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Abstract

Helical static mixers are often used during the processing of formulated products with

complex rheological properties, such as viscoelasticity. Previous experimental studies have

highlighted that increasing the viscoelasticity reduces the mixing performance of helical static

mixers in the laminar flow regime. In this study, we use computational fluid dynamics to

investigate the flow of a FENE-CR fluid in a helical static mixer. The results show clearly

that the reduced mixing performance is caused by flow distribution asymmetries which de-

velop at the mixer element intersections. The numerical results allow us to quantify the

degree of asymmetry for the range of conditions studied, which is correlated with the quan-

tified mixing performance for each simulation. The mixing is quantified using a Lagrangian

particle tracking technique, and a new mixing index is defined based on the mean nearest

distance between the two sets of tracked particles. The results show that the asymmetry pa-

rameter does not follow a pitchfork bifurcation, as it typically does for elastic instabilities in

symmetrical geometries such as the cross-slot. For low values of the extensibility parameter,

L2, the flow remained (Eulerian) steady for all Reynolds Re and Weissenburg Wi numbers

studied. At fixed Re and Wi, increasing L2 causes the flow to become transient and greatly

increases the magnitude of the asymmetry. The results presented in this study greatly help

us to understand the effects that viscoelasticity can cause in mixing processes.
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1. Introduction

Static mixers are passive mixing devices which can be fixed into a pipeline in order to1

facilitate mixing of two or more components. They are particularly useful for mixing in flows2

in the laminar regime, where the naturally diffusive nature of inertially-driven turbulence3

cannot be utilised to promote mixing. Mixing at the molecular scale (micro-mixing) is4

essential for phenomena such as chemical reaction and is facilitated by molecular diffusion,5

which acts over significantly longer time-scales compared to the time-scales associated with6

turbulent dispersion. Thus, the primary function of a laminar mixing device is usually to7

reduce the scale of segregation of the components to a point where molecular diffusion can8

act to promote the micro-mixing in feasible time scales. The helical static mixer is one such9

commonly used static mixer for the mixing of highly viscous materials [24], which consists of10

a number of helical mixing elements arranged longditudinally in the pipe that split, rotate,11

stretch and recombine the flow. At the end of each mixer element, the consecutive element12

is twisted in the opposite direction and rotated 90 degrees around the pipe’s longitudinal13

axis. If two fluids are initially joined with a Y-junction (i.e. for two initial striations), the14

number of striations should double, and hence the striation thickness should halve, every two15

mixing elements. Each combination of two mixing elements can be denoted as a flow period,16

since, across each combination two mixer elements, the flow is spatially periodic (provided17

it remains laminar) [41].18

Many formulated products across various sectors such as personal care, home care, and19

food, exhibit complex rheological behaviour. In particular, many of these products exhibit20

viscoelasticity [6, 28]. Despite their frequent use for mixing of such rheologically complex21

materials, there have been only two previous studies (to the best of the authors’ knowledge)22

regarding the mixing performance of a helical mixer for viscoelastic flows, both of which are23

experimental. Ramsay et al. [38] used Planar Laser Induced Fluorescence (PLIF) to visualise24

and quantify the mixing of a fluorescent dye in two different Boger fluids (water-glycerol25
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solutions with 0.01 and 0.02 wt% of polyacrylamide (PAM)). The PLIF results showed that,26

for the two Boger fluids, the mixing performance after 6 elements of the mixer is drastically27

reduced when compared to the mixing of a Newtonian fluid (Glycerol), which the authors28

attribute to the generation of secondary structures in the flow by viscoelastic effects. The29

pressure drop across the mixer was found to increase for the two Boger fluids when compared30

to the Newtonian case. It is mentioned that this could be caused by the polymeric normal31

stresses present in the Boger fluids. Both the pressure drop and the striation patterns were32

strongly time-dependent for the Boger fluids but time-independent for the Newtonian fluid.33

The Reynolds number range in this study was between 10 and 30, and so, although the34

time-dependence of the flow is only observed for the Boger fluids, it can not be ascertained35

whether the time-dependence is purely elastic in nature or inerto-elastic.36

Migliozzi et al. [30] also used PLIF to study mixing of viscoelastic materials in a helical37

static mixer. They used a Boger fluid (PAM dissolved in pure glycerol) and also two shear-38

thinning viscoelastic fluids (Xanthan Gum in water/glycerol solutions). They also found that39

the striation patterns produced by the viscoelastic flows were different to those produced by40

the Newtonian flows. They observe that increasing the viscoelasticity of the flow reduces the41

number of striations after two mixing elements (and thus reduces the mixing performance),42

and causes anomalous shapes to appear in the striation patterns. For moderate viscoelas-43

ticity, the striation patterns remain symmetric between the two halves of the cross-section.44

This symmetry is lost for higher degrees of viscoelasticity however. Time-dependence of the45

striation patterns was observed for flows beyond a critical value of the Deborah number,46

De = λ/t, where λ is the viscoelastic relaxation time and t is a characteristic time scale of47

the flow. For the Boger fluids, the onset of transient fluctuations in the mixing patterns48

occurred at approximately De > 3. This critical De was substantially lower for the Boger49

fluid than it was for the shear-thinning viscoelastic fluids, indicating that the Boger fluid50

is more prone to instabilities. It is explained by the authors that the PAM molecules in51

the Boger fluid exhibit higher extensibility than the Xanthan Gum molecules. Therefore, in52
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flows with extension-dominated regions, the extensional stresses and viscosity grow larger53

for the Boger fluid than they do for the Xanthan Gum. This is reported to be the cause of54

the stronger time-dependence and lower critical De observed for the Boger fluids than for55

the shear-thinning fluids. For the shear-thinning fluids investigated, the striation patterns56

were still substantially different from the Newtonian ones, even though the time-dependence57

of the mixing patterns was much weaker or even negligible in some cases, indicating that the58

viscoelasticity can cause both steady and time-dependent changes in the flow and mixing59

performance of the helical mixer. In both of these previous experimental studies, only the60

mixing performance, quantified with the Coefficient of Variance (CoV), and pressure drop is61

explicitly measured. Changes brought about to the flow pattern within the mixer are only62

inferred from the changes in the striation patterns or pressure drop.63

In the last few decades, there has been much research in the field of viscoelastic insta-64

bilities [13, 18, 42] and, in particular, flow asymmetries [15, 20, 21, 37, 39, 40, 43]. One of65

the first geometries to be studied in detail was the cross-slot geometry, now recognised as66

a bench-mark geometry for viscoelastic asymmetries [12]. In the cross-slot geometry, shown67

in Figure 1, the viscoelasticity causes a steady-state symmetry-breaking instability, which68

manifests as a super-critical pitchfork bifurcation [37] given by69

d∆

dt
= 0 = ∆3 −A(De −Decrit), (1)

where ∆ is the parameter quantifying the degree of asymmetry and A is a constant to70

be determined empirically. Below the critical Deborah number Decrit, the flow bifurcates71

symmetrically (∆ = 0) at the stagnation point in the center of the cross-slot. But then72

above Decrit, although reaching steady-state, the flow becomes asymmetric and the growth73

of ∆ with increasing De follows a square-root trend. In bifurcation theory, in the case that74

a bias exists due to, for example, a slight asymmetry or imperfection in the geometry, an75

imperfection parameter h can be added to the right hand side of Equation (1). In this case,76

