulk of the

layer, and corrective fields, valid near the cylindrical surface. Further, it

will be established that the corrective fields decay exponentially fast away

from the cylindrical surface and become negligible at distances comparable

to the layer thickness.

By restricting the asymptotic solution to compressible solids one significantly

simplifies the problem. Indeed, if incompressible solids are included, one

must address differences in solutions of boundary-value problems governed

by Navier’s versus Stokes’ equations, and for constrained thin layers those

differences are significant. To illustrate this point, let us consider stretching

of two circular layers each of radius a and thickness 2h. The first layer is

formed by a compressible solid characterized by Lamé constants λ and µ.

For this layer, the apparent Young’s modulus Ē is given by the expression
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[1]:

Ē = λ+ 2µ . (1)

The second layer is formed by an incompressible solid. In this case, (1)

cannot be used as λ→∞. Rather the correct solution is [2]

Ê =
3

8
µ
(a
h

)2
. (2)

Thus to reconcile (1) and (2) one needs an alternative expression valid for

any λ. This motivates our second objective, which is to construct a unify-

ing asymptotic solution valid for all solids. This objective will be pursued

by extending the approach in [3] from axisymmetric to three-dimensional

problems.

It is peculiar that the classical papers of Filon [1] and Stefan [2] has had a

minimal impact on the pertinent solid mechanics literature. Perhaps Filon’s

robust approach, not restricted to thin cylinders, is unnecessary complicated

for analyzing thin layers, and Stefan’s work was overshadowed by Reynold’s

seminal work [4] published twelve years later.

The recent solid mechanics literature concerned with thin constrained layers

dates back to Gent and Lindley [5, 6], who were the first to recognize the sig-

nificance of testing thin rubber layers bonded to stiff (metal or glass) plates,

and taking small rubber compressibility into account. Their analysis of ax-

isymmetric stretching is based on the assumption that the radial velocity

profile is parabolic. This and other assumptions are central to subsequent

analyses of stretching [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] and bending
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Figure 1: A thin cylindrical layer constrained by two plates.

[8, 10, 17] of thin circular cylindrical layers. Other configurations involve

thin cylinders with non-circular platforms [8] and thin layers constrained by

curved surfaces [17, 18]. The majority of approximate axisymmetric solu-

tions compare favorably with results of detailed finite element analyses for

layers formed by compressible and nearly incompressible solids [3].

Our approach is based on the method of compound asymptotic expansions

[19, 20], and it does not involve any assumptions other than the layer is

thin. Like other asymptotic approaches, ours is most naturally formulated

for problems involving one small parameter. In this work, those problems

are for layers formed by either compressible or incompressible solids, where

the small parameter is associated with the layer thinness. In contrast, if the

solid is nearly incompressible, there are two small parameters. Typically, in

this case, one needs to construct multiple solutions, each corresponding to
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a power-law relationship between the two small parameters. Here we follow

[3] and construct a single solution for the two-parameter problem, which

includes the solutions of the single-parameter problems as particular cases.

Throughout the paper, we refer to the solid rather than layer compressibility.

The former is an intrinsic property, whereas the latter also depends on the

layer thinness. In particular, in describing moderately thin rubber layers, it

is essential to treat rubber as a nearly incompressible solid. In contrast, for

very thin layers, rubber can be treated as a compressible solid. This point

has been emphasized in [3] and it will be revisited in Section 5.

Besides [3], this work is most closely related to [8] in terms of the scope

of problems and to [17, 18] in terms of reliance on asymptotic analysis. In

contrast to [8], we are interested in formal asymptotic analysis of the general

problem rather than approximate solutions for rubber layers with circular

and non-circular platforms. The emphasis in [17, 18] is on both thin and

moderately thick rubber layers constrained by flat and curved surfaces. In

contrast, we are concerned with more detailed asymptotic analysis of thin

cylindrical layers formed by either compressible or nearly incompressible or

incompressible solids.

The remainder of the paper is structured as follows. In Section 2, we for-

mulate the problem and introduce the notation. In Sections 3, we develop

a complete asymptotic solution for layers formed by compressible solids. In

Section 4 we develop the leading order solution for layers formed by incom-

pressible solids. In Section 5, we develop a unifying leading order solution.
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We conclude the paper with a discussion of results and future work in Section

6.

We use both index and direct notations. Boldface Latin letters are reserved

for vectors (lowercase) and operators (uppercase). Latin subscripts range

from 1 to 3, whereas Greek subscripts range from 1 to 2, and repeated indices

imply summation.

2 Problem statement

Consider a thin cylindrical layer Ω of thickness 2h with the mid-plane plat-

form ω. The layer is described in Cartesian coordinates chosen so that the

origin is at the centroid of ω,

(x1, x2) ∈ ω , and − h < x3 < h . (3)

Further, x1 and x2 are the principal axes of ω. We denote the top and

bottom surfaces of Ω by ∂Ω±, and the cylindrical surface by ∂Ω0 (Fig. 2.)

The partial differential equations governing the linear elastic response of Ω

are derived by combining the basic equilibrium equations,

σij,j = 0 , (4)

with a Hooke’s law. For compressible and nearly incompressible solids, it is

expressed as

σij = λuk,kδij + µui,j + µuj,i . (5)
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Figure 2: A thin layer Ω: (a) a three-dimensional view with the bottom flat
surface ∂Ω− not shown, (b) a view of the platform ω in the plane x3 = 0.

For incompressible solids, one introduces the pressure p and the incompress-

ibility constraint,

ui,i = 0 . (6)

Then Hooke’s law is expressed as

σij = −pδij + µui,j + µuj,i . (7)

The boundary conditions are stated by adopting two assumptions. First,

∂Ω0 is neither loaded nor constrained, so that

σijnj = 0 on ∂Ω0 . (8)

Second, the layer is perfectly bonded to two rigid plates, one is above ∂Ω+

and the other is below ∂Ω−. Accordingly,

ui(x1, x2,±h) = U±i (x1, x2) , (9)
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where U±i are displacements of the plates.

