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In the present study, a theoretical solution for thermo- mechanical creep analysis of functionally 

graded (FG) thick cylindrical pressure vessel with variable thickness based on the first-order shear 

deformation theory (FSDT) and multi-layer method (MLM), is presented. To the best of the 

researchers’ knowledge, in the literature, there is no study carried out into FSDT and MLM for creep 

response of cylindrical pressure vessels with variable thickness under thermal and mechanical 

loadings. The vessel is subjected to a temperature gradient and non-uniform internal pressure. All 

mechanical and thermal properties except Poisson’s ratio are assumed to vary along the thickness 

direction based on a power function. The thermo-mechanical creep response of the material is 

described by Norton’s law. The virtual work principle is applied to extract the non-homogeneous 

differential equations system with variable coefficients. Using, the MLM, these differential equations 

system is converted into a system of differential equations with constant coefficients. This set of 

differential equations is solved analytically by applying boundary and continuity conditions between 

the layers. In order to verify the results of this study, the finite element method (FEM) has been used 

and according to the results, good agreement has been achieved. It can be concluded that the 

temperature gradient has significant influence on the creep responses of FG thick cylindrical pressure 

vessel. 

Keywords: Creep; cylindrical pressure vessel; functionally graded material (FGM); first-order shear 

deformation theory (FSDT); multi-layer method (MLM); variable thickness. 

1.   Introduction 

Due to the high thermal and mechanical loading conditions in various industries, 

researchers proposed FGMs to be employed to fabricate structures that work in this 

conditions [Kordkheili and Livani, 2013]. In FGMs the mechanical properties vary 

smoothly and continuously from one surface to the other [Ghannad et al., 2012; Dehghan 

et al., 2016; Sofiyev and Kuruoğlu, 2016]. A number of papers considering various aspects 

of FGM have been published in recent years [Afshin et al., 2017; Gharibi et al. 2017; 

Mazarei et al., 2016; Sobhy, 2015; Nayebi et al., 2015; Nejad and Rahimi, 2010; Nejad et 

al., 2009].  

Cylindrical shells are widely used in many engineering applications. In some of these 

applications, for instance in exteriors of rockets and missiles or pressure vessels, due to the 

variable pressure in longitudinal direction, the use of variable-thickness cylindrical shells 
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is suggested as one of the ways to optimizing stress and weight. [Shariati et al., 2015, 

Ghannad et al., 2013]. There are many studies in the literature carried out into the analysis 

of cylindrical vessels under various assumptions and conditions [Fatehi and Nejad, 2014; 

Nejad and Fatehi, 2015; Nejad et al., 2009]. The literature that addresses the creep stresses 

of thick cylindrical shells with variable thickness is quite limited. 

Due to the high strength and thermal resistance properties, FGM cylindrical shells are used 

in advanced applications such as missiles, pressure vessels, tanks, gun barrels and other 

applications [Dung and Chan, 2017]. At high temperatures creep behavior usually occurs 

in the cylinders under thermo-mechanical loading, thereby affecting performance of the 

system. In order to better utilize the components used in these loading conditions, it is 

necessary to investigate the creep phenomenon to prevent sudden damages. In other words, 

life assessment of such components is very important because failures of these components 

are always catastrophic. Several analytical and numerical formulations to model the 

behavior of single and multilayered structures are available in the literature. Among them, 

the classical FSDT based on Reissner and Mindlin, assume constant transverse shear 

stresses in the thickness direction [Mantari and Granados, 2015]. Using this method, 

several problems with different conditions such as geometries, loadings and boundary 

conditions could be more easily solved by this method. A number of papers considering 

various aspects of vessels have been investigated using FSDT and also the higher-order 

shear deformation theories (HSDT) [Jabbari et al., 2015; Nejad et al., 2015b; Nejad et al., 

2015c; Ghannad and Nejad, 2010; Jabbari et al., 2016; Sofiyev, 2016; Kashkoli et al., 

2017; Nejad et al., 2017a; Nejad et al., 2017b; Sofiyev et al., 2017a; Sofiyev et al., 2017b; 

Ghannad et al. 2009].  

It is necessary to study the creep behavior of high temperature metals and researchers study 

the ways to improve the high-temperature strength of metals. Mechanical-thermal 

treatment (MTT) is one of ways to do this. According to experimental data, preliminary 

MTT considerably increases the high-temperature strength of metals, namely, the steady 

state creep rate of metals [Rusinko, 2013]. The material constitutive models and the 

solution methods for creep problems are important and discussed in [Kassner, 2015]. A 

summary of creep laws for common engineering materials is provided in [Naumenko and 

Altenbach, 2007]. Most of these models describe the secondary creep stage in uniaxial tests 

with constant load/stress condition where creep rate is nearly constant. Bailey-Norton and 

Norton laws are the widespread creep constitutive models which is used by most of the 

researchers. Strain rates and equivalent stress are related to each other according to a power 

law function. Extensive studies have been carried out, both theoretically and numerically, 

on creep stress distribution in functionally gradient thick-walled pressure vessels under 

mechanical and thermal loadings [Loghman et al., 2010; Daghigh et al., 2013; Kordkheili 

and Livani, 2013; Fesharaki et al., 2014; Kashkoli and Nejad, 2014; Nejad and Kashkoli, 

2014; Loghman et al., 2011; Kashkoli and Nejad, 2015; Kashkoli et al., 2017a; Loghman 

and Moradi, 2017; Nejad et al., 2015a]. 

