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A B S T R A C T   

Background: Computational models that successfully decode neural activity into speech are increasing in the 
adult literature, with convolutional neural networks (CNNs), backward linear models, and mutual information 
(MI) models all being applied to neural data in relation to speech input. This is not the case in the infant 
literature. 
New method: Three different computational models, two novel for infants, were applied to decode low-frequency 
speech envelope information. Previously-employed backward linear models were compared to novel CNN and 
MI-based models. Fifty infants provided EEG recordings when aged 4, 7, and 11 months, while listening passively 
to natural speech (sung or chanted nursery rhymes) presented by video with a female singer. 
Results: Each model computed speech information for these nursery rhymes in two different low-frequency 
bands, delta and theta, thought to provide different types of linguistic information. All three models demon
strated significant levels of performance for delta-band neural activity from 4 months of age, with two of three 
models also showing significant performance for theta-band activity. All models also demonstrated higher ac
curacy for the delta-band neural responses. None of the models showed developmental (age-related) effects. 
Comparisons with existing methods: The data demonstrate that the choice of algorithm used to decode speech 
envelope information from neural activity in the infant brain determines the developmental conclusions that can 
be drawn. 
Conclusions: The modelling shows that better understanding of the strengths and weaknesses of each modelling 
approach is fundamental to improving our understanding of how the human brain builds a language system.   

1. Introduction 

Studies in adult auditory neuroscience have shown that human 
speech perception relies in part on neural tracking and encoding of the 
speech amplitude envelope (Giraud and Poeppel, 2012). Further, there 
are temporal modulation patterns nested in the speech envelope, which 
are processed at different timescales simultaneously by the adult brain, 
and which appear to relate to different levels of linguistic information 
(Ghitza, 2012; Ghitza and Greenberg, 2009; Gross et al., 2013). For the 
adult brain listening to adult-directed speech (ADS), amplitude modu
lations in the envelope at frequencies corresponding to the oscillatory 

theta band (4 – 8 Hz) appear to be particularly important for speech 
intelligibility (Ghitza, 2012). Further, acoustic “landmarks” (amplitude 
rise times) in the theta range provide perceptual markers that are critical 
for intelligibility: if these rise times are removed, speech becomes un
intelligible (Doelling et al., 2014). The infant brain also shows neural 
tracking of the amplitude envelope of speech (Jessen et al., 2019; 
Kalashnikova et al., 2018; Ortiz Barajas et al., 2021), but whether this 
tracking is functionally important for speech processing is currently 
unknown (Jessen et al., 2021). In contrast to adults, studies with chil
dren show that for the developing brain, amplitude modulations in the 
speech envelope that correspond to the oscillatory delta band (1 – 4 Hz) 

* Corresponding author. 
E-mail addresses: mk919@cam.ac.uk, mahmoud.keshavarzi.ir@ieee.org (M. Keshavarzi).   

1 Current address: Institute of Psychology, Health and Society, University of Liverpool, Waterhouse Building, Block B, Brownlow Street, Liverpool, L69 3GF, UK. 

Contents lists available at ScienceDirect 

Journal of Neuroscience Methods 

journal homepage: www.elsevier.com/locate/jneumeth 

https://doi.org/10.1016/j.jneumeth.2023.110036 
Received 18 April 2023; Received in revised form 11 December 2023; Accepted 15 December 2023   

mailto:mk919@cam.ac.uk
mailto:mahmoud.keshavarzi.ir@ieee.org
www.sciencedirect.com/science/journal/01650270
https://www.elsevier.com/locate/jneumeth
https://doi.org/10.1016/j.jneumeth.2023.110036
https://doi.org/10.1016/j.jneumeth.2023.110036
https://doi.org/10.1016/j.jneumeth.2023.110036
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jneumeth.2023.110036&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Neuroscience Methods 403 (2024) 110036

2

may govern individual differences in language acquisition (Keshavarzi 
et al., 2022a; Goswami, 2022). For example, children with develop
mental dyslexia, who show linguistic impairments regarding the 
development of phonology (the sound structure of speech), exhibit 
impaired encoding of speech envelope information between 0 – 2 Hz 
when listening to sentences (Power et al., 2016). Furthermore, they 
show atypical delta-band oscillatory synchronisation when listening to 
stories (Keshavarzi et al., 2022; Molinaro et al., 2016), and atypical 
phase entrainment in the delta band when presented with rhythmic 
speech (repetition of the syllable “ba” at a 2 Hz rate; Keshavarzi et al., 
2022a; Power et al., 2013). However, phase entrainment in the theta 
band is not different between children with dyslexia and control chil
dren in the rhythmic speech paradigm (Keshavarzi et al., 2022a; Power 
et al., 2013). Accordingly, delta band speech information may play a 
critical role in the development of a language system, as individual 
differences in delta entrainment are those related to language develop
ment for child populations. Regarding infants, a recent backward linear 
modelling study using EEG gathered from 55 infants listening to natural 
speech is supportive of this possibility (Attaheri et al., 2022a). 

In the adult speech reconstruction literature, neural tracking in 
auditory cortex is dominant in the delta, theta and gamma (35 Hz+) 
frequency bands, which are thought to yield different types of linguistic 
information (Giraud and Poeppel, 2012). Theta band cortical tracking 
identifies the onsets of syllables, which may contribute to speech parsing 
(Ding and Simon, 2014; Di Liberto et al., 2015; Keshavarzi et al., 2020; 
Keshavarzi and Reichenbach, 2020). Cortical activity in the delta band 
tracks phrasal and discourse-level information, contributing to encoding 
syntactic and semantic information in the speech signal (Broderick et al., 
2018; Ding et al., 2016; Weissbart et al., 2020), and gamma band ac
tivity is thought to be related to phoneme-level processing (Giraud and 
Poeppel, 2012). Adult speech reconstruction/decoding studies have 
relied on a range of computational methods to find the best approxi
mation of the acoustic stimulus from the population of evoked neural 
activity. Speech reconstruction was originally proposed as a method to 
study the representational properties of the neural populations, enabling 
intuitive interpretation given that the cognitive features of the target 
(the meaning of the speech inputs) were known. Early applications of 
decoding methods led to novel insights, for example the responses in 
auditory cortex in the neural theta band were shown to distinguish be
tween individual sentences heard by listening adults (Luo and Poeppel, 
2007). Latterly, speech reconstruction studies have progressed to being 
able to decode the brain activity generated during imagined word 
recognition (Pei et al., 2011) and even silent reading (Martin et al., 
2014). A range of inverse mapping techniques have been employed to 
find the best approximation of the acoustic stimulus from the population 
of evoked neural activity (Crosse et al., 2015; Mesgarani et al., 2009; 
O’Sullivan et al., 2015; Pasley et al., 2012). The early literature was 
focused on mutual information (MI) and forward linear models (for 
example, see Gross et al., 2013; Cogan and Poeppel, 2011; Di Liberto 
et al., 2018a, 2018b; Di Liberto et al., 2015; Haufe et al., 2014; Mes
garani et al., 2014). Although informative and now highly popular, 
linear models have not offered the quality of speech reconstruction that 
would be required to build a brain-computer-interface for use by in
dividuals who are unable to communicate as a result of neurological 
impairments (Anumanchipalli et al., 2019). Accordingly, a range of deep 
learning methods are currently being utilised for adult speech recon
struction studies, typically via creating recurrent neural network models 
that either use all the neural frequency bands (delta, theta, beta, alpha, 
low and high gamma) to estimate the parameters of a speech vocoder 
directly (Akbari et al., 2019), or recurrent networks that decode neural 
activity into representations of articulatory movement, and then trans
form these representations into speech acoustics (Anumanchipalli et al., 
2019). 