∆ ≠ 0 for De < Decrit, and there is a gradual growth of ∣∆∣ as De → Decrit, rather than an77
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instantaneous change in ∆ at Decrit. This is highlighted in Figure 2. In the cross-slot, for78

large enough De, the steady-state asymmetry transitions into a fully transient chaotic state79

[10], which is often referred to as elastic-turbulence [19, 27].80

In the earlier investigations of the steady viscoelastic flow asymmetries in the cross-slot81

geometry, it was suggested that the driving mechanism for the asymmetry was related to82

the extensional flow and stresses at the stagnation point. It is observed in the regular83

cross-slot geometry that the onset of the asymmetry causes the flow near the stagnation84

point to change from being extensionally dominated to being shear dominated [2]. Also, the85

asymmetry causes a parameter named the ”Couette correction” to drop with increasing De.86

The Couette correction is the pressure drop across the geometry after taking into account the87

pressure drop required for the viscoelastic channel flow in the absence of the cross-slot. As88

such, it represents, in a way, the energy requirement to drive the flow in the cross-slot. The89

drop in the value of the Couette correction with increasing De above the critical De indicates90

that the underlying driving mechanism for the asymmetry might be related to a drop in the91

energy requirement for the flow. However, the results from a more recent investigation by92

Davoodi et al. [14] suggest that asymmetry in the cross-slot is instead related simply to a93

classic ”curved-pathlines” viscoelastic instability [33]. In the study of Davoodi et al. [14], a94

cylinder is added to the center of the cross-slot geometry, which removes the free stagnation95

point (and the associated strong extensional flow and stresses), however the viscoelastic96

asymmetry still occurs beyond a critical degree of viscoelasticity, indicating the asymmetry97

arises due to the curvature of the pathlines and high deformation rates near the channel98

corners.99

Viscoelastic asymmetries have also been observed in a confined cylinder geometry, in100

which flow in a channel bifurcates around an obstructing cylinder. It has been found that101

increasing the Weissenberg number, Wi = λγ̇, where γ̇ is a characteristic rate of strain, again102

led to a symmetry breaking instability, where the flow passed preferentially around one side103

of the cylinder in the channel [20, 21, 43]. This was observed with both experimental and104
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(a) (b)

Figure 1: Contours of ∣u∣ for the cross-slot geometry before (a) and after (b) viscoelastic asymmetry is
observed. Fluid pathlines are superimposed as white solid lines.
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Figure 2: Examples of perfect (red) and imperfect (blue and green) pitchfork bifurcations. Solid lines show
stables solution branches and dashed lines show un-stable solution branches

6

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4474745

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



numerical methods. With regards to the choice of representing the degree of viscoelasticity105

with either De or Wi, De can be thought of as being related to the unsteadiness of the flow106

in a Lagrangian sense, whilst Wi represents the ratio of elastic and viscous forces (taking107

[τ11 − τ22]/τ12 for the upper-convected Maxwell model under steady simple shear flow yields108

2λγ̇). For flows which are Eulerian and Lagrangian steady, it is the case that De = 0, and109

for geometries where the same length scale controls both the characteristic strain rate and110

time-scale, it is the case that De = Wi and thus the choice for representing the degree of111

viscoelasticity is arbitrary. For Lagrangian unsteady flows with more than one important112

length scale, Wi and De are usually related simply via a geometric factor [36].113

The confined cylinder geometry is not so dissimilar from the helical static mixer, in the114

sense that the flow in the helical mixer is also confined and bifurcates around the mixing115

elements at each element intersection point. The primary differences are that the helical116

mixer geometry twists the flow as it moves in the axial direction (hence the base flow is117

not symmetric), and that the edges of the mixing elements (at least those in this investi-118

gation) are square rather than circular. Whist the majority of investigations of viscoelastic119

flow asymmetries have employed symmetrical geometries, a recent numerical investigation120

by Kumar and Ardekani [26] employed an asymmetrical geometry. The geometry consisted121

of a channel with two confined cylinders, longitudinally arranged, where the front cylinder122

was fixed in the center of the channel width and the spanwise position of the rear cylinder123

was varied. When the rear cylinder is positioned centrally, the behaviour of the viscoelas-124

tic flow asymmetry follows closely that observed for other symmetrical geometries; the flow125

distribution around the cylinders is practically symmetrical until a critical Wi is reached,126

beyond which a sudden and sharp increase of the flow asymmetry is observed as Wi is in-127

creased. However, for the case where the rear cylinder is positioned off-center, the behaviour128

of the flow asymmetry is much different; even for low Wi there is a clear flow asymmetry129

around both cylinders and increasing Wi causes a more gradual increase in the degree of the130

asymmetry, rather than a sharp sudden increase. This would seem similar to the addition131
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of an imperfection parameter h in the pitchfork bifurcation (see Figure 2), however this was132

not explored further in their study.133

In this study, Computational Fluid Dynamics (CFD) is used, for the first time, to study134

viscoelastic fluid flows in the helical static mixer geometry, and the effect of viscoelasticity on135

the resulting mixing performance. In particular, we aim to understand and demonstrate how136

viscoelasticity can affect the performance of industrial process equipment. Gaining a better137

understanding of how viscoelasticity impacts the mixing quality in static mixers will allow138

for better design of equipment, processes, and formulated products. Previously, suggestions139

regarding the flow pattern of viscoelastic flows in the helical static mixer have been inferred140

from the mixing striation patterns observed with PLIF. With CFD, we can study details141

of the flow pattern inside the mixer and directly relate this to the change in the mixing142

performance.143

2. Materials and methods144

Here, we present the numerical methodology for the simulations, followed by an expla-145

nation of the methods used to quantify the mixing performance from the numerical results.146

2.1. Governing equations147

The continuity and momentum equations for in-compressible flow in the absence of ex-148

ternal body forces are given respectively as149

∇ ⋅u = 0, (2)

ρ(∂u
∂t

+u ⋅∇u) = ∇ ⋅σ, (3)

where σ is the total stress tensor given as σ = −pI + τ , p is the pressure and τ is the150

extra-stress tensor. We employ the FENE-CR (Finitely Extensibile Non-linear Elastic with151
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Chilcott and Rallison modification) model, first presented by Chilcott and Rallison [11], is152

used, which is given as153

τ = τ p + 2ηsD, (4)

