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Abstract: Offshore Wind Turbine (OWT) inspection research is receiving increasing interest as the 1

sector grows worldwide. Wind farms are far from emergency services and experience extreme weather 2

and winds. This hazardous environment lends itself towards unmanned approaches, reducing human 3

exposure to risk. Increasing automation in inspections can reduce human effort and financial costs. 4

Despite the benefits, research on automating inspection is sparse. This work proposes that OWT 5

inspection can be described as a multi-robot coverage path planning problem. Reviews of multi-robot 6

coverage exist, but to the best of our knowledge, none capture the domain-specific aspects of an 7

OWT inspection. This paper conducts a scoping review on the current state of the art of multi-robot 8

coverage to identify gaps in research relating to coverage for OWT inspection. To perform a qualitative 9

study, the PICo (Population, Intervention, Context) framework was used. The retrieved works are 10

analysed through three aspects of coverage approaches: environmental modelling; decision-making; 11

and coordination. Based on the studies reviewed and the analysis conducted, candidate approaches 12

are proposed for conducting structure coverage of an OWT. Future research would involve the use of 13

adapting voxel-based ray tracing pose generation to UAVs and exploration, applying semantic labels 14

to tasks to facilitate heterogenous coverage, and semantic online task decomposition to identify the 15

coverage target at runtime. 16

Keywords: multi-robot; coverage; UAV; structure inspection; offshore wind 17

1 Introduction 18

Offshore wind turbine inspection is an area of increasing interest with the increasing 19

prevalence of wind power [1]. The relevance of renewable offshore energy sources has 20

never been greater than at present [2]. Offshore wind has a number of benefits when 21

compared to onshore wind turbines [3]. Wind farms offshore experience greater and 22

more predictable wind speeds with reduced turbulence, ensuring a single OWT is more 23

productive than an onshore counterpart. Additionally, offshore farms needn’t compete with 24

other land uses and are less likely to meet resistance from local communities. While there are 25

significant benefits to offshore renewable wind energy, so too are there serious challenges 26

to overcome. Dynamic loads from wind and waves, as well as saltwater, damage and 27

degrade the turbine quicker than one onshore. Installation is significantly more expensive 28

than onshore and, as will be discussed, Operation and Maintainance (O&M) operations are 29

considerably more complicated. Within the already growing offshore wind sector, O&M is 30

predicted to become the second largest sub-sector of the offshore renewable market in the 31

UK by 2030, and potentially the largest in the 2040’s [4]. O&M can be broken down into 4 32

subsections [4], details of these are shown in Figure 1. Maintenance is a particularly high- 33

risk aspect of O&M, involving highly skilled technicians out in the field for long periods 34

undertaking maintenance work on the turbines. These services can include rappelling to 35

inspect or repair the blades and diving to inspect cabling, all the while being far away 36
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Figure 1. Key services that make up offshore wind O&M [4]

from any emergency assistance. The teams undertaking these operations are composed 37

of disparate highly qualified technicians. Using traditional methods, a turbine inspection 38

with 3 technicians will take 3-6 hours, allowing time for only 2-3 turbines to be inspected in 39

a day [5]. Considering wind farms can often house hundreds of turbines, the cumulative 40

labour time required for a single wind farm’s regular inspections can commonly reach 41

thousands of hours. It’s both this financial cost and human risk that incentivises the use of 42

robotic technologies. Commercial remotely operated robotic systems are now reasonably 43

commonplace for Offshore inspections. Remotely operated underwater vehicles (ROVs) 44

services facilitate inspections of the anchors, as well as sub-sea cabling [6][7][8][9][10]. 45

Several companies offer Unmanned aerial vehicle (UAV) services for visual and thermal 46

imaging inspections [11][12][13], and recently climbing robots have been made available for 47

cleaning [14] and resurfacing OWTs [15]. Nordin et al. identified that individual unmanned 48

vehicles have limited capacity to perform unmanned O&M for Offshore wind [16], rather 49

the task lends itself to multi-robot systems. Five motivations for developing multi-robot 50

systems were identified by Parker et al. [17]: 1) A task complexity too high for a single 51

robot; 2) The task is inherently distributed; 3) The use of several less powerful robots is 52

often less resource intensive than a single powerful robot; 4) Multiple robots can solve 53

problems faster using parallelism; 5) using multiple robots increases robustness through 54

redundancy. Notably, each of these could apply to offshore wind O&M. Indeed multi-robot 55

approaches to Wind energy O&M have been researched, albeit overlooking critical factors 56

such as communication challenges and harsh environmental conditions, necessary for 57

real-world implementation [18][19][20]. Approaches to multi-robot navigation in extreme 58

environments require mechanisms to minimise interference and spatial conflicts [21] else 59

the system may perform unreliably. One interesting commonality in the aforementioned 60

current research is their use of robotic heterogeneity. Parker defines robot heterogeneity as 61

variety within robot behaviour, morphology, performance quality, size, and cognition [17] 62

within a team. Certain inspections may require a heterogeneous team, while others may be 63

performed faster with robots specialised for certain tasks. Considering a comprehensive 64

inspection of an OWT (one covering the turbine’s surface, the foundations, local cabling 65

and turbine interior), a range of robots with varying morphologies, locomotion and sensing 66

capabilities would be required. Variety with performance quality can also affect the quality 67
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of the inspection, a UAV fitted with a high-resolution camera would be able to capture 68

footage of the same quality as one with a lower-resolution camera at a greater rate. Another 69

possibility within a heterogeneous team is having robots collaborate in such a way, as to 70

complete tasks impossible for just one. Jiang et al. provide an example of just this, with a 71

UAV being used to deploy and retrieve a BladeBug to and from a wind turbine blade [22]. 72

The authors made use of GNSS to position the UAV near the landing target, and then made 73

use of lidar data to position itself for landing and deploying the bladebug on the blade. 74

Reaching the Blade with the Bladebug would have been impossible alone, but is made 75

possible via the UAV. Another example of such behaviour is using an Unmanned Surface 76

Vehicle (USV) as a mothership for UAVs, with the USV serving as a "marsupial" robot. 77

Fan et al. are concerned with the autonomous landing of a UAV on a USV using a fuzzy 78

self-adaptive PID controller [23]. A marsupial relationship is also detailed by Miškovic 79

et al, in which a USV relies on a UAV to localise itself with respect to a floating object 80

needing tugging [24]. Zhang et al. describe a fully autonomous system for the recovery of 81

fixed-winged UAVs, making use of an arresting cable and a net to safely land the UAVs 82

[25]. 83

The use of multi-robot teams for Offshore inspection is an area currently sparse of research. 84

In this work, the focus is on visual inspection of the OWTs. It’s common for the operators of 85

the OWTs to request an inspection at the end of the warranty and regularly every three years 86

after [26]. A typical inspection requires the capture of high-quality images of each side of the 87

OWT blade (suction side, pressure side, leading edge, and trailing edge). Tower and nacelle 88

inspections are sometimes also required and are concerned with identifying welding defects, 89

coating issues and mechanical damage [27]. There maybe areas of particular interest such 90

as the blades, although this can be seen as a variation of the problem. Further inspection 91

operations use USVs or ROVs to inspect floating substructures of floating OWTs or the 92

underwater cabling [28]. The ORE Catapult Levenmouth demonstration turbine detailed 93

in Figure 2, built to facilitate OWT research, provides an example of the structure to be 94

inspected. These operations all involve capturing images of all of an area of interest, the 95

problem of ensuring the entirety of an area of interest is covered by a sensor’s footprint is 96

known as the coverage path planning problem. 97

Figure 2. Specifications of the Levenmouth 7MW demonstration OWT
[29]

Coverage path planning as defined by [30] is the problem of passing over all points 98

in the target environment. While at the time coverage was mostly concerned with the 99
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coverage of 2D planes, such as mowing a lawn [31] or vacuuming a floor [32], the definition 100

of coverage has now expanded to include 3D environment and structure coverage. To 101

this end Almadhoun et al. define coverage path planning as "a process of exploring or 102

exhaustively searching a workspace, whether it a structure of interest or an environment 103

and determining in the process the set of locations to visit while avoiding all possible 104

obstacles" [33]. While reviews of the literature surrounding coverage more generally exist, 105

such as Choset’s inaugural survey on robotics for coverage [30] and Almadhoun et al. in 106

their survey on multi-robot coverage path planning for model reconstruction and mapping 107

[33]. However, these surveys do not focus on the domains representing offshore wind 108

inspection, a specific variation of the problem characterised by its environmental lack of 109

structure and sparseness. To the best of our knowledge, this work provides the first scoping 110

literature review on the coverage problem and the first literature review on coverage of 111

OWT inspections. 112

This paper is structured as follows: Section 2 details the methodology used to conduct the 113

scoping literature review; Section 3 covers the approach to be undertaken for analysing the 114

works retrieved from the literature search; Section 4 provides an analysis of approaches 115

to environmental modelling used by the retrieved works; Section 5 covers the approaches 116

to decision making and their applicability to offshore O&M; Section 6 is concerned with 117

coordination approaches used in the literature and applicability; and finally the work will 118

be concluded and future direction for the field will be discussed. The contributions of 119

this work include the first systematic literature review of multi-robot coverage, following 120

a strict systematic procedure novel to robotics. A taxonomy and discussion of current 121

works were discussed, and several gaps in current research and avenues for the future were 122

identified. 123

2 Methodology 124

A scoping review has been conducted to identify the research gaps in the literature 125

on Multi-robot coverage for Offshore wind inspection [34]. To ensure the quality of this 126

scoping review, the PRISMA 2018 checklist for scoping reviews has been followed [35]. 127

The review has been structured according to the PICo framework for qualitative reviews, 128

detailed in Table 1. 129

Table 1. PICo Definitions for Environmental Representations with Search Concepts

P I Co
Population Interest Context

Multi-robot systems Coverage Unknown and unstructured
environments

Search Concepts
Multi-robot Coverage Unknown & unstructured

Alternative Terms

Multi-agent

Unknown
Unstructured

Extreme
Real

Based on this framework, the following research question and sub-questions have 130

been formulated after a brief review of the literature: 131
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Table 2. Research Questions

Research Question
What is the most suitable framework for multi-robot coverage in domain applications resembling
offshore wind inspection?
Sub-Questions:

• What is the most suitable environmental model for Multi-Robot Coverage in terms of
suitability to domain applications resembling offshore wind inspection?

• What is the most suitable multi-robot coverage decision-making approach for domain
applications resembling offshore wind inspection?

• What is the most suitable strategy to effectively coordinate a multi-robot system for domain
applications resembling offshore wind inspection?

Table 3. Digital Libraries Used in Review

Digital Library Description URL Area of Focus
IEEE Xplore A digital library pro-

vides all IEEE publica-
tions as well as those
from its publishing part-
ners.

https://ieeexplore.ieee.
org/

Computer sci-
ence, electrical
engineering and
electronics.

