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A B S T R A C T

This paper explores the use of simultaneous tensile buckling of unit cells to induce a transformation in
lattice topology. Under tension, unit cells undergo passive transformation from a rectangle-like to a triangle-
/pentagon-like topology, with an associated change in the effective stiffness properties. This behaviour is
investigated through finite element analysis and experiments, with analytical results providing insights into
the observed behaviour. The analysis identifies (i) that the initial unit cell topology (rectangular) is dominated
by membrane effects, (ii) the transformation phase is associated with negative stiffness, and (iii) once formed,
the new topology (triangular/pentagonal) exhibits increased stiffness in both compression and tension. Finite
element analysis confirms that the unit cell behaviour is also preserved in lattices. Under tension, the lattice
undergoes a seven-fold increase in stiffness as it transitions from its initial to the new topology, with a regime of
negative stiffness during this transformation accounting for approximately 82% of its total elastic deformation.
This new approach to elastically tailor the nonlinear response of (meta-)materials/structures has the potential
to contribute to the development of novel tensile energy absorbers.
1. Introduction

Morphing structures harness adaptivity to effectively meet varying
operational demands. Additionally, reconfigurable structures possess
the capability to offer multifunctionality, as demonstrated in various
applications spanning the automotive, aerospace, robotics and energy
sectors (Daynes and Weaver, 2013; Barbarino et al., 2011; Kim et al.,
2020; Li et al., 2021b). In particular, extensive research on shape-
morphing structures highlights their advantageous properties, such as
low weight, high specific stiffness, increased energy absorption, design
flexibility, adaptability and packing efficiency (Neville et al., 2016;
Chen and Shea, 2018; O’Donnell et al., 2019; Carey et al., 2019; McHale
et al., 2020).

Topology morphing. Most commonly, shape-changing structures adapt
by altering the geometry of their constituent members, without nec-
essarily changing the fundamental topology or connectivity of the
structure and its associated load paths. However, by rearranging load
paths, the structure can optimise its performance under varying loading
conditions. An example of this is the variable topology truss (VTT)
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structure, which uses linear actuators to merge or split truss nodes,
thereby altering its topology (Spinos et al., 2017; Liu and Yim, 2019;
Park et al., 2020). VTT structures find potential applications in stowage,
locomotion, and workspace manipulation due to their versatility in
adopting different topologies. As an example of topological structural
design, researchers have examined the topologies of a Rubik’s cube,
using graph theory to kinematically analyse their structural composi-
tions (Zeng et al., 2019). Similarly, kinematic studies on linkage-based
metamorphic mechanisms, possessing topological reconfiguration prop-
erties, reveal their potential for use in deployable mechanisms with
substantial folding ratios and adaptability (Song et al., 2019; Gao et al.,
2022). However, these structures typically rely on relatively rigid truss-
type members that do not undergo significant elastic deformations. To
fully harness the benefits of topological changes, (meta-)material and
structural design should also incorporate elastic tailoring of constituent
elements to achieve desirable properties such as variable macroscopic
stiffness, energy absorption, and control over mechanical wave prop-
agation. The synergy between elasticity and topological changes has
been demonstrated through helical lattices that can break and reform
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unit cell connections (Carey et al., 2021b,a). This combined tailoring
approach enables curvilinear deployment paths, unlike their original
fixed-topology counterparts (Pirrera et al., 2013).

Here, we primarily focus on topological changes. Lattice-based
topology-morphing (meta-)materials and structures showcase the abil-
ity to transform from a bending-dominated behaviour to a stretching-
(or membrane-) dominated behaviour or vice-versa, either via program-
ming with external stimuli (Wagner et al., 2019; Li et al., 2021a; Chen
et al., 2021) or passive morphing (Wagner et al., 2022; Sundararaman
et al., 2023b) through the formation of contact connections. These lat-
tice structures often achieve step-increase in their stiffness properties,
still within the elastic regime, by transitioning from a compliant topol-
ogy (bending-dominated) to a stiff topology (stretching-dominated).
Recent works on multistable metamaterials (Wu and Pasini, 2023a,b)
illustrate the potential of topological transformations in shaping snap-
through instability, thus enabling adaptive mechanical properties such
as acoustic band structure, Poisson’s ratio, reprogrammable bending
stiffness and flexural modes. These properties create possibilities for
topology-morphing structures in applications ranging from tunable vi-
bration isolators and reprogrammable energy dissipators to mechanical
logic gates for system control and multifunctional sneakers offering
versatility.

