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Abstract 20 

Melon (Cucumis melo L.) is a popular fruit consumed around the world. It has significant economic value 21 

as a crop, export product, and source of essential nutrients. Thus, using high-quality, authentic seed varieties 22 

is the first step toward achieving impactful agricultural production. Unfortunately, distinguishing between 23 

seed varieties using only human perception can be difficult because of their similar traits. Thus, dishonest 24 

distributors may trade low-quality seeds for high-quality seeds. In this study, seeds from five Thai melon 25 

varieties, Singapore Thai melon (ST), Nan Thai melon (NT), Round Thai melon (RT), Striped Singapore 26 

Thai melon (SST), and Golden and Long Thai melon (GLT), were classified using a distinctive 27 

discrimination method that combines modified self-organizing maps (SOMs) with near-infrared (NIR) 28 

spectroscopy. The physical characteristics, morphology, and thermal behavior of the seeds were also 29 

examined through optical microscopy, scanning electron microscopy, and thermogravimetric analysis, 30 

respectively. Attenuated total reflection–Fourier transform infrared, and NIR spectroscopy revealed that 31 

different varieties of melon seeds possess significant variations in lignin content and carbohydrate 32 

composition. Seed samples from the five Thai melon varieties were further classified using a modified SOM 33 

map created with optimized scaling value, map size, and a number of iteration parameters. Binary 34 

classification with the One vs Rest strategy and multiclass classification was performed to verify the 35 

constructed classifier model. The supervised SOMs developed herein can achieve the multiclassification of 36 

seed types effectively and efficiently, with a high accuracy of 95.52% for the training set and 91.59% for 37 

the test set, which were significantly superior to those of well-established discrimination models.   38 

 39 

 40 

Key words: Near-infrared spectroscopy, Self-organizing maps, Chemometrics, Machine Learning, 41 

Multiclassification 42 

  43 



1. Introduction 44 

 Muskmelon (Cucumis melo L.),  or simply “melon,” is one of the world’s most important 45 

commercial fruit crops, with 1.3 million hectares of harvest area and 31 million tons in annual demand 46 

worldwide [1]. There is a large variety of melons, including netted varieties such as cantaloupes (C. melo 47 

Reticulatus Group) and smooth-skinned varieties such as honeydew melons (C. melo Inodorus Group). In 48 

addition to the melon’s richness in minerals and their health-promoting components [2], sweetness, 49 

flavor/aroma, texture, and phytonutrient contents, including potassium, vitamin C, and provitamin A (beta-50 

carotene), have a significant impact on consumer purchasing decisions [3]. Thus, using high-quality melon 51 

seeds is among several essential factors for the production of high-quality crops with desirable product 52 

quality characteristics [4]. In addition, the issues of seed quality are important from other perspectives, such 53 

as agricultural output, quarantine processes, and local and worldwide seed mobility for economic and 54 

commercial considerations.   55 

Seeds are obtained from certified agencies to ensure high quality. However, countries with 56 

underdeveloped agroeconomics may lack the necessary infrastructure, technology, and institutions to 57 

support agricultural development. Thus, farmers may retain historic cultivars using seeds from family, 58 

neighbors, or the local market. These informal seed supply systems have been referred to as “seed exchange 59 

networks,” “farmer seed systems,” “traditional seed systems,” and “informal seed systems” [5]. 60 

In Thailand, melon is one of the most costly fruits because of the difficulty of its cultivation [6].  61 

Thai melon varieties vary greatly in flavor and price ranges, and the seeds of popular varieties that are in 62 

high demand are likely to be more expensive. According to the information obtained from seed exchange 63 

networks, which comprise the majority of Thailand’s agricultural communities, high commercial value 64 

seeds are often adulterated with low-quality and cheaper seeds. Because of the similar physical 65 

characteristics of seeds from different varieties, differentiating them through visual observation alone is 66 

virtually impossible. As it takes 3–4 months before the melon plants are fully grown and start to produce 67 

fruits, growing the wrong seeds means wasting time and resources. Thus, appropriate management methods 68 

are required to maintain and regulate seed quality to prevent the detrimental impacts of seed adulteration.  69 



In recent years, various strategies have been employed to protect the interests of importing nations 70 

and consumers through explicit cultivar discrimination, exact adulterant measurement, and the 71 

identification of geographic cultivation areas [7, 8]. 72 

For instance, seed morphology analysis relies on physical methods for seed inspection to examine 73 

the macroscopic and microscopic characteristics of seeds and other seed features, such as solubility, bulk 74 

density, and texture [9]. However, despite its simple measurement and operation, this approach has 75 

substantial limitations, such as its subjectivity and phenological variance, which require expert 76 

interpretation. Meanwhile, more accurate and sensitive biotechnological methods, including polymerase 77 

chain reaction, probe hybridization, and sequencing, are also widely used [10]. However, these methods 78 

also suffer from limitations due to instruments and reagents costs and technical skill requirements. In 79 

comparison, chemical methods based on chromatographic techniques, such as gas chromatography or high-80 

performance liquid chromatography, offer high performance in detecting seed adulteration with good 81 

reliability. However, they also have limitations in terms of their relatively high cost, complexity, and time 82 

consumption [7]. Table S1 summarizes the different methods available for agricultural product evaluation. 83 