For simplicity of derivations, but without any loss of generality, we assume

that the plates are displaced so that rigid body translations and rotations

of ∂Ω− are opposite to their counterparts of ∂Ω+. By symmetry, this choice

results in ui(x1, x2, 0) = 0. Accordingly, basic deformation modes are asso-

ciated with the following prescriptions of the rigid body motion parameters:

Stretching: The only non-zero rigid body motion parameter is a translation

δ3 along the x3 axis:

U±3 (x1, x2) = ±δ3 , U
±
1 (x1, x2) = U±2 (x1, x2) = 0 . (10)

Bending: The only non-zero rigid body motion parameters are small counter-

clock-wise rotations φ1 and φ2 about the x1 and x2 axes, respectively:

U±3 (x1, x2) = ± (φ1x2 − φ2x1) , U±1 (x1, x2) = U±2 (x1, x2) = 0 . (11)

Shearing: The only non-zero rigid body motion parameters are translations

δ1 and δ2 along the x1 and x2 axes, respectively:

U±1 (x1, x2) = ±δ1 , U
±
2 (x1, x2) = ±δ2 , U

±
3 (x1, x2) = 0 . (12)

Twisting: The only non-zero rigid body motion parameter is a small

counter-clock-wise rotation about the x3 axes:

U±1 (x1, x2) = ∓φ3x2 , U
±
2 (x1, x2) = ±φ3x1 , U

±
3 (x1, x2) = 0 . (13)
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These four modes can be combined, and the result written in the form

U±(x1, x2) = ±


δ1

δ2

δ3

±

−φ3x2

φ3x1

φ1x2 − φ2x1

 . (14)

3 Layers formed by compressible solids

In this section, we consider layers formed by compressible solids, which

represent most materials.

3.1 Asymptotic solution for the displacements

To facilitate asymptotic analysis, let us introduce a characteristic length of

ω and denote this length by a. A precise definition of a is not necessary, and

ultimately it will not be included in the solution. Nevertheless, it allows us

to associate the layer thinness with the small dimensionless parameter

ξ :=
h

a
. (15)

Further, a allows us to introduce scaled coordinates

X1 :=
x1

a
, X2 :=

x2

a
, X3 :=

x3

h
= ξ−1x3

a
. (16)

For compressible solids, (4) and (5) imply Navier’s equations,

Lijuj := (λ+ µ)uj,ji + µui,jj = 0 . (17)
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If the matrix operator Lij is expressed in scaled coordinates, it becomes a

rational function of ξ,

L = ξ−2L0 + ξ−1L1 + L2 , (18)

where

L0 =
1

a2


µ 0 0

0 µ 0

0 0 λ+ 2µ

 ∂2

∂X2
3

, (19)

L1 =
λ+ µ

a2


0 0 ∂

∂X1

0 0 ∂
∂X2

∂
∂X1

∂
∂X2

0

 ∂

∂X3
, (20)

and

L2 =
µ

a2


1 0 0

0 1 0

0 0 1


(
∂2

∂X2
1

+
∂2

∂X2
2

)
+
λ+ µ

a2


∂2

∂X2
1

∂2

∂X1∂X2
0

∂2

∂X1∂X2

∂2

∂X2
2

0

0 0 0

 . (21)

Further, in the scaled coordinates, the boundary conditions on Ω±, stated

in (9) and (14), are rewritten as

u(X1, X2,±1) = ±


δ1

δ2

δ3

± a


−φ3X2

φ3X1

φ1X2 − φ2X1

 . (22)
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The natural ansatz for the displacement vector is

u = u(0) + ξu(1) + ξ2u(2) + ... , (23)

where it is implied that u(0), u(1), and u(2) are of the same magnitude and

independent of ξ. Once (18) through (21) and (23) are substituted in (17),

the left-hand side becomes a rational function of ξ whose leading order term

is O
(
ξ−2
)
. By equating to zero the coefficients in front of ξ−2 we obtain the

system of ordinary differential equations:

L0u
(0) = 0 , (24)

which implies that u(0) is a linear polynomial in X3. Then (22) implies

u(0) =


δ1

δ2

δ3

X3 + a


−φ3X2

φ3X1

φ1X2 − φ2X1

X3 . (25)

The next order equation derived from the product Lu is

L0u
(1) = −L1u

(0) =
λ+ µ

a


φ2

−φ1

0

 . (26)

Thus u(1) is a quadratic polynomial in X3. Since (22) and (25) imply ho-
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mogeneous boundary conditions for u(1), we obtain

u(1) =
λ+ µ

2µ
a


−φ2

φ1

0

(1−X2
3

)
. (27)

It is remarkable that u(1) is associated with bending only. Finally, let us

consider the equation for u(2):

L0u
(2) = −L1u

(1) − L2u
(0) . (28)

It is straightforward to establish from (20), (21), (25), (27) that the right-

hand side of this equation is equal to zero. Further, (22) implies that

u(2) (X1, X2,±1) = 0, and therefore u(2) = 0. The same logic leads to

the conclusion that u(k) = 0 for any k > 2. Thus, we regard

u =


δ1

δ2

δ3

X3 + a


−φ3X2

φ3X1

φ1X2 − φ2X1

X3 +
λ+ µ

2µ
aξ


−φ2

φ1

0

(1−X2
3

)
, (29)

as an exact asymptotic approximation. We conclude this subsection by

rewriting u in the physical coordinates,

u =


δ1 − φ3x2

δ2 + φ3x1

δ3 + φ1x2 − φ2x1

 x3

h
+
λ+ µ

2µh


−φ2

φ1

0

(h2 − x2
3

)
. (30)
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As expected, this expression is independent of a. Furthermore, it is valid

for any ω, outside a neighbourhood of the lateral boundary.

3.2 Stress analysis

Equation (30) presents a remarkably simple displacement field. However,

this field was constructed without satisfying the traction-free boundary con-

ditions on the cylindrical surface ∂Ω0. To address this issue, let us use (5)

to calculate the stress field corresponding to (30):

σ11 = σ22 =
λ (δ3 + φ1x2 − φ2x1)

h

σ33 =
(λ+ 2µ) (δ3 + φ1x2 − φ2x1)

h

σ12 = 0 (31)

σ13 =
µ (δ1 − φ3x2)

h
+ λφ2

x3

h

σ23 =
µ (δ2 + φ3x1)

h
− λφ1

x3

h
.