The previous studies, theoretical solutions for creep response of thick cylindrical pressure 

vessels is based on the plane elasticity theory (PET) or classical theory in which the shear 
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stress rx   and shear strain
rx
 , are considered zero. Regarding the problems which could 

not be solved through PET, the solution based on the FSDT is suggested. At the boundary 

areas of a thick-walled cylinder with clamped-clamped, having variable thickness and non-

uniform pressure, given that creep displacements and stresses are dependent on radius and 

length, use cannot be made of PET, and FSDT must be used. The shear stress in boundary 

areas cannot be ignored, but in areas further away from the boundaries, it can be ignored.  

Therefore, the PET can be used, provided that the shear strain is zero. 

In the present study, for the first time, thermo-mechanical creep response of a thick 

cylindrical pressure vessel with variable thickness made of functionally graded material, 

such as stainless steel-zirconia is investigated using FSDT and MLM. The vessel is 

subjected to the non-uniform internal pressure and distributed temperature field due to 

steady-state heat conduction from inner to outer surface of the vessel. The governing 

equations which are a system of ordinary differential equations with variable coefficients 

have been derived using virtual work principle. Solving these equations is difficult and in 

some cases impossible. The MLM method, which is a semi-analytical method, is proposed 

to solve these equations. For this purpose, the FG cylindrical vessel is divided into n  

homogenous disks. With regard to the continuity between layers and applying boundary 

conditions, the governing set of differential equations with constant coefficients is solved.  

Therefore, the MLM converts the ordinary differential equations with variable coefficients 

into the differential equations with constant coefficients which have analytical solutions. 

The results obtained for creep stresses and displacements are compared with the solutions 

carried out through the FEM and good agreement was found between the results. The 

results of this study are applicable for designing optimum FG thick cylindrical vessel. 

2. Basic formulations and solutions 

In Fig. 1, the geometry of a thick axisymmetric cylinder with variable thickness is shown. 

The cylinder is subjected to non-uniform internal pressure P and a temperature gradient T 

due to steady state heat conduction in thickness of the cylinder. In Fig. 1, h and L are 

thickness and length of the cylinder respectively. 

2.1. Material properties 

In order to model the material properties of FGM in this study, the power low distribution 

which is the most commonly model in the literature, is used. In this model, it is assumed 

that the material properties graded continuously through the thickness according to the 

following power-law expression [Sofiyev, 2011]:  

   
1

2

n

o i i

z
p z p p p

h

 
    

 
 (1) 

where p  denotes one of the effective material properties, such as the modulus of elasticity 

E , density  , thermal conductivity 
Tk , or thermal expansion coefficient  , ip  and op  
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are the corresponding properties of the inner and outer surfaces of the cylinder respectively 

and n  denotes a non-negative volume fraction exponent characterizing the distributions of 

material properties, called power-law index. The effect of Poisson’s ratio v on deformation 

of the engineering materials, compared to other properties is small and ignorable, therefore 

in this study the Poisson’s ratio is assumed as constant. For numerical results, there is 

considered stainless steel and zirconia FG cylinder.  Fig. 2 shows the variation of E , 
Tk , 

and   through the cylinder thickness for various values of n . 

It is obvious that in the same position ( 0.5 0.5z h   ), with decreasing n , the 

dimensionless modulus of elasticity and thermal expansion coefficient decrease but 

thermal conductivity increases.  

 
(a) 

 
Fig. 1. Axial cross section of the thick cylinder with clamped-clamped ends 
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(b) 

 
(c) 

Fig. 2. Variation of the normalized (a) elasticity module (b) thermal conductivity (c) thermal expansion 
coefficient along the dimensionless radial direction 

2.2. Thermoelasticity governing equations 

The coordinates of a point on the longitudinal section of the cylinder can be defined by the 

two parameters r and x, where x is the vertical coordinate, and r is the radius, which is 

perpendicular to x and satisfies r R z   (Fig. 1). Also, R  is the middle surface radius, 

z  is the thickness variable, which is changed between 2h  and 2h . R  and variable 

thickness h  are:  

 

 

2
2

i

i

a
R r x tan

h r a x tan






  


   

 (2) 

where   is taper angle as: 
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1
a b

tan
L







 
 
   

(3) 

FSDT is one of the general theories for thick walled shells. In the FSDT, it is assumed the 

sections that are perpendicular to mid-plane remain straight after the loading and 

deformation but are not necessarily perpendicular. Therefore, in FSDT the shear strain and 

shear stress are considered. According to the FSDT, the displacement of each point of the 

shell is expressed as the sum of displacement of the middle surface and the displacement 

of that point respect to the middle surface. The general axisymmetric displacement field (

xU , zU ), in the FSDT could be expressed on the basis of axial and radial displacements, 

as follow : 

 

 

 

 
x

z

u x xU
z

w x xU




 
    

     
     

 
(4) 

where xU   and zU  denotes the displacement components along the axial, circumferential 

and radial directions. The displacement components of the middle surface are express by 

 u x  and  w x . Also,  x  and  x  are unknown functions to determine the 

displacement field. The kinematic relations in the cylindrical coordinate system are: 

   

    

 

 
   

1

x

x

z

z

z

x z
xz

du x d xU
z

x dx dx

U
w x x z

r R z

U
x

z

dw x d xU U
x z

z x dx dx






 

 


 

 
  




   
 
  


   
      
    

 (5) 

The thermal stresses on the basis of constitutive equations for isotropic materials are as 

follow: 

       
 

 
  

1

1       ,      

1
1 2      ,     

2 1 1 2

c c c

i i i j j k k

xz

xz

E v v

E v T i j k

E v
v v

       

 


  

      

   

  
 


   




 
   

 (6) 

where T  is temperature distribution and i , i  and c

i  are the stresses, strains and creep 

strains, respectively. Also xz  and xz  are the shear stress and shear strain, respectively. 