τ p + λ
▽

(τ p

f
) = 2ηpD, (5)

where τ p is the polymeric stress andD is the rate-of-strain tensor given byD = 1/2 (∇u + (∇u)T).154

ηs and ηp are the solvent and polymeric viscosities, respectively. The symbol
▽

( ) denotes the155

upper-convected time derivative, which, for a tensor ψ, is given as156

▽

ψ = Dψ

Dt
−ψ ⋅∇u −∇uT ⋅ψ, (6)

and represents the time rate of change written in a coordinate system which translates, ro-157

tates, and deforms with the material. It should be noted that the upper convected derivative158

in Equation (5) is acting on the whole term in the brackets, and not just on τ p as is the case159

in many other viscoelastic constitutive models. f is given by160

f = L
2 + (λ/ηp)Tr(τ p)

L2 − 3
, (7)

where L2 is the extensibility parameter. We note that limL2→∞ f = 1, and in this limiting161

case the FENE-CR model reduces to the widely-used Oldroyd-B model.162

In terms of material functions, the FENE-CR model has a constant shear viscosity in163

steady-shear, and so it can potentially be thought of as a Boger fluid [7] model. This is the164

primary feature of the FENE-CR model, which was modified empirically from the original165

FENE-P for this reason. The first normal stress difference, N1 = σ11 − σ22 (again, in steady-166

shear), grows quadratically with shear rate in the linear viscoelastic regime, and there is167

shear thinning of N1 in the non-linear regime. In steady-state extensional flow, there is some168
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thickening of the extensional viscosity with increasing strain rates, after which a plateau169

is reached. The value of the extensional viscosity at the plateau is proportional to L2.170

For the Oldroyd-B model (L2 →∞), there is no limiting of the extensional thickening and a171

singularity occurs. This is a well known short-coming of the Oldroyd-B model [42]. It should172

be noted here that since f is contained within the upper-convected derivative, the behaviour173

of the FENE-CR model in Eulerian or Lagrangian unsteady flows will differ from that implied174

from its steady material functions. This will be the case in the helical mixer geometry where175

even an Eulerian steady flow is un-steady in a Lagrangian sense. Moreover, the flow in the176

mixer section is complex (not pure shear, pure extension, or pure rotation), and it has been177

recently highlighted [44] that even the simplest viscoelastic model, the Oldroyd-B model,178

exhibits rheological behaviour which, in such flows, is more complex that that inferred from179

its material functions. We point this out just to highlight that the observed behaviour of180

the FENE-CR model in ideal steady flows can not necessarily be extrapolated to complex181

flows such as those in the static mixers.182

We now introduce the dimensionless variables183

t∗ = tUL , u∗ = u 1

U , τ ∗ = τ L
U(ηs + ηp)

, p∗ = p L
U(ηs + ηp)

, ∇∗ = ∇L, (8)

and the following dimensionless groups184

β = ηs
ηs + ηp

, Re = ρUL
(ηs + ηp)

, Wi = λUL , (9)

where U and L are characteristic velocity and length scales, respectively. Substituting the185

dimensionless variables into the momentum and constitutive equation, and dropping the186

asterisks for brevity, gives187

Re(∂u
∂t

+u ⋅∇u) = −∇p + β∇2u +∇ ⋅ τ p, (10)
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τ p +Wi

▽

(τ p

f
) = (1 − β)(∇u +∇uT) where f =

L2 + ( Wi
(1 − β))Tr(τ p)

L2 − 3
. (11)

For the geometry used in this investigation, the helical static mixer, we define U and L188

as the inlet velocity uin and pipe diameter D, respectively. There are three dimensionless189

parameters which, for a given geometry and value of L2, can be varied, which are Re, Wi,190

and β. In this investigation, we use a constant value for β of 1/817 and we systematically191

vary Re and Wi for L2 = 50, which is a typical value value of L2 used for simulations with192

FENE constitutive models [31, 39]. The value of β chosen is close to that for typical fluids193

processed with helical static mixers in the laminar flow regime. We note here that the194

relatively low value of β is not representative of that for a ”true” Boger fluid; the primary195

reason for the use of the FENE-CR model in this study is to remove the effects of shear-196

thinning and second normal stress differences etc, and not to explicitly attempt to model a197

Boger fluid. For L2 = 50, Re was varied between 0.040 and 5.965, and Wi was varied between198

0.010 and 1.500. Simulations were also run with increasing values of L2 (up to L2 = 5000)199

for Re = 0.487 and Wi = 0.429 in order to assess the effect of extensibility on the flow.200

2.2. CFD simulations201

All simulations were run using version 5.0 of RheoTool [34, 35], an open-source tool box202

based on OpenFOAM® [32]. OpenFOAM® uses the finite volume method to discretise the203

governing equations. The University of Manchester’s Computational Shared Facility was204

used to run the simulations. Simulations were run with between 80 and 200 processors and205

took between a few hours to several days depending on the values of Re and Wi. In order to206

avoid the infamous high Weissenberg number problem, in which the polynomial interpolation207

fails to capture the exponential growth in stress, the log-conformation approach proposed by208

Fattal and Kupferman [17] is employed in this study. In this approach, the constitutive model209

is reformulated and the matrix logarithm of the conformation (or configuration) tensor Θ is210

solved for, rather than τ p. Spacial gradients of Θ are better approximated by polynomials,211
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and Θ is also always positive-definite [1], which helps to stabilise the simulations. In the212

(dimensionless) FENE-CR model, Θ is related to τ p by τ p = [(1 − β)fΘ/Wi](eΘ − I) where213

fΘ = L2/[L2 − tr(eΘ)]. The FENE-CR model in log-conformation form can be found in the214

RheoTool user guide [34].215

Gradient terms were discretised using the Gauss Linear scheme, whilst the convective216

terms in both the momentum equation and FENE-CR model were discretised using the217

high-order CUBISTA scheme proposed by Alves et al. [4]. Highly accurate interpolation218

schemes are often needed for the disretisation of viscoelastic models, even for creeping flows,219

due to the absence of a diffusion-like term. Lower order schemes such as first-order upwind220

can introduce excessive numerical diffusion [5]. The Gauss Linear scheme with corrected221

surface normal gradient scheme was used for discretisation of Laplacian terms. The Euler222

scheme was used for time discretisation.223

At the inlet of the pipe, a uniform and constant value for the fluid velocity and zero224

normal gradient of the pressure were set as boundary conditions. All components of Θ225

were also specified as 0 at the inlet. At the outlet, the pressure was fixed at 0, and the226

pressureInletOutletVelocity boundary condition available in OpenFOAM® was used for the227

velocity, which is essentially a zero-gradient condition for purely outgoing flow. Although228

the flow at the outlet was always out-going, it was found that the pressureInletOutletVelocity229

condition helped to prevent convergence issues in some simulations. Zero normal gradient230

was also used at the outlet for Θ. At all solid walls, the no-slip condition was used for231

velocity, the zero-gradient condition was used for Θ, and the polymeric stress was linearly232

extrapolated. The fluid was initialised with a value of 0 for all variables (considering τ p233

rather than Θ).234

To solve the equations, the Geometric agglomerated Algebraic MultiGrid (GAMG) solver235

was used for pressure with the Gauss Seidel smoother, and the smoothSolver was used for236

both the velocity and Θ also with the Gauss Seidel solver. The tolerance and relative237

tolerance for both solvers respectively were 10−12 and 10−3. All simulations with L2 = 50238
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were run until steady-state had been reached. The two simulations with L2 = 500 and239