The ACM Guide to Computing
Literature

Association of Comput-
ing Machinery’s Digi-
tal library provides all
ACM publications and
works from all major
publishers.

https://dl.acm.org/ Computing and
Information
Technology

Scopus Scopus covers 240
disciplines to ensure
researchers, instructors,
librarians and students
have confidence that
they are not missing
out on the vital infor-
mation they need to
advance their research
and scholarship.

https://www.scopus.
com/

General

Web of Science The Web of Science is
a paid-access platform
that provides access
to multiple databases
that provide reference
and citation data from
academic journals, con-
ference proceedings,
and other documents
in various academic
disciplines.

https://www.
webofscience.com/
wos/

General

An advanced search has been conducted in the databases IEEE Xplore, The ACM 132

Guide to Computing Literature, Scopus, and Web of Science. Details of these libraries can 133

be seen in Table 3. These four databases provide time-efficient access to a wide range of 134

peer-reviewed publications. 135

From the research question, a query was formed, as shown in Table 4. Due to the 136

nature of offshore wind inspection, a search query making use of the term "offshore" would 137

have yielded no results due to the lack of current research. 138

It’s the aim of this paper to identify works relevant to the OWT coverage problem, 139

and to synthesise the knowledge from these works through the lens of the OWT coverage 140

problem. To identify works relevant, albeit not specific to, OWT coverage, those works with 141

"domain applications resembling offshore wind inspection" were identified. In examining 142

which domain applications closely mirror offshore wind inspection, it’s crucial to under- 143

stand the unique characteristics of offshore wind inspection’s environment. Offshore wind 144

https://ieeexplore.ieee.org/
https://ieeexplore.ieee.org/
https://dl.acm.org/
https://www.scopus.com/
https://www.scopus.com/
https://www.webofscience.com/wos/
https://www.webofscience.com/wos/
https://www.webofscience.com/wos/
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farms are vast and dispersed, composed of repeated turbines usually at regular intervals 145

but not always so. The environment can be considered sparse and unstructured in that 146

regard. Given the nature of the energy being captured by the turbines, these areas are also 147

highly exposed and prone to unpredictable weather, hence we can consider the environ- 148

ment extreme. To ensure the works reviewed represented the state of the art, only those 149

works after 2015 were considered, which was achieved through filtering on the individual 150

databases: 151

Table 4. Search Query

Search Query

• (multi-robot* OR multi-agent*) AND (coverage) AND ((unstructured AND environment*) OR (unknown
AND environment*) OR (extreme AND environment*) OR (real AND environment*))

Table 5. Criteria for Article Exclusion

Criteria Type Included Excluded
Coverage Control Those works considering the cover-

age path planning problem
Those works considering the cov-
erage control problem

Environmental structure Those works considering environ-
ment resembling OTW inspection,
namely one that is unstructured, un-
known, extreme or real

Those works considering envi-
ronment not fulfilling these cri-
teria

Surveys Any non-survey work was consid-
ered

Surveys

Figure 3. PRISMA Flowchart showing exclusion process
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The exclusion criteria in table 5 were formed to remove those works not relevant 152

despite not being excluded in screening. 153

The PRISMA flowchart in Figure 3 shows the number of records identified by the 154

search strategy for each database. Initially, those works duplicated across the searches were 155

removed. The screening process was carried out by removing those works whose title or 156

abstract made no mention of "Coverage", "Multi-robot", or "Multi-agent". The works were 157

then sought for retrieval, and if unavailable or required purchase was discarded. Finally, 158

the literature-exclusion criteria were used to remove irrelevant works. 159

3 Analysis 160

The 16 studies included in the review were then analysed. In this section the process 161

of analysis for these studies is detailed. As was detailed in the research subquestions in 162

Table 2, three aspects of the coverage problem are considered: 1) Environmental modelling, 163

2) Decision making, and 3) Coordination. 164

Figure 4. Environmental representation taxonomy with instances of surveys reviewed

Environmental modelling is concerned with the methods used by robots or a central 165

planner to represent the environment and tasks within it. A taxonomy was constructed 166

to systematically categorize and analyze the approaches featured in the studies. This 167

taxonomy of environmental models includes the following categories: Geometric maps 168

featured four studies; topological maps featured three studies; Gridmaps featured six 169

studies; Voxel-based maps featured three studies; occupancy grids featured three studies; 170

and Costmaps featured in one. 171

Figure 5. Aspects of decision making analysed including the Yan et al taxonomy [36] and the
Almadoun et al. taxonomy [33]

Some approaches used multiple methods and therefore appear twice. Using the 172

taxonomy and the details of the studies reviewed, those approaches judged most suitable 173

for OWT inspections were identified and discussed. 174

Decision-making, as per our definition, is the collective choices defined by specified 175

objectives made by a multi-robot system. The applicable studies are analysed using the 176

model/non-model distinction proposed by Almadhoun et al. [33] and planning definitions 177

from Yan et al. [36]. Almadhoun et al. identified a classification of approaches based on 178
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their assumed prior knowledge. Model-based approaches know the tasks and environmen- 179

tal structure before the coverage task. Non-model-based approaches forgo this assumption 180

and require modelling of the environment during the task. Yan et al. identified three 181

components that compose mobile multi-robot task planning approaches: task decomposi- 182

tion, task assignment, and motion planning. Task decomposition isn’t always necessary 183

depending on the prior knowledge, but refers to the decomposition of a multi-robot task 184

into a set of single-robot tasks. In the case of coverage, the task decomposition takes the 185

form of decomposing the environmental representation into robotic positions or poses as 186

tasks. A task decomposition taxonomy was formed to analyse the approaches suitability to 187

OWT coverage. 188

Figure 6. Task decomposition taxonomy with instances of surveys reviewed

Task allocation assumes the set of single robot tasks, and is concerned with how can 189

the set of tasks be optimally assigned to the robots. Finally, motion planning is how, given 190

the task assignments per robot, a path for the robots can be constructed to visit all tasks 191

optimally. Motion planning could be considered a single-robot problem in regards to the 192

order of visiting the tasks, but at a lower level necessitates collision avoidance between 193

team members. 194

Figure 7. Aspects of coordination analysed

Farinelli et al. [37] consider coordination to be cooperation where team members 195

consider other team members in their actions to increase system performance. Yan et 196

al. [36] defined it as planning to deal with resource conflicts among team members. The 197

aspects considered as coordination in this work are aspects related to potential resource 198

and reliability issues that may arise from using real robots, Communication approaches, 199

team hierarchies, fault tolerance, and robotic heterogeneity. Data relating to these aspects 200

of the studies were extracted from the works where approaches were specified. 201

4 Environmental models 202

This section aims to answer the following sub-question: 203

What is the most suitable environmental model for Multi-Robot Coverage in terms of suitability to 204

domain applications resembling offshore wind inspection? 205

Wind farms are sparse, unstructured, and dynamic environments. There are both the 206

predictable dynamics of the rotation of the blades and unpredictability in the current yaw 207

orientation of the hubs. The turbines are usually spread over a kilometre away from one 208

another resulting in large sparse areas in an environmental model. There may be a degree of 209

uncertainty in GPS localisation due to the multipath error resulting from signals reflecting 210

off the turbines and the sea itself [38]. So in approaching this sub-question, we should 211
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view the applicability of the models used through the lens of a multi-robot offshore wind 212

inspection. To analyse the approaches used in the literature, and best identify those models 213

most suited to domain applications resembling offshore wind inspection, a taxonomy of 214

models was constructed. These classes of approaches were then described concerning the 215

specific implementations, followed by a discussion of the applicability of the approaches 216

reviewed to domain applications resembling offshore wind inspection. Burgard et al. [39] 217

identified three main challenges in constructing or choosing environmental models: 1) 218

such models should be compact 2) they should be task/application dependent 3) given 219

they are constructed from sensor data, they should account for the uncertainty inherent in 220

sensors and state estimation. The appropriate model for the offshore inspection task should 221

consider these three factors. 222

Table 6. Environmental models used for works reviewed

Environmental Model Work (Authors, Year)
Geometric map Ball et al. 2015 [40]

Masehian et al. 2017 [41]
Karapetyan et al. 2018 [42]
Tang et al. 2022 [43]

Topological map Ball et al. 2015 [40]
Karapetyan et al. 2018 [42]
Kim et al. 2022 [44]

Gridmap Kalde et al. 2015 [45]
Song et al. 2015 [46]
Perez-Imaz et al. 2016 [47]
Sharma et al. 2016 [48]
Zhang et al. 2019 [49]
Yu et al. 2023 [50]

2D costmap Ball et al. 2015 [40]
Occupancy grid Colares and Chaimowicz 2016 [51]

Bramblett et al. 2022 [52]
Kim et al. 2022 [44]

Octomap Dornhege et al. 2016 [53]
Dong et al. 2019 [54]

Euclidean Signed Distance Field (ESDF) map Bartolomei et al. 2023 [55]

4.1 Geometric Map 223

In some approaches, usually where the environment is known a-priori, a geometric 224

map is used. In such approaches, the environment’s shape, and obstacles within, are 225

modelled as polygons, an example of which can be seen in Figure 8. In both Ball et al. 226

[40] and Karapetyan et al. [42] the geometric map is known a priori and represents the 227

environment needed to cover, and in both approaches the authors use Boustrophedon 228

cell division to discretise the area into cells in a topological graph. Another method of 229

discretisation comes via overlaying a grid on the model to form a gridmap, a rasterisation 230

process, which was used by Tang et al.[43]. 231

4.2 Topological map 232

Choset et al. [56] defines topological representations as aiming to represent environ- 233

ments with graph-like structures, with the nodes representing “something distinct” and 234

edges representing the spatial relationship between nodes. The focus of topological maps 235

is how different nodes, representing points of interest in the environment, are connected to 236

each other, rather than the detailed geometric properties of the space. As such these repre- 237

sentations are usually in the form of graphs composed of nodes with edges representing 238

the interconnectivity of nodes, an example of which is given in Figure 9. The edges in a 239

topological representation can be given semantic properties, such as a cost of traversal or 240

directionality [57]. Topological maps are often contrasted with geometric maps, although 241

as will be seen geometrics maps can be, and often are, decomposed to topological represen- 242

tations. This is the case in Ball et al. [40] and Karapetyan et al. [42] who both consider an 243
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Figure 8. Geometric Map with robotic paths [42]

initial geometric map representation, and they use boustrophedon cell division which is 244

described in greater detail in Section 5.1.1. The result of Boustrophedon cell divisions is a set 245

of connected cells in the environment which take the form of a topological representation. 246

An occupancy grid (Discussed in section 4.4) is used to generate "waypoints" to ensure 247

sensor coverage of the environment by Kim et al. [44]. These tasks can then be viewed 248

as nodes in a graph connected by edges. Topological maps are rarely considered a priori 249

knowledge, rather another representation is decomposed into a topological map as in Kim 250

et al. [44]. Due to their simplified abstract nature, they are better suited to global path 251

planning with the specifics of path planning abstracted to an edge cost value. 252

Figure 9. Topological Representation [56]

4.3 Gridmap 253

A gridmap is a grid of a specified dimension composed of squares of a certain size. 254

Sometimes the size of the grid cells represents the size of the robot’s footprint or sensor’s 255

footprint, such that visiting each cell would provide full coverage of the environment [45] 256