The stresses distributed over the thickness of the shell produce normal forces ( xN , N ,

zN ), bending moments ( xM , M , zM ), shear force ( xQ ), and twisting moment ( xzM ). 

The moments and forces per unit length are also called stress resultants. The stress 

resultants are as follow:  
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 

 

2

2

2

2

2

2

2

2

, , , ,1 1

, , , ,1 1

1

1

h

x z

h

h

x z

h

h

x

h

h

xz

h

x z

x z

xz

xz

z z
N N N dz

R R

z z
M M M zdz

R R

z
Q K dz

R

z
M K zdz

R









  

  













     
       

    


                


 
    


  
   

 









 
(7) 

where K is the shear correction factor, which is applied to the shear stress according to the 

shell geometry. This coefficient is considered 5 6K   in the static state for the cylinder. 

[Vlachoutsis, 1992]. In order to obtain the equilibrium equations, principle of virtual work 

is used. According to this, the variations of strain energy are equal to the variations of the 

virtual work as follows: 

U W   (8) 

where in Eq. (8), U and W are the total strain energy and the total virtual work due to 

internal pressure, respectively. The strain energy is: 

 

 
1

2

V

x x z z xz xz

U U dV

dV rdrd dx R z dxd dz

U  

 

       





 



  

    




 
(9) 

The variation of the strain energy is: 

 
2 2

0 0 2

L h/

h /

U U dzdxdR z



  



     (10) 

The resulting Eq. (10) will be: 

  
2

0 22

L h/

x x z z xz xz

h /

U
dzdxR z 


       

 

       (11) 

the virtual work is: 

 .

2

.

sf

S

i

sf z

W f u dS

h
dS r d dx R d dx

f u PU

 

 



 
    

 
  





 (12) 

For axial distribution of internal pressure, the model of Eq. (13) is selected as follows: 

 1 2 1

pm
x

P P P P
L

  
 
 
 

 (13) 
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Here 1P  and 2P  are the values of pressure at the 0x   and x L , respectively. pm  is 

constant parameter that is used to control the pressure profile. Thus, the variation of the 

virtual work is: 

 
2

0 0 2

L

z

h
W dxdP U R



  
 
 
 

   (14) 

The resulting Eq. (14) will be: 

 
02 2

L

z

W h
dxP U R





 

 
 
 

  (15) 

Substituting Eqs. (11) and (15) into Eq. (8) and drawing upon calculus of variation and the 

virtual work principle, with regard to Eq. (7), we will have: 

 

 

 

 

0

0

2

2 2

x

x x

x

xz z

d
RN

dx

d
RM RQ

dx

d h
RQ N P R

dx

d h h
RM M RN P R

dx









  


  
     
  


        

 (16) 

and the boundary conditions at the two ends of the cylinder are: 

 
0

0
L

x x x xzR N u M Q w M    
 

     
(17) 

Substituting the stress components from Eqs. (6) into Eqs. (7) and then into the equilibrium 

Eqs. (16), the following set of differential equation for displacement is obtained: 

(18) 
            

          

2

31 22

T

d d
AA Ay y y F

dxdx

u x x w x xy  


   


 


 

Eq. (18) is a set of linear non-homogenous equations. 3
[ ]A  is irreversible and its reverse is 

needed in the subsequent calculations. In order to make 
3

1
[ ]A


, the first equation in the set 

of Eq. (16) is integrated: 

0xRN C  (19) 

In Eq. (18), it is apparent that u  does not exist, but du dx  does. Taking du dx  as  : 

    7u x x dx C   (20) 

Thus, set of differential Eq. (18) could be derived as follows: 

(21) 
            

          

2

31 22

T

d d
BB By y y F

dxdx

x x w x xy   


  


 


 

where the coefficients matrices 4 4[ ]iB  , and force vector 4 1{ }F   have been defined in the 

Appendix A. 
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2.2.1. Thermoelasticity semi-analytical solution 

The differential Eq. (21) for a variable thickness cylinder is a differential equation with 

variable coefficients, due to R and h components that are related to the x-axis component, 

therefore the solution is complex and in some cases impossible. Hence, in the current study, 

a semi-analytical method based on MLM for the solution of Eq. (21) is presented. In this 

method, the cylinder is divided into disk layers with constant thickness nt . Therefore, the 

MLM is a semi-analytical method and converts the differential equations with variable 

coefficients into the differential equations with constant coefficients in order to have an 

analytical solution. [Nejad, Jabbari et al., 2015], (Fig. 3 (a)). 

 
(a) 

 

 
(b) 

Fig. 3. (a) Division of thick cylinder with variable thickness into homogenous disks with constant thickness (b) 

Geometry of an arbitrary homogenous disk layer. 