Rapid, preferably real-time, effective, and affordable detection approaches are thus highly desirable for 84 

quality control and rapid adulteration detection in processed agricultural goods.  85 

Among various existing techniques, the near-infrared (NIR) method provides several advantages, 86 

including its nondestructive nature, allowing the reuse of samples for further investigation. It also requires 87 

minimal sample preparation, offers rapid detection and applies to various sample types. Thus, it has been 88 

widely utilized as a noninvasive analytical method for various purposes, including controlling processes, 89 

undertaking qualitative and quantitative examinations, and detecting food product adulteration [11, 12]. 90 

The use of NIR spectroscopy in seed quality evaluation [13], seed adulteration [14], and seed purity analysis 91 

[15] is well known. However, because of the contribution of several factors, such as the physical state of 92 

the sample and testing environment, which can affect the quality of the spectra, discerning “relevant” 93 

information regarding the properties of target analytes from raw spectral data is incredibly challenging [16]. 94 

To solve this problem, mathematical and statistical techniques are required to extract relevant information 95 



(i.e., spectrum features related to the analyte’s properties) from other irrelevant data (i.e., interfering 96 

parameters) [17].  97 

Chemometrics is a well-known chemical discipline that uses mathematics, statistics and formal 98 

logic for extracting meaningful and important qualitative or quantitative information from large and 99 

complex data sets [16]. NIR spectroscopy, along with the polar qualifying system (PQS), can discriminate 100 

between melon genotypes and hybrids [18]. PQS, using automatic wavelength range optimization, has 101 

successfully differentiated various horticultural plant seeds, including melon (C. melo), watermelon 102 

(Citrullus lanatus), pepper (Capsicum annuum), and Mathiola incana varieties, as well as a watermelon 103 

hybrid with its parent lines. From measurements of a single seed to large volumes of samples, the NIR 104 

method with a hyperspectral approach has been proven valuable for differentiating and identifying different 105 

agricultural plants [19]. For instance, NIR hyperspectral imaging, using statistical models like partial least 106 

square discriminant analysis (PLS-DA) and least square support vector machines, distinguished between 107 

virus-infected and healthy watermelon seeds with 83.3% accuracy [20]. A discriminant PLS-DA model 108 

was also used to distinguish between viable and nonviable triploid watermelon seeds based on Fourier 109 

transform NIR spectroscopy (FT-NIR) data with a high level of classification accuracy for both viable 110 

(87.7%) and nonviable (82%) seeds [21]. More information on the NIR approach integrated with well-111 

established chemometrics in seed quality assessment is shown in Table S2.  112 

Although several studies focused on the categorization of agricultural seeds using the combination 113 

of NIR and chemometrics as mentioned above, the use of the NIR approach in conjunction with self-114 

organizing maps (SOMs) to distinguish various classes of seeds has not been reported. As the first step 115 

toward ensuring high-quality seed production, this work reports the first successful discrimination of melon 116 

seeds from five different varieties grown in Thailand using NIR in conjunction with modified SOMs. The 117 

melon varieties in this study included the Singapore Thai melon (ST), Nan Thai melon (NT), Round Thai 118 

melon (RT), Stiped Singapore Thai melon (SST), and Golden and Long Thai melon (GLT). The surface 119 

topography and other physical/physicochemical properties of the seeds were investigated using optical 120 

microscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and attenuated total 121 



reflection–Fourier transform infrared (ATR-FTIR) spectroscopy. These supplementary and validated 122 

techniques were employed as there has been no previous research on the application of NIR for the 123 

classification of Thai melon seeds. Next, a supervised self-organizing map (SOM) classifier was developed 124 

and optimized to accurately classify various kinds of Thai melon seeds based on the data collected from the 125 

NIR spectra of the seeds according to the conceptual framework proposed in Fig. 1. The adaptive SOMs 126 

could be used for both binary and multiclass classification and enabled the detection and comprehension of 127 

nonlinear data relationships which exceeded the capabilities of conventional linear-based chemometric 128 

techniques. The great performance and nondestructive nature of this technique, its ability to perform 129 

multiclassification, which overcomes the limitations of the current dichotomous system, and its potential 130 

economic scale-up should make it easily accessible to agro-dealers and farmers in various disciplines. 131 

 132 

 133 

Fig. 1 The proposed multiclassification approach based on supervised self-organizing maps (SOMs) to distinguish 134 

five Thai melon seeds directly. 135 

 136 

2. Materials and methods 137 

2.1. Sample collection and preparation 138 

The seeds of five distinct Thai melon cultivars were collected from various trusted sources in 139 

Thailand. ST seeds were collected from honest and credible local vendors (Phatum-thani and Phitsanulok 140 



Provinces, Thailand). NT seeds were collected from reliable suppliers in Phatum-thani Province. The other 141 

Thai melon seeds (RT, SST, and GLT) were collected from trusted vendors (Bangkok and Nonthaburi 142 

provinces, Thailand). All seeds were collected and tested between January and June of 2022. During the 143 

trial, these seeds were roughly 6 and 10 months of age. The information on all samples (common name, 144 

source, harvest date, and production date) is summarized in Table 1. 145 

 146 

Table 1 Information on the collected Thai melon seeds from various local markets and distributors in Thailand 147 

Variety of Thai 

melon 
Abbreviation Source 

Harvest 

date 

Collection  

date 

NIR 

acquisition 

Number of 

data points 

(spectra) 

