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A B S T R A C T   

Coffee (Coffea arabica L.) is a climate-sensitive crop; rainfalls may trigger flowering event occurrences, and 
extreme rainfall during a flowering day can cause considerable yield reductions. Multiple flowering events can 
occur in the span of 12 months; the number varies from year to year. This paper introduces a Bayesian network 
model capable of inferring coffee flowering events in coffee areas in the Pacific Region of Central America based 
on observed data for coffee flowering and precipitation. The model structure was determined based on expert 
knowledge, and the model parametrization was learned from 53 years of data registered in the region. Data from 
four farms in the region were used for model validation. The model's performance in the inference of flowering 
intensity was good (spherical payoff of 0.78 out of maximal 1.00), and the model was able to depict expected 
behaviors for single and multiple flowerings. Further, comprehensive new details on the dynamics of multiple 
flowerings within a crop season were obtained, e.g., that a large flowering event tends to occur more quickly (8 
to 10 days) after rain than a small flowering (10 to 13 days). We believe that this Bayesian network model has the 
potential to evolve and support the development of agricultural index-based insurance to deal with yield losses 
due to extreme rainfall during flowering. The use of longer farm records for model building may also serve to 
increase farmers' trust in the reliability of the tool.   

1. Introduction 

With a global export worth US$ 19 billion in 2017, coffee is one of 
the most important agricultural commodities (Bozzola et al., 2021). 
Producers are mostly smallholder farmers who grow the crop on over 12 
million farms across 20 main countries (e.g., Ethiopia, Indonesia, 
Colombia, and others); in many of these countries, coffee is of high 
economic importance and can account for up to 20% of national export 
revenues (Bozzola et al., 2021). While the demand for coffee is rising 
steadily and the global coffee sector is expanding, the climatic condi-
tions for coffee production are becoming less suitable in many areas 
(Lara-Estrada et al., 2021). This is particularly the case for the pre-
dominant coffee species Coffea arabica L., which has a narrow climatic 
niche in which high coffee quality and yields can be produced. Tem-
peratures should be between 18 and 22 ◦C year-round, with night 
temperatures not lower than 15 ◦C, and annual precipitation sum should 
be between 1500 and 2000 mm, with at least one dry period of three to 

four months and preferably an even rainfall distribution in the wet 
season (Bertrand et al., 2012; Descroix and Snoeck, 2004; Lara-Estrada 
et al., 2017). Higher temperatures and untimely or insufficient precip-
itation can influence the coffee plants in the vegetative and reproductive 
phases and negatively affect flowering, fruiting, and bean quality, and 
thus yields and profits (Gay et al., 2006; Lin, 2007; Muschler, 2001). 

Climate projections for Central America indicate that temperatures 
will rise, precipitation patterns will change, and extreme weather events 
will increase in the coming decades. This may lead to a reduction in the 
land suitability for coffee production and consequently to a decline in 
the quantity and quality of ecosystem services provided by coffee areas 
(e.g., pollinators, carbon sequestration) (Imbach et al., 2018, 2017; 
Lara-Estrada et al., 2023, 2021; Liu et al., 2023). Elevated temperatures 
can lead to premature ripening of coffee berries, thus decreasing their 
quality (Bertrand et al., 2012). Continuous heavy rainfall during the 
harvesting period can also affect the coffee quality and yields by 
increasing the risk of coffee bean defects, bean dropping, or a crack in 

* Corresponding author. 
E-mail address: L.LaraEstrada@greenwich.ac.uk (L. Lara-Estrada).  

Contents lists available at ScienceDirect 

Ecological Informatics 

journal homepage: www.elsevier.com/locate/ecolinf 

https://doi.org/10.1016/j.ecoinf.2023.102434 
Received 31 August 2023; Received in revised form 7 November 2023; Accepted 12 December 2023   

mailto:L.LaraEstrada@greenwich.ac.uk
www.sciencedirect.com/science/journal/15749541
https://www.elsevier.com/locate/ecolinf
https://doi.org/10.1016/j.ecoinf.2023.102434
https://doi.org/10.1016/j.ecoinf.2023.102434
https://doi.org/10.1016/j.ecoinf.2023.102434
http://creativecommons.org/licenses/by/4.0/


Ecological Informatics 79 (2024) 102434

2

the bean skin (Kath et al., 2021; Murugan et al., 2022). 
A coffee flowering occurs after a rainfall following a dry period, as 

the buds lie dormant while the plant experiences water stress. Rainfall 
events break this water stress, reactivating the development of buds, and 
the opening of the flowers (anthesis) some days later (Fig. 1) (Alvim, 
1960). If, in these following days, the precipitation is minimal or absent, 
the water stress increases until the next rainfall event, where a new 
flowering event may be triggered. The intensity of the flowering 
(number of flowers) will depend on the severity of the accumulated 
water stress the coffee plant experiences and the amount of rainfall that 
breaks the stress (Alvim, 1960; Pagotto Ronchi and Rodrigues Miranda, 
2020; Schuch et al., 1992). Irrigation can be used to produce larger 
flowering events and uniform coffee berry ripening and, therefore, a 
shorter harvesting period (Goodyear, 2004; Masarirambi et al., 2009). 