The developmental literature has not kept pace with these technical 
advances. Despite a recent tutorial regarding the use of linear speech 
reconstruction methods with infants, contrasting different linear models 

using EEG data from 10 infants (Jessen et al., 2021), other modelling 
techniques utilised with adults have yet to be applied to infant data. For 
example, convolutional neural networks (CNNs) have not yet been 
applied to infant data prior to our project (the Cambridge UK Baby
Rhythm project, see Gibbon et al., 2021). Studies aiming to find the best 
approximation of a speech stimulus from the population of evoked 
neural activity with children and infants typically use either simple 
cross-correlation techniques to estimate speech envelope tracking (in 
which amplitude peaks in the speech envelope are correlated with peaks 
in the broadband neural response (Ortiz et al., 2021; Abrams et al., 
2009; Power et al., 2012), or linear modelling techniques in which the 
speech stimulus is used to estimate the neural response (Jessen et al., 
2019; Kalashnikova et al., 2018; Power et al., 2016; Di Liberto et al., 
2018a, 2018b). Regarding infants, there are some published studies 
employing linear methods with natural speech, such as Jessen et al. 
(2019) and Kalashnikova et al. (2018) which both used forward linear 
models with 7-month-old infants learning either German (55 infants) or 
English (12 infants), Attaheri et al. (2022a) which used a backward 
linear model with 55 English-learning infants, and Jessen et al. (2021) 
which applied both forward and backward linear models to EEG data 
from 10 German-learning infants. There is also an EEG study with 
newborn infants exposed to either French, English or Spanish (Ortiz 
et al., 2021), however this study only measured neural tracking of the 
broadband speech envelope via a simple cross-correlation method. All 
these studies concluded that neural tracking of natural speech had been 
demonstrated for infants. However, none of these prior studies included 
longitudinal data to assess potential developmental changes. Further, 
nuanced linguistic conclusions were not possible, as analyses were based 
on the broadband speech envelope, with no consideration of the 
different frequencies nested in the envelope, which are thought to 
contain different types of linguistic information. 

In the current report, we apply novel speech decoding methods 
regarding infant neural data (CNN; MI), and also apply a backward 
linear model as in Attaheri et al. (2022a), but selecting different portions 
of data for testing and training the model and different parameters, in 
order to see whether such choices affect model outcomes. In each case 
we compute and compare speech information in two neural frequency 
bands (delta and theta). The backward linear and CNN models were 
chosen because infant data is typically noisy and recording sessions must 
be relatively short, thus it may be useful for researchers to know if either 
the deep learning or the linear approach is superior for working with 
such data. Whereas these two approaches aim to reconstruct the stim
ulus envelopes from the neural data, the MI uses the actual stimulus 
envelopes and neural responses to estimate the amount of common in
formation between them. Furthermore, the MI model does not require 
any training or testing procedures, parameter-tuning, or mathematical 
problem optimisation. The primary research questions were whether 
infants’ neural activity represents speech in a form that encodes 
different kinds of linguistic information (delta-band and theta-band 
speech envelope information), and whether the different methods for 
estimating speech encoding will give converging results. Based on our 
prior infant neural speech research (Attaheri et al., 2022a; Di Liberto 
et al., 2023), we expected that the delta-band model outputs would be 
significantly more accurate than the theta-band outputs. We also 
tentatively predicted a developmental decrease with age regarding 
delta-band speech information, and a developmental increase with age 
regarding theta-band speech information (Attaheri et al., 2022a; Di 
Liberto et al., 2023). Although it is not possible to directly compare the 
models due to their different output units, we anticipate convergent 
results, with the above predictions holding across models. Furthermore, 
we expect that infant datasets that rank highly in terms of decoding 
accuracy in one model, will also rank highly in the other models. This 
would suggest that the models are all picking up on a common neural 
feature of speech tracking. Similarly, if the different computational ap
proaches give similar results regarding potential age-related changes in 
representing speech information, this will enable reliable conclusions to 
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be drawn about the earliest developmental factors involved in creating a 
linguistic brain. Any divergence in results may indicate that one model 
outperforms the others, or that they are each using different features to 
decode the neural speech response. 

It should be noted that the analysis of high frequency bands such as 
the EEG gamma band data can be technically challenging due the high 
level of noise in infant data, hence we focused on the frequency ranges 
that are more readily accessible and reliably measured in this age group. 
Our concentration on delta and theta frequencies allows us to investigate 
neural processes that are more relevant to the initial stages of language 
acquisition and comprehension, which may not involve gamma 
oscillations. 

2. Methods 

2.1. Participants 

EEG was recorded from 50 infants participating in a longitudinal 
study investigating the relation between neural rhythmic entrainment 
and language acquisition. There were no exclusion criteria for this 
community convenience sample, and the 50 participants included were 
those whose EEG data was available for modelling when this study 
began. The study was reviewed by the Psychology Research Ethics 
Committee of the University of Cambridge. Parents gave written 
informed consent after a detailed explanation of the study and families 
were repeatedly reminded that they could withdraw from the study at 
any point during the repeated appointments. For the current modelling, 
some participants’ EEG recordings were excluded due to missed ap
pointments or unusable data. Thirty-five infants provided data at all 
three timepoints, eleven at two timepoints, and four at one timepoint 
only. Forty-three infants were included in the 4-month sample, 42 in the 
7-month sample, and 45 in the 11-month sample. Reasons for data 
exclusion include technical issues (e.g. stimulus information not marked 
in the EEG file), infants sitting for fewer than 2 repetitions of the nursery 
rhymes, and infants providing too few trials after preprocessing (fewer 
than half of the 83 nursery rhymes phrases). 