To calculate the traction vector, we identify the unit normal n at a point

P ∈ ∂Ω0, and parameterize the normal as

n =


cosψ

sinψ

0

 , (32)

where ψ is the angle between n and the x1-axis (Fig. 3). The traction vector

calculated from (31) and (32) is confined to the plane spanned by n and the
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x3-axis. The non-zero components of this vector are

σnn =
λ (δ3 + φ1x2 − φ2x1)

h
(33)

and

σn3 =
µ

h
[(δ1 − φ3x2h) cosψ + (δ2 + φ3x1) sinψ]

− λ (φ1 sinψ − φ2 cosψ)
x3

h
. (34)

In these equations, it is implied that xi are the coordinates of P . Note that

σnn is dictated solely by stretching and bending. Further, upon comparison

with (31), we conclude that σnn is of the same magnitude as the normal

stresses in the bulk of the layer. The stress σn3 consists of two terms. The

first term is dictated solely by shearing and twisting, and it is of the same

magnitude as the shear stresses in the bulk of the layer. The second term is

dictated solely by bending, and it an order of magnitude smaller than the

normal stresses induced by bending in the bulk of the layer. Furthermore,

the resultant of the second term is equal to zero. Therefore, effectively, as

far as the induced fields are concerned, the second term of σn3 is by two

orders of magnitude smaller than the first term.

Equations (33) and (34) demonstrate that the displacement field given in

(30) does not satisfy traction-free boundary conditions on ∂Ω0. To remedy

this situation, we need to construct a corrective solution, which will be done

in the next subsection.

We conclude this subsection by calculating the internal forces and moments
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Figure 3: The normal vector at P ∈ ∂Ω0: (a) a three-dimensional view, (b)
a view in a x3-plane containing P .

transmitted through ω. This is done by integrating the stress components

in (31) evaluated at x3 = 0. The integration is very simple because the

coordinate origin is at the centroid of ω, and x1 and x2 are the principal

axes:

Shear forces :

F1 =

∫
ω
σ13dA = µA

δ1

h
, F2 =

∫
ω
σ23dA = µA

δ2

h

Normal force :

F3 =

∫
ω
σ33dA = ĒA

δ3

h
(35)

Bending moments :

M1 =

∫
ω
x2σ33dA = ĒI11

φ1

h
, M2 = −

∫
ω
x1σ33dA = ĒI22

φ2

h

Twisting moment :

M3 =

∫
ω

(x1σ23 − x2σ13) dA = µIp
φ3

h
.
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Here Ē is the apparent modulus given in (1). The area A and moments

of inertia, I11, I22, and Ip are defined with respect to ω. Of course these

equations are almost identical to those of elementary beam theory. The

only difference is that Ē replaces the true Young’s modulus E measured in

uni-axial tension.

3.3 Corrective solution

In the previous subsection we established that the displacement field u in

(30) results in the stress field, which does not satisfy (8) on the lateral

surface of the thin solid. Accordingly, in this subsection, we construct a

corrective displacement field v, so that the stress field corresponding to

u + v satisfies (8) in an asymptotic sense. Furthermore, we establish that v

decays exponentially fast away from ∂Ω0 and therefore becomes negligible

in the bulk of the layer.

Let us focus on constructing the corrective displacement field v in a small

neighborhood of a point P ∈ ∂Ω0. To this end, we first identify O′ so

that O′ ∈ ∂ω and
−−→
O′P is parallel to the x3-axis. Next, we introduce a local

Cartesian coordinate system with the origin at O′, the x′1-axis along the unit

normal vector at O′, the x′2-axis along the global x3-axis, and the x′3-axis

tangential to ∂ω, so that the coordinate system is right-handed (Fig. 4a).

In these coordinates, the boundary-value problem for v is defined as

Li′j′vj′ = 0 in ∂Ω , (36)

vi′ = 0 on ∂Ω± , (37)
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Figure 4: Setting for analysis of corrective fields: (a) local physical coor-
dinates, (b) the semi-infinite strip Π in the plane X ′3 = 0 shown in scaled
coordinates.

and

τ1′1′ = −σnn , τ1′2′ = −σn3 , τ1′3′ = 0 on ∂Ω0 . (38)

In the last equation, τi′j′ are the components of the stress tensor correspond-

ing to vi′ , and σnn and σn3 are from (33) and (34), respectively (Fig. 4a).

The local asymptotic solution is developed under the assumption that ∂ω is

a smooth curve whose radius of curvature is comparable to a rather than h.

Therefore the normalization length along x′3 is chosen to be a. In contrast,

since we are interested in a solution in a vicinity of ∂Ω0, the normalization

length along x′1 is chosen to be h. Of course, because the layer is thin, x′2 is

normalized with h. Accordingly, the local scaled coordinates are

X ′1 :=
x′1
h
, X ′2 :=

x′2
h
, X ′3 :=

x′3
a
. (39)
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To the leading order, this normalization results in splitting the original three-

dimensional problem into anti-plane and plane strain problems defined on

the semi-infinite strip (Fig. 4b),

Π =
{(
X ′1, X

′
2

)
: X ′1 < 0, −1 < X ′2 < 1

}
.

The anti-plane problem is governed by the partial differential equation,

∂2v3′

∂X ′21
+
∂2v3′

∂X ′22
= 0 , (40)

with the boundary conditions

v3′
(
X ′1,±1

)
= 0 (41)

and

τ1′3′
(
0, X ′2

)
= 0 . (42)

The plane strain problem is governed by the system of partial differential

equations for (x′1, x
′
2) ∈ Π

µ

(
∂2v1′

∂X ′21
+
∂2v1′

∂X ′22

)
+ (λ+ µ)

∂

∂X ′1

(
∂v1′

∂X ′1
+
∂v2′

∂X ′2

)
= 0 ,

µ

(
∂2v2′

∂X ′21
+
∂2v2′

∂X ′21

)
+ (λ+ µ)

∂

∂X ′2

(
∂v1′

∂X ′1
+
∂v2′

∂X ′2

)
= 0 ,

(43)

with the boundary conditions

v1′
(
X ′1,±1

)
= v2′

(
X ′1,±1

)
= 0 (44)
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and

τ1′1′
(
0, X ′2

)
= −σnn , τ1′2′

(
0, X ′2

)
= −σn3 . (45)

It is clear that the solution of the anti-plane problem is trivial: v3′ = 0. For

the plane strain problem, we follow what is now a textbook approach [21],

and seek the solution in the form

vα′
(
X ′1, X

′
2

)
= exp

(
ΛX ′1

)
ṽα′
(
X ′2
)
, (46)

with the objective of finding Λ which yields non-trivial solutions to (43) and

(44). In what follows, we establish that for any pair of λ and µ there is a

unique Λ > 0 of interest. The condition Λ > 0 results in an exponentially

decaying v since Π is characterized by X ′1 < 0.