Therefore, the governing equations convert to nonhomogeneous set of differential 

equations with constant coefficients. 
 k

x  and  k
R  are length and radius of middle of disks. 

The length of middle of an arbitrary disk (Fig. 3 (b)) is as follows: 

(22) 
     1

2 2 2

k k kn n

n

L L

t tL L
x k , x x x , t

n n

 
       
 

 

where 
L

n  is the number of disks and k  is the corresponding number given to each disk. 

The radius of middle point of each disk is as follows: 

(23)  
 

     
, tan

2

k
k k k

i

h
R r h a x     

Thus: 

(24) 
   

 2 tan

k k
dh dR

dx dx
  

 
Considering shear stress and based on FSDT, nonhomogeneous set of ordinary differential 

equations with constant coefficient of each disk is obtained: 
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10     M. D. Kashkoli, K. N. Tahan & M. Z. Nejad 

 

(25) 
 

 
 

   
 

 
   

 
 

 
  

 
 

 
 

 
 

 
 

 
  

2

31 22

kk kk k k k

Tk k k k k

d d
BB By y y F

dx dx

y x x w x x 

  









 

For thermo-elastic analysis of thick cylindrical pressure vessel the creep strains ( c

x , c

 , c

z

) are ignored. Defining the differential operator  P D , Eq. (25) is written as: 

(26) 

  
 

 
 

 
 

 
 2

31 2

2

2

2
 

k kk k

P D D D BB B

d d
D , D

dx dx

  

 







 

Thus 

(27) 
  

 
 

 
[ ( )]

k kk
P D y F  

The differential Eq. (27) has the general solution including homogeneous solution,  
 k

h
y

, and particular solution,  
 k

p
y . For the homogeneous case: 

(28) 
 

 
 

 

 
 

 
 

0

k

k k

h

k m x

h

P D y

y V e

   

   

Substituting Eq. (28) into Eq. (26): 

(29)  
 

 
 

 
 2

1 2 3
0

k k k

m B m B B    

From the above equation, 6 eigenvalues im are determined which are 3 pairs of conjugated 

root. In order to obtain the eigenvectors  
i

V , the calculated eigenvalues should be 

substituted in the following equation: 

(30)  
 

 
   

 
 2

1 2 3 0
kk k k

m B m B B V       
 

Therefore, the homogeneous solution for Eq. (27) is: 

(31)  
     

   6

1

k
i

k kk m x

ih i
i

y C V e


  

The particular solution is obtained as follows: 

(32)  
     

 1

3

k kk

p
y B F


 
 

 

Therefore, the total solution for Eq. (27) is: 

(33)  
     

       
 

6 1

3
1

k
i

k k kk km x

i i
i

y C V e B F




  
   

In general, the problem consists of 8 unknown values of iC , including 0C  (Eq. (19)), 1C  

to 6C  (Eq. (33)), and 7C  (Eq. (20)). 

2.2.2. Boundary and continuity conditions  
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The boundary condition of the cylinder is assumed to be clamped-clamped, then  

(34) 

 

 

 

 

 

 

 

 
0

0

0

0

0
x x L

u x u x

x x

w x w x

x x

 

 
 

     
     
     

      
     
         

 

Therefore 

(35) 
 

 
0

0

0

x

z x ,L

U x,z

U x,z


    
   

    
 

The main requirement in the disk layer method is that the cylinder is divided into 

continuous disks. In order to have disk continuity condition, forces, stresses and 

displacements must be continuous at the boundary between two layers. Hence the 

continuity conditions are as follows: 

(36) 

   
     

   
     1

1

1

2 2
k k

k k

x x

k k

z zx x t x x tn n

U x,z U x,z

U x,z U x,z





   


   
   
   

 

(37) 

   
     

   
     1

1

1

2 2
k k

k k

x x

k k

z zx x t x x tn n

U x,z U x,z

U x,z U x,z 





   


   
   
   

 

(38) 

   

   
 

   

   
 1

1

1

2 2
k k

k k

x x

k k

z z

x x t x x tn n

dU x,z dU x,z

dx dx

dU x,z dU x,z

dx dx





   



   
   
   
   
   
      

 

(39) 

   

   
 

   

   
 1

1

1

2 2
k k

k k

x x

k k

z z

x x t x x tn n

dU x,z dU x,z

dx dx

dU x,z dU x,z

dx dx 





   



   
   
   
   
   
      

 

According to continuity conditions, 8 equations are obtained in each disk layer. For a 

cylinder with 
L

n  disk layers, 8( -1)
L

n  equations are obtained for the cylinder. Using the 8 

equations of the boundary condition, 8
L

n  equations are obtained. The solution of these 

equations yields 8
L

n  unknown constants. 