If rains occur on the actual flowering day, some flowers may be 
damaged and not develop into fruits. This will impact yield, which will 
be decreased to a lesser or larger extent, depending on the intensity of 
flowering and rainfall (Lara-Estrada et al., 2012; Murugan et al., 2022). 
Therefore, flowering is one of the most anticipated phenological stages 
for coffee farmers because the number of flowering events and intensity 
are indicators of the harvest duration and final yields. Any disturbance 
during flowering may lead to yield losses, so farmers avoid having farm 
workers on the plantation during this time [Author personal 
observation]. 

Most coffee producers in Central America are smallholder farmers 
who depend on a good coffee harvest for their livelihoods (Bacon, 2005; 
Osorio, 2002). These farmers can neither influence the weather patterns 
nor adapt to climatically more extreme years by changing their crops for 
the season, as coffee plants are perennials and only renovated after 
decades. One option for farmers to decrease the risks of high financial 
losses is the use of agricultural index-based insurance (Clement et al., 
2018; Eze et al., 2020). The advantages of such insurances are that they 
are attractive for all farmers, not only those who are more likely to suffer 
yield losses, that they are easy to implement, and that insurance fraud is 
difficult due to the use of readily available, verifiable, and accepted 
indices. Regarding the risk associated with rainfall during flowering, the 
first step would be to create a model to predict the flowering events and 
their intensity. In existing coffee crop models, coffee flowering is either 

modeled as a single event in the year after a rainfall threshold is reached 
(van Oijen et al., 2010), or as two flowering events using degree days 
accumulation between phenological stages as trigger parameters 
(Montoya-Restrepo et al., 2009). These simplified depictions of coffee 
flowering events do not reflect the more varied dynamics observed on 
coffee farms, with fluctuating numbers and intensities of flowering 
events from year to year. 

This paper, therefore, introduces a probabilistic coffee flowering 
model to infer multiple flowering events based on the month and the 
rainfall data. The model is a Bayesian Network (BN) based on observed 
data on the flowering events and rainfall data recorded over decades by 
farmers in the Pacific Region of Nicaragua. The resulting BN model was 
validated and used to produce new insights into the flowering dynamics. 
Its graphical nature creates a sophisticated but still user-friendly tool 
with the potential to evolve into a model that can be used in a climate 
index insurance scheme to support smallholder farmers in coffee- 
producing countries by strengthening their climate resilience. Such a 
flowering model could also help farmers to synchronize flowerings and 
harvesting periods using irrigation (Masarirambi et al., 2009) or identify 
the optimal flowering period (Liu et al., 2020). To our knowledge, this is 
the first model of this kind. 

2. Materials and methods 

2.1. Study region and data 

For the building and testing of the flowering model, we used previ-
ously collected data from Coffeea arabica plantations in the Pacific re-
gion coffee areas of Nicaragua (Fig. 2) (Lara-Estrada et al., 2012). These 
data include the dates and the intensity of flowerings, as well as records 
of daily precipitation (Fig. 3). The study region's biophysical conditions 
are representative of Pacific areas over Central American countries, 
experiencing a well-defined dry season with the lowest rate of rainfall 
and high temperatures in the region (Bornemisza et al., 1999; Hidalgo 
et al., 2017; Taylor and Alfaro, 2005). 

The data used for model training and validation was collected from 
four coffee farms: San Francisco and El Rosal, both located near the city of 
San Marcos in the Province Carazo, and San Jose and Jardin Botanico, 

Fig. 1. Buds and flowers of the coffee plant. While some buds have already reached anthesis, not all buds break their dormancy after a rainfall. Smaller buds for the 
next flowering event are already laid. 

L. Lara-Estrada et al.                                                                                                                                                                                                                          



Ecological Informatics 79 (2024) 102434

3

both located near the city of Masatepe in the Province of Masaya, 
Nicaragua. We split the data to obtain two independent datasets, one for 
model training and one for model validation. For model training, we 
used 53 years of data from the farm San Francisco corresponding to 
1943–1998 (1980 and 1981 were missing) (Fig. 3). For the model 
validation, we used four years of data (1999–2003) from San Francisco, 
as well as the records of the following years for each of the other three 
farms: San Jose: 2001–2002, 2004, 2006, 2008–2010; El Rosal: 
2005–2010; Jardin Botanico: 2003, 2005–2007, 2009–2010. The years 

were chosen based on flowering data availability. Unfortunately, only 
the farm San Francisco had complete records of daily rainfall, which is 
why data from this farm was chosen for the model training. Rainfall data 
from the weather station at the Research Station Campos Azules was used 
for the three other farms; the research station is located between 2 and 4 
km from the farms (Fig. 2). 