2.2. Acoustic stimuli and materials 

83 nursery rhyme phrases such as “Baa baa black sheep have you any 
wool?” with a sampling rate of 4800 Hz were analysed as linguistic 
stimuli for each participant. The length of each stimulus was between 
3.5 s and 6 s (mean length ± SD: 4.23 s ± 0.88). 

2.3. EEG signal acquisition, EEG signal processing and acoustic stimuli 
pre-processing 

Parents were seated in an electrically shielded room and either held 
their infants (4-month recordings) or the infant was seated in an infant 
chair. Both infant and parent were presented acoustic stimuli and EEG 
data were collected concurrently using a 64 channel EGI Geodesic 
Sensor Net system. We excluded 4 facial electrodes, leaving us 60 EEG 
channels for the analyses. The sampling rate for the data acquisition was 
1000 Hz. The MATLAB EEGLAB toolbox (Delorme and Makeig, 2004) 
was then used to pre-process EEG data. For each participant, EEG data 
were band-pass filtered between 0.5 Hz and 45 Hz (using a zero phase 
FIR filter, low cutoff (− 6 dB): 0.25 Hz, high cutoff (− 6 dB): 45.25 Hz). 
Probability and kurtosis (built-in functions available in EEGLab toolbox) 
were used to detect bad channels and were interpolated if they were 3 
SD away from the average. The data was then referenced to the global 
average (of the 60 channels) and epoched into the 83 individual trials. 
Bad channel detection and interpolation were again performed per 
epoch. The average number of interpolated channels were approxi
mately 7 for 4 months, 6 for 7 months, 7 for 11 months. The data was 
next band-pass filtered to extract either delta band (using a zero phase 
IIR filter, low cutoff (− 3 dB): 1 Hz, high cutoff (− 3 dB): 4 Hz, order: 6) or 

theta band (using a zero phase IIR filter, low cutoff (− 3 dB): 4 Hz, high 
cutoff (− 3 dB): 8 Hz, order: 6). On the other hand, stimuli envelopes 
were computed as the absolute value of the analytical signal (that was 
obtained through the Hilbert transform) of the stimuli. It should be 
noted that the amplitude envelope was only calculated for the auditory 
stimuli (nursery rhymes phrases). The envelopes were then band-pass 
filtered in frequency range 1 – 8 Hz (using a zero phase IIR filter, low 
cutoff (− 3 dB): 1 Hz, high cutoff (− 3 dB): 8 Hz, order: 6). Both EEG and 
stimuli envelopes were downsampled to 50 Hz. 

3. Computational models 

Here three computational models were used to analyse the data: 

3.1. Backward linear model 

The first model was based on a linear mapping between stimuli and 
neural responses. This model reconstructs the stimuli envelopes using 
the backward linear model (Crosse et al., 2016) which is given by: 

ŝ(t) =
∑

n

∑

τ
r(t+ τ, n)g(τ, n) (1)  

where ̂s(t) is the reconstructed stimulus, r(t +τ, n) is the neural response 
at channel n and time lag τ, g(τ, n) is a decoder representing the linear 
mapping from the neural response to the corresponding stimulus for 
time lag τ and channel n. The decoder was also estimated by minimizing 
the mean square error between actual and reconstructed stimuli. 

The minimum and maximum time lags were τmin = − 100ms and 
τmax = 300ms, respectively. The validation approach was the “leave- 
one-out” cross-validation (using mTRFcrossval function from the mTRF 
Toobox, Crosse et al., 2016) in which each trial (stimulus-response) is 
“left out” or used for testing and the remainder are used to train the 
model and this procedure is repeated across all trials. This validation 
approach was exclusively employed to determine the optimal ridge 
parameter (λ) from a range of candidates (λ = 100, 101, …, 1010). The 
optimal value for the ridge parameter was selected based on the one that 
yielded the highest average correlation score during this process. Sub
sequently, this identified optimal value was utilised to train the model. 
Here about 80% of data were used to train the model and the rest of data 
was employed for testing it. The decision to use 80% of the data for 
training the model was based on a considered trade-off between model 
performance and data preservation. Allocating too much data for 
training might increase the risk of overfitting, where the model becomes 
overly specialised to the training data and performs poorly on new, 
unseen data. By reserving 20% of the data for testing, we aimed to 
achieve a balance that helps prevent overfitting while still allowing the 
model to learn effectively. After reconstructing stimuli for participant j, 
the average correlation score Corr(j)av was calculated by: 

Corr(j)av =
1

Mj

∑Mj

m=1
ρ(j)

m (2)  

where ρ(j)
m is the correlation value between the mth reconstructed stim

ulus and the mth actual stimulus for the participant j. It should be noted 
that we set ρ(j)m to zero if the correlation between the mth reconstructed 
envelope and the corresponding actual envelope was negative. Infant 
EEG data is known to be particularly susceptible to various sources of 
noise such as movement artifacts. Negative correlations in our analysis 
could potentially be attributed to such noise rather than representing 
meaningful relationships between the EEG data and the speech enve
lope. By setting these negative correlations to zero, we aimed to focus 
our analysis on the stronger, more reliable associations, thus enhancing 
the quality and robustness of our results. 
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3.2. CNN 

Over the past few decades, artificial neural networks (ANN) have 
been widely used to achieve significant improvements in many tasks in 
vision, hearing, neuroscience, and language domains. ANNs can be 
generally categorised into three main architectures (Keshavarzi et al., 
2018): feed-forward deep neural networks, recurrent neural networks, 
and CNN. Among these, CNNs have achieved the best performance to 
process two-dimensional data such as image and EEG/MEG data in tasks 
like recognition, segmentation, detection, and retrieval (Karpathy et al., 
2014). 