2.2.3. Heat conduction analysis 

In the steady-state case and in the absence of heat generation, the heat conduction equation 

for the one-dimensional problem in polar coordinates simplifies to: 

(40) 0T

d dT
k r

dr dr

 
 

 
 

By considering r R z  , Eq. (40) can be written as follows: 
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(41) 
    

 

0

k
k k

T

d dT
k R z

dz dz

 
  

  
 

Solving the differential Eq. (41) finally the terms of temperature gradient are derived as 

follows: 

(42) 
   

    
 

1 22

zk k k

refh k k

T

dz
T g g T

k R z


  


  

where  
1

k
g  and  

2

k
g  are unknown constants which obtained from boundary conditions. In 

this study, the reference temperature refT  is assumed to be equal to oT . The temperature 

boundary conditions is as follow; the internal and external surfaces of the cylinder are 

expose to  iT  and oT , respectively. By applying boundary conditions, temperature gradient 

distribution is obtained as Eq. (43). The effect of different values of grading index n , on 

the non-dimensional temperature change  i oT T T  along the radial direction is shown in 

Fig. 4. It can be seen from Fig. 4 that the temperature change along the radial direction in 

a homogeneous cylinder made of full stainless steel or full zirconia is always greater than 

that in the FG cylinder. 

(43) 
 

    
 

    
 

 

    
 

    
 

 

2 2

2 2

2 2

1

k k

k k

k k

z z

h hk k k k

T Tk

i o
h h

h hk k k k

T T

dz dz

k R z k R z
T T T

dz dz

k R z k R z

 

 

 

   
   

    
     

   
       
   

 

 
 

 
Fig. 4. Non-dimensional temperature change along the thickness of the cylinder 

2.3. Thermoelasticity governing equations for creep 

Using Eqs. (5), the total strain rate–displacement rate relations results: 
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   

    

 

 
   

1

x

x

z

z
z

x z
xz

du x d xU
z

x dx dx

U
w x x z

r R z

U
x

z

dw x d xU U
x z

z x dx dx






 

 


 

 
  




  



  

 


        
    

 (44) 

where: 

 
 d

dt

.
  (45) 

For isotropic cylinder with creep behavior, the relations between rates of stress and strain 

are: 

       

 

1       ,      

1 2    
2

c c c

i i i j j k k

xz

xz

E v v i j k

E v

       


 

          
 

  
   
  

 (46) 

where i , i  and 
c

i  are stresses, strains and the creep strains rate, respectively. In 

addition, xz  and xz  are the shear stress and shear strain rate, respectively. Using Norton’s 

law: 

 

 

     

1

2 2 2 2

2       ,      
2

1
6

2

cn

c e

i i j k

e x x z z xz

A
i j k

 


   

       


       


       


 (47) 

where A  and cn  are material constants for creep. Using Eqs. (16) and considering the 

pressure to be constant with time, the equilibrium equation for creep analysis is: 

 

 

 

 

0

0

0

0

x

x

x x

xz z

d
RN

dx

d
RQ N

dx

d
RM RQ

dx

d
RM M RN

dx









  


  


   


 (48) 

Considering the temperature field to be steady, the following set of differential equations 

for displacement rates is obtained as follows: 
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(49) 
            

          

2

31 22 c

T

d d
B FB By y y

dx dx

y x x w x x  


  


 


 

where the force vector  
4 1cF


 has been defined in the Appendix B. Using the same 

approach to solve the set of non-homogenous linear differential Eq. (21), the solution for 

the Eq. (49) can be written in the form of: 

 
     

       
 

6 1

3
1

k
i

kk kk km x

i ci
i

y D V e B F




  
   (50) 

where 
i

D  are unknown values. When the stresses rate is known, the calculation of stresses 

at any time 
i

t  should be performed iteratively: 

(51) 

             

 

1

1

0

i i i i

ij i ij i ij i

i
k

i
k

r,t r,t r,t dt

t dt

  






  







 

The solution of 0it   corresponds to that for thermo-elastic material behavior. To 

calculate    ,
i

ij ir t , the stresses at the time 1it   used. 

3. Validation and numerical results  

In the previous section, the analytical solution of creep stresses for an FG thick cylindrical 

pressure vessel with variable thickness subjected to a temperature gradient and non-

uniform internal pressure based on the FSDT and MLM, was obtained. This section, 

presents some numerical case studies for verifying the accuracy of the present theory in 

predicting the creep stress responses of thick FG cylinder. The geometrical characteristics 

of the cylinder are assumed as 40 mm
i

r   , 20 mma   , 10 mmb    and 800 mmL   . The 

FG cylinder is taken to be made of stainless steel and zirconia with the following material 

properties (Table 1): 

Table 1. Stainless steel and zirconia material properties [Kordkheili and Livani, 2013]  

Zirconia 244.27 GPaiE   o1.7 W m Cik   6 o12.76 10  1 Ci
   0.32v   

Stainless 

steel 
201.04 GPaoE   o15.38 W m Cok   6 o12.33 10  1 Co

   0.32v   

It must be noted that the same grading index ( n ) has been used in this study while defining 

the material properties for the modulus of elasticity, the thermal conductivity and the 

thermal expansion coefficient. The internal pressure applied at the 0x   and x L  is 

1
120 MPaP   and 2

40 MPaP  , respectively. The FG thick cylinder has clamped-clamped 

boundary conditions. The boundary conditions for temperature are taken as 
o

800 C
i

T    

and 
o

785 C
o

T   . The creep constants for steady state creep status are considered as 

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in IJAM

In
t. 

J.
 A

pp
l. 

M
ec

ha
ni

cs
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 E
N

G
L

A
N

D
 o

n 
01

/1
0/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.



Thermo-Mechanical Creep Analysis Of FGM Thick Cylindrical Pressure Vessels With Variable Thickness 15 

 
56

5 2 10  A .