The datasets were used to create the variables, flowering intensity, 
month, rainfall inducing flowering (amount of rainfall that induces a 
flowering), and days to flowering after rain. The variable month depicts 
the month where flowering occurs and acts as a proxy variable for the 
accumulated water stress observed in the region. A water stress index 
would have required more input data and variables for calculation and 
been more complicated to estimate and use for practitioners (Kögler and 
Söffker, 2017). Fig. 4 displays the monthly rainfall and air temperature 
observed in the region study region. The soil water stock experiences a 
gradual depletion during the dry period from January to April; 
depending on the accumulated water stress, if rainfall occurs during that 
time, the crop water stress would be broken, and a flowering event 
triggered (Goodyear, 2004). 

2.2. Building and training the Bayesian network model 

Bayesian Networks (BN) are multivariate statistical models that 
consist of two main components: a directed acyclic graph (model 
structure) and local conditional probability distributions (model pa-
rameters); together, they compactly represent the joint probability dis-
tribution. The acyclic graph consists of a set of (nodes) variables linked 
by arcs, the direction of which defines the conditional dependencies 
(parent node ➔ child node). However, once two variables are linked, 
even if the arrow goes in one direction, the inference flows in both di-
rections, forward and backward, so by knowing the parent's state, the 
child's state can be inferred, and vice versa (Sucar, 2015a; Uusitalo, 
2007). Variables can be discrete or continuous; in the case of continuous 
variables, they could be represented using parametric distributions, in 
particular Gaussian, or could be discretized in at least two mutually 
exclusive states. The structure of the directed acyclic graph can either be 
determined by the user (expert knowledge), learned from data, or a 
combination. The conditional probability tables (CPT) quantify the de-
pendencies between the variables, which means that given the state of 
the parent node(s), the occurrence of a specific state in the child node 
has a certain probability. Therefore, for each variable in the BN, a CPT 

Fig. 2. Location of the coffee farms surveyed in the study region in the Pacific Region of Nicaragua.  

Fig. 3. Example of the rainfall and coffee flowering data registers used for 
model building and validation. FLOR indicates a large flowering event, and 
Florcita a small one. 
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has to be specified for the node variable given its parents in the graph; 
for root nodes (no parents), their marginal prior probability is specified 
(Aguilera et al., 2011; Uusitalo, 2007). These features have made BNs a 
suitable modeling option to depict, understand, and predict environ-
mental and ecological relationships and processes in (agro)ecosystems 
(Aguilera et al., 2011; Beall et al., 2022; Hui et al., 2022). 

The primary purpose of this model is to evaluate: If a rainfall event 
occurred after a period of water stress, 1) how large will the flowering 
event be? and 2) when will it occur? Based on expert knowledge and 
scientific literature, we defined the graphical model structure using the 
software Netica v.6.09 (Norsys Software Corp.). The datasets were used 
to create the variables and then added into the graphical model structure 
as node variables: flowering intensity, days to flowering after rain, rainfall 
inducing flowering (amount of rainfall that induces a flowering), and 
month. The variable flowering intensity was connected to the nodes month 
and rainfall inducing flowering, which were connected to each other and 
to the node days to flowering (Fig. 5, top four boxes). This basic pattern of 
four interconnected variables represents a single flowering (F) event that 
was repeated three more times to depict four possible flowering events 
in a given crop year (in >90% of the years, one to four flowering events 
occurred). The link from one pattern to the next was created through 
flowering intensity, as the number of flowering events in a year is an 
additional factor that influences flowering intensities (e.g., if there is 
only one flowering event in a year, it is a large one). If all four flowering 
events (F1-F4) take place, they occur at different time slices where each 
event gets feedback from the others to depict a Dynamic Bayesian 
Network (Sucar, 2015b; Uusitalo et al., 2018). Considering the forward- 
backward inference properties of BNs, in the model, the node flowering 
intensity is the parent of month and rainfall inducing flowering. This does 
not denote an actual physical causal relationship, only a statistical de-
pendency. We chose to structure the model in this way to keep the CPTs 
simple (minimum number of incoming connections per node) and allow 
for a sole connection of one flowering event to the next through the 
variable flowering intensity (Marcot, 2017). 