The equation for Λ is derived in four steps:

1. Equation (46) is substituted in (43), so that the system of partial

differential equations for vα′ (X
′
1, X

′
2) becomes a system of ordinary

differential equations for ṽα′ (X
′
2).

2. The ordinary differential equations are solved for ṽα′ (X
′
2).

3. The solutions are substituted in (44) to form a homogeneous system

of linear algebraic equations for the integration constants.

4. A non-trivial solution for the integration constants is obtained by set-

ting the determinant of the system matrix equal to zero.
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Figure 5: In the domain, where 1
7 <

sin 2Λ
2Λ < 1, equation (47) has one and

only one positive solution.

As a result, one obtains the characteristic equation

sin 2Λ

2Λ
=

λ+ µ

λ+ 3µ
=

1

3− 4ν
. (47)

The restriction on Poisson’s ratio, −1 < ν < 1/2, implies that the right-

hand side of this equation is in the interval (1/7, 1). The plot shown in

Figure 5 contains the curve sin 2Λ/(2Λ) and two straight lines. The upper

line corresponds to the right-hand side evaluated at ν = 1/2 and the lower

one for the right-hand side evaluated at ν = −1. This plot clearly shows

that for the segment of the curve bounded by the lines there is one and only

one positive solution. For a typical ν = 0.3 the solution is Λ ≈ 0.883, and

it is shown by red dashed lines. Thus, in this case, the exponential decay is

characterized by the length approximately equal to h/Λ ≈ 1.133h.
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4 Layers formed by incompressible solids

In this section, we consider layers formed by incompressible solids. This

problem dates back to [2] and its solution can be found in many papers

including [8, 10, 17]. We revisit the problem because its solution structure is

similar to that of the unifying solution to be developed in the next section.

Since both shearing and twisting modes are insensitive to the degree of

compressibility, in this section we restrict our attention to the stretching

and bending modes.

4.1 Leading order asymptotic solution for the displacements

For an incompressible solid, (4), (6), and (7) yield Stokes’ partial differential

equations:

−p,i + µui,jj = 0 and ui,i = 0 . (48)

The boundary conditions on ∂Ω0 are specified by combining (7) and (8):

σijnj = −pni + µui,jnj + µuj,inj = 0 on ∂Ω0 . (49)

The boundary conditions on ∂Ω± follow from (9) and (14), with the provision

that the kinematic degrees of freedom associated with shearing and twisting

are set equal to zero:

u1 = u2 = 0, u3 = ± (δ3 + φ1x2 − φ2x1) on ∂Ω± . (50)

Following, Stefan’s solution [2], where the radial displacement is by an order
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of magnitude larger than the axial one, we adopt the displacement vector in

the form

u =


ξ−1u

(−1)
1

ξ−1u
(−1)
2

u
(0)
3

 . (51)

With this ansatz, in scaled coordinates, the leading order approximation of

(48) can be written as the following system of equations:

− ∂p

∂Xα
+

µ

aξ3

∂2u
(−1)
α

∂X2
3

= 0 , (52)

− ∂p

∂X3
+

µ

aξ

∂2u
(0)
3

∂X2
3

= 0 , (53)

Θ :=

2∑
α=1

∂u
(−1)
α

∂Xα
+
∂u

(0)
3

∂X3
= 0 . (54)

Since u
(−1)
α and u

(0)
3 are of the same order of magnitude, (52) and (53) imply

that to the leading order

∂p

∂X3
= 0 . (55)

This makes integration of (52) with respect to X3 elementary. With u
(−1)
α =

0 at X3 = ±1, this integration yields

u(−1)
α = −aξ

3

2µ

∂p

∂Xα

(
1−X2

3

)
. (56)

Once this equation is substituted in (54) and the resulting equation is inte-
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grated with respect to X3, (50) implies

uα = −aξ
2

2µ

∂p

∂Xα

(
1−X2

3

)
, α = 1, 2,

u3 =
3

2
(δ3 + aφ1X2 − aφ2X1)

(
X3 −

1

3
X3

3

)
, (57)

and

aξ3

3µ

(
∂2p

∂X2
1

+
∂2p

∂X2
2

)
= δ3 + aφ1X2 − aφ2X1 in ω . (58)

In the next subsection, we will establish the boundary conditions corre-

sponding to this partial differential equation.

Let us conclude this subsection by rewriting the key results in the physical

coordinates:

uα = −h
2

2µ

∂p

∂xα

[
1−

(x3

h

)2
]
, α = 1, 2,

u3 =
3

2
(δ3 + φ1x2 − φ2x1)

[(x3

h

)
− 1

3

(x3

h

)3
]
. (59)

Note that the first equation justifies the assumption that, in the axisym-

metric setting, the radial velocity profile is parabolic. The second equation

implies that the problem is kinematically determinate for u3. The governing

partial differential equation (58) is rewritten as

h3

3µ

(
∂2p

∂x2
1

+
∂2p

∂x2
2

)
= δ3 + φ1x2 − φ2x1 in ω . (60)

As expected, neither (59) nor (60) include a.
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4.2 Stress analysis

The stresses corresponding to (59) are calculated from (7):

σ11 = −p−
(
h2 − x2

3

) ∂2p

∂x2
1

,

σ22 = −p−
(
h2 − x2

3

) ∂2p

∂x2
2

,

σ33 = −p+
3µ
(
h2 − x2

3

)
h3

(δ3 − φ2x1 + φ1x2) ,

σ12 = −
(
h2 − x2

3

) ∂2p

∂x1∂x2
(61)

σ13 = x3

[
∂p

∂x1
−
µ
(
3h2 − x2

3

)
2h3

φ2

]
,

σ23 = x3

[
∂p

∂x2
+
µ
(
3h2 − x2

3

)
2h3

φ1

]
.