Singapore 

Thai melon 
ST 

Phatum-thani 

and 

Phitsanulok 

Feb 10, 2022 Mar 15, 2022 May 29, 2022 1,000 

Nan 

Thai melon 
NT Phatum-thani Jan 5, 2022 Jan 15, 2022 May 14, 2022 500 

Round 

Thai melon 
RT Bangkok Jan 1, 2022 Mar 1, 2022 May 17, 2022 500 

Striped Singapore 

Thai melon 
SST Nontaburi Aug 1, 2021 Jan 1, 2022 May 23, 2022 500 

Golden and Long 

Thai melon 
GLT Bangkok Jan 1, 2022 Feb 2, 2022 May 25, 2022 1,000 

 148 

2.2 NIR Spectral acquisition 149 

The NIR spectra of the seed samples were collected on a Thermo Scientific™ Nicolet™ iS5N FT-150 

NIR spectrometer with an extended range indium gallium arsenide detector, high-intensity halogen light 151 

source, and temperature-stabilized solid-state NIR diode laser. Each type of melon seed sample was 152 

randomly dispersed into the quartz cup holder to ensure that all variances in the obtained spectra were 153 

collected. Fig. S1 displays the details of the data collection process. The samples were placed at identical 154 

distances from the probe, and their surfaces were flattened before the measurement to eliminate undesirable 155 

interference from scattering effects. During the spectrum sample collection, the sample holder was covered 156 

by a black box to eliminate interferences from external light. The NIR spectra of the samples were acquired 157 

over the range of 1,000–2,500 nm in the reflection mode, and the average data obtained from 32 scans were 158 

recorded. Throughout the experiment, the temperature was maintained between 27°C and 29°C. 159 

 160 



2.3. Data analysis 161 

2.3.1 Pre-processing algorithm of NIR spectra 162 

In the initial data pre-processing stage, the interquartile range (IQR), which demonstrates the 163 

difference between the 75th and the 25th percentiles [22], was used to identify data points that deviated 164 

significantly from the norm or outliers. The average NIR spectrum of each sample class was calculated as 165 

a centroid of the data class. The Euclidean distance of the NIR spectra of samples within the same class 166 

was subsequently determined. Outliers were defined as samples with a Euclidean distance greater than 167 

1.5IQR from the mean in-class NIR spectra and were thus removed, representing approximately 2% of the 168 

total data in this case. Then, the spectra were processed using Savitsky–Golay smoothing filter followed by 169 

an additional mathematical pre-processing algorithm based on standard normal variate (SNV) to 170 

compensate for the surface scattering of light, uneven sample particle size, and optical path fluctuation on 171 

the NIR spectra [23]. 172 

 173 

2.3.2 Adaptive SOMs for the discrimination approach 174 

SOMs are unsupervised learning models whose architecture consists of a two-dimensional grid of 175 

neurons with interconnected multidimensional functions. The two fundamental steps in constructing SOMs 176 

and their algorithm are the learning of multidimensional space projection onto a two-dimensional map and 177 

the subsequent selection of the best matching unit (BMU) [24].  178 

Step 1: An initial SOM map is generated with M × N = K units whereby each unit contains a weight 179 

vector vk randomly generated from a uniform distribution between the maximum and minimum intensities 180 

in the dataset [23]. In this study, the size of the SOM map was carefully considered to cover most of the 181 

samples to be matched.  182 

Step 2: In a supervised SOM model, this can be expanded for supervised learning by adding an 183 

extra set of variables denoting class labels to the input variables before the training process. For each 184 

random selection, a vector is generated; for instance, if a sample belongs to the third class out of five, the 185 

extra variables are wk = [0,0,ω,0,0], where ω is the scaling factor. The value of ω is used to determine if the 186 



sample belongs to the given class; a value of 0 demonstrates that the sample does not belong to the class. 187 

Here, the vector was randomly generated and added to the vector vk in step 1 for each unit, given as vu = [vk 188 

wk]. In the study, the scaling value was carefully optimized because it determines the degree to which class 189 

membership affects the map; if the value is too large, the map may overfit the data; if the value is too small, 190 

the map could transition into an unsupervised state. This means that classes may not always be fully 191 

separated, which may contribute to inaccurate statistical analysis [24]. 192 

Step 3: The sample vector xs with the supervised vector wk resulting in xsk = [xs wk] in the dataset 193 

is then compared with the weight vector of each unit (vu) on the initial SOM map from step 2. The Euclidian 194 

distance between xsk and vu of each map unit k is calculated as follows (Eq. (1)):  195 

𝑑𝑠𝑘,𝑢 = √(𝒙𝑠𝑘 − 𝒗𝑢)(𝒙𝑠𝑘 − 𝒗𝑢)T    (1) 196 

This process is repeated until the distance of xsk and K units on the map is calculated. 197 