[48][49]. Other times the grid cell is used to discretise the possible positions [50] or to 257

facilitate allocation of the environment to team members while still requiring coverage 258

path inside the cell [47]. Contrasting with topological maps, with known dimensions and 259

directional relations between cells, gridmaps provide an abstracted yet accurate modelling 260

of the environment’s geometry, However, assuming that each cell represents a task a 261

gridmap can be considered both a metric map and a topological graph. Kalde et al. [45] 262

give an example of encapsulating semantics in their gridmap through cell states. This can 263

be seen in Figure 10. In their work the cells can be one of 4 states: Unknown cells, shown as 264

question marks, represent those that have yet to be explored; Occupied cells, shown as black 265

cells, represent static obstacles; animated cells represent robots e.g. R1 and humans e.g. H1; 266

and free representing explored empty cells shown in white. Sharma et al. [48] use a similar 267
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representation. The model used in [49] is also described as a gridmap. Perez-imaz et al. 268

[47] make use of a hexagonal gridmap rather than a square one. hexagonal grids facilitate 269

diagonal movement with uniform distance between cells, as well as better approximating a 270

circular sensor radius than a square allowing an environment to be represented with fewer 271

cells. Song et al. [46] make use of a multi-resolution grid-based environmental model. At 272

the smallest resolution the cells are the size of the sensor radius, and above that is a map 273

of supercells composed of 4 cells. This multi-resolution grid is used to facilitate vehicles 274

escaping local minima. While these simple multi-state grids are sufficient for the authors’ 275

uses, they don’t take into account sensor uncertainty as per the three main challenges 276

described before [39] and, therefore are unsuitable for real-world applications alone. Such 277

representations are compact, however, and therefore are particularly useful for high-level 278

planning. 279

Figure 10. Four state
gridmap [45]

Figure 11.
Hexagonal gridmap

[47]

4.4 Occupancy grid 280

Occupancy grids are a common model used to tackle the uncertainty inherent in 281

sensors. First proposed by Moravec & Elfes [58], the grid is composed of cells with values 282

representing the probability of its occupancy with an obstacle. These cell occupancy 283

probabilities were estimated as independent random variables which, while rarely if ever 284

the case in the real world, simplifies computation. Numerous approaches now exist to 285

relax the assumption of cell in-dependency [59]. Colares & Chaimowicz [51] make use of 286

an occupancy map in their approach to exploration, this occupancy map is generated from 287

their SLAM approach. In their approach, the occupancy grid is used to compute the costs 288

of frontiers for the team members. Bramblett et al. [52] also make use of an occupancy 289

grid representation, using recursive Bayesian estimation to update the cells given sensor 290

measurements. In this case, the occupancy is once again used to identify frontier cells and 291

exploration tasks are generated in areas of high uncertainty, facilitating complete sensor 292

coverage of the environment. Occupancy grid representations are particularly useful in 293

unknown environments, as they require no prior knowledge to form. In regards to OWT 294

inspection, occupancy grids have three main areas of use. By forgoing the assumption of 295

prior knowledge, occupancy grids can account for sensor uncertainty while facilitating the 296

mapping of an unknown environment. The occupancy values can act as a component in an 297

objective function to drive the team to explore uncertain areas. Occupancy grids can also 298

be used to construct a costmap (see Section 4.6) for motion planning, providing a trade-off 299

between traversing unknown areas and distance. The effect of the aforementioned cost map 300

is a robot would have a degree of reluctance to traverse unknown areas due to potential 301

obstacles or dead ends. 302
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4.5 Voxel-based mapping 303

A voxel is a cell in a 3D grid, the term voxel being "an analogy to pixel" [60]. Voxel- 304

based mapping represents the environment as a 3D grid composed of voxels. The simplest 305

voxel representation is a 3D binary array, with 1 representing occupancy and 0 representing 306

free space [61]. Two implementations of voxel-based mapping were reviewed: Octomap 307

[53][54] and Euclidean Signed Distance Field (ESDF) map [55]. Octomap is a probabilistic 308

framework for environmental modelling of 3D cell occupancy based on hierarchical octrees 309

[62]. The hierarchical nature of the approach can reduce memory usage, and facilitate 310

varying levels of environmental detail to be captured. Areas with fewer features or in 311

which mapping is less critical can be mapped at a lower resolution, conserving memory 312

and reducing the computational cost of future environmental decomposition. Conversely, 313

those areas of particular interest can benefit from a higher resolution, allowing for more 314

detailed and accurate mapping, and better-informed environmental decomposition. Dong 315

et al. [54] make use of Octomap for their exploratory scanning, before decomposing it into 316

a 2D occupancy grid to plan tasks. Dornhege et al. [53] provide a task planning algorithm 317

working directly with Octomap. Octomaps is a very powerful approach to modelling 3D 318

environments, and its availability as a ROS library has added to its popularity. An ESDF 319

is used by Bartolomei et al [55] and described initially in [63]. This is a highly semantic 320

voxel model, in which each voxel is linked to a data structure composed of the voxel’s 321

coordinates; the occupancy probability; the euclidiean distance to the nearest obstacle; 322

whether the voxel has been observed; the voxels closest to itself; and information on the 323

area sharing its closest obstacle. The authors describe the approaches’ usefulness to UAV 324

navigation as "what is truly useful is the information of free space, instead of obstacles." 325

Voxel-based mapping approaches are, in their regular dimensions and regular directional 326

relations (each voxel shares the same spatial relationship with their 6 neighbouring voxels), 327

similar to the 2D grid-based representations discussed previously. However, unlike the 2D 328

gridmap, they have little use outside of 3D coverage. While 2D coverage often involves 329

visiting each cell in the environment once as in Zhang et al. [49], this is rarely the case in 3D 330

coverage. Rather, 3D coverage tasks tend to involve the sensor coverage of either the whole 331

environment [55] or sub-sections of the environment of particular interest [53]. Arguably, 332

these tasks are particularly representative of an offshore wind inspection. Especially in the 333

case of covering specific areas of interest within a 3D environment, which can represent 334

turbines themselves or areas of the turbine of special interest such as the blades. 335

Figure 12. A occupancy grid model (left), and ESDF model (right) [63]

4.6 Costmap 336

Costmaps are grid-based representations, with the value of each cell expressing a 337

cost of traversal. The cost of a cell, given as a numerical value, can represent a number of 338

different attributes of traversing a given cell. In the work of Ball et al. [40], the attribute in 339

question is a deviation from a high-level planned path and avoiding obstacles. They then 340

make use of a searched-based lattice planner (SBLP) to generate paths that minimise the 341

cost of traversal with respect to the high-level path and detected obstacles. Though not 342

expressed explicitly, the ROS navigation stack uses a 2D costmap, so other works making 343
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use of ROS are very likely to make use of them also [64]. The ROS costmap builds an 344

occupancy grid and based on the occupancy value of a cell increases the cost of traversal 345

within a user-specified radius around the suspected obstacles. The effect of this is the 346

path-planning algorithms will account for the costmap and select paths based on a tradeoff 347

between distance and proximity to suspected obstacles. In regards to the coverage path 348

planning problem, costmaps find their greatest utility in motion planning, facilitating the 349

generation of paths between tasks while trading off the potential of obstacles with the 350

distance to travel. 351

4.7 Discussion 352

Wind farms can be considered an extreme, sparse and unstructured environment. The 353

environmental model used relates to the task being undertaken, OWT inspection, but there 354

are variations on this task. The environmental modelling approaches one should select 355

depend on a variety of aspects. These aspects can include whether a model is known prior, 356

if the team is homogenous, and whether the blades are moving. This discussion attempts to 357

map the suitability of the environmental model taxonomic classes to the inspection problem, 358

also aware of the aforementioned characteristics of the environment1. An inspection of 359

a turbine involves acquiring sensor data across the entire turbine, or at specific areas of 360

interest such as the blades. Refer to Figure 2 for a basic description of the components of 361

an OWT. This variant of the OWT inspection is a 3D structure inspection, a variation of 362

coverage in which the aim is to ensure sensor coverage of either the entirety of a structure 363

of interest or specific areas on said structure. The 3D nature of this task excludes the use of 364

2D environmental models, lending itself towards a Voxel-based model. 365

Considering the inspection is coverage of the structure, in a standard single-resolution 366

voxel-based model the rest of the environment would modelled in the same detail as the 367

turbine. The result of this single-resolution voxel-based model would be inefficient memory 368

use and slower computation of the task decomposition and motion planning2. Therefore 369

there is an incentive to make use of an adaptive resolution like that provided by Octomap 370

[62]. In doing so the turbine can be given a detailed accurate voxel-based representation 371

without also requiring a detailed model of the empty space around it. An additional benefit 372

of an adaptive resolution for OWT inspection is allowing varying levels of coverage detail 373

based on the specific turbine component being inspected. 374

One aspect of OWT inspection that may require a novel solution not seen in the works 375

reviewed is the inspection of the moving blades. Blade inspection generally requires 376

the turbine to stop, but there is a financial incentive to keep the turbine running during 377

inspection. While Octomap is updatable and can represent dynamic environments there 378

aren’t any semantic labels attached to voxels to represent which blade is which, just a value 379

to specify the probability the voxel is occupied. To ensure coverage of all the blades the 380

environmental model would need to keep track of which blade is which. this could be 381

achieved by applying a semantic label to the moving cluster of voxels that represents an 382

individual blade, however, this presents challenges such as keeping track of which blade is 383

which when not in view. In the literature reviewed, no modelling approach accounts for 384

these moving tasks, as such this represents one avenue for future research. 385

4.7.1 Robotic heterogeneity 386

An unaddressed area is representing heterogeneous tasks, inspection tasks may re- 387

quire more than one class of robot. Different types of tasks or motion capabilities in a 388

heterogeneous team would need to be represented in the environmental model. These re- 389

quirements of certain capabilities could be represented semantically in topological models, 390

by labelling edges based on traversal requirements or task nodes with information on the 391

necessary capabilities to complete it. In order to semantically label the edges with these 392

1 extreme, sparse and unstructured.
2 Task decomposition and motion planning are discussed in Section 5.1.1 and Section 5.1.2 respectively
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traversability requirements, a novel form of heterogeneous traversability analysis would 393

need to be implemented, this is an open area of research. 394

5 Decision making 395

This section aims to provide an answer to sub-question 2 from Table 2: 396

What is the most suitable multi-robot coverage decision-making approach for domain applications 397

resembling offshore wind inspection? 398

In this work, as mentioned previously, Decision-making, as defined by the authors of 399

this paper, is the mechanism by which collective choices are defined by centralised or 400

decentralised objectives. In order to systematically analyse the approaches’ suitability to 401

the domain, two taxonomies were applied. The first taxonomy relates to the amount of prior 402

knowledge available to a system a-prori. Almadhoun et al. [33] in their survey on coverage 403

path planning classified approaches assuming prior knowledge as being "model-based", 404

and those without prior knowledge as being "non-model based". Model-based approaches 405

assume a prior environmental model, a "known environment", whereas non-model-based 406

approaches lack this initial knowledge. Knowledge of one’s environment is a significant 407

advantage, and as one would expect model-based approaches are usually better performing. 408

However assuming prior knowledge of one’s environment is a strong assumption, and 409

this prior knowledge is not always available or accurate. The second taxonomy uses the 410

planning definition from Yan et al. in order to analyse the works included in this review 411