To assess the relative significance of the components in (61), let us introduce

a reference strain,

ε :=
|δ3|
h

+
|φ1| a
h

+
|φ2| a
h

=
|δ3|
h

+ ξ−1 (|φ1|+ |φ2|) . (62)

Then using (60) it is straightforward to establish that p = µO
(
ξ−2ε

)
, σ13

and σ23 are µO
(
ξ−1ε

)
, and the remaining deviatoric components are µO (ε).

The scaling for p is in agreement with Stefan’s solution [2] and in sharp

contrast to (31), where all stresses induced by stretching and bending are

µO (ε).

The traction vector on ∂Ω0 corresponding to (61) is calculated in the local
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coordinates shown in Figure 4:

σ1′1′ = −p

−
(
h2 − x2

3

)(∂2p

∂x2
1

cos2 ψ +
∂2p

∂x1∂x2
sin 2ψ +

∂2p

∂x2
2

sin2 ψ

)
, (63)

σ1′2′ = x3

(
∂p

∂x1
cosψ +

∂p

∂x2
sinψ

)
+

µx3

(
3h2 − x2

3

)
2h3

(φ1 sinψ − φ2 cosψ) , (64)

σ1′3′ =
1

2

(
h2 − x2

3

) [(
−∂

2p

∂x2
1

+
∂2p

∂x2
2

)
sin 2ψ + 2

∂2p

∂x1∂x2
cos 2ψ

]
.(65)

In these expressions, ψ is the angle shown in Figure 3. On the right-hand

side of (63), p = µO
(
ξ−2ε

)
, whereas the second term is µO (ε). On the right-

hand side of (64), both terms are µO
(
ξ−1ε

)
. But because the resultant of

σ1′2′ is equal to zero, the effect of σ1′2′ as if it were µO (ε). The right-hand

side of (65) is µO (ε). Thus if we set

p = 0 on ∂ω , (66)

the entire traction vector becomes effectively µO (ε). Thus the stresses in

(61) are µO
(
ξ−2ε

)
whereas the stress fields associated with non-zero trac-

tions on ∂Ω0 are effectively µO (ε). Therefore a corrective solution similar

to that developed in Section 3.3 is unnecessary here.

We conclude this subsection by observing that both the normal force and

bending moment resultants are dominated by the pressure, and therefore

their explicit expressions require the solution of (60) and (66). Of course

the remaining internal forces and moments are equal to zero.

26



4.3 Circular layers

Boundary-value problems governed by (60) and (66) are straightforward

to solve for circular, elliptical, square, and other canonical domains. In

particular, if ∂ω is a circle of radius a and φ1 = φ2 = 0, the solution

of (60) and (66) should recover that of the pressure in Stefan’s problem.

Accordingly, (60) and (66) are specified for p dependent only on the radial

distance r:

h3

3µ

(
d2p

dr2
+

1

r

dp

dr

)
= δ3 0 ≤ r < a (67)

and

p = 0 at r = a . (68)

With the standard provision that the solution must be bounded, one can

solve (67) and (68) to obtain

p = −
3µ
(
a2 − r2

)
δ3

4h3
. (69)

The radial displacement corresponding to this pressure field follows from

(59):

ur = −h
2

2µ

dp

dr

[
1−

(x3

h

)2
]

= −3rδ3

4h

[
1−

(x3

h

)2
]
. (70)

The internal force corresponding to (69) is

F3 = −2π

∫ a

0
p(r)rdr =

3πµa4δ3

8h3
. (71)

To the leading order these three expressions agree with their counterparts

of Stefan’s solution. Furthermore, the apparent Young’s modulus calculated
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from (71) coincides with that in (2).

For the bending case, p is a function of both polar coordinates, so that (60)

implies

h3

3µ

(
∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2

∂2p

∂θ2

)
= r (φ1 sin θ − φ2 cos θ) . (72)

The solution of this equation is sought in the form

p(r, θ) = f(r) (φ1 sin θ − φ2 cos θ) . (73)

This form reduces (72) to the ordinary equation for the function f :

h3

3µ

(
d2f

dr2
+

1

r

df

dr
− f

r2

)
= r 0 ≤ r < a . (74)

The finite solution for f(r) subjected to the boundary condition f(a) = 0 is

f(r) = −
3µ
(
a2 − r2

)
r

8h3
. (75)

This function gives rise to the following expressions:

p = −
3µr

(
a2 − r2

)
8h3

(φ1 sin θ − φ2 cos θ) , (76)

ur =
3
(
a2 − 3r2

)
16h

[
1−

(x3

h

)2
]

(φ1 sin θ − φ2 cos θ) , (77)

uθ =
3
(
a2 − r2

)
16h

[
1−

(x3

h

)2
]

(φ1 cos θ + φ2 sin θ) , (78)
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and

Mα =
πa6µ

32h3
φα . (79)

To a leading order all of the solutions presented in this subsection agree with

those published in [8, 10, 17].

5 Unifying solution

In this section, we construct a leading order asymptotic solution which allows

us to unify the leading order solution developed in Sections 3 and 4.

5.1 Leading order asymptotic solution for the displacements

Following [3], we parameterize elastic solids using the shear modulus µ and

the dimensionless parameter

χ :=

√
3µ

λ+ 2µ
. (80)

This parameter was introduced in [7], and it arises naturally in axisymmetric

problems. One can also see its emergence if one seeks a cross-over point and

sets Ē = Ê in (1) and (2).