Step 4 : The map unit with the shortest Euclidean distance is announced as the BMU of the chosen 198 

sample weight vector xsk: BMU = {𝑑𝑠𝑘,𝑢} 
𝑘

min
[25]. 199 

Step 5 : The training process is started for the BMU and the neighboring map units (Nu) within the 200 

length from the BMU. They are updated to become more similar to the sample weight vector xsk. The 201 

learning rate in each iteration is calculated: 202 

𝒗𝑢 =  {
𝒗𝑢  +  𝛾𝛼(𝒙𝑠𝑘 − 𝒗𝑢)  𝑘 ∈ 𝑁𝑢

𝒗𝑢  𝑘 ∉ 𝑁𝑢
    (2) 203 

where  indicates the learning rate and  is the neighborhood learning weight. Note that the amount of 204 

learning decreases with each iteration of the training process, as does the neighborhood learning rate with 205 

the distance from the BMU [26]. The number of iterations utilized in the SOM training process should 206 

exceed the number of map units (K) to guarantee that the map provides an adequate unit to learn from each 207 

sample. The clusters of samples are shown graphically using color map shading. 208 

Step 6: After the reference samples, referred to as the training set, have been trained, the SOM map 209 

can then be obtained in step 5. For applying the trained SOM map to identify the class of an unknown 210 

sample, the BMU of the unknown sample is searched and allocated to the SOM unit with the shortest 211 



Euclidean distance. The class of the unknown sample is allocated to the class with the greatest value in the 212 

part of the class weight vector (wk); for instance, if the class vector of the BMU is [2 2.5 2.7 2.3 1.9], the 213 

class of the unknown is ascribed to the third class (with the highest value of 2.7) [24].  214 

Other adaptable parameters, including the map size and the number of iterations, should be 215 

optimized to push the original SOM algorithm to deal with the specific applications at hand (i.e., Thai melon 216 

seeds in this case). In this work, we developed our software for the supervised SOMs in MATLAB (early 217 

findings have been described elsewhere [23]), enabling the creation of innovative approaches combined 218 

with hyperspectral imaging methodology for the multiclassification of Thai melon seeds. Fig. 2 depicts the 219 

adaptive supervised SOM conceptual model along with the details of the supervised SOM algorithm.220 



 221 

 222 

Fig. 2 Conceptual diagram for the multiclassification of Thai melon seeds using adaptive supervised self-organizing maps (SOMs) for K classes with a two-223 

dimensional SOM map in the M × N dimension. The adaptive supervised SOMs can be implemented in two scenarios: training operation of a supervised SOM map 224 

to be used as a reference map for multiclass classification (Steps 1–5) and unknown class identification by mapping the unknown to the reference SOM map (Step 225 

6).226 



2.3.3 Model validation 227 

The discrimination performance was validated by dividing the whole dataset into training and test 228 

sets. Two-thirds of the samples in each class were assigned as the training set for developing the classifier 229 

model, whereas the remaining one-third were used as the test set for model validation. To ensure the 230 

model’s robustness, the procedure was repeated 10 times. The performance of the classifier model was 231 

evaluated using the percentage of correctly classified (%CC) seeds (Eq. (3)), where the class of samples 232 

predicted by the generated model exactly matched the actual class.  233 

%CC =  
𝑁p

𝑁t
× 100                                          (3) 234 

where Np and Nt are the numbers of correctly classified samples and the total number of samples, 235 

respectively. %CC was mainly used to evaluate the multiclass classification.  236 

For evaluating the binary classification approach, the One vs Rest strategy was used by assigning 237 

the “in-class” as a positive identification and the remaining mixed class of melon seeds as the “out-class,”   238 

which denoted a negative identification.  For example, Case I has in-class members that are ST melon seeds 239 

and out-class members comprising the rest (mixed seeds). Case II holds in-class members of NT seeds 240 

against the rest of the seeds and vice versa, resulting in a total of five cases (Cases I–V). The five indicators 241 

involving sensitivity, specificity, precision, accuracy, and misclassification (ME) were used to assess the 242 

model performance [23].  243 

Sensitivity = TP / (TP + FN)     (4) 244 

Precision = TP / (TP + FP)     (5) 245 

Specificity = TN / (TN + FP)     (6) 246 

Accuracy = (TP + TN) / (TP + FP + TN + FN)   (7) 247 

ME = (FP + FN) / (TP + FP + TN + FN)    (8) 248 

Where TP is “true positive”, indicating the number of correctly classified positive case; FP is “false 249 

positives”, denoting the number of negative cases that were classified as positive; TN is “true negatives”, 250 

representing the number of correctly classified negative cases; and FN is “false negative”, representing the 251 



number of positive cases classified as negative. From these assigned indices, the classification 252 

performances, including sensitivity, specificity, precision, accuracy, and misclassification error (ME). 253 

Generally, a good classifier model is expected to exhibit high sensitivity and accuracy. All discrimination 254 

approaches are developed based on hard modelling as all seed samples will be categorized into one of the 255 

Thai melon varieties, without any seed samples remaining unclassified or defined as outliers [26-30]. 256 

 257 

2.4 ATR-FTIR 258 

Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy was 259 

employed to determine the IR spectral characteristics of the melon seed samples. The IR spectra in the 260 

functional group region (500–4,000 cm−1) were recorded using a Nicolet™  iS™  5 FTIR spectrometer 261 

(Thermo Fisher Scientific, USA) with a Diamond ATR at a resolution of 0.4 cm−1. 262 