Once the structure of the model was determined (nodes linked), the 
state values for each variable were defined. We discretized the values of 
all variables into the following states: Large, Small, and No (flowering) 
for flowering intensity; January to June for Month, which are the months 
when flowerings were reported in the training dataset; 0–2.5 mm, 2.5–5 
mm, 5–10 mm, ≥10 mm for rainfall inducing flowering; and 1–8 days, 

8–10 days, 10–13 days for days to flowering after rain. The variables' 
states were defined based on statistical analysis for continuous variables 
and the existing possible values available for the discrete ones. After all 
variables' states were defined, we ran the Counting-Learning Algorithm 
(Norsys, 2023) using the training dataset to populate the CPTs of each 
node. The algorithm uses the training data to modify the conditional 
probabilities of the nodes, which all start with uniform CPTs. Every new 
case – e.g., a flowering event on a specific date with a specific size (small, 
large) after a specific amount of rainfall – updates only the CPTs of the 
nodes for which the case provides values. In case of missing combina-
tions of variables' states in the dataset, the model will produce a uniform 
distribution, which will be used during the Bayesian inference if that 
case is requested. Once the model is trained and compiled, it is ready to 
use. Fig. 5 shows the compiled model without evidence entered; the 
numbers depict the variables' values according to the training data, 
displaying the overall observed dynamic of flowering in the region for 
the first time. It can be observed, for example, that three flowering 
events are most frequent, that it is most probable that the first flowering 
to be small (53.7% probability) and in February (35.2%), the second and 
third flowerings to be large and occur in May. 

2.3. Model assumptions 

Only four flowering events per year are modeled (90% of the 
observed cases), but more may occur with lower frequency. There is a 
finite number of possible flowers per year, which is triggered by the 
alternation of an accumulated water stress period and sufficient rainfall 
to break it. Once the plant water stress ends with the establishment of 
the rainy season, no more flowering events will occur. If there is a single 
flowering, it will be large. Possible changes in the climate patterns for 
1944–1998 and their effects on the flowering dynamics of the study 
region are captured in the data and, therefore, in the model's priors and 
posterior inferences. Because there is no information available on the 
coffee varieties used by farmers, it is assumed that they used the same or 
that varietal differences have no effect on flowering. The model could be 
extended to include >4 flowering events if needed. The coffee varieties 
reported during the data collection were Caturra, Catuai, Pacas, and 
Bourbon (Lara-Estrada et al., 2012); we assumed no differences between 
them in their response to the triggering flowering factors due to their 
high genetic proximity (Anthony et al., 2002; Montagnon et al., 2012). 

Fig. 4. Mean values for rainfall (1943–1998) and air temperature (1984, 1987, 1990, 1997, 1999) reported for the study region. Rainfall data comes from the farm 
San Francisco; and air temperature from the Research Station Campos Azules. Means with a common letter are not significantly different (p > 0.05). 
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Fig. 5. Coffee flowering model. A maximum of four flowering events per year are possible. The model depicts the prior probabilities for each variable prior to data 
entery. If a user enters the month and rainfall data (findings), the flowering intensity and the days to flowering will be inferred. Rain IF: rainfall that induces a flowering, 
Days to flowering: days to flowering after Rain IF, Flowering: Flowering intensity. 
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2.4. Sensitivity analysis 

A sensitivity analysis of a BN allows the user to quantify the changes 
in the values of a target variable due to findings (changes) in other 
model variables (Rositano et al., 2017). Depending on the variable type, 
there are specific metrics to use: variance reduction for continuous 
variables and mutual information (entropy reduction) for categorical 
variables. The higher the metric value, the higher the influence (Marcot, 
2012; Norsys, 2023; Uusitalo, 2007). We ran a sensitivity analysis for 
our target variables, using mutual information for flowering intensity and 
variance reduction for days to flowering for each flowering event (F1-F4). 

2.5. Validation procedure 

Partitioned testing data was used to evaluate the model's perfor-
mance in inferring flowering intensity and days to flowering over the four 
potential flowering events in the model (Marcot, 2017). The validation 
dataset included data for different years from four farms in the region 
(see Section 2.1); each flowering event was evaluated using the metric 
Spherical Payoff (SP); the SP scores range from 0 to 1, with 1 as the best 
performance (Marcot, 2012; Norsys, 2023). 

3. Results and discussion 

Here we introduce the first probabilistic flowering model based on 
long-term observed data capable of inferring multiple flowering events 

in a given crop year (Fig. 5). The model used few variables to infer 
flowering events and their intensities; the inference based on water 
availability (rainfall and months) and uses months as a proxy for the air 
temperature to estimate flowering events (Fig. 4). Previous studies on 
coffee flowering have mainly explored responses of flowering to changes 
in biophysical conditions within a single harvesting year. Alvim (1960) 
and Pagotto Ronchi and Rodrigues Miranda (2020) explored the effect of 
water availability on the anthesis; Masarirambi et al. (2009) the use of 
irrigation as a mechanism to concentrate the harvest; Drinnan and 
Menzel (1995) investigated the effect of temperature on flowering; and 
Lin (2008) examined the influence of microclimate changes on the 
flowering due to shading under coffee agroforestry systems. 