The CNN here consisted of three main layers: (1) Two-dimensional 
(2D) convolutional layer (with 30 filters of size [4 4] and a stride of 
[2 2], ReLU activation function and dropout); (2) max pooling layer 
(with pool size [2 2] and stride [2 2]); (3) fully connected layer (with 75 
units). Fig. 1 shows the schematic diagram of the CNN algorithm. Here 
we consider EEG data as a series of 2D matrices, where each matrix 
serves as a snapshot capturing the brain’s electrical activity. Within 
these matrices, one dimension represents the progression over time, 
creating a timeline of recorded brain signals. Simultaneously, the other 
dimension corresponds to the various EEG channels. This transforms the 
EEG data into an image-like structure, where each single point in time 
represents a spatially interconnected pattern of electrical activity. This 
conceptual framework is very effective as it allows us to explore the 
spatial correlations that dynamically exist between EEG channels over 
the recorded time interval. We chose 2D CNN models for our EEG data 
because they can effectively capture both temporal and spatial infor
mation. The term “spatial” in this context is specifically related to the 2D 
matrices which represent the EEG data. 2D CNNs excel in capturing 
spatial dependencies, a crucial aspect of EEG data for predictive per
formance. These models have a track record of success in EEG-related 
tasks, including brain-computer interfaces and EEG analysis (such as 
Schirrmeister et al., 2017; Lawhern et al., 2018; Gibbon et al., 2021). 

Our primary goal was to estimate the speech envelope using the model 
applied to EEG data. In this task, we aimed to capture temporal de
pendencies and patterns across the EEG channels to achieve accurate 
estimations. We used an iterative approach to fine-tune our model pa
rameters. We particularly explored various hyperparameter settings, 
such as network architecture, filter sizes, batch sizes, number of epochs, 
pooling strategies, and learning rates. While our focus in this study was 
on tuning these crucial parameters, consistent with previous studies, the 
impact of channel order was not investigated. However, it is important 
to note that factors such as selection of channels in a specific order may 
capture particular relationships and localised features within the EEG 
data. Accordingly, different channel orders could potentially lead to 
different spatial representations, which could be explored in future 
work. A MATLAB toolbox named “Deep Learning Toolbox” was used to 
construct, train, and test the CNN. The resilient back- propagation al
gorithm “RMSprop” (Riedmiller and Braun, 1993) was employed as the 
optimizer function to minimize the mean square error in the training 
algorithm. The learning rate was also initialized to 0.01 and decreased 
by a factor of 0.9 after each training run (a run was based on using whole 
training data once, Keshavarzi et al., 2018). The batch size was 4, and 50 
training runs were performed. 

The CNN took features (short frames of filtered EEG in this study) 
extracted from the neural responses as its input and predicted the cor
responding stimulus envelop as the target. The actual stimulus envelope 
(as the output of network) was segmented into frames with a duration of 
1.5 s (75 samples) and with no overlapping between successive frames. 
In pilot work, it was found that CNN had a better performance to esti
mate stimuli envelopes when the frame duration was 75 samples as 
compared to 25 samples, 50 samples, 100 samples. The neural responses 
(as the input of network) were also windowed into frames with the 
duration of 2 s (100 samples) and an overlap of 25% (25 samples) be
tween successive frames. The purpose of this overlapping was to 
compensate the delay between the stimulus and its corresponding 

Fig. 1. Schematic diagram of the CNN algorithm and the envelope-reconstruction framework. Panels A and B show the training and testing procedures, respectively. 
The network consists of three main layers. It takes frames of pre-processed neural responses and predicts the envelope of the corresponding acoustic stimulus. 
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response. 
The EEG data for each participant was divided into training, vali

dation, and testing datasets. Accordingly, 70% of data were used to train 
the network, 10% was employed for validation, and the remaining 20% 
for testing the network. Again, the choice of these percentages was based 
on the trade-off between model performance and the preservation of 
data. Finally, the average correlation score was calculated using Eq. (2). 
It is important to note that these percentages were applied separately for 
data from each infant, and a single model was built separately for each 
infant. 

3.3. MI 

The MI between two random variables is defined as a measure of the 
amount of information that one random variable contains about another 
random variable (Cover, 1999). It is nonlinear, non-negative, and is zero 
if and only if the variables are statistically independent. The MI between 
two random variables R = {r1, r2,…, rT} and S = {s1, s2,…, sT} is 
mathematically given by (Cover, 1999): 

I(S;R) =
∑

r∈R

∑

s∈S
P(s, r)log

P(s, r)
P(s)P(r)

(3)  

where P(s) and P(r) are the marginal distributions of variables S and R, 
respectively, and P(s, r) is the joint distribution of these variables. Here 
marginal and joint distributions were estimated using the Gaussian 
kernel estimator (Qiu et al., 2009): 

P(s) =
1

̅̅̅̅̅̅̅̅̅̅
2πb2

√
T

∑T

t=1
e−

1
2b2(s− st)

2
(4)  

P(r) =
1

̅̅̅̅̅̅̅̅̅̅
2πb2

√
T

∑T

t=1
e−

1
2b2(r− rt)

2
(5)  

P(s, r) =
1

̅̅̅̅̅̅̅̅̅̅
2πb2

√
T

∑T

t=1
e−

1
2b2 [(s− st)

2+(r− rt)
2 ] (6)  

where b is called bandwidth which acts as the parameter tuning the 
kernel function (Qiu et al., 2009). As the MI is an expectation value with 
respect to joint distribution of S and R, it can be estimated using data 
samples drawn from densities (Thomas et al., 2014): 

Î(S;R) = 〈log
(

P(s, r)
P(s)P(r)

)

〉 =
1
T

∑T

t=1
log

(
P(st, rt)

P(st)P(rt)

)

(7) 

In this study, MI was used as a metric to measure the amount of in
formation that neural responses give about the actual stimuli envelopes. 
To this end, we obtained the average MI for each individual using three 
steps: (1) Calculating the MI score between each stimulus and each 
channel (electrode) of its neural response independently; (2) Calculating 
the MI score for each pair of stimulus-response by averaging across all 
channels; (3) Calculating the mean MI by averaging across all pairs of 
stimulus-response. The mean MI score for participant j was given by: 

I(j)av =
1

MjNj

∑Mj

m=1

∑Nj

n=1
Î
(
S(j)

m ;R(j)
mn

)
(8)  

where Mj and Nj are the number of stimuli and the number of EEG 
channels, respectively, S(j)

m is the mth stimulus, and R(j)
mn is the mth neural 

response at channel n. 