Topology morphing through tensile buckling. In this work, a novel ap-
proach is proposed to achieve passive topology transformation under
tension to explore stiffness adaptivity. A lattice system is presented
which initially responds in a stiff membrane-dominated manner under
tensile loads. At larger load intensities, large flexural deformations
of the columns cause an associated softening effect until a new lat-
tice topology is formed. The new topology then demonstrates a step-
increase in effective stiffness characteristics compared to the initial
2

membrane state. To achieve this response, the phenomenon of tensile
buckling, demonstrated in Zaccaria et al. (2011) and summarised in
Section 2, is utilised within the columns of the lattice.

Ongoing work has paid considerable attention to utilising sliding
elements and tensile buckling as constituents in the design of structures
mainly subjected to tensile loads (Bigoni et al., 2012; Misseroni et al.,
2015; Bigoni et al., 2018; Noselli et al., 2019; Simão and Dias da Silva,
2020; Palumbo et al., 2021; Bordiga et al., 2022). Employing tensile
buckling in (meta-)material/structural design provides a new way to
control the elastic characteristics at large deformations where plastic or
catastrophic failure of the constituent materials would otherwise have
occurred. Here, this tensile buckling phenomenon is further exploited
for structural adaptivity through passive topology change.

Outline of the paper. This paper proceeds as follows: Section 2 provides
a brief review on tensile buckling. Section 3 presents the topology
morphing unit cell, including details of the supporting Finite Element
(FE) analysis and the experimental prototype. Section 4 discusses the
behaviour of the unit cell under tensile and compressive loading,
including the changes in mechanical response due to topology transfor-
mation. Section 5 demonstrates through FE analysis that the unit cell
behaviour is preserved in lattices. Finally, Section 6 summarises the key
contributions of this study and its implications for future work.

2. Tensile buckling

The phenomenon of tensile buckling (Zaccaria et al., 2011) is illus-
trated in Fig. 1. Two collinear columns are connected, independently
of each other, to a horizontal slider rail. Under sufficiently large tensile
loading, the collinear state loses stability and the column ends slide
along the slider rail. A similar instability occurs under compressive
loading as well (see Fig. 1). For further details, we refer the reader
to Zaccaria et al. (2011), which presents analytical expressions for
Fig. 1. Illustration of the structure (Zaccaria et al., 2011) undergoing buckling under tensile and compressive loads. (i) Undeformed state (left); (ii) Deformed state under tension
centre) when the columns (blue lines) reach the ends of the slider rail (solid black lines); (iii) Deformed state under compression (centre). Red dots represent the end coordinates
f the slider rail.



International Journal of Solids and Structures 289 (2024) 112637V. Sundararaman et al.

(

t
o

3

a
F
z
r
s
c
i
w
r
s
s
t
i
t
c
s

𝑙
a
d
c
t
r

Fig. 2. Schematic of a topology morphing unit cell subjected to tensile loads. (a) Undeformed unit cell with rectangle-like topology. Boxes in dashed lines indicate the initial
overlap of slider rails and black dot indicate the sliding and rotational connection between the two slider rails, see Fig. 3. (b) Intermediate deformed state during topology
transformation. Red lines and arcs with arrows indicate the direction of sliding and rotational motions of columns/slider rails respectively, during topology transformation. (c)
Transformed topology with triangle-/pentagon-like topology.
Fig. 3. Schematic of slider rails for initial and transformed topologies of the unit cell. This view is in the 𝑥𝑧-plane, which is the plane orthogonal to the axis of applied load
𝑦-axis).
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. Topology morphing unit cell

A unit cell consists of a pair of tensile-buckling structures (columns
nd slider rails) discussed in Section 2, arranged in parallel, see
ig. 2(a). As the columns deform, as illustrated in Fig. 1, the hori-
ontal distance between the ends of the slider rails reduces due to its
otation. This shortening creates a challenge when connecting adjacent
lider rails. A conventional hinge between slider rails will facilitate
onnectivity when only two tensile-buckling structures are connected
n parallel. However, this hinge is not sufficient to realise a structure
ith repetitive units as it does not allow for the contraction of slider

ail end coordinates. Thus, a new connection is introduced between
lider rails that facilitates the connectivity of multiple tensile-buckling
tructures in parallel. This connection allows sliding and rotational mo-
ions between adjacent slider rails which initially overlap as illustrated
n Figs. 2 and 3. This sliding and rotational connection marginally
ransmits the load between the slider rails whilst allowing the parallel
olumns to deform almost independently until the columns reach the
lider rail ends, thereby forming a new contact connection, see Fig. 2(c).