3.1. Model sensitivity 

Flowering intensity: Overall, the sensitivity analysis indicates that the 
other flowering events, the month, and the rainfall are the most influ-
ential – in this order (Fig. 6). Therefore, there is a strong influence 
among flowering intensities across the flowering events. Interestingly, 
for the flowering intensity for the first two flowering events (F1 and F2), 
the most influential variables are the FIs from the next flowering events 
(FI 2 and FI 3, correspondingly), and for the FIs for the last two flowering 
events are the FIs from the previous flowering events (FI 2 and FI 3, 
correspondingly). See Supplementary Material for the occurrence of 
flowering events reported in the region. 

Days to flowering: Compared to flowering intensity, 1) the results 

Fig. 6. Sensitivity analyses results for the flowering intensity (top) and days to flowering (bottom) for the four flowering events. Rain IF: rainfall that induces a 
flowering, Days IF: days to flowering after Rain IF, FI: Flowering intensity. 
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suggest that days to flowering are less sensitive to changes in the state of 
other variables, and 2) it is more a “local” variable for each flowering 
event because it does not have direct links to other flowering events. The 
month is most influential for the first three flowering events, followed by 
Rain IF, except for the fourth flowering event, where it is the opposite. 
The flower intensities have a lower influence on days to flowering. 

The analysis screened the influence of all the node variables within 
the BN on a given target variable. Therefore, for a given flowering event, 
the analysis will also consider the influence of other flowering event 
variables, even those in the future. This information is relevant for 
backward and forward inference, where different queries can be placed 
to understand the flowering dynamic over the crop season. One practical 
use for sensitivity analyses is helping identify which variables should be 
prioritized for data collection, giving more effort to the variable(s) that 
impact more the target variable; in our case, rainfall is the only variable 
that would need measurements. 

3.2. Model performance 

The validation results indicate that the model performed well in 
inferring flowering intensity. The mean SP value over all farms was 0.78. 
At the farm level, the best performance in inferring flowering intensity 
was observed for the farm San Francisco, followed by Jardin Botanico and 
San Jose. Looking at the single flowering events (F), we can observe that 
the best performance of the model was for F2 and F3 at San Francisco and 
San Jose, and F1 and F4 at El Rosal and Jardin Botanico (Table 1). Un-
surprisingly, the model performed best for San Francisco, as data on 
flowering and rainfall from this farm were used for the model training. 
In the case of the other farms, the possible variations in the actual 
rainfall (mm) they experienced versus the data registered in Campos 
Azules may partly explain the lower SP scores. Rainfall can have high 
spatial variability in the region, especially in the case of light rains, 
which means that the actual day and intensity of the rainfall on those 
three farms could be different from the one recorded in Campos Azules. 
In 2006, for example, from the 11 flowering events that occurred in total 
on the three farms, only two farms recorded a flowering event on the 
same day. Other factors may also play a role. On plantations with more 
than one canopy strata, rainfall interception can be so high that light 
rainfall may not reach the coffee plants at all or not in the same 
magnitude as in low-shaded or unshaded plantations (Lin, 2008; Siles 
et al., 2010). 

The model did not infer the days to flowering following a rainfall 
event as well as the flowering intensity. The mean SP value over all farms 
was 0.45; even in San Francisco, the model only scored an SP value of 
0.54. This may be linked to the low sensitivity the variable had toward 
other variables (see sensitivity analysis). These results suggest that the 
model may be further developed by adding variables or links to improve 
the prediction of days to flowering. We believe that a variable for tem-
perature, such as the number of degree-days, would improve the per-
formance (Montoya-Restrepo et al., 2009). However, during a meeting 
with a group of experienced coffee agronomists who work in the study 
region, we tested the model with them, and they agreed that the pre-
dicted trends aligned with their expectations. The improvements on days 

to flowering would thus be focused more on enhancing the precision than 
the accuracy. 

3.3. Model testing 

We ran the model with some basic scenarios to test if it would pro-
duce i) the expected logic outcomes or ii) inconsistencies with the 
existing knowledge or data (Marcot, 2017). First, we tested if the model 
would correctly infer that if there was no second flowering, the first and 
sole would be large, and there would not be a third and fourth flowering. 
Fig. 7 shows that if the state of the variable Flowering 2 is set to “No” (by 
setting the finding of a probability of 100% that there is no second 
flowering), there is a 100% probability that the first flowering is “Large”, 
and likewise a 100% probability that there will be no third or fourth 
flowering. The first flowering is most likely to occur in March (proba-
bility = 36%), or May (28%), and the rainfall preceding this flowering 
event would most likely be abundant and higher than 10 mm (44%). The 
most probable day for anthesis would be 10 ± 1.9 days after the rainfall 
that broke the water stress (Alvim, 1960). 