3.4. Chance level calculation by participant 

To assess whether the accuracy scores obtained from computation 
methods were above chance, null models were computed separately for 
each method and for each frequency band. To this end, the neural 
response data were first permuted across different trials separately for 
each individual infant, age, band and method, while the stimuli 

envelopes were kept as before. We then calculated the permuted 
decoding scores separately for each computational method and for each 
infant at each age in each frequency band. This procedure was per
formed 100 times for each infant, age, band and method, yielding 100 
random “accuracy” scores corresponding to each respective infant-band- 
age-method. The mean individual chance level per participant for each 
infant-band-age-method was finally obtained by averaging across these 
100 scores in each case. These real versus random scores for each 
participant were used as a basis for creating the LMEM models, which 
included all theoretical factors of interest (age and frequency band) for 
each model, enabling a complete comparison of the modelling ap
proaches. This approach also allows for each model to be evaluated 
using a single statistical test, in contrast to the more typical group-level 
approach (see below) which requires a separate test for each combina
tion of age and frequency band. 

3.5. Chance level calculation by group 

To evaluate the group statistical significance of decoding accuracy 
for each band-age-method combination, we again calculated the null 
distribution associated to each such combination. We determined the 
critical decoding score within each null model, corresponding to a sig
nificance level of p = 0.05. This score, representing the boundary for 
chance in each case, was compared to the average group decoding scores 
obtained from the actual data for that particular age-band combination. 
This enabled us to compare group-level performance (4-months, 7- 
months, 11-months) against chance. As noted in Section 3.4, to fully 
compare the three models, group-level statistical significance was not 
considered when running the participant-level LMEM analyses, as the 
LMEM models utilise random data generated for each participant. 

3.6. Statistical analysis 

Linear mixed effects regressions were run on the output values from 
each model, using both the real data and the matched chance-level 
values that were generated for each participant (see Section 3.4). 
These tests examined the effects of frequency band (delta or theta), age 
(4, 7 or 11 months) and data type (real or chance level) on the decoding 
accuracy values of each model, as well as the interactions between each 
of these factors, at the level of individual infants rather than the group. 
There was a random intercept on participant identity and a random 
slope on age. The regressions were performed in R using the lmerTest 
package (Kuznetsova et al., 2017). 

We also examined similarities between the decoding models. The 
output values from each model are not directly comparable because they 
rely on different principles. Nonetheless, if the models are using the 
same features of the data to decode it, we would expect to find that the 
infant whose data had the highest decoding values in one model, would 
also be among the highest values in the other models. Likewise, the 
infant with the lowest decoding value in one model would also have low 
decoding values in other models. To test this, we used Spearman rank 
order correlations. We examined each model pairing and each age group 
separately. To limit the number of comparisons, we used delta band 
values only, as we hypothesised that this band would have the highest 
reconstruction values in the linear mixed effects regressions (see Atta
heri et al., 2022a). 

4. Results 

Linear mixed effects regressions were used to analyse the participant- 
level data (see Section 3.4) using lme4 and lmerTest in R software. As 
this is hypothesis-driven work, all factors expected to have an effect on 
the results were included in these linear mixed effects models, namely 
age, frequency band, and data type (real or chance level), as well as their 
interactions, with random intercepts on participant identity. Base cases 
for all models were the random data, the theta band, and the four-month 
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age group. Three models were run, one for each decoding approach. 
Before reporting the simple effects of these models, we report the results 
of Satterthwaite-corrected ANOVAs run on the models, to show whether 
each variable made a significant contribution to each of the three 
models. These results are reported in Table 1. Also reported in Table 1 
are the results of Chi-square tests comparing whether the statistical 
models describe the data significantly better than an equivalent model 
containing only random effects (i.e. the intercept on participant iden
tity). As can be seen, all Chi-square tests were significant, indicating that 
all 3 models performed better than a random effects-only model. Both 
the type of data (real or chance-level) and the frequency band (delta vs 
theta) significantly affected model fit. 

4.1. Backward linear model 

The backward linear model reconstructed the stimulus envelopes (1 
– 8 Hz) using the neural responses filtered in either a 1 – 4 Hz band or a 4 
– 8 Hz band, henceforth “delta” and “theta” bands respectively. Please 
note that the delta band filter previously used with these infants in 
Attaheri et al. (2022a) was 0.5 – 4 Hz. To assess the statistical signifi
cance of decoding accuracy by group for each band-age separately, we 
computed the null distribution specific to each band-age using the 
permuted data (see Section 3.5). Subsequently, we determined the 
correlation value in the null model corresponding to p = 0.05 (see 
Section 3.5). The statistical significance for each band-age is presented 
in Fig. S1 (see Supplementary Information). The results revealed that at 
the group level, decoding accuracy was significantly higher than chance 
only for the 4-month and 11-month age groups in both the delta and 
theta bands. The 7-month data did not exceed chance values. 

For a complete factorial comparison of all models, we retained the 7- 
month data for the participant-level LMEM analyses. We selected 
different portions of data for testing and training the model. The 
resulting correlation values provide an estimate of how accurately the 
stimulus envelope could be reconstructed from the neural response, 
corresponding to the correlation between the filtered envelopes of the 
nursery rhyme stimuli and the reconstructed envelopes. To obtain these 
accuracy scores, up to six backward linear models were created for each 
infant separately – one for each of the frequency bands, at each of three 
different timepoints – 4 months, 7 months, and 11 months of age. The 
data are shown in Fig. 2 and the model estimates in Table 2. In Fig. 2, the 
horizontal red lines illustrate the mean chance level obtained from the 
permutation test (as described in Section 3.4) for each age and each 
band. As can be seen, at the participant level the average accuracy score 
obtained from the real data is higher than the average chance level at all 
ages tested, including the 7-months infants. 

The model estimates (see Table 2) indicate that overall, the delta 

band data showed significantly higher decoding values than the theta 
band data, p < 0.0001. There was also an interaction between band and 
data type (p = 0.023), showing that real data were decoded more 
accurately than random data, but only in the delta band. Accordingly, 
the backward linear model could successfully decode the envelope from 
the EEG data, but only from the delta band EEG and not from the theta 
band EEG. Taken together with the group analyses (Fig. S1 in Supple
mentary Information), the conservative conclusion is that delta-band 
decoding using an mTRF approach is only reliable at 4 and 11 months. 