 263 

2.5 Thermogravimetric analysis (TGA) 264 

Thermogravimetric analysis (TGA) is a thermal analysis technique that measures changes in 265 

sample weight as a function of temperature. In the present study, it was employed to examine thermal 266 

stability and decomposition of chemical substitutes of Thai melon seeds. The TGA curves obtained provide 267 

valuable information which facilitates the evaluation of seed quality, determination of shelf life, and 268 

identification of potential contaminants or adulterants. Thermogravimetric experiments were conducted to 269 

illustrate the thermophysical properties of the samples using a Perkin Elmer Pyris1 TGA system. The 270 

system was operated under inert conditions with a steady nitrogen flow of 20 mL min-1. Each type of melon 271 

sample was crushed into small pieces, and around 3–15 mg was pyrolyzed. The samples were first 272 

isothermally heated at 35°C for 1 min to keep the initial environment identical for all samples to remove 273 

the adsorbed water and moisture on the sample. Next, the samples were continuously heated from 50°C to 274 

800°C at a heating rate of 20°C min-1.  275 

 276 

2.6 Scanning electron microscopy (SEM) 277 



The morphology of the Thai melon seed samples was examined using SEM technique” change to 278 

“Scanning electron microscopy (SEM) is a highly effective tool for investigating the microstructure and 279 

surface morphology of materials. The present study utilized SEM to examine the surface characteristics of 280 

Thai melon seeds, thereby providing significant insights into the seed composition and structure, which 281 

enabled in the differentiation of distinct variety of Thai melon seeds. The samples were fixed on carbon 282 

tape and attached to an aluminum stub. The samples for SEM were vacuum-dried for 1 h before imaging. 283 

The SEM micrographs of the samples were acquired using a scanning electron microscope (JEOL JSM-284 

6510) operated at 2–15 kV under a high vacuum mode of 6.7 × 10−2 Pa. 285 

 286 

3. Results and discussion  287 

3.1. Physical characteristics of Thai melon seeds 288 

Photographs of the Thai melon seeds were taken using a digital camera to observe their 289 

morphologies, as presented in Fig. 3A1–3A5. All varieties of melon seeds showed similar morphologies in 290 

terms of their shape and color.  Therefore, differentiating the seeds through merely visual inspection is 291 

difficult. Thus, the seeds were further examined using an optical microscope (AxioVision Viewer 4.8) with 292 

a high magnification optical microscope image of 100×, as demonstrated in Fig. 3B1–3B5. Again, even at 293 

such a microscopic level, no noticeable differences were observed regarding the physical features on the 294 

seed surfaces. After vacuum drying for 1 h, the surface topographical characteristics of the seeds were 295 

examined using SEM, as shown in Fig. 3C1–3C5. The SEM images revealed spherical particles of 296 

hemicellulose and lignin buried in the cellulose matrix, which was the main component of the melon seed 297 

cell wall [31]. As evident in Fig. 3C1–3C5, the outer surface of seed husks from different melon varieties 298 

exhibited remarkably distinctive patterns. ST and SST shared a similar endocarp pattern consisting of fiber 299 

lines; however, that of ST was more uniform and ordered. Meanwhile, NT and RT showed the same 300 

systematic square-shaped contours. GLT exhibited a combination of a linear pattern and a square contour 301 

on the surface endocarp. Minor differences in the surface morphology of the seeds might be associated with 302 

the varieties as well as other reasons, such as environmental circumstances (e.g., climate, temperature, light, 303 



soil kinds, and qualities) [6]. Although significant differences existed at such an extreme magnification 304 

image (100×), it was concluded at this point that the visual observation of seed morphologies could not 305 

provide sufficient input data for multiclassification purposes.  The thermal degradation behaviors of the 306 

biomass from Thai melon seeds were assessed through TGA and derivative thermogravimetry (DTG) 307 

curves. Additionally, the chemical structure and functional properties were investigated using Attenuated 308 

Total Reflectance-Fourier Transform Infrared (ATR-FTIR) characterization, as illustrated in Fig. S2. 309 

 310 
 311 

 312 



 313 

Fig. 3 Morphological features of Thai melon seeds. Digital images of the Thai melon samples ST, NT, RT, SST, and 314 

GLT are presented in the acquisition stage (A1)–(A5), respectively. Optical microscopy images (100×) and scanning 315 

electron microscopy (SEM) images (750×) are shown in (B1)–(B5) and (C1)–(C5). ST: Singapore Thai melon; NT: 316 

Nan Thai melon; RT: Round Thai melon; SST: Striped Singapore Thai melon; GLT: Golden and Long Thai melon. 317 

 318 

 319 



3.2 NIR spectra of Thai melon seed 320 

Assigning NIR bands is challenging because of the broad and overlapping bands. The visual 321 

examination of the NIR spectra within the 1,000–2,500 nm wavelength region revealed no obvious 322 

difference among different seed varieties.  Yet, major spectral areas could still be identified using the 323 

variance value, a statistical measurement calculated by taking the average of squared deviations from the 324 

average spectra. Fig. 4 displays the average NIR spectra of the five varieties of Thai melon seeds after pre-325 

processing using Savitsky–Golay smoothing filter to minimize noise and SNV to attenuate the unwanted 326 

fluctuations in the NIR dataset [32].  It also depicts the computed and displayed variance of the NIR spectra 327 

(bottom line). Any overtone areas with a variation larger than a twofold standard deviation (2SD) may serve 328 

as possible markers for Thai melon seed variants. These distinctive reflection bands are comparable with 329 

those of melon seeds reported by other studies [21, 33, 34]. Five key areas in the spectra, comprising 330 

carbohydrate, starch, moisture, and protein contributions, are summarized in the inset table of Fig. 4. The 331 