Equation (80) implies that for incompressible solids, χ = 0, for nearly in-

compressible solids χ � 1, and compressible solids χ = O(1). Thus a

layer formed by a nearly incompressible solid is characterized by two small

parameters, χ and ξ, whereas layers formed by either compressible or in-

compressible solids are characterized by only one small parameter ξ.
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Conventionally, problems with two small parameters are solved by identify-

ing power-law relationships between them. For example, if one sets χ = ξ,

the operator L becomes a rational function of ξ whose leading term is pro-

portional to ξ−4 rather than ξ−2, as it was the case in (18). Similarly, if

one sets χ =
√
ξ, the operator L becomes a rational function of ξ whose

leading term is proportional to ξ−3. Of course, multiple choices may result

in multiple solutions.

Here we follow [3] and introduce the parameter

ζ :=
ξ

χ
, (81)

which characterizes the competition between ξ and χ. That is, if the solid

is nearly incompressible, so that χ� ξ, then ζ � 1. On the contrary, if the

solid is compressible, so that χ = O(1), then ζ � 1. In what follows, we

regard ζ as neither small nor large, which in effect leaves us with only one

small parameter ξ. Accordingly, L is split as

L = L′ + L′′ =
(
ξ−2L′0 + ξ−1L′1 + L′2

)
+ 3ζ2

(
ξ−4L′′0 + ξ−3L′′1 + ξ−2L′′2

)
,

(82)

with

L′0 = µa−2


∂2

∂X2
3

0 0

0 ∂2

∂X2
3

0

0 0 0

 , (83)
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L′1 = −µa−2


0 0 ∂2

∂X1∂X3

0 0 ∂2

∂X2∂X3

∂2

∂X1∂X3

∂2

∂X2∂X3
0

 , (84)

L′2 = µa−2


∂2

∂X2
2

0 0

0 ∂2

∂X2
1

0

0 0 ∂2

∂X2
1

+ ∂2

∂X2
2

 , (85)

L′′0 = µa−2


0 0 0

0 0 0

0 0 ∂2

∂X2
3

 , (86)

L′′1 = µa−2


0 0 ∂2

∂X1∂X3

0 0 ∂2

∂X2∂X3

∂2

∂X1∂X3

∂2

∂X2∂X3
0

 , (87)

L′′2 = µa−2


∂2

∂X2
1

∂2

∂X1∂X2
0

∂2

∂X1∂X2

∂2

∂X2
2

0

0 0 0

 . (88)

We choose the displacement ansatz for the leading order solution which
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mimics (51), but rewrite it as

u = ξ−1u(−1) + u(0) = ξ−1


u

(−1)
1

u
(−1)
2

0

+


0

0

u
(0)
3

 . (89)

Once (82) and (89) are combined we obtain

Lu = ξ−4


0

0

∂Θ
∂X3

+ ξ−3


∂2u

(−1)
1

∂X2
3

+ 3ζ2 ∂Θ
∂X1

∂2u
(−1)
2

∂X2
3

+ 3ζ2 ∂Θ
∂X2

0

+ ... . (90)

These equations are straightforward to integrate with respect to X3, so that

the boundary conditions on ∂Ω±,

u
(−1)
1 (X1, X2,±1) = u

(−1)
2 (X1, X2,±1) = 0 ,

u
(0)
3 (X1, X2,±1) = ± (δ3 + aφ1X2 − aφ2X1) ,

(91)

yield the displacements,

uα =
3

2
ξ−1ζ2 ∂Θ

∂Xα

(
1−X2

3

)
,

u3 =
1

2
(δ3 + aφ1X2 − aφ2X1)

(
3X3 −X3

3

)
+

1

2
Θ
(
−X3 +X3

3

)
, (92)

and the partial differential equation for Θ,

−ζ2

(
∂2Θ

∂X2
1

+
∂2Θ

∂X2
2

)
+ Θ = δ3 + aφ1X2 − aφ2X1 in ω . (93)
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The similarities between (92) versus (57) and (93) versus (58) are strik-

ing. Thus, the unifying solution is closely related to the solution for layers

formed by incompressible solids. Indeed, (92) and (93) are essentially iden-

tical to those developed in Section 2.1.3 of [17] for layers formed by nearly

incompressible solids.

Following Sections 3 and 4, let us conclude this subsection with rewriting

(92) and (93) in the physical coordinates:

uα =
3h

2χ2

∂Θ

∂xα

[
1−

(x3

h

)2
]
,

u3 =
1

2
(δ3 + φ1x2 − φ2x1)

[
3
(x3

h

)
−
(x3

h

)3
]

+
Θ

2

[
−
(x3

h

)
+
(x3

h

)3
]
, (94)

and

−h
2

χ2

(
∂2Θ

∂x2
1

+
∂2Θ

∂x2
2

)
+ Θ = δ3 + φ1x2 − φ2x1 in ω . (95)

As expected, every entry in these equations is unambiguously defined.

5.2 Stress analysis

The stresses are calculated from the displacements by substituting (94) in

(5). Upon retaining leading order terms only we obtain:

σ11 = σ22 = σ33 =
3µΘ

χ2h
,

σ12 =
3hµ

(
h2 − x2

3

)
χ2h

∂2Θ

∂x1∂x2
,

σα3 = −3µx3

χ2h

∂Θ

∂xα
.

(96)
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The traction vector on ∂Ω0 corresponding to (96) is calculated in the local

coordinates shown in Figures 3 and 4:

σ1′1′ =
3µ

χ2h
Θ

σ1′2′ = −3µx3

χ2h

(
cosψ

∂Θ

∂x1
+ sinψ

∂Θ

∂x2

)
,

σ1′3′ = − 3µ

χ2h

(
h2 − x2

3

)
cos 2ψ

∂2Θ

∂x1∂x2
.

(97)

Like in (96), these expressions contain only leading order terms. It is clear

that σ1′1′ is one order of magnitude larger than σ1′2′ . In addition, the resul-

tant of σ1′2′ is equal to zero, and therefore, effectively, the fields induced by

σ1′1′ are two orders of magnitude larger than those induced by σ1′2′ . Since

σ1′1′ is two orders of magnitude larger than σ1′3′ , the traction component

σ1′1′ dominates the other two components by two orders of magnitude. Con-

sequently, the best way to reduce the traction vector on ∂Ω0 is by setting

Θ = 0 on ∂ω . (98)

With this provision, the stresses associated with non-zero tractions is two

orders of magnitude less than those in the bulk of the layer. Therefore, as

it was the case in Section 4, a corrective solution is not necessary for the

leading order analysis.