[36]. Yan et al. consider planning to be composed of two aspects, task planning and motion 412

planning. Task planning can further be divided into two sub-aspects, task decomposition 413

and task allocation, which are concerned with turning a multi-robot task into a set of 414

single-robot tasks and then allocating these tasks to the team. Motion planning involves 415

the generation of paths and trajectories for the team members to visit and complete all the 416

tasks. 417

5.0.1 A-priori Knowledge 418

Almadhoun et al. [33] identified a dichotomy in approaches to coverage. Approaches 419

can either have, or not have, an a-priori environmental model. The authors defined these 420

groups of approaches as either non-model based and model based. 421

5.0.1.1 Non-model based 422

In the simplest sense, a non-model approach to coverage assumes nothing about the 423

structure environment, it will facilitate coverage without requiring a prior environmental 424

representation. Therefore, these approaches are often used when the environment is 425

unknown or uncertain. Non-model-based approaches can be described using both the 426

terms "exploration" [50] and "coverage of an unknown environment" [46]. There is a 427

degree of ambiguity in the terms "Coverage" and "Exploration". Yamauchi [65] defined 428

explorations as a problem of "Given what you know about the world, where should you 429

move to gain as much new information as possible?". A commonality amongst papers 430

concentrating on the exploration problem is that the approaches attempt to maximise 431

the knowledge of an a-priori unknown environment. That is to say, exploration aims 432

to model the environment, and approaches work to maximise the completeness of the 433

model. On the other hand, coverage can be roughly split into two distinct problems: 1) 434

covering an environment with a team of sensors’ footprint in an optimal manner and 2) 435

assigning spatially distributed tasks to a team of robots in an optimal manner. The former 436

is often decomposed into the latter, and the latter is an instance of the multi-robot task 437

allocation problem [66]. Coverage can be in an unknown environment without exploration. 438

In Bramblett et al. a team of robots with limited communication range are tasked with 439

exploring an unknown environment [52]. The authors consider an unknown environment 440

with tasks, hence the problem requires both optimal full exploration and task allocation 441

coverage. "Exploring an environment by repeatedly applying path planning algorithm at 442
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each instance of time" is a highly specific definition for exploration from Sharma et al. [48], 443

characterising the online3 nature of the exploration problem. The quality of sensor coverage 444

is taken into account in Dong et als. [54] work, stating their problem as collaboratively 445

exploring and mapping a scene such that scanning coverage and reconstruction quality is 446

maximised, while the scanning effort is minimised. Of the works retrieved 8 are non-model 447

based. 448

5.0.1.2 Model-based 449

An approach can be said to be model-based if it assumes a prior environmental model, 450

an assumption that simplifies the task decomposition [33]. Ball et al. assume a known 451

geometric map for using multiple modified John Deere TE Gator for crop spraying [40]. 452

This geometric map is then decomposed into multiple sub-regions through boustrophedon 453

cellular decomposition. An approach initially assuming environmental bounds given by 454

a set of vertexes representing the bounds of an area of interest, this is then decomposed 455

to a hexagonal grid is given by Perez-imaz et al. [47]. Karapetyan et al. consider a 456

known geometric model that is then decomposed to task areas via boustrophedon cellular 457

decomposition [42]. Kim et al. [44] in their approach also assumes a search region of an 458

arbitrary shape. Zhang et al. assume the prior model of the environment is in the form 459

of a simple binary gridmap of free cells and obstacles, a very common representation in 460

offline coverage problems [49]. Finally, Tang et al. consider a known geometric model of 461

the environment. However, due to random dynamic interference, their approach cannot 462

be computed offline [43]. A prior model of the environment can facilitate prior planning 463

and optimal solutions to the task decomposition and path planning problems. However 464

solutions that rely to heavily on the prior knowledge of the environment may struggle with 465

the uncertainty of a real world implementation, especially in areas with high uncertainty 466

like offshore wind farms. 8 of the works retrieved where model based. 467

5.1 Planning 468

Planning is defined as "the task of coming up with a sequence of actions that will 469

achieve a goal" by Yan et al. [36]. Planning for a mobile multi-robot system can be divided 470

into task planning and motion planning. Task planning is a problem of how tasks should 471

be divided among the team, while motion planning is concerned with devising paths in 472

order to facilitate locomotion to, and completion of, said tasks. 473

5.1.1 Task Planning 474

Yan et al. [36] defined Task planning as the problem of "which robot should execute 475

which task". They then proposed to split task planning into two further categories, task 476

decomposition and task allocation. Task decomposition is how a multi-robot problem can 477

be split into single-robot tasks, and task allocation is how best to assign these single-robot 478

tasks to the robotic team. The works in this review are grouped by the task decomposition 479

method used: 480

5.1.1.1 Area decomposition 481

The works discussed in this section share in common the decomposition of a 2D plain 482

into a set of geometric shapes representing coverage areas to be assigned. 483

In Ball et al. [40], the initial representation is in the form of a geometric map. The task 484

is decomposed using a boustrophedon cell decomposition, as first described in Choset’s 485

work [68]. The boustrophedon cell decomposition algorithm takes a known geometric 486

model and decomposes it into a topological representation composed of uneven cells 487

3 Online in the sense of robotic planning indicates the plan is generated at runtime, offline plans are generated
before the execution
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Table 7. Task planning approaches

Paper Task Decomposition Task Allocation
Ball et al. (2015) [40] Boustrophedon cell division Not Described
Kalde et al. (2015) [45] Frontiers and Humans identified as

potential tasks
Greedy allocation on a cost matrix

Song et al. (2015) [46] Pre-decomposed Pre-allocated
Colares and Chaimowicz (2016) [51] All frontier cells as tasks Optimal frontier based on a cost func-

tion
Dornhege et al. (2016) [53] Set of optimal views Greedy allocation, or set cover solu-

tion with TFD solver
Perez-Imaz et al. (2016) [47] Hexagon grid K-means clustering
Sharma et al. (2016) [48] Pre-decomposed Pre-allocated
Masehian et al. (2017) [41] Hierarchy of decompositions Allocated based on other classes of

robots identifying tasks
Karapetyan et al. (2018) [42] Boustrophedon cell division or DCS

path splitting
Not Described

Dong et al. (2019) [54] Set of optimal frontier views K-means clustering
Zhang et al. (2019) [49] DARP DARP
Bramblett et al. (2022) [52] All frontier cells as tasks for explo-

ration; Tasks discovered in explo-
ration

K-means clustering, Auctioning, and
Optimal frontier based on a cost func-
tion

Kim et al. (2022) [44] Frontier cells based on the uncer-
tainty of neighbours

Heterogeneous k-means clustering

Tang et al. (2022) [43] N/A N/A
Bartolomei et al. (2023) [55] Exploration: Clustered frontiers[67]

Collection: Uncovered trails
Exploration: Optimal frontier based
with minimal cost
Optimal trail based with minimal
cost

Yu et al. (2023) [50] N/A N/A

based on the models’ geometry. This approach works by running a vertical line along the 488

geometric model, and when an obstacle bisects line two the current cell will be closed and 489

two new cells will be created. The result of this is several cells that can be covered in a 490

boustrophedon motion (back and forth). The resulting cells are allocated to the robotic 491

team, but the details of this are not given. 492

Figure 13. Boustrophedon Cell Decomposition [68]

A UAV coverage for first-response rescue and recovery with UAVs was implemented 493

by Perez-imaz et al [47]. Hexagonal decomposition was used to decompose the task, 494

this worked by overlaying the hexagon over the known geometric environment, with 495

the hexagon size representing the sensor range. The tasks are allocated using K-means 496

clustering, and each hexagon within a Graph is formed. While the approach considers a 497

multi-robot team, the real-world experiments carried out only used a single UAV. 498

A purely offline approach is considered by Karapetyan et al. [42] in their approach 499

to Autonomous surface vehicle coverage. The approach takes two approaches to environ- 500

mental decomposition, Boustrophedon cell division as used by Ball et al. work discussed 501
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earlier [40], and a Dubins coverage solver (DCS). The DCS splits the environment into 502

several passes to form a graph, outputting a Hamiltonian path. In Dubins coverage with 503

route clustering this Hamiltonian path is then split between the team. Another approach 504

Dubins Coverage with Area clustering segments the environment with Boustrophedon cell 505

division, clusters cells together, and then uses the DSC to create the tasks. Task allocation 506

isn’t discussed. 507

All the works reviewed in this section consider the coverage footprint and the sensing 508

platform to be inseparable, an individual robot has a sensing footprint of a specified size 509

centred on itself. In a 3D structure inspection, this isn’t the case, rather the sensor footprint 510

will always be separate from the sensing platform. While the relevance of decomposing a 511

2D space into several regions to be covered doesn’t have an obvious application to OWT 512

inspection, it’s worth considering the extendability of the reviewed approaches to the 3D 513

structure inspection problem. One possible avenue for this is the decomposition of 3D 514

space into a set of assignable regions. Both Darp and Boustrophedon cell divisions rely 515

on 2D geometry to decompose the environment so extending them may not be simple. 516

As the problem we’re considering is with sensor coverage of a structure, segmenting the 517

environment without consideration of the structure to be sensed would likely result in 518

sub-optimal solutions. An alternative approach is to use these task decompositions as a 519

component of a larger task decomposition approach. In the case of the OWT this could be 520

the use of an area segmentation method to decompose the structure surface into continuous 521

sections that can be assigned to the robots within the team Following this, the coverage 522

problem can be seen as a set of single robot coverage problems of the assigned regions. 523

5.1.1.2 Frontier-based decomposition 524

The concept of frontier-based exploration was first introduced by Yamauchi [65] in 525

1997. These approaches harness environmental uncertainty to generate tasks or viewpoints 526

iteratively, allowing exploration or coverage with limited knowledge of the environment. 527

Viewpoints are usually selected based on some cost function aiming to maximise the 528

reduction in uncertainty upon moving to it. 529

Kalde et al. [45] consider the problem of exploring an unknown environment with 530

wheeled robots. The author’s approach to this problem is frontier-based iterative planning 531

with human guidance. At each planning interval, the environment is first decomposed 532

through identifying tasks, either frontiers or humans. In this work, humans can assist robots 533

in navigation by leading them. The work makes use of a parametric heuristic to equilibrate 534

the frontier tasks and the human tasks. This parametric heuristic takes the form of a "Mixed 535

Cost model", a cost value is computed for each agent-task assignment in a cost matrix. The 536

cost function is formed from two components. A distance component is simply the distance 537

for the robot to traverse to a task. A penalty component is composed of a time penalty 538

and an orientation penalty, the time penalty being the time elapsed since the frontier’s 539

discovery, and the orientation being the smallest angle between the robot’s orientation and 540

the direction of the frontier or orientation of the human. Given the cost matrix, two greedy 541

approaches were used, one fully decentralised, and one locally coordinated. 542

Colares & Chaimowicz [51] consider an instance of the exploration problem using 543

a frontier-based approach. The task is decomposed by considering all known frontier 544

cells’ potential targets. For task allocation, a three-component cost factor was used in 545

a distributed fashion. The first component is an "Information factor", which quantifies 546

the potential information gained for visiting a cell based on its neighbours. A distance 547

component was used, with two variables to change the behaviour by favouring close or 548

distant frontiers. Finally, a coordination factor penalises selecting a frontier close to a 549

known neighbouring robot. Given this, the optimal frontier is selected for each robot. The 550

approach was implemented with two Pioneers 3AT wheeled robots to explore an indoor 551

environment with success. 552

Another exploration approach is considered by Dong et al. [54]. This was implemented 553

in an indoor environment with a team of up to six turtlebots. The authors consider an 554
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Figure 14. Colares & Chaimowicz’s Frontier detection [51]

octomap representation projected on the floor plane and use the uncertainty to decompose 555

the task. The approach also uses a validness map, which gives the possible poses of a sensor. 556