1,200 nm band was assigned to the second overtone of C–H in carbohydrates, whereas the 1,450 nm band 332 

was attributed to the combination of the first overtones of the C–H bond in protein and O–H bond in 333 

moisture [33]. The absorption band between 1,612 and 1,630 nm corresponded to the first overtone of the 334 

C–H stretching vibration of the methyl and methylene groups [21]. The spectral region between 2,262 and 335 

2,500 nm was related to the C–H stretch and CH2 deformation of starch [34]. Evidently, the five kinds of 336 

Thai melon seeds had distinct NIR reflectance intensities at wavelengths between 1,000 and 2,500 nm, 337 

indicating that they contained varying amounts of lignocellulosic biomass components.  338 



 339 

Wavelength (nm) Band assignment Structure 

1186−1217 2nd overtone of the C−H bond Carbohydrates or starch 

1396−1417 
Combination of the first overtones of the 

N−H bond and O−H in moisture 

Protein or amino acids and 

O−H in moisture 

1612−1630 First overtone of C−H stretching vibration Methyl and methylene group 

1914−1941 
O−H stretch and H−OH deformation 

Combination 
Starch, cellulose, and H2O 

2260−2500 C−H stretch and CH2 deformation Starch 

 340 

Fig. 4 Mean absorbance near-infrared (NIR) spectra of Thai melon seeds, including ST (blue), NT (red), RT (green), 341 

SST (magenta), and GLT (black), after performing standard normal variate (SNV) with the variance plot on the 342 

bottom. The inset table demonstrates the band assignment of significant NIR regions for Thai melon discrimination 343 

chosen from the NIR region with high variance. ST: Singapore Thai melon; NT: Nan Thai melon; RT: Round Thai 344 

melon; SST: Striped Singapore Thai melon; GLT: Golden and Long Thai melon [33] [21] [34]. 345 

 346 

The current study involves a substantial number of samples with the objective of classifying five distinct 347 

types of Thai melon seeds. The use of a large sample size for seed classification offers various advantages, 348 

including improved accuracy, robustness, representation of seed variability, statistical significance, and the 349 

ability to identify subtle differences, as compared to single seed detection approaches. Particularly in 350 

practical scenarios, such as industrial contexts, it is common to employ a vast number of samples. However, 351 

single seed-by-seed classification has its own merits, providing a more detailed and focused analysis of 352 



each seed, which can be valuable when dealing with heterogeneous seed populations or when precise 353 

discrimination is required. We have previously report using single-seed classification approach based on 354 

our adaptive SOMs [35]. This methodology allowed for the prediction of individual seed features using 355 

data from the entire seed without the need to manually identify specific regions of interest (ROIs). It is 356 

crucial to be noted that this single-seed approach was based on the utilization of hyperspectral NIR imaging. 357 

Therefore, our developed method can serve for both single-seed and seed batch sample discrimination, 358 

depending on the user's specific purposes. 359 

 360 

3.3 Multiclassification of Thai melon seeds 361 

Modified SOMs for multiclassification were performed on the collected NIR spectra of the Thai 362 

melon seeds from five varieties: ST, NT, RT, SST, and GLT. Herein, the modified SOMs developed using 363 

an in-house coding algorithm were utilized to illustrate the underlying link and categorize the five different 364 

seed samples. The supervised SOM model typically functioned in two modes: (i) model creation and (ii) 365 

classified mapping. In this phase, the map was trained to utilize the training set input samples. A group of 366 

test set samples was categorized automatically using the created map. Five types of Thai melon seeds were 367 

distinguished using the modified SOM network via 2D mapping visualization.  Although SOMs contain 368 

several configurable parameters, an optimization procedure is always required to reach the optimal network 369 

[36]. In this paper, the scaling value, the size of the map, and the number of iterations were considered as 370 

they have a significant impact on the prediction accuracy.  371 

In examining the classification performance, each classification step was performed 10 times. In 372 

each replicate, samples were randomly split into the training set (two-thirds of all samples) and the test set 373 

(one-third of all samples). Therefore, the number of training samples for each class was proportional to the 374 

number of test samples for the class. The evaluation of classification performance was based on %CC 375 

(Percentage correctly classified). For predictive modeling, the overall %CC was simply the sum of correctly 376 

classified samples divided by the total number of samples [37, 38]. From a statistical aspect, a model with 377 



a high %CC is a good classifier, whereas a model with a low %CC is likely to be poor. A more in-depth 378 

explanation of the metrics can be found elsewhere [23].  379 

First, the scaling value (ω) for the supervised SOMs was optimized. If ω was too small, it produced 380 

a nearly unsupervised map, whereas a high value might result in data overfitting [39]. Fig. 5A shows the 381 

overall %CC of the training and test sets when the supervised SOM model was created using various scaling 382 

parameters. Initially, when the ω was raised, %CC increased until the classification model gave a steady 383 

prediction. When the rate %CC either straightened out or stabilized, the best scaling value for each case 384 

was instantaneously determined. This resulted in the ideal scaling value of 2, which yielded the maximum 385 