L2 = 5000 were unsteady and so were run for approximately 13λ, which was long enough for240

the unstable system to become fully-developed (i.e. by this point, fluctuations were clearly241

fluctuating around a steady mean). The time step was auto-adjusted using the maximum242

value of the Courant number. The Courant number is defined as Co = ∆tT where ∆t is243

the time-step and T is a time scale based on the local cell flow scales. The maximum Co244

was varied between 0.4 for lower Wi cases and 0.05 for higher Wi cases. The change in the245

time-step should not affect any results for L2 = 50 since they all reached steady-state. For246

the L2 = 5000 simulation, which was unsteady, a time-step sensitivity test confirmed that247

the results were insensitive to the time-step at the maximum Co number we used.248

2.3. Geometry and mesh249

The mixer investigated in this study consists of 8 mixing elements (or 4 flow elements/periods).250

The diameter and length of the blades were fixed at 25.5 mm and 34.5 mm respectively (as-251

pect ratio of roughly 1.35) and the thickness of the blades was 1.5 mm. These dimensions252

were used in the investigation conducted by Migliozzi et al. [30]. The entire pipe section253

simulated was 1 m in length and 25.5 mm in diameter. The center of the mixer section was254

located in the center of the pipe. Thus, there was always sufficient length between the inlet255

and the first mixer element for the flow to become fully-developed [16].256

The mesh for the simulations, shown in Figure 3, was generated using ANSYS Meshing.257

To mesh the elements of the mixer, the sweep method was used to ensure that cells were258

hexahedral. The final mesh used for the simulations consisted of 4.93 million hexahedral cells.259

The mesh was chosen after performing a mesh independence study, the results of which can260

be found in the Supplementary Material. The mesh generated by ANSYS Meshing was261

converted for use in OpenFOAM® with the fluentMeshToFoam command.262
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(a) (b)

(c)

Figure 3: Mesh used for the simulations. (a) 2D longitudinal slice in the mixer section. (b) Circular slice in
the pipe section. (c) 3D view of the mesh at the beginning of the mixer section.
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2.4. Quantification of mixing performance263

In order to quantify the mixing performance, passive fluid elements were introduced to264

the flow at the beginning of the mixer geometry and their pathlines were analysed throughout265

the mixer. Starting at the entrance of the mixer geometry, roughly 50,000 elements were266

tracked using MATLAB® 2022a v9.12 [29] and Paraview v5.10 [3]. The elements are split267

into two groups, denoted by A and B, of roughly 25,000 elements each. The orientation of268

the two groups of elements was rotated at 90 degrees with respect to the first mixer element269

so that the elements did not bypass the first mixer element. This is shown in Figure 4.270

Circular slices (normal to the longitudinal direction) of the pathlines were taken at each271

element intersection point, and the mixing was then quantified.272
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Figure 4: Initial positions of the tracked passive fluid elements at ne = 0. The white horizontal rectangle
shows the solid wall of the start of the first mixer element.

There are a number of methods for quantifying mixing using discrete particles or elements.273

For example, one could use the CoV or the Shannon Entropy, both of which have been274

employed previously in similar CFD mixing studies [8, 9, 22]. However, during the processing275
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in ParaView, a number of pathlines were terminated, leading to some small blank patches in276

the mixing patterns. In order to avoid this affecting the results, we introduce a new method277

for the quantification of the mixing on 2D y − z slices throughout the mixer geometry,278

implemented via MATLAB. We define the mixing index, Im, as279

Im = 1

NA

NA

∑
i=1

min[d(PA,i,PB)], (12)

where NA is the number of fluid elements belonging to group A and d(PA,i,PB) is given by280

d(PA,i,PB) =
√

(yB − yA,i)2 + (zB − zA,i)2, (13)

and represents an array consisting of the magnitudes of all of the 2D vectors in a y − z plane281

pointing from the position P of particle i in group A (located in the 2D plane at yA,i and zA,i)282

to the position of each of the particles in group B. The arrays yB and zB contain respectively283

the y and z positions of all elements in group B. As such, Equation (12) represents the mean284

distance from a particle in A to its nearest neighbour particle in B. This should scale closely285

with the striation thickness, which is commonly used to measure mixing performance in286

laminar mixing devices such as the helical static mixer [25, 41], and should be less influenced287

by the blank spaces caused by the termination of some of the pathlines. However, since288

the mixing here is being quantified with discrete methods, the index of mixing Im will not289

decay to zero as the true mixing index in a continuous sense does, but will decay to a value290

determined by the total number of particles or pathlines used. Although this should be fairly291

obvious, it is noted here for clarity that min[d(PA,i,PB)] = min[d(PB,i,PA)] and so the292

choice of which group of pathlines to index is arbitrary so long as NA ≈ NB. Also, when293

results for the decay of Im are presented, they will be normalised by the value of Im obtained294

for the initial seeding of the pathlines, I0, so that Im/I0 always decays from 1 at the start of295

the first mixing element.296
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3. Results and discussion297

3.1. Steady flow asymmetries for L2 = 50298

In this sub-section, the main CFD results regarding the flow patterns generated in the299

mixer will be presented and discussed. The CFD results show that, as the viscoelasticity of300

the flow is increased, the flow bifurcates asymmetrically at the element intersections. This301

is shown for Re = 0.04 (i.e. negligible inertia) in Figure 5. For Wi = 0.01, the flow splits302

around the vertical wall of the mixing element relatively evenly. However, for Wi = 1.5,303

the flow clearly passes preferentially to one side of the vertical wall of the mixing element.304

Contours of ux approaching ne = 5 can be seen for Re = 0.04 and Re = 5.96 in Figures 6305

and 7 respectively. For Re = 0.04 (Figure 6), the flow begins to preferentially flow below the306

up-coming horizontal mixing element as Wi is increased from 0.01 to 0.122. However, for307

Wi > 0.122, the flow distribution suddenly changes and the flow preferentially passes above308

the mixing element. It appears that the maximum value of ux increases in both the upper309

and lower halves of the contour (above and below the up-coming horizontal intersection) as310

Wi is increased from 0.01 to 0.122, however, although it is not immediately obvious to the311

eye, the distribution of ux in the upper half of the contour becomes slightly narrower and312

appears to be pushed slightly in an anti-clockwise direction, which matches the direction of313

the observed flow asymmetry for this range of Wi. For Wi ≥ 0.429, the distribution of ux in314

the lower quadrant seems to be almost ”cut” diagonally (from bottom-left to upper-right or315

vice versa), where the flow above this diagonal line is forced above the up-coming horizontal316

element. For Re = 5.96, this ”cutting” effect for Wi ≥ 0.429 seems more pronounced and317

there appear to be sharp spatial gradients of ux. Also, for Re = 5.96, the flow seems to pass318

preferentially above the horizontal mixing element as Wi is increased from 0.01 to 0.122,319

which is in contrast to the behaviour observed for Re = 0.04.320
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(a) (b)

Figure 5: Example of fluid pathlines around mixer elements 4 and 5 for (a) Wi = 0.01 and (b) Wi = 1.5.
Re = 0.04 and L2

= 50 for both cases. Pathlines are coloured by ∣u∣. Flow direction is from left to right.
Pathlines are integrated (forward and backwards) from a line at the intersection of the two mixing elements.