The task of calculating the normal forces and bending moments transmitted

through ω cannot be completed without specifying Θ. Therefore, this task

is not pursued here.
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5.3 Circular layers

Boundary-value problems governed by (95) are not as amenable to analytical

solutions as those governed by (60). Nevertheless analytical solutions are

possible to express in terms of Bessel’s function if ∂ω is a circle [8, 10, 17].

For stretching of a circular layer with radius a, φ1 = φ2 = 0, the problem

becomes axisymmetric. Accordingly, Θ becomes a function of r only, and

(94), (95), and (98) are rewritten as

ur =
3h

2χ2

dΘ

dr

[
1−

(x3

h

)2
]
,

u3 =
1

2
δ3

[
3
(x3

h

)
−
(x3

h

)3
]

+
Θ

2

[
−
(x3

h

)
+
(x3

h

)3
]
, (99)

−h
2

χ2

(
d2Θ

dr2
+

1

r

dΘ

dr

)
+ Θ = δ3 , (100)

and

Θ = 0 at r = a . (101)

These equations can be readily solved in terms of Bessel’s functions:

Θ = δ3

[
1−

I0

( rχ
h

)
I0

(aχ
h

)] , (102)

ur = − 3

2χ

I1

( rχ
h

)
I0

(aχ
h

) [1− (x3

h

)2
]
δ3 ,

u3 =
1

2

x3

h

{
2 +

[
1−

(x3

h

)2
]
I0

( rχ
h

)
I0

(aχ
h

)} δ3 . (103)
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The axial force required to realizes the stretch is

F3 =
3µ

χ2
πa2 I2

(aχ
h

)
I0

(aχ
h

) δ3

h
. (104)

For bending, governed by prescribed rotations φ1 and φ2, Θ is a function of

both polar coordinates, so that (95) is rewritten as

−h
2

χ2

(
∂2Θ

∂r2
+

1

r

∂Θ

∂r
+

1

r2

∂2Θ

∂θ2

)
+ Θ = r (φ1 sin θ − φ2 cos θ) . (105)

The solution of this equation is sought in the form

Θ(r, θ) = f(r) (φ1 sin θ − φ2 cos θ) . (106)

This form reduces (105) to the ordinary differential equation for the function

f(r): [
−h

2

χ2

(
d2

dr2
+

1

r

d

dr
− 1

r2

)
+ 1

]
f = r . (107)

The finite solution for f(r) subjected to the boundary condition f(a) = 0 is

f(r) = r −
aI1

( rχ
h

)
I1

(aχ
h

) . (108)
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This function gives rise to the displacements

ur =
3
(
h2 − z2

)
2hχ2

1−
I0

( rχ
h

)
+ I2

( rχ
h

)
2ζI1

(
1
ζ

)
 (φ1 sin θ − φ2 cos θ) ,

uθ =
3
(
h2 − z2

)
2hχ2

[
1−

aI1

( rχ
h

)
rI1

(aχ
h

)] (φ1 cos θ + φ2 sin θ) ,

u3 =
z

2h3

[
a
(
h2 − z2

) I1

( rχ
h

)
I1

(aχ
h

) + 2h2r

]
(φ1 sin θ − φ2 cos θ) .

(109)

The required bending moments are

Mα =
3µ

χ2

πa4

4

I3

(aχ
h

)
I1

(aχ
h

) φα
h
. (110)

To a leading order all of the solutions presented in this subsection agree

with those published in [8, 10, 17] for layers formed by nearly incompressible

solids.

5.4 Unification of solutions

In this subsection, we establish that the leading order solutions developed

in Sections 3 and 4 in scaled coordinates can be recovered (92), (93), and

(98). Let us begin by showing that both Ē, defined in (1), and Ê, defined

in (2), can be recovered from Ẽ, the apparent Young’s modulus derived for

the unifying solution. To this end, we use (104) to obtain

Ẽ :=
F3

πa2
÷ δ3

h
=

3µ

χ2

I2

(aχ
h

)
I0

(aχ
h

) =
3µ

χ2

I2

(
1
ζ

)
I0

(
1
ζ

) . (111)
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For layers formed by compressible solids with χ = O(1), ζ � 1. In this

regime, to the leading order,

I2

(
1
ζ

)
I0

(
1
ζ

) = 1 , (112)

and therefore Ẽ is reduced to

Ẽ =
3µ

χ2
= λ+ 2µ = Ē . (113)

For layers formed by incompressible solids with χ → 0, so that for χ � ξ

and ζ →∞. In this regime, to the leading order,

I2

(
1
ζ

)
I0

(
1
ζ

) =
1

8ζ2
=

χ2

8ξ2
, (114)

and therefore Ẽ is reduced to

Ẽ =
3µ

8ξ2
= Ê . (115)

Now let us proceed with establishing that (92), (93), and (98) reduce to the

leading order solution for layers formed by compressible (incompressible)

solids for ζ � 1 (ζ � 1 ). We restrict our analysis to the stretching and

bending modes. Then, for compressible solids, according to (25), (92), (93),
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and (98) must reduce to

uα = 0 ,

u3 = (δ3 + aφ1X2 − aφ2X1)X3 . (116)

For incompressible solids, (92), (93), and (98) must reduce to (57), (58), and

(66).

For ζ � 1, we recognize that (93) becomes an algebraic equation whose

solution is

Θ = δ3 + aφ1X2 − aφ2X1 . (117)

Once this solution is substituted in (92), we obtain u3 exactly as in (116), and

uα = O (ξ). Note that Θ in (117) does not satisfy the boundary conditions

on ∂ω. To address this issue, let us introduce the function

Θ̂ := Θ− (δ3 + aφ1X2 − aφ2X1) , (118)

which according to (93) and (98) satisfies the partial differential equation

−ζ2

(
∂2Θ̂

∂X2
1

+
∂2Θ̂

∂X2
2

)
+ Θ̂ = 0 in ω (119)

and the boundary conditions

Θ̂ = δ3 + aφ1X2 − aφ2X1 on ∂ω . (120)

The partial differential equation is characterized by an exponentially decay-
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ing fundamental solution. This property implies that an integral operator

mapping the Dirichlet data on ∂ω onto Θ̂ in ω exhibits the same exponen-

tial decay [22]. The characteristic length scale of this decay is the square

root of the coefficient in (95). Thus, for compressible solids, that length is

comparable to h. Consequently, the effect of improper boundary conditions

associated with the solution given by (117) is negligible, and similar to that

for the corrective solution developed in Section 3.