Second, we tested if the model would correctly infer that having four 
flowering events in a single month is not possible. The model was able to 
match this expectation, but the certainty of the results was not the same 
for all months. If we selected January as the month the four potential 
flowerings would occur, the model inferred a 100% probability of a 
large first flowering and a 100% probability of no further flowerings 
occurring (Fig. 8a). If we chose March, there was a 63% probability of a 
large first flowering and a 54% probability of a second large flowering 
(Fig. 8b). And even though the model gave the highest probabilities of 
no further flowerings occurring (49% for F3 and 76% for F4), the 
chances of a third and even fourth flowering occurring were not zero. 

Third, coffee flowerings early in the year (January–March) tend to be 
small, whereas later flowerings increase in intensity. We tested this by 
setting the dates for the first two flowerings to January and February and 
the dates for the third and fourth flowerings to May and June (Fig. 9). 
The BN inferred that there is a 94% probability that the first flowering 
will be small and a 79% probability that the second will be as well. The 
third flowering, set to occur in May, has an 81% probability of being 
large. Under this query, there is a high probability (68%) that no fourth 
flowering will occur; however, if the date of the fourth flowering is set to 
May instead of June, a large flowering will occur with a probability of 
69% (not shown). The test shows that the inferred flowerings match our 
expectations about the date and corresponding size; this was also 
confirmed by the coffee agronomist during the model testing session 
mentioned above. See supplementary material for the occurrence of 
flowering events per month. 

3.4. Learning from the model 

In addition to providing the new insights described in the sensitivity 
analysis and model testing section, the model can also be used to learn 
the dynamics of coffee flowering and provide new insights into the 
functional relationship among variables (Hui et al., 2022). For example, 
exploring the dependencies between the rainfall inducing flowering, 

Table 1 
Spherical payoff values for flowering intensity and days to flowering.  

Farms 
Years 
(No.) 

Flowering events 
(total) 

Spherical payoff (SP) 

Flowering intensity  Days to flowering 

F1* F2 F3 F4 Mean  F1 F2 F3 F4 Mean 

San Francisco 5 14 0.82 1.00 0.90 0.78 0.88  0.63 0.57 0.77 0.20 0.54 
San Jose 7 22 0.70 0.71 0.79 0.60 0.70  0.41 0.32 0.42 0.38 0.39 
El Rosal 6 12 0.90 0.59 0.64 0.96 0.77  0.33 0.69 0.58 0.58 0.54 
Jardin Botanico 6 12 0.99 0.51 0.61 0.97 0.77  0.31 0.23 0.00 0.71 0.31 
Mean 0.85 0.70 0.74 0.83 0.78  0.42 0.45 0.44 0.47 0.45  

* F1, F2: Flowering event 1, Flowering event 2, etc. 
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month, and the flowering intensity for multiple flowering events, if we 
set the state of flowering intensity to large for any flowering event, the 
model will depict the most probable month(s) when this is possible and 
rainfall (mm) required for it (backward inference); which changes ac-
cording to the flowering event (F1-F4). Because the model was trained 

with decades of data (prior information) of flowering events, the number 
of possible combinations of the variables' states is considerable, and 
Bayesian inference allows us to explore in detail the most probable 
outcomes in flowering if different conditions of month and rainfall occur 
for any flowering event (Table 2). Also, we can learn about combinations 

Fig. 7. Model testing case one: The model correctly infers that if there is no second flowering, there will also not be a third and fourth, and the only flowering 
occurring in the year is a large one. The grey box marks the node where the evidence was entered (finding). 
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of variables states not observed; for example, light rains in May and 
April that provoke flowerings (Table 2). 

Another example is the number of days to flowering. In January, 
February, or March, more days are required (10 to 13 days) between a 
rainfall and the resulting flowering; in April, May, and June, it takes 
fewer days (8 to 10 days). Furthermore, a large flowering event tends to 
occur more quickly (8 to 10 days) after rain than a small flowering (10 to 
13 days). 

In addition to learning from the model, the model can support farm 
planning or risk management processes. Knowing the details of an ex-
pected flowering event can help foresee potential yield losses due to 
heavy rainfalls during anthesis (Lara-Estrada et al., 2012; Murugan 
et al., 2022). If a farmer, for example, observes a rainfall event of over 
10 mm in January, there is a 67% probability that the corresponding 
flowering event will be small. If, however, the farmer observes the same 
amount of rainfall in March, there is a 100% probability of a large 
flowering event. Assuming that heavy rains happen during anthesis for 
both cases, smaller yield losses are expected from the January flowering 
than from the one in March. 

Finally, we did not present all the possible queries or new informa-
tion on the multiple flowerings that can be learned from the model but 
expect that potential users will have the opportunity to. See the Sup-
plementary Material for more examples of queries (e.g., model usage). 

4. Future developments and applications 

Even though the model can support decision-making and learning 
about flowering in its current form, further developments are planned. 
First, we plan to improve the inference for the number of days to flow-
ering after a rainfall event so that the expected day of anthesis can be 
estimated as precisely as possible. This may be addressed by adding a 
temperature-based variable (e.g., mean temperature or degree-days) or 
additional links between variables; however, we still have not found 
temperature data matching the study region's flowering dataset (time 
and spatial resolution). 