The voxel positioned on frontiers is sorted by uncertainty in a priority queue, and then the 557

validness maps are considered to find poses that rays pass through the voxel. The pose 558

with the optimal validness is taken, where validness is composed of the deviation from 559

0 degrees and a function of the optimal distance. On the view being selected, all voxels 560

within its view are removed from the queue. This process repeats until a specified number 561

of views are generated. As for the task assignment, the problem is viewed as an Optimal 562

Mass transport problem. This problem is formulated and then discretised to an objective 563

function with three components to be minimised. A compactness component penalises 564

spatial scattering of assigned tasks, a distance component minimises travelling cost, and a 565

capacity component ensures robots can complete only some tasks within their capacity for a 566

given interval. This is then optimised through a modified k-means clustering algorithm was 567

used. Zhang et al. [49] consider area coverage using UAVs with mobile charging stations. 568

The continuous area is initially split into tasks through a gridmap decomposition. They 569

then make use of the Divide Areas based on Robot’s Initial Positions algorithm (DARP) 570

modified to avoid discontinuities via edge detection. This effectively allocates areas of the 571

grid for coverage. The authors made use of crazyflie UAVs adapted for mobile charging, 572

and wheeled mobile charging stations. 573

As discussed previously, Bramblett et al. [52] were concerned with the problem of 574

coverage of tasks in an unknown environment, and as such planning has to occur for both 575

tasks. For exploration, a Sobel operator is used on the occupancy grid to identify frontiers 576

based on the gradient between known and unknown space. Those frontiers representing 577

obstacles are discarded. Naive to and in tandem with the edge detection, the unknown 578

environment is clustered using K-means clustering for each robot. These are auctioned 579

to the robots in a centralised manner. The robots then act in a greedy manner using a 580

cost function that favours closer tasks, but those tasks outside of the robot’s assigned task 581

area a penalised by distance from the task area. In regards to the coverage aspect, the 582

tasks are "Decomposed" from the environment in the sense that they’re discovered during 583

exploration. The decision logic for coverage is given in Figure 15. This Search involves 584

seeking a robot that didn’t rendezvous, it is likely in such scenarios that the robot found a 585

task. Exploitation is the act of working on a task. The authors implemented the approaches 586

on three Husarion ROSbot 2.0 UGVs. 587

Kim et al. start with a geometric representation of the environment[44]. Their ap- 588

proach considers a degree of heterogeneity, in the sense that team members have different 589

sensor ranges. The tasks are generated based on the smallest sensor range while grouping 590

unknown frontier cells. Task assignment is treated as a clustering problem. They extend K- 591

means clustering into their Heterogeneous clustering algorithm. This clustering algorithm 592

considers both the spatial proximity of two agents and the weighted distance based on the 593

sensing ability of the specific robot. 594
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Figure 15. Bramblett Decision logic [52]

Finally, Bartolomei et al. discuss the exploration of forests with a team of UAVs 595

[55]. This method has two modes for the robots in the team, exploration and collection. 596

Exploration is as expected, focused on obtaining new knowledge of the environment, 597

while the collection is concerned with cleaning up the "trails" of unexplored areas left by 598

exploration. Exploration tasks are decomposed from clustered frontiers. The clustering 599

algorithm used isn’t specified. Given the cluster centroid, candidate views in a cylinder 600

focused on the centroid are considered. The view with the highest coverage of the cluster 601

is then selected as the optimal view for that cluster. A set of these views with optimal 602

views over the clusters from the decomposed tasks for the task allocation. These clusters 603

also undergo a classification, with those representing trails being semantically classified 604

as such based on their isolation. A mechanism for declaring areas of interest for a team 605

member takes place between two robots if they are inside communication range. This 606

area of interest is used by the robot to select tasks from the previously discussed set of 607

tasks. The assignment for exploration is based on a cost function with four components, a 608

distance and a change of direction component, a label component to penalise trails, and a 609

component to encourage those views near the area of interest. As for those team members 610

assigned as collectors, they cover trails through a cost function only considering distance 611

and proximity to the area of interest. 612

The value of frontier-based approaches is their application in coverage when knowl- 613

edge of the environment is limited, and there are uncertainties in regions of the map. When 614

considering the applicability of these methods to the OWT inspection problem, it’s impor- 615

tant to take into account prior assumptions. If the entire environment is considered known 616

a-priori frontier-based approaches have few clear benefits. Frontier-based approaches 617

can work in a decentralised manner, potentially performing better where communication 618

may be limited. In situations where the turbine’s location may be uncertain such as with 619

floating turbines in areas with large currents, there could be value in using a frontier-based 620

approach, ideally while still accounting for the known general geometry of OWT. 621

5.1.1.3 View decomposition 622

While there’s only one example of this decomposition approach, it proves to be one of 623

the most applicable. View decomposition attempts to, for a known structure in a known 624

location, find a set of views that optimally cover the surface of the said structure with the 625

sensor footprint 626

Dornhege et al.[53] tackle a coverage search problem with a team of wheeled robots. 627

The authors consider an Octomap environmental representation with a known search set 628

of voxels. For each voxel in the search set several random vectors are generated, and then 629

ray tracing is used to find a set of grid cells that represent possible sensor states along the 630

vector. The corresponding grid cells from the ray tracing are used to increment a utility 631

function for the grid cells, this is done for all cells in the search set to create a utility map 632

across all accessible sensor states. Those states over a given utility threshold are added to a 633
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set of useful sensor states. For task allocation, the problem can then be considered a set 634

cover problem, given a set representing and search set and a set of sets representing those 635

observers’ cells for a sensor position, finding the minimal set of sensor positions that cover 636

the environment. Dornhege et al. used a variant of the planner Temporal Fast Downward 637

to solve this set cover problem as a planning problem. Alternatively, the authors used a 638

greedy approach in which the views were selected for each robot iteratively based on the 639

cost. The cost in the greedy approach can either balance the view utility and the travel time 640

or be the travel time. This task allocation method also ensures a high-level path plan. 641

While this approach may be the most readily applicable to the OWT inspection prob- 642

lem, it would need modification for this use case. The authors consider only wheeled robots 643

and choose the possible sensor states based on this assumption, for the OWT inspection, 644

USV and UAV would be necessary. USV sensor positions have similar specifications to 645

wheeled robots, being limited to surface level, but UAVs are not bound to the surface. The 646

UAV’s capability to reach almost any position in space would possibly make the computa- 647

tional complexity of the approach Dornhege et al. [53] infeasible. The authors also don’t 648

account for camera orientation and distance concerning the surface of the structure to be 649

inspected. To apply a method similar to theirs to an OWT inspection would need to account 650

for sensing quality by ensuring the sensor is positioned to capture useful information, 651

which can be achieved by requiring a certain proximity and orientation to the surface 652

being captured. Applying these requirements would benefit the computational complexity 653

of the solution by reducing the number of possible sensor states to those that fulfil the 654

requirements. This approach also has no accounting for uncertainty in the environment, 655

requiring a full a-priori model and no dynamics. 656

5.1.1.4 Hierarchical Decomposition 657

Masehian et al. [41] give an interesting hierarchical, heterogeneous approach to 658

coverage of an environment with limited sensing capabilities. In this approach, the tasks 659

for some robots are decomposed as robotic tasks for others. In their approach, there are 660

three classes of robots, each with a different sensing capability and differing behaviours. A 661

Quadridirectional robot with four quadridirectional sensors is not assigned tasks as such, 662

rather it initially starts a boustrophedon motion across the environment. The quadridirecital 663

robot will identify obstacle and wall boundaries, this represents the task decomposition 664

for the second robot class, the Boundary follow robot equipped with a radial sensor. The 665

assignment for a boundary follow robot class is the robot with minimal distance. This 666

robot will follow the boundary and if a sensed point doesn’t align with the last two points 667

a task will be created for the last robot in the hierarchy. The Gap robot can identify gaps 668

between obstacles within a radius and is hence assigned the potential gaps identified by 669

the boundary follower. 670

While this work addresses a very specific case, it touches on an interesting aspect of 671

the OWT inspection problem. There is potential when addressing the OWT inspection to 672

utilise heterogeneity of capabilities to increase the quality of inspection, while this isn’t 673

necessary for the problem as defined by us, it could be of practical use in industry and act 674

as a variant of the inspection problem. That is to identify areas of interest, identifying a 675

damaged area, from a distance with a suitable sensor, and then using a team member with 676

a different sensor to elaborate on the identified damage by moving closer. This behaviour, 677

while not identical, resembles the approach used by Masehian et al. [41] in the generation 678

of a hierarchy of tasks based on the sensing capabilities of other team members. 679

5.1.1.5 Pre-decomposed and non-decomposing approaches 680

Some works reviewed didn’t consider the decomposition of the environment, and 681

others like the reinforcement learning approaches don’t view task decomposition as a 682

separate problem from motion planning, as such the specifics of these will be discussed in 683

greater detail in the motion planning section. 684



Version December 27, 2023 submitted to Drones 21 of 35

Song et al. [46] focused on the use of AUVs for full sensor coverage. In their approach, 685

they assumed the environment is pre-decomposed in sub-regions, and initial task allocation 686

isn’t considered. Rather the work focuses on motion planning and fault tolerance, the 687

former discussed in Section 5.1.2, and the latter discussed in Section 6. 688

In Sharma et al. the environment is considered both pre-decomposed and task areas 689

are pre-assigned [48]. 690

In Tang et al. [43] a worker station approach to coverage is given. The environment is 691

decomposed into a grid, but the resulting cells cannot be viewed as tasks. The authors use 692

a reinforcement learning approach, so tasks are not allocated as such. The reinforcement 693

learning approach’s action space is concerned with the linear and angular velocity of a 694

single robot, so this will be discussed in section 5.1.2. The approach was implemented 695

using a skid-steer wheeled robot as a station and two differential-driven wheeled robots as 696

workers. 697

5.1.2 Motion planning 698

As previously described motion planning is concerned with devising paths to facilitate 699

locomotion to, and completion of, the previously planned tasks. In some cases motion 700

planning alone is used without task allocation, for example greedily covering a geometric 701

map may not have discrete tasks, only motion planning. Path planning is defined by 702

Kavraki & LeValle [69] as finding a collision free path from an initial pose to a goal pose. 703

The problem being considered here closer resembles the multi-goal path planning problem 704

proposed by Wurll et al. [70], finding a collision free path connecting a set of goal poses 705

while minimising some cost function. Solutions often consist of two tiers, a global and a 706

local planning. Global planning approaches solve the multi-goal path planning problem 707

at a higher level, sometime forgoing consideration of collision altogether. While local 708

planning closer resembles the traditional path planning problem, concerned with a path 709

from an origin to a goal while avoiding collision and minimising some cost. 710

Table 8. Summary of Motion Planning Approaches

Paper Motion Planning Approach
Ball et al. (2015) [40] Search-based lattice planner with a local pure pursuit con-

troller
Kalde et al. (2015) [45] Potential field on a gridmap
Song et al. (2015) [46] Generalized Ising model with local and global navigation

mechanisms
Colares and Chaimowicz (2016) [51] Not specified beyond iterative task selection
Dornhege et al. (2016) [53] Single TSP problem solved with Temporal Fast Downward

planner or Lin-Kernighan heuristic. Or a single greedy ap-
proach split for the number of robots