(a) Wi = 0.010 (b) Wi = 0.035 (c) Wi = 0.122 (d) Wi = 0.429 (e) Wi = 1.500

Figure 6: Contours of ux for various Wi. Re = 0.040 and L2
= 50. Slices are positioned at 5 mm before

ne = 5. The twisting direction of the element is clockwise. Fluid is flowing in the positive x direction (into
the page).
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(a) Wi = 0.010 (b) Wi = 0.035 (c) Wi = 0.122 (d) Wi = 0.429 (e) Wi = 1.500

Figure 7: Contours of ux for various Wi. Re = 5.95 and L2
= 50. Slices are positioned at 5 mm before

ne = 5. The twisting direction of the element is clockwise. Fluid is flowing in the positive x direction (into
the page).

In order to quantify the degree of asymmetry, the following parameter is defined321

∆ ≡
max(ux)si −max(ux)sj
max(ux)si +max(ux)sj

, (14)

where max(ux)si and max(ux)sj are the maximum longitudinal velocities on the clipped322

surfaces si and sj respectively. As such, −1 < ∆ < 1. Considering the clipped surfaces shown323

in Figure 8, a number of definitions for ∆ can be introduced using adjacent surfaces. We324

introduce two of these and denote them as ∆1 and ∆2, which are given as325

∆1 ≡
max(ux)s1 −max(ux)s2
max(ux)s1 +max(ux)s2

, ∆2 ≡
max(ux)s3 −max(ux)s4
max(ux)s3 +max(ux)s4

. (15)

For all simulations using L2 = 50, we were able to avoid having to re-define ∆ for odd and326

even mixer elements, since it was apparent that max(ux)s1 ≈ max(ux)s3 and max(ux)s2 ≈327

max(ux)s4 . We checked ∣∆1 −∆2∣ at all mixing element intersections for all simulations with328

L2 = 50. The maximum value of ∣∆1 − ∆2∣ was found to be 1.1 × 10−3, indicating that it is329
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fair to assume ∆1 = ∆2. This anti-symmetry across the mixer element was also observed330

experimentally by Migliozzi et al. [30]. From here-on-in we will use ∆ ≡ ∆1 and we will not use331

the subscript when presenting results for ∆. With this choice of the definition of ∆, positive332

∆ means the flow is predominantly passing through the quadrant positioned in the twisting333

direction of the previous element, and negative ∆ means the flow is predominantly passing334

through the quadrant positioned against the twisting direction of the previous element. For335

∆ = 0, the bifurcation of the flow at the element intersections should be approximately336

symmetrical.337

Figure 8: Part of the helical static mixer geometry with the clipped surfaces s1, s2, s3, and s4 which are
used to define ∆. Flow direction is in the x-direction.

Figure 9 shows ∆ as a function of Wi for each element number for Re = 0.040,0.487,5.965.338

In Figures 9a and 9b, ∆ starts very close to zero for Wi = 0.010 (i.e. Newtonian) before339

becoming negative and increasing in magnitude up to Wi = 0.122. Beyond Wi = 0.122, the340

magnitude of ∆ increases further, however the sign of ∆ abruptly changes from negative341

to positive, as is indicated by the velocity contours in Figure 6. ∆ is virtually constant for342

all elements for the lower values of Wi, but there is some change of ∆ with the element343

number, specifically for the first few elements, for higher values of Wi. There appears to be344

no notable difference between the solutions for Re = 0.04 and Re = 0.487, indicating that the345

solution is practically independent of Re in this range.346
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(b) Re = 0.487
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Figure 9: ∆ versus Wi for (a) Re = 0.040, (b) Re = 0.487, and (c) Re = 5.965. Red dashed line shows the
fitting of a pitchfork-type bifurcation for ne = 0.4
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Figure 10: ∆ at ne = 4 vs Wi for the extra simulations ran to probe more closely the behaviour of ∆. (a)
shows results between Wi = 0.01 and Wi = 0.035 (blue symbols) where the blue line represents a fitted

imperfect pitchfork bifurcation. (b) shows the fitted imperfect pitchfork over the entire range of Wi, and
extra simulations between Wi = 0.122 and Wi = 0.429 in green.
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Figure 11: Results for simulation employing inlet velocity ramp. Red symbols show the steady-state
simulations for Re = 0.04. Black symbols show the transient solution between Wi = 0.122 at t = 0 and
Wi = 0.429 at tf = 10λ. Filled symbols exhibit a downwards trend whilst hollow symbols follow the

steady-state solution in an upwards trend.
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There are multiple possible explanations for the behaviour observed in Figures 9a and 9b.347

One is that a viscoelastic instability occurs between Wi = 0.01 and Wi = 0.035, and both the348

downwards and upwards trends in ∆ represent the two respective stable solution branches of a349

supercritical pitchfork bifurcation (either perfect or imperfect). To highlight this possibility,350

we have fitted the solution for a perfect pitchfork bifurcation (∆ = ±
√
A1(Wi −Wicrit))351

to the results in Figure 9a, which is shown by the red dashed line. We fitted the curve352

to the value of ∆ at ne = 4 and found A1 = 0.031 and Wicrit = 0.029. Since there is not353

enough data in Figure 9a to validate the onset of the square-root trend at the fitted value354

of Wicrit, we ran 9 extra simulations spaced linearly between Wi = 0.010 and Wi = 0.035.355

The results for these simulations are displayed in Figure 10a. It is evident then that the356

asymmetry parameter does not exhibit a perfect pitchfork bifurcation (the red solid line)357

in the range of Wi investigated. This is highlighted by the gradual increase in ∣∆∣ between358