  , 5.4cn   [Kordkheili and Livani, 2013]. The results are presented in a non-

dimensional form. Displacements are normalized by dividing to the internal radius. In this 

study, the mean internal pressure parameter were defined as follows in order to normalize 

stresses: 

  1 2 2P P P   

In order to show the effectiveness and accuracy of the approach suggested here, a 

comparison between responses of the present theory and FEM can be made. In FEM, a 

thick FG cylinder was modeled using ANSYS®. The PLANE 223 element in axisymmetric 

mode, which is an element with eight nodes with up to four degrees of freedom per each 

node, was used for discretization. In order to model FG cylinder, an innovative application 

for multi-layering of thickness in the radial direction has been performed.  Homogenous 

layers which are of identical thickness and step-variable elasticity modulus have been 

formed by this method. The cylinder with variable thickness consists of some coherent 

homogeneous layers whose properties at the contact location of the layers are the average 

o left and right limit of two layers boundaries. Internal non-uniform pressure are applied to 

the nodes of inner layers. Fig. 5 illustrates a valid range for using number of FG layers in 

calculating the radial displacement after 1000 hr of creeping in middle layer. It could be 

observed that if the number of FG layers is more than 20 layers, there will be no significant 

effect on radial displacement. In this paper, the cylinder along the radial direction divided 

to 20 equal and joined layers by the assumption of inhomogeneity constant equal to 1n 

.Fig. 6 illustrates the finite-element model is established with ANSYS®. There is a good 

agreement among numerical results based on FSDT and FEM.  

 
Fig. 5. Effect of the number of FG layers on the radial displacement after 1000 hr of creeping in middle layer (

2x L , 1n   , 1
p

m  ) 
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(a) 

 
(b) 

 
(c) 
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Fig. 6. Finite-element model for the cylinder with variable thickness (a) FG Layers (b) Von Mises stress in the 

cylinder (c) Radial displacement distribution in the cylinder after 50000 hr of creeping ( 1n   , 1
p

m  ) 

Table 2 presents the results of the different solutions for the thick cylinder under 

mechanical and thermal loading at the middle layer of the cylinder ( 2x L ) and middle 

layer ( 0z  ), from initial thermo-elastic (initial solution) distribution to final distribution 

at the fourth selected time step in hour (hr). Relevant results have also been obtained for 

the creep displacements and stresses curves through the axial direction of the cylinder in 

Figs. 7 and 8, which verify the results obtained in Table 2. 

Table 2. Numerical results based on FSDT and FEM at different creep times 

 
Initial 

solution 
1000t  hr

 
10000t  hr  30000t  hr  50000t  hr  

1000
r

i
r

u


 FSDT 

FEM 

1.1700 

1.1753 

1.4730 

1.4355 

3.2952 

3.2647 

7.2028 

7.1750 

11.1081 

11.0823 

1000
x

i
r

u


 FSDT 

FEM 

-0.2772 

-0.4952 

-0.6468 

-0.8957 

-2.6520 

-2.8700 

-5.7985 

-6.0165 

-8.8170 

-9.0350 

r

P


 FSDT 

FEM 

-0.4059 

-0.3859 

-0.4306 

-0.4229 

-0.4527 

-0.4451 

-0.4535 

-0.4456 

-0.4535 

-0.4456 

P




 FSDT 

FEM 

2.6336 

2.6851 

2.7423 

2.7435 

2.6721 

2.6805 

2.6547 

2.6783 

2.6542 

2.6781 

x

P


 FSDT 

FEM 

0.4871 

0.5503 

0.6121 

0.6745 

0.9868 

1.0500 

1.0831 

1.1463 

1.0885 

1.1518 

rx

P


 FSDT 

FEM 

-0.0585 

-0.00459 

-0.0628 

-0.00885 

-0.0542 

-0.00023 

-0.0637 

-0.00971 

-0.0636 

-0.00970 

e

P


  FSDT 

FEM 

2.7077 

2.7262 

2.8032 

2.7848 

2.7106 

2.7077 

2.6941 

2.7055 

2.6936 

2.7055 

In Figs. 7 and 8, creep displacement and stress distributions at different layers obtained, 

using FSDT, are compared with the solutions of FEM and are presented in the form of 

graphs for 1n  . The radial displacement at points away from the boundary regions 

depends on radius and length. According to Fig. 7, the greatest axial and radial 

displacement occurs in the internal surface ( 2z h  ). It is obviously apparent from Figs. 

7 and 8 that creep displacements and stresses at points near the boundaries, are different 

from the other areas under the effect of shear stresses resulted from clamped boundary 

condition. At points away from the boundaries, displacements and stresses does not show 

significant variations along the longitudinal direction, while at points near the boundaries, 

the reverse holds true. Figs. 7 and 8 show that the FSDT has an acceptable amount of 

accuracy when one wants to obtain creep displacements and stresses. 
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18     M. D. Kashkoli, K. N. Tahan & M. Z. Nejad 

 

For the verification of the analytical solution in this paper, plots of the normalized radial 

and circumferential stress distributions using the presented FSDT and the analytical 

solution (Nejad & kashkoli, 2014) along the dimensionless radial direction after 10 hr of 

creeping are given in Fig. 9. Fig. 9 is obtained for a cylindrical pressure vessel with constant 

thickness under thermal and mechanical loadings. According to Fig. 9 the results are 

comparable for this case and good agreement was found. 