For ζ � 1, (93) reduces to Poisson’s equation

−ζ2

(
∂2Θ

∂X2
1

+
∂2Θ

∂X2
2

)
= δ3 + aφ1X2 − aφ2X1 . (121)

This equation becomes equivalent to (58) if

Θ = −hχ
2

3µ
p . (122)

Once this expression is substituted in (92), the expression for uα becomes

identical to that in (57). The equivalence of solutions for u3 in (57) and (92)

is established once we impose the inequality

|Θ| � |δ3|+ a |φ1X2|+ a |φ2X1| , (123)

which follows from (93). Finally, by substituting (124) in (96) we obtain

that

p = −1

3
σii , (124)

which establishes the equivalence.
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6 Discussion

In this paper, we developed a complete asymptotic solution for a thin, not

necessarily circular, linear elastic layer fully constrained by two rigid plates,

which subject the layer to combined stretching, bending, shearing, and twist-

ing (Fig. 1). From a practical perspective, the most useful solution is for

layers formed by compressible solids characterized by χ = O (1), as it covers

most materials except rubber. This solution is presented in Section 3, and it

consists of two components. The first component u, given in (29), satisfies

the partial differential equations and the boundary conditions at the plates,

but not on the cylindrical surface ∂Ω0. Although u appears as a two-term

asymptotic solution, actually, it is exact, as all higher order terms are equal

to zero. The second component v is the corrective solution introduced as

a remedy for the failure of u to satisfy traction-free boundary conditions

∂Ω0. We constructed v as a local asymptotic solution and established that

it decays exponentially away from ∂Ω0, and the characteristic length of the

decay is O(h). Thus, the corrective solution is negligible in the bulk of the

layer.

The unifying solution developed in Section 5 and stated in (94), (95), and

(98) also can be regarded as the leading order solution for layers formed by

nearly incompressible solids. This becomes evident once (94), (95), and (98)

are compared with those in Section 2.1.3 of [17]. Further, to the leading

order, the solutions for circular layers in Section 5.3 coincide with those in

[8, 10, 17].
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The unifying solution was motivated by our earlier work on stretching of cir-

cular layers. There we relied on the Love-Galerkin formalism [23, 24] which

gives rise to the governing equations valid for all χ ≥ 0. That solution is dif-

ferent from that given in (103) and (104). The difference can be explained by

recalling that Love-Galerkin’s potential Φ must be a bi-harmonic function.

That is, in scaled cylindrical coordinates, with

R :=
r

a
, (125)

Φ must satisfy (
∂2

∂R2
+

1

R

∂

∂R
+ ξ−2 ∂2

∂X2
3

)2

Φ = 0 . (126)

For the asymptotic approximation

Φ = Φ(0) + ξΦ(1) + ξ2Φ(2) + ... , (127)

(126) yields

ξ−4∂
4Φ(0)

∂X4
3

+ξ−3∂
4Φ(1)

∂X4
3

+ξ−2

[
∂4Φ(2)

∂X4
3

+ 2
∂2

∂X2
3

(
∂2Φ(0)

∂R2
+

1

R

∂Φ(0)

∂R

)]
+... = 0.

(128)

The equation associated with ξ−4 states that Φ(0) is a cubic polynomial in

X3, and its coefficients are functions of R determined from non-homogeneous

boundary conditions on ∂Ω±. In contrast, the equation associated with ξ−3

involves homogeneous boundary conditions for Φ(1), and therefore Φ(1) = 0.

Finally, for Φ(2) the boundary conditions are homogeneous, but the equation

is not, and therefore Φ(2) is not equal to zero. Thus, the solution based
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on Φ(0) is accurate to the first order. Indeed, this assertion is confirmed

upon comparison of the displacements and (103) and [3]. Similarly, one can

attribute differences between (103) and existing approximate axisymmetric

solutions to higher-order terms.

According to (35), for layers formed by compressible solids, Ē measured

under stretching conditions equals to the apparent modulus measured un-

der bending conditions. In contrast, according to (71) and (79), for layers

formed by incompressible solids, Ê measured under stretching conditions

is three times larger than the apparent modulus measured under bending

conditions. This difference is not that surprising as stretching is a more

effective mechanism for generating high tri-axial tension, which dominates

the response of layers formed by incompressible solids.

Another unifying attribute of the problem is the characteristic equation (47)

for the corrective field v. Let us rewrite it as

sin 2Λ

2Λ
=

3− χ2

3 + χ2
. (129)

For χ� 1, the root of this equation is Λ ≈ χ. Therefore, in this regime, the

solid is nearly incompressible and the characteristic length of the decay is

l :=
h

χ
. (130)

This length is ubiquitous to existing approximate solutions for layers formed

by nearly incompressible solids. In particular, it is used in [17] for normal-

ization purposes. As a result, (95) is rewritten so that coefficient in front of
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the Laplacian is equal to one. In this paper, l appears in (95), which governs

the unifying solution, and therefore should be relevant to the response of all

layers, not just those formed by nearly incompressible solids.

Results of numerical experiments reported in [3] suggest that the effect of the

corrective solution is essentially independent of χ. To this end, we observe

that for small χ the exponential decay is weak but the traction vector on

∂Ω0 is small. In contrast, for large χ, the exponential decay is strong but

the traction vector on ∂Ω0 is large. This interplay between the exponential

decay and the traction vector on ∂Ω0 may explain why the effect of the

corrective solution is essentially independent of χ.

Let us conclude by observing that the simplicity of solution for layers formed

by compressible solids allows one to construct simple solutions for multi-

layers including interphases [25]. This opens interesting avenues for assessing

mechanical properties of interphases experimentally.
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