Wi = 0.010 and Wi = 0.035 and also by the fact that ∆ appears to asymptote to a small but359

finite value as Wi → 0. As mentioned in Section 1, this gradual increase in the asymmetry360

parameter was also observed by Kumar and Ardekani [26] for flow around an asymmetric361

arrangement of two confined cylinders. Due to the asymmetric nature of the helical static362

mixer geometry, it would seem plausible that the flow asymmetry exhibits, instead, an363

imperfect pitchfork bifurcation. We have fitted the data shown in Figure 10a to an imperfect364

pitchfork bifurcation, shown by the blue solid line. The data appears to fit well between365

Wi = 0.01 and Wi = 0.035, however, in Figure 10b we show that ∆ does not fit to the same366

imperfect pitchfork bifurcation for the entire range of Wi investigated. We also ran 3 extra367

simulations in between Wi = 0.122 and Wi = 0.429 to probe the apparent sharp transition368

from negative to positive ∆. These are shown by the green symbols in Figure 10b. If the369

asymmetry is indeed characterised by a pitchfork bifurcation, this transition from negative370

to positive ∆ would likely just represent the CFD solver being able to access only the upper371

stable solution for Wi > 0.122. In Figure 10b, however, it is observed that the transition372

between negative and positive ∆ is gradual, indicating that the flow is likely not characterised373
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by either the perfect or imperfect pitchfork bifurcations.374

Another potential explanation for the observed trend in ∆ as Wi is increased is that375

the initial downwards trend in ∆ for Wi < 0.122 represents some phenomenon related to376

viscoelasticity and streamline curvature; potentially a hoop stress or a similar elastic stress377

which can drive a change in the flow direction. In this case, the abrupt change in the sign of378

∆, and hence direction of the asymmetry, between Wi = 0.122 and Wi = 0.429 might then379

represent the onset of an instability. To investigate this, we ran a simulation for Re = 0.04380

where the initial condition was the steady-state solution for Wi = 0.122, and the inlet velocity381

was ramped such that Wi = 0.122 at time t = 0 and Wi = 0.429 at time t = tf . We chose382

tf = 10λ so that the system remains close to steady-state at each point in time. It should383

be noted that, since the inlet velocity is increased, Re also increases from Re = 0.04 to384

Re = 0.14. However, as has been demonstrated, the solution is essentially independent of385

Re within this range. The results for this simulation are presented in Figure 11. At the386

start of the velocity ramp, the asymmetry continues on a downwards path despite the fact387

the steady-state solution starts to exhibit an upwards path. This indicates that beyond388

approximately Wi = 0.122, the system might still exhibit two stable solution branches, as389

a pitchfork-type bifurcation does. At approximately Wi = 0.2, the transient solution then390

begins to follow the trend exhibited by the steady-state solution. Potentially, a second stable391

steady-state solution path (downwards) exists beyond Wi = 0.122 but is just not accessible392

by the CFD solver.393

For Re = 5.96, the sign of ∆ is positive for all Wi studied, and for Wi → 0, ∣∆∣ tends to394

a larger value than it does for the lower Re cases. This shows that a degree of asymmetry395

is caused purely by inertia. Hobbs and Muzzio [23] simulated laminar Newtonian flows in396

a helical static mixer with CFD and also found that increasing Re led to an asymmetry at397

the element intersections. They also investigated the effect of the asymmetry on the mixing398

by using Lagrangian particle tracking to plot the Poincaré sections. They found that for399

intermediate Re (i.e. between creeping flow and transitional flow) the mixing was no longer400
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globally chaotic, due to the flow asymmetries, as it was for creeping flow. In Figure 9c,401

for Re = 5.96, the maximum value of ∆ reached as Wi is increased is significantly lower402

than for Re = 0.04 and 0.487, indicating that increasing inertia dampens these effects of403

viscoelasticity at high Wi. It has been shown for the cross-slot geometry that increasing Re404

dampens the viscoelastic instability and asymmetry [37]. There is also more variation in ∆405

with the element number for Re = 5.96 than for Re = 0.04 and Re = 0.487, particularly in406

the first 4 elements of the mixer. Figure 12 shows the contour of ∆ for L2 = 50 in the range407

of Re and Wi studied. ∆ becomes most negative at moderate Wi (approximately 0.1) when408

Re → 0, indicating that inertia acts to inhibit this effect of viscoelasticity in this region of409

Re −Wi space. For Re ≈ 2, ∆ is no longer negative for the lowest values of Wi, however,410

the magnitude of ∆ increases to a larger value (and more rapidly) with increasing Wi than411

it does for the largest values of Re. This indicates a complicated transition between the412

dominating effects of elasticity and inertia.413
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Figure 12: Contour of ∆ for the range of Re and Wi studied. Note the data for the extra simulations
shown in Figures 10 and 11 is not used to create this contour.

3.2. Effect of viscoelasticity on mixing performance414

In this sub-section, we investigate the impact of the previously-discussed flow distribution415

asymmetries on the the mixing performance of the mixer for the range of Re and Wi inves-416
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tigated with L2 = 50. As mentioned, the mixing performance is calculated using pathlines417

generated from the numerical flow-field results.418

Figure 13 shows the mixing patterns predicted by the CFD simulations for Re = 0.04 at419

the ends of mixer elements 2, 4, and 6 for various Wi. For Wi = 0.010 (essentially creeping420

Newtonian conditions), the mixing patterns are very similar to the typical patterns generated421

by the helical static mixer for laminar flows reported in the literature [23, 41]. After 6 mixing422

elements, the striations are small and the distribution of striation thickness is narrow. As423

the viscoelasticity of the flow is increased, however, the mixing patterns change significantly.424

For Wi = 1.5, the pattern at the end of element 2 is changed slightly in shape from the lower425

Wi patterns, although the mixing quality might not seem so different. In the upper-left426

quadrant of plot, the striation of red particles furthest on the left appears to be squashed427

downwards; much less of this striation exists above the horizontal wall of the up-coming428

mixer element than it does for Wi ≤ 0.122. Similarly, in the lower right quadrant, there is429

only one striation of red particles for Wi = 1.5, whereas there are two for Wi ≤ 0.122. The430

direction of the movement of the striations as Wi is increased matches the direction of the431

flow asymmetry (note the co-ordinate system here is different to that in Figures 6 and 7).432

For the end of elements 4 and 6, there is a significant reduction in the mixing performance for433

Wi = 1.5. There is a significantly broader distribution of striation shape and size, with some434

very large striations (relatively speaking) remaining. We cannot infer that the direction of435

movement of striations is correlated with the asymmetry direction here since the striation436

patterns are much more complex. However, our results show that the significant change in437

the qualitative mixing performance is caused by the flow asymmetries present at the element438

intersection points discussed previously.439
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Figure 13: Mixing patterns predicted by CFD simulations at Re = 0.04 for various values of Wi. Patterns
shown at the end of elements 2 (a-c), 4 (d-f) and 6 (g-i).