Column length 𝑙, column flexural rigidity 𝐸𝐼 , and slider rail length
𝑠 are sufficient to calculate the initial overlap between slider rails,
s follows. For a single tensile buckling structure (Fig. 1), the tensile
isplacement required for the sliders to reach the slider rail ends
an be estimated through FE analysis or by using analytical equa-
ions (Zaccaria et al., 2011) (as shown in Appendix A). The slider
ails rotate during deformation, causing the slider rail ends to translate
3

8

orizontally by a distance 𝑎 = 0.5 ∗ 𝑙𝑠 ∗ (1 − cos 𝜃𝑠). In the unit
ell, two tensile buckling structures are arranged with a sliding and
otational connection such that the slider rails overlap for a length
𝑎, see Fig. 3(a). This overlap ensures that the tensile displacement at
hich the ends of both slider rails coincide is the same as that at which

he sliders reach the ends of their respective slider rails. This tensile
isplacement is referred to as the ‘topology transformation point’.

In practice, the sliding and rotational connection is achieved by
ffsetting alternate tensile-buckling structures in the out-of-plane direc-
ion, as shown in Fig. 3. Since this offset is small relative to the unit
ell’s overall dimensions the behaviour can still be considered planar,
nd the FE analysis proceeds assuming this offset is zero. The unit
ell with initial topology (rectangle-like), an intermediate deformation
tate with slider rails undergoing relative sliding and rotational motions
etween them, and transformed topology (triangle-/pentagon-like) are
hown in Fig. 2.

.1. Finite element analysis

The behaviour of the unit cell is analysed using geometrically
onlinear static (FE) simulations in Abaqus Standard 2020 (Abaqus
ocumentation, 2020). The columns and the slider rails are modelled as

wo-noded linear beam (B21) elements (Abaqus Documentation, 2020).
mesh size of 1mm ensured convergence in the reaction force to a

olerance of 0.4%.
The columns have a length 𝑙 = 239mm, width 24mm, thick-

ess 1.2mm and isotropic elastic modulus 𝐸 = 164GPa, which is
epresentative of unidirectional carbon fibre-epoxy composite HexPly®
552-IM7 along the fibre direction (Hexcel Corporation, 2023). Since
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the primary deformation mode is one-dimensional and flexural, the
columns are modelled with isotropic elastic material properties. In the
physical system, the sliding ends of the columns feature a clamped
connection of length 29mm which is stiff relative to the column. The
FE model assumes a material stiffness 50 times higher in this clamped
region compared to the remainder of the column length. The sliding
range on the rails is 𝑙𝑠 = 203mm. The initial overlap required between
the sliding lengths of two adjacent slider rails is approximately 38mm.
The slider rails are 13mm thick steel with an elastic modulus of 200GPa.
The thickness ensures the rails behave pseudo-rigidly when compared
to the columns.

A SLOT + ALIGN (Abaqus Documentation, 2020) connection with
a damping coefficient of 0.001 is used to model the sliding motion be-
tween the columns and the slider rail. An AXIAL + ROTATION (Abaqus
Documentation, 2020) connection with a damping coefficient of 0.001
(for both sliding and rotation) is used to model the sliding and ro-
tational connection between the sliders. Damping values of 0.001 or
lower did not alter system behaviour. Damping behaviour replicates
the friction in the sliding and rotational motions of the physical lattice
and provided better numerical convergence than using the frictional
behaviour directly. The use of damping is justified by the fact that
it appears due to friction when components slide relative to each
other (Rao, 2017). Moreover, damping or frictional behaviour both
cause additional resistance load in the system. In addition, Abaqus
Standard 2020 does not support the simultaneous input of friction
parameters for both components (sliding and rotation) in the AXIAL +
ROTATION connection. However, damping values can be specified si-
multaneously for sliding and rotational components. Hence, FE analysis
with damping behaviour more closely resembles the physical behaviour
of the lattice observed during the experiment. The damping coefficient
values used in the analysis are small because the goal of this work
is to demonstrate the topology change through tensile buckling which
can be achieved without studying the influence of friction/damping in
sliding.