  
(a) 

 
(b) 

Fig. 7. Variation of normalized radial and axial displacement along the dimensionless axial direction after 

1000 hr of creeping at different layers ( 1n   , 1
p

m  ) 
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(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Fig. 8. Variation of normalized stresses along the dimensionless axial direction after 1000 hr of creeping at 

different layers ( 1n   , 1
p

m  ) 

 
(a) 
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(b) 

Fig. 9. Variation of normalized radial and  circumferential stresses along the dimensionless radial direction 

after 10 hr of creeping ( 0.3n   , 80P  MPa ) 

Comparison between the results obtained from FSDT and FEM indicates that the analytical 

solution based on FSDT has an acceptable amount of accuracy when one wants to obtain 

radial, circumferential, axial and shear stresses and radial displacement, but it is not that 

useful for axial displacement. The higher-order approximations are more important for the 

axial displacement in the FG cylindrical shell with variable thickness. Do to the fact that 

there has been no solution on creep response of FG cylindrical shell with variable thickness 

based on HSDT, therefore the result of axial displacement distribution based on FSDT and 

HSDT are validated with the analytical solution (Jabbari et al., 2015) in an axially 

functionally graded rotating thick cylindrical shell with variable thickness. It can be seen 

from Fig. 10 that HSDT must be applied in order to improve the accuracy of the theory. 

 
Fig. 10. Variation of normalized axial displacement along the dimensionless axial direction for initial solution 

(thermo-elastic) in middle layer for different theories ( 1n   , 1
p

m  ) 

The responses of an FG cylinder under mechanical and thermal loads can be considered in 

order to evaluate the effect of non-homogeneity of used materials. For this purpose, the 

influences of gradient index on the distribution of creep displacements and stresses along 
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middle surface are examined in Fig. 11. It could be observed that the absolute values of 

radial and axial displacement decreases with increase in the grading index n . Another 

remarkable point to be made from Fig. 11 is that changes in the gradient index have less 

dramatic effects on the effective stress, as compared with those in the displacements. 

Fig. 12 shows the distribution of the normalized displacements and effective stress at the 

middle of the cylinder after 1000 hr of creeping for various gradient index. It is obvious 

that with increasing n , the absolute values of radial and axial displacement decrease. It 

must be noted that for all values of gradient index, the maximum effective stress occur at 

the inner surface of the cylinder and the minimum at the outer surface. 

Histories of normalized displacements and stresses from initial solution at zero time up to 

50000 hr for material identified by 1n   in middle layer are shown in Figs. 13 and 14, 

respectively. It is clear from these figures that the absolute values of radial and axial 

displacements and axial stress increases with time, during creep process of the FG cylinder. 

It must be noted that the maximum values of radial displacement occur at 0.1x L   for all 

creep times. Also, Fig. 14 shows that minimum changes will occur for radial, 

circumferential and effective stresses with time during creep process. 
 

 
(a) 

 
(b) 
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(c) 

Fig. 11. The effect of gradient index on the normalized (a) radial displacement (b) axial displacement (c) 

effective stress along the dimensionless axial direction after 1000 hr of creeping in middle layer ( 1
p

m  ) 

 
(a) 

 
(b) 
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(c) 

Fig. 12. The effect of gradient index on the normalized (a) radial displacement (b) axial displacement (c) effective 

stress along the dimensionless radial direction after 1000 hr of creeping at 2x L   ( 1
p

m  ) 

 
(a) 

 
(b) 
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Fig. 13. Variation of normalized radial and axial displacement along the dimensionless axial direction from 

initial solution at zero time up to 50000 hr ( 1n   , 1
p

m  ) 

 
(a) 

 
(b) 

 
(c) 

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in IJAM

In
t. 

J.
 A

pp
l. 

M
ec

ha
ni

cs
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 E
N

G
L

A
N

D
 o

n 
01

/1
0/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.



26     M. D. Kashkoli, K. N. Tahan & M. Z. Nejad 

 

 
(d) 

Fig. 14. Variation of normalized stresses along the dimensionless axial direction from initial solution at zero 

time up to 50000 hr ( 1n   , 1
p

m  ) 

The effect of the non-uniformity pressure function parameter pm  on the creep response of 

cylinder is shown in Fig. 15. Fig. 15(a) shows the distribution of pressure function along 

the dimensionless axial direction. According to Fig. 15(a), the maximum internal pressure 

occur for 2pm  . It can be seen from Figs. 15 (b) and (d) that, with increasing non-

uniformity pressure constant 
p

m , radial displacement and effective stress increase. It can 

be observed from Fig. 15(c) that axial displacement distribution does not change with 

respect to the internal pressure profile. Another remarkable point to be made from Fig. 