Perez-Imaz et al. (2016) [47] Dijkstra’s algorithm on a hexagonal graph with lawnmower
pattern

Sharma et al. (2016) [48] Directional motion and nature-inspired algorithms
Masehian et al. (2017) [41] Different policies for different robotic classes: boustrophedon

motion, Boundary following, and guide path following with
obstacle avoidance

Karapetyan et al. (2018) [42] Dubins coverage solver with TSP problem solving
Dong et al. (2019) [54] Christofides algorithm for TSP approximation with path

smoothing
Zhang et al. (2019) [49] Spanning tree coverage algorithm
Bramblett et al. (2022) [52] A* path planning algorithm with iterative frontier-based tasks
Kim et al. (2022) [44] Genetic algorithm for TSP problem with A* algorithm and

B-spline for path computation
Tang et al. (2022) [43] Reinforcement learning with multi-layer perception for policy

network. Action space being angular and linear velocity
Bartolomei et al. (2023) [55] Trajectory generation integrated with task allocation
Yu et al. (2023) [50] Reinforcement learning with a Multi-tower-CNN based Policy

decentralised. The action space represents a global goal. Local
navigation is achieved with A* algorithm

An example of this distinction between global and local path planning is given by 711

Ball et al. [40]. In this work, the global planner makes use of a search-based lattice planner 712



Version December 27, 2023 submitted to Drones 22 of 35

to find the best path considering both the cost of motion primitives and minimising the 713

cost of traversing a costmap while avoiding obstacles. A local pure pursuit controller is 714

used for the global planner path if followed optimally, using two PI controllers to minimize 715

the error in the robot position and the global planner path. If a collision is detected in the 716

global path, the local pure pursuit controller can reject it, and ensure the global planner 717

recomputes a new path. Kalde et al. [45] describe their motion planning as done using a 718

potential field propagated on the gridmap. Another two-level approach to motion planning 719

is considered by Song et al. [46]. As discussed earlier the authors consider a multi-layer 720

grid representation, and their local navigation works on the lowest level of this grid. They 721

describe their navigation as being based on a generalized Ising model. The cells within 722

the Ising model have one of three states, obstacle, explored, and unknown. Local potential 723

energy is formed from the state of the cell and its neighbours. A component of the local 724

potential energy is a constant potential energy field that encourages back-and-forth motion 725

for coverage. For each robot, the target is therefore the cell with the highest energy potential. 726

But it may be the case that a robot could get caught in a local minima. The authors account 727

for this eventuality with a global navigation mechanism. The global navigation works 728

on a coarser grid than the local navigation, using a low-dimensional probability vector to 729

restore environmental information for the coarser grid. Then much as with local navigation, 730

a target is selected and navigated towards, until local navigation is possible. Colares & 731

Chaimowicz’s work doesn’t discuss the specific motion planning approach implemented 732

beyond the iterative task selection previously described [51]. Dornhege et al. approach 733

path planning by treating it as a set of single travelling salesman problems (TSP)4, given 734

the result of their set cover problem. The authors solve the TSP problem for each subset 735

using either a Temporal Fast Downward planner [71] or a Lin-Kernighan heuristic [72]. 736

An alternative method the authors use is extending the single robot greedy allocation, by 737

taking a single greedy plan for the environment and splitting this path for the number of 738

robots. These approaches give a global path plan for traversing a topological graph, but 739

details on path planning to account for the structure of the environment itself are sparse. 740

Given the topological graphs decomposed and clustered from the hexagonal graph by 741

Perez Imaz et al. [47], the authors ensure a lawnmower pattern within the hexagons by 742

using parallel lines intersecting with the hexagon to create nodes and then using Dijkstra’s 743

algorithm to generate the path. An optimal angle of the path for each hexagon is found 744

to minimise the complete coverage distance. In Sharma et al. [48] the authors have split 745

the environment into several task areas to be covered. Until the entire areas for a robot 746

are covered, an iterative path planning approach is taken. The robot at any given iteration 747

will randomly choose one of two motion policies: Directional motion or a Nature-inspired 748

algorithm. Directional motion has two variations: A directional scattering effect moves 749

in the direction of a "cluster head" selected randomly to encourage exploration; and a zig- 750

zag search effect, in this approach the cluster head is chosen dynamically, ensuring more 751

random and less directional motion. The authors modified Particle swarm optimisation, 752

Bacteria foraging algorithm, and Bat algorithm for their multi-robot exploration. The 753

particle swarm optimisation algorithms were found to perform optimally for exploration. 754

The motion planning in Masehian et al. [41] takes into account the heterogeneous nature of 755

the team involved. Each of the three robotic classes has a different motion planning policy. 756

The quadridirectional robots use boustrophedon motion to cover the task area. During 757

boustrophedon motion the robot may get trapped in a corner, this is resolved by referring 758

to its observation history and finding any gaps it may have passed since its last row, and 759

will backtrack to this point and continue in the direction of that gap. The boundary follower 760

robot follows the boundary of an obstacle or wall. This is done by considering a band, 761

representing an optimal distance from the obstacle, around the edge of said obstacle that 762

the robot should stay in. The Gap robot’s motion planning can be considered a classical 763

4 The travelling salesman problem is a well-known mathematical and computer science problem that can be
summarised as "Given a list of cities and the distances between each pair of cities, what is the shortest possible
route that visits each city exactly once and returns to the origin city?"
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path planning problem, given a task, to find the optimal path from the current location to 764

the path. The robot considers a guide path, being the direct line from the robot’s position to 765

the task. On the gap robot sensing an obstacle along the guide path, the robot will randomly 766

decide whether to go left or right. around the obstacle. Karapetyan et al. [42] involve 767

using the Dubins coverage solver from Lewis et al. [73], an approach that solving the TSP 768

problem for generated rows while accounting for dubins constraints. A TSP problem is also 769

considered by Dong et al. [54] after selecting some tasks for a given robot. For this purpose, 770

the authors used the Christofides algorithm to calculate a TSP approximation, the path of 771

which is then smoothed. Examples of paths over an iteration are shown in Figure 16.

Figure 16. Paths over an iteration in the work of Dong et al. [54] a) The
decomposed viewpoints and the robot starting positions b) The

multiple TSP paths from the robots c) The smoothed paths for the robots
772

Zhang et al. [49], previously having decomposed the environment into a set task of task 773

areas, produces a coverage path common to offline coverage of gridmap environments a 774

Spanning tree coverage algorithm. Spanning tree coverage capitalises on the grid structure 775

by grouping sets of four cells together, and considering these supercells to find a spanning 776

tree. This spanning tree can then be traversed by the robots in the team, forming a cycle 777

across the entire environment. Bramblett et al. [52] consider the iterative frontier-based task, 778

as discussed earlier. To navigate to these tasks they use the A* path planning algorithm. 779

Kim et al. [44] used a topological graph, as discussed earlier, and now considers the TSP 780

problem. Their approach to the TSP problem is a genetic algorithm [74]. The path between 781

the points in the TSP solution is then computed using an A* algorithm, and a spline function 782

is taken of that using B-spline. Tang et al. [43] is concerned with the use of reinforcement 783

learning coverage, as was stated earlier, this doesn’t have task planning as such. The authors 784

describe their multi-agent reinforcement learning problem as a "Decentralized Partially 785

Observable Markov Decision Process". They follow a centralized training and decentralized 786

execution paradigm. The observation space consists of the robots’ information, information 787

from its sensors, and information from those robots within communication range. The 788

action space consists of linear and angular velocities. Their reward function is composed 789

of four components. A completion reward is given for finishing coverage, and the second 790

component approximates worker capacity, giving a negative reward if the energy capacity 791

of a robot is beneath a threshold. During the training phase, robots can continue coverage 792
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with depleted capacity. The third reward is a negative reward for collisions, and the final 793

component is a constant negative reward to encourage an optimal time. The authors use 794

a Multi-layer perception for their policy network. Path planning is computed with the 795

task allocation by Bartolomei et al. [55], and the trajectories are then generated using 796

the approach proposed by Zhou et al. [75]. Another reinforcement learning approach is 797

considered in Yu et al. [50]. For this purpose the authors make use of an Asynchronous 798

variation of the Multi-Agent Proximal Policy Optimization algorithm [76]. The task is 799

modelled as a decentralized partially observable Semi-Markov decision process. A Multi- 800

tower-CNN based Policy is used for each agent. The action space is a global goal, but 801

atomic actions enact this goal using the A* algorithm. A three-component reward function 802

is used, a coverage reward proportional to the discovered area, a success reward when 803

a threshold coverage is achieved, and an overlap penalty for repeating coverage. The 804

team members communicate extracted features from a CNN local feature extractor to one 805

another. 806

5.2 Discussion 807

When discussing the applicability of decision-making approaches to domain appli- 808

cations resembling OWT inspection, an initial question would be whether model-base or 809

model-free approaches are better suited to the task. In an OWT inspection, the orientation 810

of the turbine is not tracked, multipath error makes GPS positioning unreliable[38], and 811

in the case of floating OWTs, the entire structure can excur up to 35% of the depth of 812

the mooring system [28]. A case could be made that a model-free approach would better 813

account for the uncertainty of the turbines’ pose. As was previously proposed in Section 814

4.7, the OWT inspection task lends itself to 3D environmental models, with semantics labels 815

for a search set representing the structure to be inspected. 816

Given a 3D voxel-based environmental model with a subset of voxels representing 817

the search set, what planning approaches should be used to provide sensor coverage of 818

the search set with a team of robots? The answer to this question depends on the prior 819

knowledge assumed. Given the full environmental model a priori, a task decomposition 820

approach such as Dornhege et al may be used [53]. Dornhege et al. were concerned with 821

wheeled robots however, and the set of reachable voxels along the ground, applying the 822

same approach to UAVs OWT inspections would have a much larger set of reachable 823

voxels greatly increasing the computational cost of the set-cover solution. One solution in 824

lessening this problem is to apply bounds on which voxels are considered, not based on 825

voxel reachability, but on proximity to the search set. As for task allocation, the approaches 826

in the literature are quite limited, approaches like greedy allocation or K-means clustering 827

would work, but may not provide near-optimal solutions. As for motion planning, given 828

the assigned tasks for the team members, an open TSP approximation should be computed 829

over the task assigned, generating a high-level path plan [53]. To follow this plan a 3D 830

costmap in the form of an ESDF should be used to prevent collisions with obstacles [55], and 831

the path considers a tradeoff between the length and the cost. None of the task allocations 832

takes into account the dynamics of the OWT environment, it may be the case that strong 833

winds may increase the time to reach a given task, and this could be accounted for in task 834

cost. Additionally, none of the approaches considered disruption of performing the task 835

itself, say a strong gust of wind or a wave disrupted the image capture process for a given 836

robot, this would need to be reassigned to the team dynamically. 837

As was previously discussed, an accurate model of the environment can be unrealistic 838

in an OWT inspection due to the mobility of floating OWTs and the dynamic nature of 839

the nacelle yaw and blade rotation. It may be necessary to treat the task as an exploration 840

problem, following a similar approach to task decomposition as Dong et al. [54]. As 841

with the approach of Dornhege et al., the issue with the approach of Dong et al. is its 842

assumption of wheeled robots. Another issue is the approach’s focus on exploring an entire 843

environment rather than a search set of interests. This represents an area of future research, 844

if the search set isn’t known a priori (as in Dornhege et al. [53]) task decomposition requires 845
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the inference of the search set from sensor information (it requires the team to identify the 846