4.2. CNN 

The second algorithm applied to the data was a CNN. The target 
outcome for the CNN was to predict the envelopes of the stimuli filtered 
to 1 – 8 Hz. The input was the neural responses filtered in either the delta 
(1 – 4 Hz) or theta (4 – 8 Hz) band. The correlation between the actual 
envelopes and those estimated from each infant’s neural data was 
calculated for both delta and theta bands at all three time-points, and for 
both real and random data (see Fig. 3 and Section 3.4). To assess the 
statistical significance of decoding accuracy for each band-age grouping 
separately, we again computed the null distribution specific to each 
band-age using the permuted data (see Section 3.5). The statistical sig
nificance for each band-age is presented in Fig. S2 (see Supplementary 
Information). For the CNN models, decoding accuracy was significantly 
higher than chance for all band-age combinations excepting the 4-month 
delta band data. 

The results of the linear mixed effects model at the participant level 
(Section 3.4) are reported in Table 3. There was a significant effect of 
data type, indicating that the CNN decoded the EEG data significantly 
better than the randomly permuted data, that is, it was decoded at an 
above-chance level (p = 0.047, see Table 3). This was true across the 
sample, as the 4-month data were used as the base case in this com
parison and although the estimates on the interactions between 7-month 
and 11-month age groups and the real data type were positive (indi
cating a better performance relative to chance at these ages), they were 
non-significant (p = 0.915 and p = 0.095 respectively). There was a 
significant effect of frequency band, with the model showing higher 
decoding values for the delta band than for the theta band data 
(p = 0.0005). There was also an interaction between delta band and real 
data, p = 0.023. This shows that the CNN produces higher decoding 
accuracy scores for the delta band compared to the theta band, for the 
real data only. Whereas the backward linear model was only able to 
decode delta band data at an above-chance level, the CNN decodes both 
delta and theta at an above chance level – and is also more accurate for 
delta than for theta. Taken together with the group analyses (Fig. S2 in 
Supplementary Information), the conservative conclusion is that delta- 
band decoding of the speech signal using a CNN approach is reliable 
at 7 and 11 months, while theta-band decoding is reliable using a CNN 
approach at all ages. 

4.3. MI 

Finally, we calculated the MI between the actual stimulus envelopes 
filtered in the frequency range of 1 – 8 Hz and the neural responses 
filtered in either the delta (1 – 4 Hz) or theta (4 – 8 Hz) band for the 4-, 7- 
, and 11-month infants respectively. To assess the statistical significance 
of decoding accuracy for each band-age grouping separately, we again 
computed the null distribution specific to each band-age using the 
permuted data (see Section 3.5). The statistical significance for each 
band-age is presented in Fig. S3 (see Supplementary Information). The 
results revealed that decoding accuracy in the MI model was signifi
cantly greater than chance at the group level for all band-age 
combinations. 

The LMEM ANOVAs (see Table 4) for the MI model showed higher 
decoding values for real than random data overall (see Fig. 4), indicating 
that the model could decode both delta and theta band information 

Table 1 
Satterthwaite-corrected ANOVA results illustrating whether each factor made a 
significant contribution to the statistical model. Final row shows results of chi- 
square test comparing the statistical model to a random effects-only model.  

Variable Backward Linear CNN MI 

Age F(2, 54) = 3.13 F(2, 45) = 0.714 F(2, 46) = 1.397 
Band F(1, 423) 

= 974.21*** 
F(1, 381) 
= 70.05*** 

F(1, 381) 
= 14,1150*** 

Type (real or 
chance) 

F(1, 423) 
= 22.68*** 

F(1, 381) 
= 56.55*** 

F(1, 381) 
= 561.95*** 

Age * Band F(2, 423) = 2.05 F(2, 381) = 0.28 F(2, 381) 
= 16.392*** 

Age * Type F(2, 423) = 1.51 F(2, 381) = 3.03 F(2, 381) = 0.514 
Band * Type F(1, 423) = 5.99* F(1, 381) = 0.33 F(1, 381) 

= 167.92*** 

Age*Band*Type F(2, 423) = 0.57 F(2, 381) = 0.02 F(2, 381) = 0.109 
Chi-square 561.21*** 120.16*** 2759*** 

** p < 0.01. 
* p < 0.05. 
*** p < 0.001 
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Fig. 2. The backward linear model accuracy scores for the three ages 4-, 7- and 11-month infants and for both delta and theta bands. The violin plots show the mean 
accuracy scores (Pearson correlation values). The horizontal black lines denote the average values and horizontal red lines denoted the mean chance level values. 
Please note that the discrepancy between the tail of the violin plot appearing below zero while all the scores are positive is a result of the visualization method used 
and does not indicate negative values in the data. Violin plots are constructed by mirroring and stacking density plots, which show the distribution of data values. In 
our case, there were no negative values in the dataset. The appearance of the tail below zero is attributable to the way the density estimation is presented in the plot. 

Table 2 
The results of the mixed effect linear regression for the backward linear model.  

Variable Beta 
coefficient 

Standard 
error 

t-value p-value 

7 months (vs 4 months)  0.00003  0.004 0.006 0.995 
11 months (vs 4 

months)  
0.0004  0.004 0.091 0.928 

Delta (vs Theta)  0.052  0.004 12.248 <0.0001 
Real (vs Rand)  0.005  0.004 1.278 0.202 
7 months*Delta  -0.004  0.006 -0.656 0.512 
11 months*Delta  -0.003  0.006 -0.503 0.615 
7 months*Real  -0.003  0.006 -0.54 0.59 
11 months*Real  -0.001  0.006 -0.172 0.863 
Delta*Real  0.014  0.006 2.275 0.023 
7 months*Delta*Real  -0.008  0.009 -0.94 0.348 
11 months*Delta*Real  -0.008  0.008 -0.902 0.368 
Intercept  0.04  0.003 12.919 <0.0001  

Fig. 3. The CNN accuracy scores for the three ages 4-, 7- and 11-month infants and for both delta and theta bands. The violin plots show the mean accuracy scores 
(Pearson correlation values). The horizontal black lines denote the average values and horizontal red lines denote the mean chance level values. 

Table 3 
The results of the mixed effect linear regression for the CNN model.  