15(c) is that the distribution of axial displacement for 0
p

m   is positive.  
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(b) 

 
(c) 

 
(d) 
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Fig. 15. The effect of the non-uniformity pressure constant on the normalized (a) pressure profile (b) radial 
displacement (c) axial displacement (d) effective stress along the dimensionless axial direction after 1000 hr of 

creeping in middle layer ( 1n  ) 

Fig. 16 clearly reflects the influence of the different values of the thermal gradient in the 

dimensionless displacements and effective stress resultant in middle layer of the thick 

cylinder. Fig. 16 (a) and (b) show that for 0T  , with increasing T , absolute values of 

radial displacement increases but axial displacement decreases, also for 0T  , with 

increasing T , absolute values of radial displacement decreases but axial displacement 

increases. It is obvious from Figs. 16 (c) and (d) that for 0T   and 0T  , with 

increasing T  effective stress increase. It is evident that the temperature boundary 

condition is one of the key elements need to be carefully considered when analyzing the 

working responses of FG cylinders. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 16. The effect of the thermal gradient on the normalized (a) radial displacement (b) axial displacement (c) 

effective stress ( 0T  ) (d) effective stress ( 0T  ) along the dimensionless axial direction after 1000 hr 

of creeping in middle layer ( 1n   , 1
p

m  ) 

Fig. 17 illustrates the creep radial and axial displacements and effective stress distributions 

change with respect to various loading conditions. It has been found that the absolute 

minimum values of displacements and effective stress distribution belongs to thermal 

loading. Adding mechanical load will increase displacements and effective stress 

distribution. 
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Fig. 17. The effect of the thermal and mechanical loading on the normalized (a) radial displacement (b) axial 
displacement (c) effective stress along the dimensionless axial direction after 1000 hr of creeping in middle 

layer ( 1n  , 1
p

m  ) 

Histories of radial, circumferential and axial creep strains are plotted in Fig. 18. Creep 

strains satisfy the incompressibility condition ( 0c c c

r x      or 0c c c

r x     ). The 

absolute value of both radial and axial creep strains with time is much higher at the internal 

surface as compared with the external, but the circumferential creep strain is inversed. As 

far as, the rate of change is concerned, this seems to increases to a maximum between 

10000 and 30000 hours, and then decreases until it reaches steady state around 70000 hours 

of operation. 
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(c) 

Fig. 18. Variation of radial, circumferential and axial creep strains along the dimensionless radial direction up 

to 70000 hr ( 1n   , 1
p

m  ) 

4. Conclusion 

In this study, making use of FSDT and MLM, an analytical solution was presented for the 

purpose of creep analysis of an FGM thick-walled cylinder with variable thickness 

subjected a temperature gradient and non-uniform internal pressure. The mechanical and 

thermal properties except Poisson ratio, are graded along the radial direction according to 

a power law form of radial direction. Finite element analysis of the problem, using 

ANSYS® was used for the verification purposes of the analytical solution. Good agreement 

was found between the results. The summary of the conclusions of this study is as follows: 

 FGM thick-walled cylindrical shells could be solved using the analytical and 

semi-analytical methods (e.g. series, perturbation theory). First order shear 

deformation theory and perturbation theory result in the analytical solution of the 

problem with higher accuracy and within a shorter period of time. However, the 

above-mentioned solutions are complicated and time-consuming. The multi-layer 

method could be a good replacement for the analysis of thick-walled shells. In this 

method, shells with diff erent geometries and diff erent loadings and diff erent 

boundary conditions, with even variable pressure, could be more easily solved. 

This method can be used successfully for nonlinear assumptions (such as creep 

problem) as well as linear ones. 

 The effect of shear deformations in the cylinder especially at the clamped 

boundaries could be predicted by FSDT. These shear deformations tend to 

significant gradient of displacement and consequently significant shear stress. 

 It can be concluded that existence of shear stresses causes abrupt changing the 

displacement at the near of two ends of the cylinder (clamped boundaries), 

therefore, the value of stresses at the two ends of the cylinder are very greater than 

the stresses at the middle of the cylinder, while zero values of shear stresses at the 

points far away from the clamped ends causes the corresponding stresses to be 

constant through the axial direction. These stresses cause stress concentration in 

the cylinder boundary regions and FSDT help to calculate the stress concentration 

factor due to end supports. 

   
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 At very near the axial boundaries of the cylinder, the thermal stresses show a 

characteristic different from its general behavior over the maximum part of the 

cylinder. In this very small region, due to edge moments, the absolute values of 

thermal stresses have a higher value from the points away from boundaries. Also, 

due to the fact that the two ends of the cylinder is clamped, in the clamped 

location, the adjacent layer is without moving, While a subsequent layer is capable 

of moving, this sudden change causes a significant increase in displacements and 

so a significant increase in stresses. While at the region away from the boundaries, 

due to the very slight movement of the layers relative to each other, stresses 

variations are low. 

 In the concurrent presence of temperature gradient and non-uniform pressure, 

achieved results show that the absolute values of radial and axial displacements 

of the cylinder decrease with increasing the gradient index ( n ) in both axial and 

radial directions. 

 The superposition law is satisfied for the thermo-elastic creep analysis of FG 

cylinder with variable thickness. 

 Due to the considerable effects of the temperature gradient on the creep response 

of the cylinder, so the temperature boundary condition is so important and need 

to be carefully considered. 

 Significant changes will occur for radial and axial displacements and axial stress 

with time during creep process. 

 Comparison between the results obtained from FSDT and FEM indicates that the 

analytical solution based on FSDT has an acceptable amount of accuracy when 

one wants to obtain radial, circumferential, axial and shear stresses and radial 

displacement. 

 Due to the fact that the volume change due to creep is zero, the volumetric creep 

strain is zero, and the creep strains satisfy the incompressibility condition. 

According to the history of creep strains and stresses, creep behavior of these is 

fairly similar as changes in the rates for these become less significant after 10000 

hr, begin to converge after 30000 hr, and reaches steady state after 70000 hr of 

operation. 
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