%CC of 70 and 65.80 for the training and test sets, respectively. The corresponding SOM map using 386 

different scaling values is shown on the right-hand side in Fig. 6A. In addition to the scaling factor, the map 387 

size (number of units) is a critical parameter for classification effectiveness. A smaller map generates more 388 

comprehensive patterns, but may not sufficiently describe some substantial changes. Meanwhile, larger 389 

map sizes produce more sophisticated patterns but may cause model overtraining [40]. Consequently, 390 

determining the appropriate map size is crucial [41]. As illustrated in Fig. 6B, a larger map size resulted in 391 

a marginally more precise classification. From the five different map sizes used in this study (12 × 12, 20 392 

× 20, 30 × 35, 35 × 40, and 65 × 70), the 35 × 40 (1400 unit cell) provided the greatest %CC. Additional 393 

information on generating supervised SOM maps of various sizes is shown on the right-hand side in Fig. 394 

5B. Consequently, the chosen map size (35 × 40) together with the optimal scaling value (ω = 2) was further 395 

used to construct the SOM map to determine the ideal number of iterations. Next, the appropriate number 396 

of iterations corresponding to the number of samples must be indicated. The number of iterations was 397 

designed to be higher than the number of map units to ensure that the map has sufficient opportunities to 398 

be trained from the samples, resulting in sufficient accuracy [42]. However, the larger number of iterations 399 

resulted in higher computing demands of SOMs [41]. In other words, while %CC increased as the number 400 

of iterations increased, the training procedure time was substantially longer and the cost/benefit might not 401 

justify the efforts. Herein, the value of 200,000 (~142 times higher than the number of map units) was 402 

determined as the ideal number of iterations for creating a global SOM map as shown in Fig. S3. Fig. 5C 403 



illustrates the discrimination performance of the SOM map constructed using these optimized parameters 404 

in classifying five Thai melon seeds. Compared with the discrimination results of models constructed using 405 

nonoptimized parameters, the model with well-optimized parameters demonstrated significantly improved 406 

discrimination performance with a high percentage of correct classifications.  The relevant SOM map with 407 

various number of iterations is depicted on the right-hand side in Fig. 5C. 408 

 409 

 410 

 411 

Fig. 5 Percentage of correct classifications (%CC) of the training and test sets (average from 10 iterations) with the 412 

optimization of different parameters used to create the supervised self-organizing map (SOM) model for the 413 

multiclassification of five classes of Thai melon seeds: (A) scaling value, (B) map size, and (C) number of iterations. 414 

 415 

After the SOM map was constructed from the optimized parameters, including the scaling value (ω 416 

= 2), map size (35 × 40 units), and number of iterations (200,000), it was then used to classify the five 417 



varieties of Thai melon seeds. The binary classification using the One vs Rest strategy was first performed. 418 

The interaction of two classes (One vs Rest) was established beneath a contingency table to gain insight 419 

into the potential of the developed supervised SOMs for discriminating different Thai melon seed varieties. 420 

Thus, the discrimination efficacies based on different chemometric approaches including Euclidean 421 

distance (EDC), linear discrimination analysis (LDA), quadratic discrimination analysis (QDA), and our 422 

adaptive SOMs, were compared. The model performance was validated by five key indicators: sensitivity, 423 

specificity, precision, accuracy, and ME [23]. The leave-one-out cross-validation approach was used to 424 

validate the classifier models for case I−V. The optimized number of principal components (PCs) was 425 

carefully considered for LDA, QDA, and PLS-DA calculation, as shown in Fig. S4.  426 

Fig 6 compares the efficacies and validities of different chemometric approaches for Thai melon 427 

seed discrimination. Generally, a good classifier model should give high values of sensitivity, specificity, 428 

precision, and accuracy and a low ME value. In all cases, the modified SOMs exhibited the best 429 

performance across all indices. Regarding the performance of the SOM discrimination, the sensitivity, 430 

specificity, precision, and accuracy were outstanding (>0.9), with a remarkably small ME (<0.01). Only the 431 

SOM discrimination model gave a balanced value of sensitivity and specificity, indicating an unbiased 432 

discrimination even though the number of samples in each class was extremely unequal. There were many 433 

possible reasons for this excellent performance. For example, SOMs can recognize and capture nonlinear 434 

relationships in data, whereas conventional chemometric techniques rely on linear assumptions. 435 

Furthermore, SOMs rely on a self-organizing process that can adapt to the structure of the data [43]. The 436 

results imply that the model was less affected by the unbalanced sample size dataset. On the basis of the 437 

performance indices from cases I to V, the developed classifier using the supervised SOMs can be used to 438 

classify and distinguish target Thai melon seeds with high precision and accuracy. The sample cluster of 439 

cases I−V when the supervised SOMs with optimal parameters (scaling value, map size, and number of 440 

iterations) were applied is illustrated in Fig. S5. 441 



 442 

 443 

Fig. 6 Performance of the developed and modified self-organizing maps (SOMs) to classify one vs all classes of Thai melon seeds compared with different 444 

chemometric techniques, including Euclidean distance to centroids (EDC), Linear discriminant analysis (LDA), Quadratic discriminant analysis (QDA), and Partial 445 

least-squares discriminant analysis (PLS-DA) for the (A) training dataset and (B) test dataset. Cases I–V were generated to evaluate the binary classification using 446 

the One vs Rest strategy. Case I: Singapore Thai melon (ST) vs Rest; Case II: Nan Thai melon (NT) vs Rest; Case III: Round Thai melon (RT) vs Rest; Case IV: 447 