A three-step approach (in a single analysis job) is used to charac-
terise the response of the lattice. The first step involves a linear static
analysis (Abaqus Documentation, 2020) which breaks the symmetry of
the system by applying a 2◦ imperfection to the slider rails’ orientation.
The columns are allowed to translate vertically only, i.e., horizontal and
rotational degrees of freedom (dof) are constrained. The second step
is a geometrically nonlinear static analysis (Abaqus Documentation,
2020) which determines the transition response, i.e., the sliding of
columns until they reach the slider rail ends. This is achieved by
applying a uniform displacement (tension) to the bottom ends of the
lower columns until the slider transition is complete. The top ends
of the upper columns are fully constrained and the bottom columns
are allowed to translate vertically while the horizontal and rotational
dofs are constrained, see Fig. 2(a). Normal hard contacts (no separation
after contact) (Abaqus Documentation, 2020) are defined between the
columns and the small (2mm) vertical projections at the slider rail ends
to prevent the columns from siding out of the rails. In the third step,
a nonlinear static analysis obtains the load–displacement behaviour
of the transformed lattice topology either in tension or compression.
This step is performed by applying an additional constraint to the
sliding dof in the AXIAL + ROTATION connection thereby restricting
the separation of slider rails. This three-step approach obviates the need
to restart analysis and captures the entire behaviour of the system in a
single run.

3.2. Experiment

To demonstrate topology morphing experimentally, a unit cell was
assembled with columns, sliders and slider rails. The columns were
made of unidirectional carbon fibre-epoxy composite as detailed in
Section 3.1. A set of compact sliders (linear bearings) and slider rails
purchased from eBay (2023) was used to form the sliding pairs. The
4

Fig. 4. A sliding and rotational connection. The sliders are attached to 3D printed
blocks which are connected using a bolt. This connection allows rotational movement
between slider rails about the bolt axis which is independent of the sliding motion of
columns on their corresponding slider rails.

sliders were attached to the ends of the columns which slide on the
slider rails. The sliding and rotational connection between the unit cells
was fabricated using 3D-printed blocks and sliders and is shown in
Fig. 4.

A vertically mounted Tinius Olsen universal testing machine (UTM)
with a 1 kN load cell was used for experimentation. If the system was
orientated vertically, the relatively massive slider rails could induce un-
desirable self-weight loads which dominate the bending behaviour. To
mitigate this effect, a customised experimental setup with a horizontal
table was fabricated as shown in Fig. 5. The ends of the slider rails
and the sliding+rotational connection were fitted with rollers which
supported them on the horizontal table. The column ends on one side
are fixed against a support plate and connected to a displacement plate
on the other side.

The displacement plate was actuated via a Scott-Russell mechanism
which converts vertical force/displacement from the test machine into
horizontal force/displacement, see Fig. 6. A rigid rod OC is hinged at
the mid-point of the rigid rod AB which is twice as long, so 𝑂𝐶 =
𝐴𝐶 = 𝐵𝐶 = 𝐿 is fixed but the angle 𝜃 can change. When a vertical
tensile displacement 𝛿𝑦 is applied to the linkage, the displacement plate
is subjected to a tensile displacement in the horizontal direction, 𝛿𝑥,
given by

𝛿𝑥 = 𝑂𝐵 −
√

4𝐿2 − (𝑂𝐴 + 𝛿𝑦)2, (1)

where 𝑂𝐵 and 𝑂𝐴 are the initial lengths measured before applying
the test displacement. Similarly, the horizontal force 𝐹𝐵 acting on the
displacement plate is related to the vertical force 𝐹𝐴 applied by the
UTM load cell through

𝐹𝐵 =
𝐹𝐴
tan 𝜃

. (2)

The angle 𝜃 can be measured from the initial geometry of the linkage
and the applied displacement 𝛿𝑦.

During the test, the force was measured from the load cell attached
to the cross-head and the displacement was measured through the
cross-head movement. Thereafter, the force/displacement acting on the
displacement plate (presented in Section 4) was computed from the
force and displacement diagram of the Scott-Russell linkage shown
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Fig. 5. CAD model of the experimental test setup.
Fig. 6. Force and displacement diagram for a Scott-Russell linkage.
in Fig. 6. The ratios of velocity and force between the vertical and
horizontal ends of a Scott-Russell linkage are not constant. To maintain
accuracy, the experiments were conducted in a displacement range
limiting such ratios to the range [0.5, 2]. The test used a cross-head
displacement rate of 100 mm/min. Quasi-static behaviour is assumed
as the total displacement applied (approx. 120mm) is sufficiently large.