OWT as the search set in an online manner). Assuming such an approach to identify the 847

search set at each iteration, a frontier-based approach can be applied to generate tasks at 848

the frontier of the known search set to identify more OWT. Task allocation and motion 849

planning can be achieved in much the same way as for model-based approaches. As the 850

general geometry of the turbine is predictable, this could be utilised to allow for these 851

tasks to be generated. This coverage of an unknown environment with significant prior 852

knowledge, a structure-informed coverage of an unknown environment, is an interesting 853

area of research and as far as the authors are aware hasn’t received attention so far. 854

6 Coordination 855

This section aims to provide an answer to sub-question 3 from Table 2: What is the most 856

suitable strategy to effectively coordinate a multi-robot system for domain applications resembling 857

offshore wind inspection? Coordination has many definitions in the literature. Farinelli 858

et al. [37] consider coordination to be cooperation in which team members take actions 859

in consideration of other team members “in such a way that the whole ends up being 860

a coherent and high-performance operation". Yan et al. [36] defined it as multi-robot 861

planning to deal with resource conflicts, be that conflicts in space, tasks or communication 862

media. Cao et al. [77] define coordination as "Given some task specified by a designer, 863

a the multiple-robot system displays cooperative behaviour if, due to some underlying 864

mechanism (i.e., the “mechanism of cooperation”), there is an increase in the total utility 865

of the system". While it is true to say that in all the approaches discussed, the team 866

members coordinate to increase the utility of the system, this section will focus on those 867

coordination mechanisms necessary to resolve issues brought about by the dynamics of 868

a task environment, or the online nature of an approach. The decision-making, even if 869

aware of, and therefore coordinating with other team members is discussed in the section 870

prior. We will discuss here the necessary communication mechanisms required to facilitate 871

this coordinated decision-making. To succinctly evaluate the coordination mechanism in 872

the works reviewed, they were charted in Table 9. This notes whether the works take an 873

online or offline approach to planning, details of communication, whether the teams are 874

heterogeneous or have an inter-team hierarchy, and whether fault tolerance is considered. 875

These categories provide context to how the team members coordinate to complete their 876

tasks. 877

6.1 Collaboration in decentralised Planning 878

In centralised works, a central planner assumes knowledge of the state of the envi- 879

ronment and dictates tasks based on this global view. Such an approach is powerful, and 880

can find optimal solutions if feasible, but is very rarely feasible. Communication issues, 881

or failure of the planner, have a catastrophic effect on online coverage with a centralised 882

planner. Hence, many approaches attempting to perform coverage with communication re- 883

straints will implement distributed approaches to the problem. Additionally, decentralised 884

approaches can handle a larger number of robots by distributing the computation across 885

the robots. In our review, eight works were identified to use decentralised planning. As 886

discussed earlier, Kalde et al. [45] consider a decentralised frontier-based approach. The 887

robots share a map and their locations. With the locations of the robots shared. A task robot 888

cost matrix is formed by each robot using the map, however, the matrix only considers those 889

robots local to the computing robot in order to optimise the assignment. While centralised 890

task allocation is considered by Song et al. [46], a decentralised approach was taken to 891

handle unequal task sizes. In this approach, once a robot completes its initially assigned 892

task, it starts a cooperative game with those robots local to it in need of help. Cooperative 893

games are one of the state-based potential games described by Marden [78]. In their case, 894

the cooperative game is said to be made up of coalitions of two robots, each with a payment 895

balancing the distance to the task of the receiving robot and the remaining uncovered cells 896
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Table 9. Table of data extracted for coordination research question

Literature Online
/Offline

Communication Hierarchy Heterogeneity Fault tolerance

Ball et al. (2015) [40] Online Extrinsic No Homogenous Not discussed
Kalde et al. (2015) [45] Online Extrinsic No Homogenous Not discussed
Song et al. (2015) [46] Online Extrinsic Dynamic

Hierarchy
Homogenous Not discussed

Colares and Chaimow-
icz (2016) [51]

Online Extrinsic No Homogenous Not discussed

Dornhege et al. (2016)
[53]

Offline Extrinsic No Homogenous Not discussed

Perez-Imaz et al. (2016)
[47]

Online None No Homogenous Yes

Sharma et al. (2016) [48] Online None No Homogenous Not discussed
Masehian et al. (2017)
[41]

Online Extrinsic Yes Heterogeneous Not discussed

Karapetyan et al. (2018)
[42]

Offline None No Homogenous Not discussed

Dong et al. (2019) [54] Online Extrinsic No Homogenous Not discussed
Zhang et al. (2019) [49] Online Extrinsic No Heterogeneous Not discussed
Bramblett et al. (2022)
[52]

Online Extrinsic No Homogenous Not discussed

Kim et al. (2022) [44] Online Extrinsic No Heterogeneous Yes
Tang et al. (2022) [43] Online Extrinsic No Heterogeneous Not discussed
Bartolomei et al. (2023)
[55]

Online Extrinsic No Homogenous Not discussed

Yu et al. (2023) [50] Online Extrinsic No Homogenous Yes

in the task. Given this, the optimal coalition is selected by the initiating robot, and it will 897

assist in the completion of the receiving robot’s task. This process is shown in Figure 17 898

In Colares and Chaimowicz’s work, a single utility function taking into account 899

robot positions is used to coordinate the decision-making [51]. The robots communicate 900

implicitly through a camera identifying the robots’ positions and poses in the locale. After 901

this implicit identification, the robots share their maps and pose information, and the initial 902

robot communicates an estimated pose for the spotted robot relative to itself. Using this 903

information, map stitching is used to combine the map information for both robots. The 904

cost function to assign tasks for a given robot is performed in a decentralized manner, with 905

a cost function composed of the value of a task based on its neighbours; the distance to the 906

task; and most relevant to this section, a coordination factor disincentivizing allocation of 907

task close to identified neighbouring robots. Bramblett et al. [52] consider exploration and 908

task coverage in an unknown environment, under the constraint of limited communication 909

range. Therefore the team is required to rendezvous intermittently to share environmental 910

and task information. For the exploration phase K-means clustering is used to assign task 911

areas to robots whenever they’re able to communicate. The clusters are auctioned in a 912

centralized manner. A rendezvous mechanism is used whenever all robots are connected, it 913

finds a valid navigable point with minimal distance to the centroids of the robots’ partitions. 914

After some time, the robots will navigate back to this rendezvous point to share information. 915

If a task is discovered during exploration, a rendezvous policy representing the cost of 916

rendezvousing is formed from the potential path to the rendezvous and the unknown space 917

it passes through balanced with the subtraction of the global expected path length from the 918

length of the path explored and the task length. The approach used by Tang et al. [43] for 919

coordination takes the form of using two classes of robots for the coverage problem. The 920

authors consider a worker station approach to coverage, the workers have limited energy, 921

while the stations have unlimited energy and the ability to replenish the workers. They 922

consider this problem as a multi-agent reinforcement learning problem. The robots can 923

communicate and use this communication to form their observation of the environment. 924

The observation space is composed of three components: Zero-range observations are 925

the position velocity and energy of the agent; Perception range observations provide 926

information about obstacles and agents within the perception range; and communication 927
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Figure 17. Kalde et al. cooperative game collaboration [45]

range observations include information about the agents within the communication range. 928

The authors make use of centralized training decentralized execution (CTDE), in which 929

their critic network has full knowledge of the environment state, but the actions of an 930

individual agent are based on local observations. Additionally, a two-stage curriculum is 931

used for training, with a simple environment of one actor and one station used initially until 932

convergence, followed by an environment with two stations and four workers [79]. Multi- 933

layer perception policy networks were shared between robots of the same class, but differ 934

between the worker and the stations to account for their differing abilities. A visualization 935

of their deep reinforcement learning pipeline is given in Figure 18. In the work of Bartolomei

Figure 18. Tang et al. deep reinforcement learning pipeline [43]
936

et al. [55], a team of robots complete exploration with roles, exploration, and collection. 937

The members of the team can vary roles based on the needs of the team, exploration 938

involves seeking large patches of unexplored frontier, while collection prioritizes small 939

unexplored sections of the map surrounded by covered areas. The robots, by standard, 940

take the role of an explorer, but given a threshold number of disjointed unexplored regions 941

close to the robot, it will switch to collector mode. Another approach that considers the 942
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problem of multi-robot reinforcement learning for exploration is considered by Yu et al. 943

[50]). The authors noticed that the existing literature primarily focused on agents acting in 944

a fully synchronous manner, and this is a problematic assumption for real-world adoption. 945

As such they use an asynchronous Multi-agent Proximal policy optimisation approach 946

to training. Each robot has its policy network, therefore behaviour will vary between 947

members. To better facilitate communication between the robots, a CNN was used for 948

feature extraction on the local environmental map, and these features were then shared 949

between members of the team. To further facilitate collaboration, the reward function 950

takes into account the overlap between the coverage of the robot and the rest of the team, 951

discouraging repeated coverage of the same area. 952

6.2 Communication 953

Nordin et al. [16] identified several issues with communication in offshore wind 954

turbine environments: there’s likely to be no cellular network due to the distance from 955

land; normal satellite communication has a high latency that would hinder online planning; 956

and although there now exists real-time satellite communication, in the form of Inmarsat 957

SwiftBroadband satellite service, may be hindered regardless due to proximity to the towers 958

[80]. The authors’ proposal is the use of USV to connect to the satellite service positioned 959

away from the towers, which may then communicate with the UAVs through an ad-hoc 960

Wi-Fi network. Communication was classified into two categories by Matric [81]. Direct 961

communication is purely communicative, transmitting data from one agent to another 962

or a central planner. Indirect communication is based on observation, a robot could for 963

example sense the tracks of another, communicating the fact an area has been visited. 964

While all online cooperative approaches in this review make use of explicit communica- 965

tion, some additionally make use of implicit communication. In the approach of Ball et 966

al. [40] for Broadacre agriculture, the real-world implementation uses a 3G mobile data 967

connection to the internet for communication between the robots and a central planner 968

using a ROS middle-ware. A map is shared between the robots in Kalde et al., though 969

the communication mechanism for doing this isn’t described [45]. Song et al. [46] make 970

use of the player/stage simulator, which allows modules to communicate through TCP. 971

Colares and Chaimowicz [51] used ROS as a middleware for their real-world experiments. 972

Communication isn’t discussed in Dornhege et al. [53]. The approach of Perez-imaz et 973

al. [47] has robots communicating their position with a central planner as an approach to 974

fault tolerance, this communication is achieved again through ROS. Masehian et al. [41] 975

consider communication between the robots and the central planner to be of unlimited 976

bandwidth, assuming ideal conditions. Karapetyan et al. [42] assume no communication 977

capabilities, with a purely offline approach. Dong et al. [54] consider communication 978

between a central planner. Zhang et al. [49] also consider a centralized planner, though 979

details of the implementation are sparse. Bramblett et al.[52] make use of a disk constraint 980

to simulate communication range constraints. Kim et al. [44] make use of robofleet for 981

communication [82], with communication used for fault detection in the team. Tang et al. 982

[43] also considered the communication range. 983

6.3 Fault Tolerance 984

Fault tolerance is a crucial aspect of building robust multi-robot systems. Multi-robot 985

systems provide inherent redundancy, by allowing other robots to complete the tasks 986

previously assigned to the faulty robot. A reality of working outside of simulation is that 987

eventually, failure will occur. In the reviewed work robotic failure was explicitly discussed 988

in two of the works, that of Perez-imaz et al. [47] and Kim et al.[44]. Other approaches, 989

such as frontier-based exploration approaches, might have some inherent robustness to 990

failure as a result of iterative planning. In Perez-imaz et al. [47] when a robotic failure 991

occurs the hexagon cells can be reallocated to members of the team. Kim et al. Similarly, 992

when a robot failure is detected the system recomputed the coverage task decomposition 993

with the smaller team size [44]. Of note with this is this will result in repeated coverage of 994
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areas already covered by the failed robot. The reallocation mechanism used by Kim et al. is 995

shown in Figure 19. Both these works focus on recomputing offline task allocations.