Figure 14 shows Im/I0 versus ne for the range of Wi and Re investigated with L2 = 50.440

For both Re = 0.04 and Re = 0.487, Im/I0 decays practically as c−x for the first three441
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mixing elements when Wi ≤ 0.122, which is natural since the mixing in the helical static442

mixer involves splitting and recombination of the flow,meaning the mixing index (or striation443

thickness etc) should ideally decay exponentially. As mentioned previously, the decay of444

Im/I0 slows for higher ne even for the (practically) Newtonian case (Wi = 0.010), which is445

caused by the fact that the mixing is approaching the limit of that which can be quantified446

with the number of pathlines used. This does not impact the analysis or findings of this447

investigation since the effect of viscoelasticity on Im/I0 is easily distinguishable from this448

effect caused by using a finite number of pathlines.449

For Wi ≤ 0.122, the decay of Im/I0 is practically the same for varying Wi, with the450

exception that there is a small increase in Im/I0 at large ne for Wi = 0.122, which is explained451

by the fact that the asymmetry grows in magnitude between Wi = 0.010 and Wi = 0.122. For452

Wi ≥ 0.429, the decay of Im/I0 seems relatively unaffected by the viscoelasticity of the fluid453

for ne ≤ 2. However, for ne > 2 there is a sudden and sharp change in the decay of Im/I0, where454

Im/I0 suddenly decays significantly slower for ne > 2 than for ne ≤ 2. Since it has already455

been shown in Figure 9a that, for Wi ≥ 0.429, the viscoelastic flow asymmetry is observed456

before ne = 2, and is roughly constant for all ne, the fact that Im/I0 is relatively unaffected457

by the increase in Wi before ne = 2 cannot be attributed to an onset of the flow asymmetries458

at ne = 2. Since the flow is symmetric (ie, not twisting) approaching the start of the first459

mixing element (ne = 0), it is not be expected that the viscoelasticity of the flow would affect460

the mixing caused by the first element, except in the case of exceptionally large Wi (far461

beyond the range investigated in this study) where a purely symmetry-breaking instability462

would be expected as the flow bifurcates over the flat-edge of the first mixing element.463

This phenomenon would be similar in nature to the viscoelastic asymmetries observed for464

symmetric confined cylinder geometries [20, 21]. It is possibly the case, since the striations465

are relatively large at ne = 1, that the observed flow asymmetry simply does not distort466

the fluid enough to have a significant impact on the decay of Im/I0 here. Similar results467

were obtained by Migliozzi et al. [30], who found that the CoV, measured experimentally468
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using PLIF, was largely unaffected by the viscoelasticity of the fuid for the first two mixing469

elements, but then an increase in CoV (and hence reduction in mixing performance) was470

observed for increasing elasticity in the subsequent mixer elements. Since they used PLIF to471

investigate only the mixing performance, they were not able to explicitly relate the observed472

changes in the decay of the CoV to the changes in the flow kinematics induced by the473

viscoelasticity, however.474
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Figure 14: Normalised mixing index, Im/I0, defined in Equations (12) and (13) versus ne for varying Wi
and for (a) Re = 0.04 and (b) Re = 5.96. Solid black line shows c−x, where c = 2.45.
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Figure 15: Im/I0 at ne = 8 (mixer outler) versus ∆ (computed at ne = 4) for all L2
= 50 simulations. Note

that ∆ is virtually constant for each mixer element after the first couple of elements.

Figure 15 shows Im/I0 at the outlet of the mixer section versus ∆ (computed at ne = 4)475

for all simulations where L2 = 50 and the flow reached steady-state. There is a strong476

proportionality between the quantification of the asymmetry ∆ and the mixing performance477

quantified by Im/I0, indicating that the asymmetry in the flow is indeed the cause of the478

change in the mixing performance, as expected. The non-zero y-intercept at ∆ = 0 is caused479

primarily by the fact a finite number of pathlines were used to quantify Im, since the fitted480

exponential decay for low ne (2.45−x) gives a value of 7.7 × 10−4 for ne = 8, which should be481

the value of Im/I0 in the case that NA → infty.482

3.3. Effect of polymer extensibility483

As mentioned previously, L2 characterises the limit of the extensibility in the FENE484

constitutive models. Reducing L2 in the FENE-CR model causes shear-thinning in N1 to485

occur at lower Wi, and also inhibits the extensional-thickening behaviour. Thus, reducing L2
486

should hypothetically lead to more stable viscoelastic flows for cases in which the extensibility487

causes large growths of polymeric stresses (e.g. flows with stagnation points).488

In this study, we increase the value of L2 between 50 and 5000 for fixed values of Re = 0.49489

and Wi = 0.429. All results discussed previously were for cases in which L2 = 50, and all490

of these simulations reached steady-state. It was observed in the helical static mixer that,491
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for L2 > 50, the flow became time-dependent. Figure 16 shows ∆ as a function of time492

for Re = 0.49 and Wi = 0.429 for the three values of L2 investigated. For L2 = 500 the493

asymmetry, despite being time-dependent, seems to be fairly constant with respect to ne494

for the elements further down the mixer, with ne = 4 and ne = 7 both showing the same495

behaviour in time. It should also be noted that for elements ne = 4 and ne = 7 the sign of ∆496

is opposite to those for L2 = 50. For L2 = 5000, the time dependence appears to be strong497

for ne = 7, with large time fluctuations in ∆ observed, particularly at t/λ ≈ 3 and t/λ ≈ 11.498

However, interestingly, ∆ at ne = 4 appears to be fairly steady in time, albeit much larger in499

magnitude. It is likely expected that for higher degrees of viscoelasticity, brought about by500

either increasing L2 or Wi further, this time dependence will just grow stronger and more501

complex since the system should transition into a chaotic state of elastic turbulence [19].502

Figures 17 and 18 show, respectively, contours of ux at ne = 5 for L2 = 500 and L2 = 5000.503

For L2 = 5000, the asymmetry is significantly stronger than for L2 = 50 and L2 = 500, with504

the flow almost totally bypassing the upcoming element intersection (starting horizontally).505

The previous element is twisting in a clockwise direction, and so the fluid is predominantly506

flowing against the twisting direction (i.e. ∆ < 0).507
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Figure 16: ∆ versus t/λ at various ne for various values of L2. Simulations are initialised with a stationary
field at t = 0.
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(a) t/λ = 2.5 (b) t/λ = 7.5 (c) t/λ = 12.5

Figure 17: Contours of ux at ne = 5 for L2
= 500. Flow direction is into the page, and the flow is just

approaching the horizontal edge of the upcoming element.

(a) t/λ = 2.5 (b) t/λ = 7.5 (c) t/λ = 12.5

Figure 18: Contours of ux at ne = 5 for L2
= 5000. Flow direction is into the page, and the flow is just

approaching the horizontal edge of the upcoming element.