4. Unit cell behaviour

4.1. Tensile response

To facilitate tensile buckling, the test is initialised with a 2◦ bias
in the slider rail’s rotation. This deviation causes an offset of 9mm
between the columns on opposite sides of the slider. When a tensile
displacement is applied to the structure, the movable ends of the
5

columns translate causing the sliding ends of the columns to slide over
the slider rails. This sliding is accompanied by a translation and rotation
of the slider rails. The slider rails remain connected while rotating
relative to each other because of the sliding and rotational connection
between them. The deformed shape is illustrated in Fig. 7.

From the FE analysis, it is observed that the upper columns reach
the rail ends while the lower columns are still approximately 16mm
away from the slider rail ends, Fig. 8(a), occurring at a tensile dis-
placement of about 66mm. The end restraints of the rails prevent
the upper columns from sliding further, which now causes the lower
columns to slide until the rail ends, thereby completing the topology
transformation at a tensile displacement of about 78mm. This behaviour
is also observed during the experiment as shown in Fig. 8(b). How-
ever, in the experiment, this lag is also influenced by the stick–slip
phenomenon during sliding. The displacement at which the topology
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Fig. 7. Deformed shapes of the unit cell under a tensile displacement of 20 mm, which corresponds to 1⃝ in Fig. 9.
Fig. 8. Deformed shapes of the unit cell just prior to topology transformation. The top columns have reached the slider rail ends but the bottom columns have not.
transformation (when all the columns in the unit cell reach the ends
of their corresponding slider rails) occurs in the experiment is also
approximately 78mm.

The behaviour described in the previous paragraph corresponds to
the initial portion of the load–displacement curve shown in Fig. 9. The
initially stiff membrane-dominated response (stiffness ≊ 10N∕mm) is
followed by a softening (marginal negative stiffness ≊ −0.066N∕mm)
associated with (i) large rotations induced in the slider rail, and (ii)
transition to a flexural response of the columns. Since the negative
stiffness associated with this softening is small, it can be considered
deformation at an almost constant load. This behaviour significantly
enhances energy absorption capability, accounting for 65% of the total
elastic deformation. Here, the elastic limit is considered to occur when
the axial stress (S11) (Abaqus Documentation, 2020) in the column
exceeds the ultimate compressive strength, which is 1690MPa (Hex-
cel Corporation, 2023). This first maximum stress occurs at the stiff
clamped portions (attached to sliders) of the columns.

Topology transformation, from a rectangle-like to a triangle-/
pentagon-like topologies, occurs when the column sliders contact the
6

end stoppers of the slider rails and form a new load path, see Fig. 10.
After topology transformation, there is a step-increase in stiffness (≊
6N∕mm) compared to the softening regime, see Fig. 9. This effect
is caused by the stretching of the columns as is evident from their
deformed shapes, Fig. 11. The structure can subsequently be loaded
beyond the elastic limit of its constituent materials, but this study is lim-
ited to the elastic regime. The tensile response of the unit cell obtained
from FE analysis and experiment are illustrated in Supplementary
Videos 1 and 2 respectively.

Prior to topology transformation, the analytical elastica equations
can be used to obtain the load–displacement results, see Appendix A.
The stiffness response of a unit cell is twice that of a single tensile-
buckling structure as the sliding and rotational connection is assumed
to transmit no load. This analysis predicts a slightly larger displacement
value (85mm) for the topology change than the FE and experimen-
tal results. This discrepancy can be explained by observing that the
analysis assumes a constant flexural rigidity for the columns, but in
the experiments, the clamp and slider significantly stiffen one end of
the column. The FE analysis accounts for this effect, and the onset
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Fig. 9. Load versus displacement of the unit cell under tension. Deformed shapes for positions 1⃝, 2⃝ and 3⃝ are shown in Figs. 7, 10 and 11 respectively.
Fig. 10. Transformed topology at a tensile displacement of about 78mm, corresponding to position 2⃝ in Fig. 9.
of topology transformation obtained from FE analysis (78mm) agrees
closely with experimental observations. Similarly, when the columns
are modelled with a constant flexural rigidity in FE analysis, the tensile
displacement (85mm) at which the columns reach slider rail ends
matches the analytical predictions.