Second, we want to develop this coffee flowering model into a case 
for an index-based insurance against rainfall during coffee flowering 
(anthesis); for this, a yield loss component would be created and coupled 

Fig. 8. Model testing case two: The model correctly infers that the probability of four flowerings occurring in a month is very low (a: all in January, b: all in March). 
The grey box marks the node where the evidence was entered (finding). 
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to the flowering model so that the resulting integrated model could infer 
the yield and economic losses due to rainfall during flowering and 
possible compensations. One study found that agricultural index-based 
insurance reduced the exposure to risk by an average of only 31% 
(Jensen et al., 2016). The risk reduction for insurance holders is higher 
in cases where the index used in the insurance is highly correlated with 
the insured risk, which requires the collection of loss data (Jensen et al., 
2016). We have yearly yield data from the same farms reported in the 

study (longer than flowering data), from which we could estimate the 
yield losses; however, we will need to convert the flowering intensity 
from categorical (small, large, no) to continuous values (% of flower 
from the total possible flower per year: 100%), which is a challenge that 
would need to be solved. Once the model is developed, a validated 
Bayesian network model like this would offer a reliable, transparent, and 
easy-to-use option to reduce the basis risk for insurance holders by 
building finance resilience, and farmers would be able to take more 

Fig. 9. Model testing case three: The BN correctly infers that flowerings occurring early in the year, January or February, are most likely small, whereas later 
flowerings (here May) have a higher probability of being large. The grey box marks the node where the evidence was entered (finding). 
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production risks and improve their livelihoods (Brouwer et al., 2014; 
Norton et al., 2014). It is likely that climate change and socio-economic 
development will further increase the demand for insurance coverage of 
the associated risks as increments in the mean daily precipitations are 
expected for March, April, and May in the study region (Clement et al., 
2018; Imbach et al., 2018), which shows that further research and 
development in this field is of high priority. 

5. Conclusions 

In this paper, we introduce a flowering dynamic Bayesian network 
model that estimates the flowering intensity and days to flowering across 
multiple flowering events for Coffee arabica L. For this, the model uses 
only a small number of easy-to-measure predictor variables from coffee 
areas in the Pacific Region of Central America. The model was param-
eterized using five decades of observed data and can comprehensively 
depict the profile of flowering events in the Pacific coffee region of 
Nicaragua. It can also be used in other coastal Pacific coffee areas in 
Central America. We could show that the model has a good performance 
and can thus help farmers and other stakeholders to better understand 
the coffee flowering dynamics over a cropping season. Even though 
further work is required to improve the prediction of the number of days 
to flowering, we believe that the model in its current form represents a 
useful decision-support tool for coffee practitioners and scientists to 
forecast and monitor flowering events and help them plan the imple-
mentation of farming practices in coffee plantations. Furthermore, due 
to the simplicity and graphical structure of Bayesian networks, even 
individuals without a deep understanding of agricultural models can run 
scenario analyses and extract the results. Future potential use of this 
model in agricultural index-based insurance products for coffee farms 
will require further development and the inclusion of yield losses due to 
heavy rain during flowering. 
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Harvey, C.A., Donatti, C.I., Läderach, P., Locatelli, B., Roehrdanz, P.R., 2017. 
Coupling of pollination services and coffee suitability under climate change. PNAS 
201617940. https://doi.org/10.1073/pnas.1617940114. 

Imbach, P., Chou, S.C., Lyra, A., Rodrigues, D., Rodriguez, D., Latinovic, D., Siqueira, G., 
Silva, A., Garofolo, L., Georgiou, S., 2018. Future climate change scenarios in Central 
America at high spatial resolution. PLoS One 13, e0193570. https://doi.org/ 
10.1371/journal.pone.0193570. 

Jensen, N.D., Barrett, C.B., Mude, A.G., 2016. Index insurance quality and basis risk: 
evidence from Northern Kenya. Am. J. Agric. Econ. 98, 1450–1469. https://doi.org/ 
10.1093/ajae/aaw046. 

Kath, J., Mittahalli Byrareddy, V., Mushtaq, S., Craparo, A., Porcel, M., 2021. 
Temperature and rainfall impacts on robusta coffee bean characteristics. Clim. Risk 
Manag. 32, 100281 https://doi.org/10.1016/j.crm.2021.100281. 
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du Café (ASIC), Costa Rica. 

Lara-Estrada, L., Rasche, L., Schneider, U.A., 2017. Modeling land suitability for Coffea 
arabica L. in Central America. Environ. Model Softw. 95, 196–209. https://doi.org/ 
10.1016/j.envsoft.2017.06.028. 