Migliozzi et al. [30] report that the time-dependence of the mixing patterns, captured508

by PLIF, is totally suppressed in the helical static mixer geometry for solutions of Xanthan509
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gum, whereas there is strong time-dependence for increasing elasticity with the PAA solutions510

(Boger fluid). They attribute this to the fact that the Xanthan gum solution is expected511

to have a near-constant extensional viscosity, whereas the PAA solution is expected to be512

strain-thickening in extensional flows. Ramsay et al. [38] also reports time-dependence of the513

flow of a PAA solution in the helical static mixer. Our results are in good agreement with514

the previous experimental results, since, by increasing L2, the strain-thickening behaviour515

of the extensional viscosity is made more pronounced and the shear-thinning of N1 is made516

less pronounced, giving rise to higher elastic normal stresses in complex flows (shear and517

extensional) such as those observed in the static mixer geometry.518

4. Conclusions519

We have used CFD to model viscoelastic fluid flow in a helical static mixer for a range520

of Reynolds and Weissenberg numbers. The results show that the viscoelasticity causes the521

flow to bifurcate asymmetrically at the intersections of the mixer elements, which reduces522

the mixing performance. Increasing viscoelasticity has been found to reduce the mixing523

performance of a helical static mixer in previous experimental studies, and so the numerical524

results from this study are in good agreement with experimental observations. However, with525

the CFD results, we are able to uncover the exact driving mechanism for the reduced mixing526

performance, having access to the necessary flow variables throughout the domain. The527

results greatly help us to understand how the complex rheology affects the mixing process528

in these flows.529

The asymmetry at the element intersections has been quantified for the range of Re and530

Wi studied. It was shown that the sign of the asymmetry parameter (or the direction of531

the ”bending” of the flow relative to the element twisting direction) exhibited complicated532

behaviour when varying Re and Wi. For low Re, the asymmetry parameter was negative533

and increased in magnitude with increasing Wi up until a critical Wi. Beyond this critical534

Wi, the sign of the asymmetry parameter changed abruptly, and the magnitude further535
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increased with increasing Wi, indicating the possible presence of a viscoelastic instability.536

For high Re, the sign of the asymmetry parameter was always positive, and increased with537

increasing Wi. However, the highest magnitudes of the asymmetry parameter (at high Wi)538

were significantly lower for higher Re than for lower Re, indicating that inertia dampens the539

mechanism responsible for the asymmetry. This dampening of the viscoelastic asymmetry540

with increasing Re has been observed in simpler geometries previously. We show that the541

asymmetry parameter does not follow either a perfect or an imperfect pitchfork bifurcation.542

However, for low Re, and for Wi > 0.122, the results suggest that there may be two stable543

solution branches for the asymmetry parameter.544

Increasing the limit of extensibility in the viscoelastic constitutive model (L2) caused545

the simulation to change from steady to transient for intermediate values of Re = 0.49 and546

Wi = 0.43. Previous experimental studies also showed that viscoelastic materials which are547

expected to exhibit more extensibility showed stronger transient behaviour in the helical548

static mixer than those expected to exhibit less extensibility. And so, again, the numerical549

results agree with these experimental observations. The numerical results also show that550

increasing L2 significantly increases the magnitude of the asymmetry, which is likely due to551

the increased extensional viscosity and normal stresses.552

Acknowledgements553

The authors acknowledge the financial support of the Center in Advanced Fluid Engi-554

neering for Digital Manufacturing, UK (CAFE4DM) project (Grant No. EP/R00482X/1)555

35

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4474745

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



References

[1] A M Afonso, P J Oliveira, F T Pinho, and M A Alves. The log-conformation tensor approach in the
finite-volume method framework. Journal of Non-Newtonian Fluid Mechanics, 157:55–65, 2009. ISSN
0377-0257. doi: https://doi.org/10.1016/j.jnnfm.2008.09.007.

[2] A M Afonso, M A Alves, and F T Pinho. Purely elastic instabilities in three-dimensional cross-slot
geometries. Journal of Non-Newtonian Fluid Mechanics, 165:743–751, 2010. ISSN 0377-0257. doi:
https://doi.org/10.1016/j.jnnfm.2010.03.010.

[3] J P Ahrens, B Geveci, and C C Law. Paraview: An end-user tool for large-data visualization. In The
Visualization Handbook, 2005.

[4] M A Alves, P J Oliveira, and F T Pinho. A convergent and universally bounded interpolation scheme
for the treatment of advection. International Journal for Numerical Methods in Fluids, 41:47–75, 1
2003. ISSN 0271-2091. doi: https://doi.org/10.1002/fld.428. https://doi.org/10.1002/fld.428.

[5] M A Alves, P J Oliveira, and F T Pinho. Numerical methods for viscoelastic fluid flows. Annual Review
of Fluid Mechanics, 53:509–541, 1 2021. ISSN 0066-4189. doi: 10.1146/annurev-fluid-010719-060107.
doi: 10.1146/annurev-fluid-010719-060107.

[6] D Balzer, S Varwig, and M Weihrauch. Viscoelasticity of personal care products. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 99:233–246, 1995. ISSN 0927-7757. doi:
https://doi.org/10.1016/0927-7757(95)03144-3.

[7] D V Boger. A highly elastic constant-viscosity fluid. Journal of Non-Newtonian Fluid Mechanics, 3(1):
87–91, 1977. ISSN 0377-0257. doi: 10.1016/0377-0257(77)80014-1.

[8] M Camesasca, I Manas-Zloczower, and M Kaufman. Entropic characterization of mixing in mi-
crochannels. Journal of Micromechanics and Microengineering, 15:2038, 2005. ISSN 0960-1317. doi:
10.1088/0960-1317/15/11/007.

[9] M Camesasca, M Kaufman, and I Manas-Zloczower. Quantifying fluid mixing with the shannon
entropy. Macromolecular Theory and Simulations, 15:595–607, 10 2006. ISSN 1022-1344. doi:
https://doi.org/10.1002/mats.200600037. https://doi.org/10.1002/mats.200600037.

[10] D O Canossi, G Mompean, and S Berti. Elastic turbulence in two-dimensional cross-slot viscoelastic
flows. Europhysics Letters, 129:24002, 2020. ISSN 0295-5075. doi: 10.1209/0295-5075/129/24002.

[11] M D Chilcott and J M Rallison. Creeping flow of dilute polymer solutions past cylinders and
spheres. Journal of Non-Newtonian Fluid Mechanics, 29:381–432, 1988. ISSN 0377-0257. doi:
https://doi.org/10.1016/0377-0257(88)85062-6.

[12] F A Cruz, R J Poole, A M Afonso, F T Pinho, P J Oliveira, and M A Alves. A new viscoelastic
benchmark flow: Stationary bifurcation in a cross-slot. Journal of Non-Newtonian Fluid Mechanics,
214:57–68, 2014. ISSN 0377-0257. doi: https://doi.org/10.1016/j.jnnfm.2014.09.015.

[13] S S Datta, A M Ardekani, P E Arratia, A N Beris, I Bischofberger, G H McKinley, J G Eggers, J Esteban
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