Fig. 9 shows sliding onset requires a higher load (32N) than pre-
dicted by both FE (25N) and analytical (28N) analysis. This difference
is attributed to the frictional forces in the Scott-Russell linkage and
between the sliders and the slider rails. Furthermore, any misalign-
ment in the initial test setup induces torsional forces contributing to
this discrepancy. Imperfections in the sliding mechanism also cause
significant stick–slip behaviour introducing further deviation from the
idealised load–displacement curve. These frictional forces also conceal
the gradual transition of the initial stretching response to a soften-
ing response due to the initial imperfection predicted in FE analysis.
Analytical results also do not predict the gradual transition to softening
7

as the elastica equations do not take the initial imperfection into
account.

Elastic sliders. Topology morphing through tensile buckling can also be
achieved when the rigid slider rails used in this study are replaced with
elastic sliders, where both the columns and slider rails have the same
flexural rigidity. This statement is supported by the FE results presented
in Sundararaman et al. (2023a) for both ‘elastic’ and ‘rigid’ slider rails.
Furthermore, our FE results show that the stresses acting on the slider
rails during topology transformation were negligible. These findings
suggest that to achieve topology transformation, the flexural rigidity
of the slider rails should be sufficient to allow for sliding between
the columns without undergoing significant bending. Using the same
flexural rigidity for both columns and slider rails can also help minimise
the mass penalty. However, it is important to note that the stiffness of
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Fig. 11. Deformed shapes of the topology-transformed unit cell under tensile displacement of 100 mm, corresponding to position 3⃝ in Fig. 9.
the transformed topology can be significantly influenced by the flexural
rigidity of the slider rails.

4.2. Compressive response

The behaviour of the unit cell under compression was also investi-
gated. When beginning with the initial topology, the columns buckle
and slide over the slider rail under compression thereby exhibiting an
initial stretching-dominated behaviour (stiffness ≊ 890N∕mm) followed
by an approximately zero-stiffness behaviour, see Fig. 12. However,
the columns’ ends do not reach the ends of the slider rails because
their buckling mode shape (shown in Fig. 13) facilitates further bending
of the columns under increased compression rather than sliding. This
bending of columns could lead to potential topology change under
compression through the formation of contact connections between ad-
jacent unit cells as in Sundararaman et al. (2023b), and this behaviour
8

could be explored in future work. The mode shape with the point of
inflexion (see Fig. 13) is consistent with an approximately eight-fold
increase in buckling load than under tension. Such mode shape of the
columns and their higher buckling loads under compression were also
reported in Zaccaria et al. (2011).

For the unit cell with transformed topology, the connections at the
ends of the sliders are locked manually using hard stoppers thereby pre-
venting the columns from sliding inward. When the structure was sub-
sequently loaded under compression, it exhibited a bending-dominated
behaviour (stiffness ≊ 2N∕mm) as indicated by an approximately linear
response, see Fig. 12. The load and displacement were referenced to
zero when the transformed topology was subjected to compression to
ensure a useful comparison of stiffness between the initial and trans-
formed topologies. This bending-dominated response is purely due to
the bending of the columns in the transformed topology which is shown
in the deformed shapes in Fig. 14. The compressive response of the unit
Fig. 12. Displacement of the unit cell for compressive loading. Deformed shapes for positions I⃝ (FE) and II⃝ (FE and experiment) are shown in Figs. 13 and 14 respectively.
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Fig. 13. Schematic of the unit cell subjected to compression. Deformed shape obtained from FE analysis corresponds to position I⃝ in Fig. 12.
Fig. 14. Deformed shapes of the unit cell with transformed topology at a compression of 50 mm, corresponding to position II⃝ in Fig. 12.
cell with transformed topology is presented in Supplementary Video
3. These two distinct stiffness behaviours under compression for the
two different topologies could be explored to use the structure under
multiple operating loads. The manual method employed in locking the
transformed topology to load under compression is a limitation of the
current design of this system. However, this can be overcome through
connection methods (e.g., snap fitting) which could lock/release the
topologies.

5. Lattice behaviour

We extend our investigation of the unit cell to consider the tensile
behaviour of a lattice of cells. The overall response of the topology
morphing lattice was characterised using FE analysis for a number of
𝑁𝑥 × 𝑁𝑦 lattices comprising 𝑁𝑥 unit cells in parallel and 𝑁𝑦 layers
in series. The slider rails between horizontally adjacent unit cells are
connected through a sliding and rotational connection as described in
Section 3 and illustrated in Figs. 2 and 4. Vertically-adjacent unit cells
9

are connected through horizontal beams (see Fig. 16(a)) whose elastic
modulus and second moment of area are equal to that of the columns.