Lara-Estrada, L., Rasche, L., Schneider, U.A., 2021. Land in Central America will become 
less suitable for coffee cultivation under climate change. Reg. Environ. Chang. 21, 
88. https://doi.org/10.1007/s10113-021-01803-0. 

Lara-Estrada, L., Rasche, L., Schneider, U.A., 2023. Exploring the cooling effect of 
shading for climate change adaptation in coffee areas. Clim. Risk Manag. 42, 100562 
https://doi.org/10.1016/j.crm.2023.100562. 

Lin, B.B., 2007. Agroforestry management as an adaptive strategy against potential 
microclimate extremes in coffee agriculture. Agric. For. Meteorol. 144, 85–94. 
https://doi.org/10.1016/j.agrformet.2006.12.009. 

Lin, B., 2008. Microclimate effects on flowering success in coffee agroforestry systems. 
Am. Eurasian J. Agricult. Envirom. 3, 148–152. 

Liu, K., Harrison, M.T., Hunt, J., Angessa, T.T., Meinke, H., Li, C., Tian, X., Zhou, M., 
2020. Identifying optimal sowing and flowering periods for barley in Australia: a 
modelling approach. Agric. For. Meteorol. 282–283, 107871 https://doi.org/ 
10.1016/j.agrformet.2019.107871. 

Liu, K., Harrison, M.T., Yan, H., Liu, D.L., Meinke, H., Hoogenboom, G., Wang, B., 
Peng, B., Guan, K., Jaegermeyr, J., Wang, E., Zhang, F., Yin, X., Archontoulis, S., 
Nie, L., Badea, A., Man, J., Wallach, D., Zhao, J., Benjumea, A.B., Fahad, S., Tian, X., 
Wang, W., Tao, F., Zhang, Z., Rötter, R., Yuan, Y., Zhu, M., Dai, P., Nie, J., Yang, Y., 
Zhang, Y., Zhou, M., 2023. Silver lining to a climate crisis in multiple prospects for 
alleviating crop waterlogging under future climates. Nat. Commun. 14, 765. https:// 
doi.org/10.1038/s41467-023-36129-4. 

Marcot, B.G., 2012. Metrics for evaluating performance and uncertainty of Bayesian 
network models. Ecol. Model. 230, 50–62. https://doi.org/10.1016/j. 
ecolmodel.2012.01.013. 

Marcot, B.G., 2017. Common quandaries and their practical solutions in Bayesian 
network modeling. Ecol. Model. 358, 1–9. https://doi.org/10.1016/j. 
ecolmodel.2017.05.011. 

Masarirambi, M.T., Chingwara, V., Shongwe, V.D., 2009. The effect of irrigation on 
synchronization of coffee (Coffea arabica L.) flowering and berry ripening at 
Chipinge, Zimbabwe. In: Physics and Chemistry of the Earth, Parts A/B/C, 9th 

WaterNet/WARFSA/GWP-SA Symposium: Water and Sustainable Development for 
Improved Livelihoods, 34, pp. 786–789. https://doi.org/10.1016/j. 
pce.2009.06.013. 

Montagnon, C., Marraccini, P., Bertrand, B., 2012. Breeding for coffee quality. In: 
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café en Colombia. Boletín Técnico - CENICAFE 33, 52. 

Murugan, M., Alagupalamuthirsolai, M., Ashokkumar, K., Anandhi, A., Ravi, R., 
Rajangam, J., Dhanya, M.K., Krishnamurthy, K.S., 2022. Climate change scenarios, 
their impacts and implications on Indian cardamom-coffee hot spots; one of the two 
in the world. Front. Sustain. Food Syst. 6 https://doi.org/10.3389/ 
fsufs.2022.1057617. 

Muschler, R.G., 2001. Shade improves coffee quality in a sub-optimal coffee-zone of 
Costa Rica. Agrofor. Syst. 131–139 https://doi.org/10.1023/A:1010603320653. 

Norsys, 2023. Netica Help [WWW Document]. Netica Help. URL https://www.norsys. 
com/WebHelp/NETICA.htm (accessed 7.1.22).  

Norton, M., Osgood, D., Madajewicz, M., Holthaus, E., Peterson, N., Diro, R., Mullally, C., 
Teh, T.-L., Gebremichael, M., 2014. Evidence of demand for index insurance: 
experimental games and commercial transactions in Ethiopia. J. Dev. Stud. 50, 
630–648. https://doi.org/10.1080/00220388.2014.887685. 

Osorio, N., 2002. The Global Coffee Crisis: A Threat to Sustainable Development. 
International Coffee Organization, London, UK.  

Pagotto Ronchi, C., Rodrigues Miranda, F., 2020. Flowering percentage in Arabica coffee 
crops depends on the water deficit level applied during the pre-flowering stage. Rev. 
Caatinga 33, 195–204. https://doi.org/10.1590/1983-21252020v33n121rc. 
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