Variable Beta 
coefficient 

Standard 
error 

t-value p-value 

7 months (vs 4 months) -0.0006  0.006 -0.108 0.914 
11 months (vs 4 months) -0.002  0.006 -0.312 0.755 
Delta (vs Theta) 0.02  0.006 3.492 0.0005 
Real (vs Rand) 0.012  0.006 1.996 0.047 
7 months*Delta -0.002  0.008 -0.261 0.794 
11 months*Delta -0.003  0.008 -0.421 0.674 
7 months*Real 0.0009  0.008 0.107 0.915 
11 months*Real 0.014  0.008 1.672 0.095 
Delta*Real 0.003  0.006 2.275 0.023 
7 months*Delta*Real 0.0002  0.012 0.015 0.988 
11 months*Delta*Real -0.002  0.011 -0.156 0.876 
Intercept 0.101  0.004 23.126 <0.0001  
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accurately. The model showed both an overall effect of delta versus theta 
band (p < 0.0001), as well as an interaction between delta band and real 
data, which shows that significantly higher decoding accuracy was 
achieved for delta band EEG data. The significant interaction between 
the delta band and the eleven-month age group also suggests higher 
decoding values for delta band information for the older infants but, 
without an interaction with real (versus random) data, we cannot say 
that this equates to greater accuracy of decoding at age 11 months. 
Nonetheless, the MI results overall indicate that this modelling approach 
could decode both delta and theta band information at an above-chance 
level, and that accuracy was better for the delta band than for the theta 
band EEG. Taken together with the group analyses (Fig. S3 in Supple
mentary Information), which all exceeded chance levels, the MI 
modelling suggests that infant EEG recorded in response to sung speech 
yields decoding estimates that are reliably above chance for both the 
delta and theta frequency bands at all ages. 

4.4. Relations between the models 

In order to establish whether infant data sets that ranked highly in 
terms of decoding accuracy in one model would also rank highly in the 
other models, Spearman rank order correlations for real delta band data 
were computed and are reported in Table 5 for all models, irrespective of 
whether the group data were significantly above chance (as these cor
relations are based on individual participant pairings). The correlations 
show greater similarity for the rankings for the linear and CNN models 

compared to the other model pairings. Note that the two linear models 
rank the 4-month delta band data similarly, even though group decoding 
values for the CNN model were not significantly above chance. Further, 
the rankings of the infants with the highest to lowest decoding values 
produced by the MI model were not significantly related to those of the 
other models. This suggests that the features used by the MI decoding 
models were different from the other models. This is interesting, as only 
the MI model consistently yielded above-chance decoding of delta-band 
information at all ages studied. 

5. Discussion 

Here we investigated whether different modelling approaches drawn 
from the adult speech reconstruction literature would converge on 
similar results when representing the acoustic stimulus (sung speech) 
from neural activity measured in infants. The main finding was that 
although the different computational approaches broadly converged in 
most respects regarding the representation of delta-band speech infor
mation in the infant brain, there was less convergence regarding the 
representation of theta-band speech information. In accord with our 
primary research question, all models suggested that infants’ neural 
activity is representing speech information, as real data was significantly 
different from random data in all three models according to LMEM an
alyses. Regarding whether infants’ neural activity is representing speech 
information in at least two frequency bands that may encode different 
kinds of linguistic information (delta and theta), both backward linear 
and CNN models differed from the MI model. Regarding the two linear 
models, only the CNN model showed above-chance decoding of theta- 
band information at all three ages studied. Both models showed 
above-chance decoding of delta band information, but at different ages 
(4 and 11 months for the backward linear model, 7 and 11 months for 

Table 4 
The results of the mixed effect linear regression for the MI model.  

Variable Beta 
coefficient 

Standard 
error 

t-value p-value 

7 months (vs 4 months) -0.0005  0.0006 -0.78 0.437 
11 months (vs 4 

months) 
-0.0009  0.0007 -1.305 0.294 

Delta (vs Theta) 0.071  0.0005 145.354 <0.0001 
Real (vs Rand) 0.002  0.0005 4.145 <0.0001 
7 months*Delta 0.0008  0.0007 1.12 0.264 
11 months*Delta 0.002  0.0007 3.635 0.0003 
7 months*Real 0.00007  0.0007 0.108 0.915 
11 months*Real 0.0003  0.0007 0.379 0.705 
Delta*Real 0.005  0.007 7.243 <0.0001 
7 months*Delta*Real 0.00004  0.001 0.036 0.971 
11 months*Delta*Real 0.0004  0.001 0.421 0.674 
Intercept 0.148  0.0005 290.656 <0.0001  

Fig. 4. The MI accuracy scores for the three ages 4-, 7- and 11-month infants and for both delta and theta bands. The violin plots show the mean accuracy scores 
(Pearson correlation values). The horizontal black lines denote average values and red lines denote the mean chance level values. 

Table 5 
Spearman rank order correlations of real data delta band decoding values by age 
group and decoding approach.  

Age Linear vs CNN Linear vs MI CNN vs MI 

4 months ρ(41) = 0.4** ρ(41) = 0.212 ρ(41) = 0.305* 
7 months ρ(40) = 0.151 ρ(40) = 0.065 ρ(40) = 0.236 
11 months ρ(43) = 0.398** ρ(43) = 0.287 ρ(43) = 0.109 

*** p < 0.001. 
* p < 0.05. 
** p < 0.01. 
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the CNN model). In the adult neural speech literature, activity in these 
two frequency bands is thought to be related respectively to discourse- 
level information and auditory grouping (delta band), and syllable- 
level information and speech intelligibility (theta band). In the MI 
modelling, both delta band and theta band speech information was 
estimated at above-chance levels at all ages studied. As our infants were 
pre-verbal, this finding provides confidence to the nascent field of neural 
studies of language acquisition. It appears that current speech modelling 
techniques can begin to reveal how the human brain begins to build a 
language system, particularly when more than one modelling technique 
is applied to the same data. 

Our second research question was whether delta band model outputs 
would show higher values than theta band model outputs. This question 
was motivated by earlier computational modelling of infant-directed 
speech, which found significantly greater modulation energy in a band 
of amplitude modulation corresponding to the EEG delta band (Leong 
and Goswami, 2015). Again, there was reasonable convergence between 
models. All models indicated significantly higher decoding values for 
the delta band compared to the theta band, however for the backward 
linear model an interaction effect between band and real versus random 
data suggested that only the delta band decoding estimates were reli
able. This finding differs from Attaheri et al. (2022a), who also applied a 
backward linear model to the EEG collected from these and some 
additional participants, including more infants (55 participants). Atta
heri et al. (2022a) reported significant decoding values for both delta 
band and theta band estimates at 4, 7 and 11 months. As noted earlier, in 
Attaheri et al. (2022a) the delta band was defined as 0.5 – 4 Hz, rather 
than 1– 4 Hz as here, which could potentially explain this discrepancy. 
For the current 50 infants, the CNN and MI models clearly showed 
higher decoding values for the delta band than for the theta band. In 
both models, both of these estimates were reliably greater for real data 
compared to chance data, indicating that decoding estimates were sig
nificant for both bands. Finally, both the CNN and the MI models yielded 
model estimates that were significantly greater for the delta band data 
than for the theta band data. In summary, delta band estimates appear to 
be most reliable in infant speech EEG studies, replicating Attaheri et al. 
(2022a). 