Maintaining symmetric bending of the lattice columns about the
horizontal beams requires some modification of the unit cell analysis
approach. If the lattice has more than two layers, a larger initial
imperfection (initial rotation of slider rails by 4◦) is needed to ensure
symmetry breaking. For lattices with two layers, 2◦ initial rotation is
sufficient to seed the desired topology change. In practice, an initial
curvature of the columns could be used to achieve this goal. In addition
to the symmetry-breaking imperfections, rotational constraints at the
joints between the columns and the horizontal beams are also neces-
sary. Locally stiffening the joint region by increasing thickness would
achieve this in practice.

As shown in Fig. 15, the normalised load–displacement responses
of lattices with 7 × 3 and 9 × 4 unit cells match closely with that
of a single unit cell, except for sharp increases in load for the 9 × 4
lattice at approximately 59mm and 60mm. Here, the load is normalised
by (𝑁𝑥 + 1)∕2 (since 𝑁𝑥 + 1 is the number of columns and the factor
of 2 normalises with respect to the unit cell) and the displacement is
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Fig. 15. Normalised load versus normalised displacement for 𝑁𝑥 × 𝑁𝑦 lattices under tension, obtained by FE analysis. Load is normalised by (𝑁𝑥 + 1)∕2 and displacement is
normalised by 𝑁𝑦. Deformed shapes for positions A⃝ and B⃝ are shown in Figs. 17 and 16(b), respectively.
Fig. 16. Initial and transformed topologies of the lattice with 9 × 4 unit cells, obtained from FE analysis. In Figure (a), red dots indicate the weld joints between the columns
and the horizontal beams at which the rotational constraints are applied. Figure (b) corresponds to position B⃝ in Fig. 15.
normalised by 𝑁𝑦. The lattice behaves similarly to the unit cell until the
topology transformation point (see Fig. 16(b)), supporting our assertion
that the cells remain independent until transition. After transformation,
the lattice has increased stiffness relative to the unit cell. This happens
because the absence of lateral constraints in the case of a single unit
cell results in relatively lower stiffness when compared to the lattice.
This boundary effect diminishes rapidly as the cell number increases.
A comparison of the response characteristics for the unit cell and the
9 × 4 lattice is provided in Table 1.

The 9 × 4 lattice displays three sharp increases in load between nor-
malised displacements of approximately 59mm and 60mm, see Fig. 15.
The associated deformation process is as follows. All layers deform
uniformly until the first spike. Then layers 1 and 4 complete their tensile
transformation while simultaneously layers 2 and 3 slightly relax. This
10
increases the force, leading to the first spike. The spike diminishes
during subsequent extension as layers 2 and 3 stretch. This is preferred
to the simultaneous tensile transformation of all layers since sequential
transformation has a lower energy barrier under displacement control.

The subsequent spikes can be explained similarly. As a subset of lay-
ers undergo tensile transformation, a spike in the force is observed. The
untransformed layers undergo relative compression to allow for the lay-
erwise change. Subsequent extension of the lattice can therefore occur
without further increasing stiffness owing to the relative compression
of the untransformed layers. This sequential process of transformation
repeats until all layers have been transformed, and the final step-change
stiffness is observed. However, the 7 × 3 lattice deformation pattern is
more uniform with all cells transforming simultaneously. The deformed
shape of the 9 × 4 lattice undergoing relative compression (layer 3) and
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Table 1
Stiffness and percentage elastic deformation for three deformation regimes of the unit cell and the 9 × 4 lattice, obtained from FE analysis.
Deformation regime/Topology Deformation

behaviour
≈Stiffness, N/mm ≈% Elastic deformation, (See Section 4.1)

Unit cell Lattice Unit cell Lattice

Initial topology
(rectangle-like)

Stretching 10 10 10 12

Topology transformation Bending & sliding −0.066 −0.066 65 82

Transformed topology
(triangle-/pentagon-like)

Stretching 6 70 25 6
Fig. 17. Deformed shapes of the lattice, obtained from FE analysis, at a normalised tensile displacement of 60 mm, corresponding to position A⃝ in Fig. 15. In Figure (a), for the
lattice with 9 × 4 unit cells, the third layer from top has undergone relative compression to allow for the layerwise extension, whereas in Figure (b), for the lattice with 7 × 3
nit cells, deformation in each layer is identical.
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he layerwise uniform deformation of the 7 × 3 lattice at the normalised
isplacement of 60mm (Position A in Fig. 15) are shown in Figs. 17(a)
nd 17(b), respectively. The Supplementary Videos 4 and 5 depict
he deformation processes of 7 × 3 and 9 × 4 lattices, respectively.
urther work is required to establish the exact mechanism through
hich a sequential transformation is energetically preferred and the

mpact of any imperfections in the system in driving such phenomena.
evertheless, the load and displacement (both normalised) at the final

opology transformation is the same for the lattices and the single-unit
ells (Position B in Fig. 15). Thus the unit cell encapsulates the key
opology transformation point.