Striped Singapore Thai melon (SST) vs Rest; and Case V: Golden and Long Thai melon (GLT) vs Rest. 448 

 449 



Fig. 7 compares the %CC values of our adaptive supervised SOMs and other chemometric 450 

approaches, including EDC, LDA, and QDA. The discrimination experiments were performed with 10 451 

iterations on training and test sets to show the stability of the estimated %CC. This could provide the mean 452 

and standard deviation of the discrimination performance. The graphs in the diagonal axis exhibit the 453 

correct classification, whereas the off-diagonal graphs demonstrate the incorrect classifications (where the 454 

predicted class does not match the actual sample class). The %CC of the training set indicates how well the 455 

classifier model was optimized, whereas the %CC of the test set shows how well the model could predict 456 

the sample class. The %CC results indicate that the modified SOMs provide superior discrimination 457 

efficiency (high %CC) with great consistency compared with other approaches. A good balance between 458 

the prediction of all classes suggests that the classifier model based on the modified SOMs was not biased 459 

toward either group and that the SOMs parameters (scaling value, map size, and iterations) were well 460 

optimized.  461 

 462 

 463 

 464 

 465 

 466 
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 473 



 474 

Fig. 7 Percentage of correct classifications (%CC) of five classes of Thai melon seeds using different chemometric models: Euclidean distance to centroids (EDC), 475 

Linear discriminant analysis (LDA), Quadratic discriminant analysis (QDA), and our adaptive supervised self-organizing maps (SOMs). 476 

 477 

 478 

 479 



According to the above approach, SOMs are suitable for displaying data with numerous variables. 480 

Fig. 8A shows the score plots of the top three largest principal components (PC1–PC3) to provide empirical 481 

evidence for the discrimination. Unsupervised and supervised SOMs were used to compare sample group 482 

discrimination from the score plots, as demonstrated in Fig. 8B and 8C, respectively.  483 

 484 

 485 

Fig. 8 (A) Principal component analysis (PCA) score plots (PC1–PC3), (B) unsupervised self-organizing maps 486 

(SOMs), and (C) supervised SOMs of the discrimination of five classes of Thai melon seeds using the optimal 487 

parameters (scaling value, map size, and number of iterations). 488 

 489 

From a data visualization perspective, if samples fall into groups or classes, they can be used to 490 

shade the background on the SOM. The map unit is shaded in the color of its closest BMU. If more than 491 

one BMU is equidistant from the unit, it is shaded in a combination of colors, according to how many 492 

BMUs from each group it is closest to two [41]. In other words, any sample belonging to a similar class is 493 

projected in the same BMU, resulting in the same shade in color for that class. Meanwhile, if the samples 494 

have slightly different properties, they are projected in the combination of many BMUs, resulting in the 495 

combination of color shades for the samples (or light shades in case). In Fig. 8, the results indicate that the 496 

principal component analysis (PCA) score plots for the sample groups are heavily overlapping, resulting in a 497 

barrier that makes it difficult to distinguish between various groupings. A possible explanation for this is 498 



that many of the data points in our input data had similar chemical properties and thus overlapped 499 

excessively on the score plot. Besides that, SOM made use of the entire available space on the map, whereas 500 

PCA utilized just a fraction of it. The unsupervised SOMs reveal that the sample groups were not uniformly 501 

distributed, whereas our modified supervised SOMs significantly improved the separation of sample 502 

clusters. The possible reason behind this achievement was that our adaptive supervised SOM possessed the 503 

optimal scaling values, enabling it to proficiently group the five Thai melon seed samples into 504 

predetermined clusters on the map [39, 41]. Consequently, our modified SOMs, in combination with NIR, 505 

were highly effective in differentiating types of Thai melon seeds.  506 

 507 

4. Conclusion 508 

In this study, a novel multiclassification strategy for five Thai melon seeds based on NIR 509 

spectroscopy and adaptive supervised SOMs was presented. The morphological traits or visual appearance 510 

of the seeds showed no noticeable difference among different varieties. Thermal degradation profiles 511 

revealed the unique amounts of lignin content and carbohydrate content of the seeds with different varieties. 512 

The primary bands of the key biomass components, including hemicellulose, cellulose, and lignin, were 513 

detected using FTIR. An intense FTIR band was observed in the 3,000 cm-1 region, which was proportional 514 

to the number of intermolecular linked –OH groups in lignin and carbohydrates. IR and TGA data 515 

corroborated the hypothesis that the Thai melon seeds from the five varieties possessed different chemical 516 

characteristics. In the multiclassification process from the NIR spectra, the supervised SOMs’ parameters, 517 

including the optimal scaling value (ꞷ), map size, and number of iterations, were optimized to produce a 518 

global SOM map. By using the optimum parameters, exceptional classification results were achieved with 519 

an overall %CC of 95.52 ± 0.68% for the training set and 91.59 ± 0.91% for the test set, respectively. Our 520 

modified SOMs clearly outperformed other approaches in differentiating between the five classes of Thai 521 

melon seeds. Accordingly, the developed SOMs provide excellent multiclassification results and can be 522 

used as a nondestructive technique for discrimination Thai melon seeds.  523 
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