The tentative predictions concerning developmental effects were not 
supported by any of the models. Participating infants contributed neural 
data at three measurement points during their first year of life (4, 7 and 
11 months). We had tentatively predicted (following Attaheri et al., 
2022a) that over the first year of life, delta band speech information 
would become less important while theta band information would 
become more important, possibly because infants were developing 
better-specified speech-based representations with more detailed 
encoding of phonology. However, none of the 3 models compared here 
showed significant effects of age (see Table 1), in contrast to Attaheri 
et al. (2022a). 

Finally, we had proposed that if the three models were picking up on 
similar features in the EEG related to speech-based encoding, then infant 
datasets that ranked highly in terms of decoding accuracy in one model 
should also rank highly in the other models. The rankings (Table 5) 
suggested that the linear and CNN models were the most similar 
regarding which EEG features they were selecting. However, for both of 
these modelling approaches, some of the age-band pairings did not 
significantly exceed chance values at the group level. For the MI model 
all age-band pairings exceeded chance, but only one correlation was 
significant, with the CNN model for the youngest infants (ρ(41) = 0.305, 
4-month-olds). This is surprising, as the CNN values for the 4-month- 
olds did not exceed chance performance in the group comparisons 
(Fig. S2 in Supplementary Information). This contrast between the MI 
model and the CNN and linear models may be due to the fundamental 
differences between the approaches, as MI relies on information theory 
to quantify decoding accuracy and is not involved in stimulus- 
reconstruction while the backward linear and CNN models are recon
structive approaches. Finally, although all age groups investigated here 

were pre-verbal, in that they did not yet produce much speech, other 
studies have shown that by 6 months of age, infants already comprehend 
a surprising number of words (Bergelson and Swingley, 2012). 
Accordingly, top-down linguistic processes are also likely to be coming 
online for the 7- and 11-month-olds, which would be reflected in their 
EEG, creating more features for the models to quantify. Nevertheless, the 
EEG data collected at 7 months do not show any significant relations 
across models. This may be explained by particularly noisy data for this 
age group, which may also explain the non-significant effect for this age 
group in the mTRF modelling at the group level (Fig. S1 in Supple
mentary Information). 

In summary, all three models converged in demonstrating significant 
accuracy for decoding speech information in the neural delta band. Both 
the MI and CNN models decoded both delta and theta information above 
chance, but surprisingly, no age-related effects were found. Overall, the 
modelling supports the theoretical view that the neural representation of 
delta band speech information plays a primary role in developing a 
language system during the first year of life. This finding is consistent 
with prior computational modelling of infant-directed speech (IDS) 
based on a spectral-amplitude modulation phase hierarchy approach 
(Leong and Goswami, 2015). For English IDS, the modelling demon
strated significantly more modulation energy in the delta band 
compared to ADS, and this greater energy was consistent across IDS 
directed to infants of 7, 9 and 11 months of age (Leong et al., 2017). The 
modelling data presented here suggests that the importance of delta 
band speech information in the amplitude envelope of IDS is reflected in 
infant neural encoding of speech. 

These findings are also consistent with cognitive behavioural 
research, which suggests that infants rely on speech rhythm and prosody 
to begin to build a mental lexicon of word forms, for example using the 
onsets of stressed syllables (acoustic landmarks which occur on average 
every 2 Hz across languages, Dauer, 1983) as a clue to word beginnings 
(Leong et al., 2014; Mehler et al., 1988). The potentially primary role of 
phrasal-level information is also consistent with current fNIRS and ERP 
data with infants. Infants can detect prosodic information from birth 
(Abboub et al., 2016; Fló et al., 2019), and can differentiate native 
versus non-native prosodic templates from as young as 4 months (Weber 
et al., 2004). They can also parse words like their own name from 
connected speech by 4 months of age (Mandel et al., 1995). 

The current study has a number of limitations. Firstly, the speech 
heard by infants was sung or chanted, and this could explain the greater 
reconstruction accuracy that was found for delta band speech informa
tion compared to theta band speech information. Indeed, comparable 
results regarding the delta band were found for adults who listened to 
the same sung IDS input (Attaheri et al., 2022b). Sung speech was used 
because in principle it provides an optimally-structured stimulus for the 
infant brain, since all the amplitude modulations at different frequencies 
are temporally aligned with an external beat. However, the speech was 
thus highly rhythmic, and thereby potentially activated acoustic 
mechanisms for processing musical or non-speech rhythm in addition to 
speech rhythm; the former is known to be related to delta band acoustic 
information (Cirelli et al., 2016). Secondly, a number of modelling as
sumptions were made during data analysis, and any changes in 
parameter choice could in principle give different results. This was 
demonstrated here for the linear model. A third limitation is the rela
tively small sample of infants (N = 50). Although this is a relatively 
large sample for the infant EEG literature, it would be preferable to 
apply the same models used here with even larger samples. Neverthe
less, although the number of participants was limited, the models were 
still fitting a substantial amount of neural data. Finally, the data re
ported here are from an ongoing longitudinal study of neural speech 
processing in infants, and language outcome data are currently being 
prepared for analysis. Accordingly, the functional significance of the 
representation of the acoustic stimulus offered here by the CNN, MI and 
backward linear models can be assessed in future work. 

In conclusion, we show here that the application of sophisticated 
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computational methods for approximating the acoustic speech signal 
from evoked neural activity can be successful with infant data. Our 
analyses suggest accurate representation of speech envelope informa
tion in the delta (and likely theta) band by the infant brain from 4 
months of age. There were no age-related changes in model estimates, 
suggesting that the speech processing mechanisms used by the infant 
brain may be relatively hard-wired (Doelling et al., 2022). Further work 
is needed to assess whether the models were using similar features 
earlier in life and diverged as infants developed. Correlating the neural 
measures obtained here with future language outcome measures could 
enable calibration of which modelling approach or approaches are best 
suited to developmental studies of neural speech processing in 
pre-verbal populations. 
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