. Conclusions

This paper has introduced a unit cell capable of undergoing re-
ersible elastic topological transformation through tensile buckling.
he topology change is induced through externally applied loads and
oes not require additional stimuli or actuation. The initial rectangle-
ike topology exhibits a stretching-dominated (membrane) response
nder tension. A negative (approximately zero) stiffness behaviour is
bserved during the topology transformation phase which is attributed
o the bending and sliding of the members. Upon topology change,
ormation of new load paths leads to a step increase in stiffness. The
nit cell behaviour under tension is preserved within lattices contain-
ng multiple cells. In compression, the unit cell exhibits two distinct
tiffness regimes highlighting the potential for adaptive design. The
nalytical, FE and experimental results presented in this study are
n close agreement with each other. Further, the elastica equations
11
ould be used in the initial design phase to obtain a bespoke stiffness
esponse.

.1. Future work and potential applications

While the current design suffices as a proof-of-concept, there is a
ignificant mass penalty associated with flexurally rigid sliders. Using
lastic sliding concepts (Bigoni et al., 2018) could offer a path to
educe lattice weight, for example, by reducing the mass of the slider
ail by changing its geometry. This design change would likely reduce
ts flexural rigidity but not alter the topology morphing behaviour.
urther improvements to the design, for example, through 3D print-
ng and system optimisation could help mitigate this mass penalty.

hile the current work focuses on the tensile response, there is also
otential for elastic tailoring in compressive behaviour. Specifically,
xploring a potential topology change under compression through the
ormation of contact connections, as demonstrated in Sundararaman
t al. (2023b), could be beneficial. Elastic topological-reconfiguration
esigns, such as that presented here, contribute to the development of
ew stiffness-adaptive (meta-)materials/structures.

The proposed system shows the potential to aid in the design and
evelopment of tensile energy absorbers, with applications such as
ersonal fall arrest systems and crash mitigation designs. The load
t which bifurcation occurs for initial topology can act as a failure
nitiation load. This initial response would be followed by deformation
t approximately constant load during transformation, and finally, the
ransformed topology would act as a stopping mechanism. Moreover,
hese three load–displacement regimes lie within the elastic limit of the



International Journal of Solids and Structures 289 (2024) 112637V. Sundararaman et al.

F
o
P
C
F

D

c
i

D

A

S
G
M
a
U
t

A

e
l

constituent materials, making the deformation fully reversible under
compression whilst allowing structural reusability. The results show
that there exists a significant extent of the stopping force (stiffening)
regime within the elastic region. In contrast, in existing designs of
tensile energy absorbers (Waimer et al., 2018; Gudisey et al., 2021;
Zhou et al., 2022), these three regimes load–displacement behaviour
are typically achieved through the crushing/tearing of the structural
components, which results in permanent damage to the material or
structure.
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ppendix A. Elastica equations for tensile axial loads

Upon eliminating a typographical error in Zaccaria et al. (2011,
quation 3.23), the elastica equations for buckling under tensile axial
oads are,

𝑥1 =
1
𝑘�̃�

((

2 − 𝑘2
)

𝑢 − 2E[am[𝑢, 𝑘], 𝑘]

+2𝑘2 sn[𝑢, 𝑘] cd[𝑢, 𝑘]
)

𝑥2 =
2
𝑘�̃�

√

1 − 𝑘2
(

1−dn[𝑢,𝑘]
dn[𝑢,𝑘]

)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

for 𝑅 > 0. (A.1)

Here, cd[𝑢, 𝑘] is the ratio of the Jacobi cosine-amplitude elliptic function
and the Jacobi delta-amplitude elliptic function. (In Zaccaria et al.
(2011), it was misprinted as cn[𝑢, 𝑘], which is the Jacobi cosine-
amplitude elliptic function.) The rest of the quantities are as explained
in Zaccaria et al. (2011). We have used this corrected expression in our
analysis.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ijsolstr.2023.112637.
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