Figure 19. Kim et al. fault tolerance reallocation [44] a) The robot with
the cyan path experiences failure b) The waypoints are reassigned to

neighbouring robots c) The TSP paths for the new allocations are
computed ensuring coverage

996

6.4 Discussion 997

It’s hard to imagine a robust real-world coordination framework using only the ap- 998

proaches discussed in this work. Such a coordination framework would need to account 999

for communication downtime, robotic failures, and possibly heterogeneous capabilities. 1000

One noticeable trend, albeit with a small sample size, is a focus on reinforcement learning 1001

approaches in recent years. Yu et al.[50] note that reinforcement learning approaches, 1002

when compared to traditional planning approaches, can effectively produce complex strate- 1003

gies and after training proves computationally inexpensive. Regardless, the majority of 1004

literature considers planning-based approaches. There seems to be potential for future 1005

research in both classes of algorithms. Fault tolerance and dealing with communication 1006

constraints are open avenues for research, with only two of the reviewed works explicitly 1007

considering faults [44][50]. Coordination for heterogeneity has received very little focus 1008

from the research community, with current works concentrating on worker-station relations 1009

ships [43][49], or sensing range and locomotion speed[44]. Masehian provided a highly 1010

specific case of robot mapping with different forms of sensor [41], but beyond that, there 1011

has been no work focusing on robots’ semantic capability in regards to completing tasks or 1012

traversing the environment. Coverage of tasks with semantic requirements for both com- 1013

pletion and area traversal by heterogeneous teams is still an open area of research. Dynamic 1014

environments were of little focus in these works, with only Kalde et al. [45] considering 1015

such, with mobile obstacles. Dynamic environments are a potentially interesting area of 1016

research for OWT inspection due to the mobile nature of wind turbines, even more so for 1017

floating offshore wind. Another area of interest that hasn’t been considered is dynamic 1018

tasks. Considering the problem of covering a single OWT, the task of visually covering the 1019

blades may not be at one static coordinate. If the wind turbine is in operation, the coverage 1020

task will be constantly moving predictably. Such a dynamic coverage task also provides 1021

some future direction. 1022

7 Future Work 1023

None of the works reviewed in this paper would enable coverage for OWT inspections 1024

alone. A comprehensive multi-robot coverage system would require the combination 1025

and extension of existing techniques. Several potentially useful aspects of the reviewed 1026

approaches have been identified in the previous sections. This section will attempt to 1027

synthesise identified approaches and limitations into several areas of future research for 1028

OWT inspection. 1029
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7.1 Task decomposition with areas of interest 1030

One aspect of OWT inspection coverage that hasn’t been addressed in the existing 1031

research is coverage with varying required degrees of quality. In an OWT inspection, 1032

certain sections of the turbine may require greater focus than other sections. Usually, the 1033

tower is of less interest than the turbine blades. To address this, it would be necessary to 1034

select and extend an existing environmental representation to account for varying coverage 1035

requirements across the structure. One method for achieving this would be through a 1036

bespoke semantic label applied to sections of the environment. Assuming a voxel-based 1037

representation, this may be a property for each voxel that specifies, for example, a required 1038

proximity for coverage. This semantic label would then need to be accounted for when 1039

decomposing the task in a set of views, only considering a voxel covered if a view fulfils 1040

the requirement encapsulated within it. An alternative approach is the use of multiple 1041

resolutions depending on the degree of interest in a section. This wouldn’t inherently apply 1042

proximity requirements, but it would ensure more thorough coverage within a specified 1043

region. This could be achieved through Octomap [62], and would allow the use of the 1044

approach of Dornhege et al. [53] without modification. Combining these two approaches 1045

may prove even more efficient in ensuring both thorough and high-quality sensor coverage. 1046

This all assumes the area of interest is known a-priori however. To identify areas of interest 1047

in an unknown environment, some form of semantic area detection would be necessary, 1048

maybe through object detection techniques. 1049

7.2 Limited knowledge approach 1050

An interesting area of research is the possibility of using the known geometry of the 1051

turbines in an otherwise unknown environment. The geometry of a turbine will always 1052

be available before an inspection, and intuitively, an approach should be able to exploit 1053

this knowledge. None of the reviewed works considered the case of geometric structural 1054

knowledge in an otherwise unknown environment. The most obvious use-case for this is 1055

in floating OWT inspection, where the turbines drifted from the centre of the moorings, 1056

but just because the turbine has moved a certain amount, doesn’t mean the environment is 1057

now completely uncertain. This could be achieved by considering a problem of two layers, 1058

exploration within a small sub-area of the environment to localise the turbine, and then 1059

model-based coverage of the now-known structure. 1060

7.3 Dynamic Tasks 1061

In all the reviewed works, the area or structure to be covered was static. By having 1062

a moving structure such as OWT blades, task planning and motion planning would be 1063

significantly complicated, and a novel environmental representation would be necessary to 1064

represent the moving tasks. One possible solution for the blades is to use one team member 1065

to constantly observe and track the blade’s positions, and then use other team members to 1066

complete the coverage to the required proximity and quality. This problem identified one 1067

key issue with using a voxel-based representation alone, in that voxels tend not to represent 1068

semantic objects but just occupancy, so when the physical object moves some mechanism 1069

would be necessary to ensure any label is transferred to the new voxel representing that 1070

physical object. 1071

7.4 Limited Communication 1072

As was discussed by Nordin et al. [16], communication is an issue in the OWT 1073

environment. While most of this work has been focused on UAV coverage of turbines, it’s 1074

the case that UAV batteries are currently limited, and any feasible implementation would 1075

require the use of USVs for UAV deployment. As Nordin et al suggested, the use of a USV 1076

may also play a role in solving communication for OWT coverage. This slightly resembles 1077

the worker-station approach of Tang et al. [43]. An approach that strategically places a USV 1078

distant enough from the turbines for satellite communication interference from the turbines 1079
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while providing a temporary wireless network for the UAVs in the team may solve this 1080

problem. This would require a new approach to planning, accounting for USV placement, 1081

and possibly requiring a rendevous mechanism with UAVs working outside of the network 1082

and then returning. 1083

7.5 Heterogeneous Sensing/Locomotion Capabilities 1084

Heterogeneity among robots was lightly touched on in the reviewed work, but to fully 1085

harness the capabilities of a diverse team new planning approaches would be necessary. 1086

Sensing heterogeneity can be implemented in the sense of team members with different 1087

sensor specifications, such as some members with cameras specialised for close-up pho- 1088

tography, or carrying thermal cameras. Alternatively, there is homogeneity in locomotion 1089

capabilities, where some robots may fly, like UAVs, and some can’t and are limited to 1090

the surface such as USVs. If tasks are going to be shared between these members, the 1091

capabilities should be taken into account. The capabilities of the team members should be 1092

considered through all aspects of the OWT coverage problem. The environmental represen- 1093

tations should encapsulate the requirements of both tasks and the traversal between them. 1094

Task decomposition should derive the requirements for a task from the information at hand. 1095

Tasks should only be allocated to robots able to complete them, and the capabilities of the 1096

robots should be accounted for when grouping tasks. Finally, motion planning should 1097

plan paths and trajectories aware of the capabilities and the kinematics of the robot being 1098

planned for. 1099

7.6 UAV structure coverage 1100

None of the approaches considered 3D sensor coverage with UAVs, a necessity for 1101

the OWT coverage task. Those approaches that did approach the 3D structural inspection 1102

assumed a prior model and used offline planning. None of the approaches considered 1103

heterogeneous tasks or locomotion capabilities, which would be essential for heterogeneous 1104

structure coverage. If blade coverage is to be performed while the OWT is in use, it would 1105

be necessary to represent the blade as a moving task and track the blade’s position, none of 1106

the studies reviewed were relevant to this. As to tackle the 3D sensor coverage with UAVs 1107

assuming a prior knowledge of the environment, one may use the ray-tracing voxel-based 1108

task generation as in the work of Dornhege et al. [53]. Rather than the reachable voxels 1109

being along the ground, it would be necessary to ensure the sensor is a certain distance 1110

from the turbine surface, without this the set of reachable voxels would be very large, and 1111

therefore inefficient for computation. This same approach could be extended to perform in 1112

an online exploratory manner, however, 3D structure exploration wasn’t in the reviewed 1113

work. 1114

8 Conclusion 1115

In this work, a scoping review of the literature on Multi-robot coverage concerning 1116

OWT inspection was carried out. The PRISMA 2020 methodology was detailed to stan- 1117

dardize the review process, along with the PICo framework for forming and modelling 1118

the research questions. These approaches for standardizing the review process are rarely 1119

used in computer science and even more so in robotics literature. However, such system- 1120

atic processes are essential for providing a scientific review that the reader could repeat 1121

themselves and obtain the same or representative data. The works retrieved were then 1122

systematically analyzed for the formed research questions and discussed. This work applies 1123

not only to OWT inspection scenarios but should also apply to those scenarios resembling 1124

offshore wind inspection. It’s important to note that coverage planning algorithms are 1125

far from the only hurdle to putting autonomous offshore inspections into practice, and 1126

the coverage path planning structure inspection would be considered one component of 1127

a larger system. As of writing this work drone battery durations would not be sufficient 1128

to enable their use alone from shore. To enable the long-term autonomy required for 1129
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wind farm inspections, an approach to charging drones in the field would be necessary 1130

such as that proposed by Han et al. [83], in which drones will launch from a USV with 1131

the capability of charging the drones when necessary. Several areas for future research 1132

were suggested. Decomposing the coverage task concerning areas of particular interest 1133

would facilitate more detailed coverage, allowing focus on areas of the turbine most prone 1134

to failure or where failure is most critical. The use of existing knowledge of the turbine 1135

geometry without further knowledge of placement or pose, is particularly applicable to 1136

floating OWTs. Dynamic tasks, where tasks might move within the environment, and the 1137

importance of keeping track of covered and uncovered moving structures. Addressing the 1138

limitations of communication around the large OWT structures which may affect satellite 1139

communication. Considering Heterogeneous capabilities in the team, both in sensing and 1140

in locomotion, and hence facilitating complex planning for teams aware of capabilities. And 1141

finally extending existing surface robot voxel-based approaches to UAVs while minimising 1142

the computational complexity due to the large accessible space. 1143
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