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We show that neural quantum states based on very deep (4–16-layered) neural networks can outperform
state-of-the-art variational approaches on highly frustrated quantum magnets, including quantum-spin-liquid
candidates. We focus on group convolutional neural networks that allow us to efficiently impose space-group
symmetries on our ansätze. We achieve state-of-the-art ground-state energies for the J1 − J2 Heisenberg models
on the square and triangular lattices, in both ordered and spin-liquid phases, and discuss ways to access low-lying
excited states in nontrivial symmetry sectors. We also compute spin and dimer correlation functions for the
quantum paramagnetic phase on the triangular lattice, which do not indicate either conventional or valence-bond
ordering.
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I. INTRODUCTION

Frustrated magnetism has long been an exciting play-
ground for discovering new physics. Perhaps the most
interesting outcome of this activity has been the concept
of a quantum spin liquid, a phase of matter without any
long-range order even in the ground state [1,2], character-
ized by long-range entanglement, fractionalized excitations,
and topological order. Establishing spin-liquid physics in spe-
cific microscopic models, however, remains a great theoretical
challenge, apart from a few exactly solvable systems and per-
turbative constructions [3–5]: While spin-liquid phases have
been proposed in Heisenberg and Hubbard models on a num-
ber of lattices [6–20], their presence and properties remain
a matter of active debate. To a large extent, this is due to
the difficulty of reliable numerical simulations of frustrated
magnets: unbiased quantum Monte Carlo is plagued by the
sign problem [21], while the most successful tensor-network
approach, density-matrix renormalization group (DMRG) is
limited by entanglement constraints of matrix-product states
[22] to narrow cylinders in dimensions greater than one [23],
where competing spin-liquid and ordered ground states may
not be clearly resolved.

An interesting approach to overcome this difficulty is
employing neural networks to parametrize variational wave
functions [24]. Neural networks are universal function ap-
proximators [25], thus they can represent highly entangled
quantum states [26], which makes them a promising tool to
study quantum spin liquids. Furthermore, variational compu-
tations using such neural quantum states (NQS) benefit from
the greater computational power of graphics processing units
(GPUs) and powerful machine-learning optimization libraries
[27]. NQS ansätze based on a variety of neural-network
architectures have been proposed [28–33], however, they gen-
erally fall short of the reliability and accuracy required for
state-of-the-art results on frustrated problems. A remarkable
exception is the ansatz developed in Refs. [7,34], which,

however, uses neural networks merely to improve the ac-
curacy of Gutzwiller-projected fermionic wave functions, an
extremely successful ansatz in its own right.

By contrast, we demonstrate here that a “pure” NQS ansatz
using very deep networks can achieve state-of-the-art vari-
ational energies. In particular, we use group-convolutional
neural networks (GCNNs) [33,35], which allow us to impose
the full space-group symmetry of the problem on the wave
functions. We find two key design principles of a success-
ful architecture: First, the network should not separate the
amplitudes and phases of the network, as learning the latter
in a frustrated system is beyond the capacity of even deep
neural networks [36,37]. Second, imposing locality by using
short-ranged convolutional filters in the GCNNs both makes
using deeper networks computationally feasible and simplifies
the learning landscape by structuring the representation of
long-range correlation in the networks; the latter is reflected in
faster convergence compared to full-width convolutional ker-
nels. Our ansätze either match or surpass the best variational
energies in the literature [7,10] in the quantum paramagnetic
regimes of the square- and triangular-lattice J1 − J2 Heisen-
berg model on clusters as large as 16 × 16. Notably, we are
able to achieve this accuracy at a more modest computational
cost than these works; compared to the immense resources
used by some NQS approaches in the literature [38], this high-
lights the importance of carefully designed ansätze. We also
present numerical experiments on finding low-lying excited
states using GCNNs.

II. GROUP-CONVOLUTIONAL NEURAL NETWORKS

Lattice Hamiltonians are invariant under a large group of
spatial symmetries, governed by the geometry of the lattice
and anisotropies of the interactions: Wigner’s theorem [39]
ensures that all eigenstates of such a Hamiltonian transform
under an irreducible represenation (irrep) of the same sym-
metry group. Imposing space-group symmetries explicitly in
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a variational ansatz reduces the Hilbert space available for the
variational algorithm, making it more reliable and efficient
[40]. Furthermore, symmetry-broken phases are identified
by symmetry quantum numbers of the lowest-lying excited
states, known as the tower of states [41,42], thus access to
the lowest-lying states in a number of symmetry sectors allow
identifying distinct phases and transition points with a high
accuracy [7].

Space-group symmetries can be imposed on variational
wave functions by explicit projection. Consider an ansatz
ψ0(�σ ; �θ ) with parameters �θ that maps a computational basis
state �σ onto its amplitude in the variational wave function.
Then, given a group G of symmetries ĝ that maps each basis
state �σ onto another, ĝ�σ , we can construct an ansatz trans-
forming under a given irrep of G using the projection formula
[43]

|ψ〉 = dχ

|G|
∑
g∈G

χ∗
g ĝ|ψ0〉, (1a)

ψ (�σ ) = dχ

|G|
∑
g∈G

χ∗
g ψ0(ĝ−1 �σ ), (1b)

where χg and dχ are the characters and dimension of the irrep
and |G| is the number of symmetry elements.

Projection approaches based on Eq. (1) have been used
with a variety of ansätze [7,28,44]. Usually, however, one has
to evaluate ψ0 for all symmetry-related basis states ĝ�σ : this
can be prohibitively expensive, requiring setting all or most
ψ0(ĝ�σ ) equal by construction, which in turn restricts which
irreps of the symmetry group can be probed with the ansatz.
Instead, one would prefer to generate all ψg(σ ) ≡ ψ0(ĝ−1 �σ )
in a single evaluation of the ansatz. Such an ansatz would be
equivariant under the symmetry group G in the sense that
acting on its input by a symmetry element would cause the
output to be acted on by the same symmetry in a nontrivial
way (namely, by the left canonical action):

ψg(ĥ−1 �σ ) = ψ0(ĝ−1ĥ−1 �σ ) = ψhg(�σ ). (2)

Note that (ĥ−1 �σ )�r = σĥ�r , so such an equivariant ansatz maps
relabelling lattice sites by ĥ to left-multiplication of symmetry
elements by h.

Convolutional neural networks (CNNs) are a famous ex-
ample of such an equivariant function. Let us consider a
(hypercubic) lattice of size L1 × L2 × · · · × Ld in periodic
boundary conditions and its translation group, ZL1 × · · · ×
ZLd , which has the same structure as the lattice itself. Now,
the convolutional mapping

ψ (�r) =
∑

�r′
K (�r − �r′)σ (�r′), (3)

with an arbitrary kernel K , is manifestly equivariant:∑
�r′

K (�r − �r′)σ (�r′ + �h) =
∑

�r′
K (�r + �h − �r′)σ (�r′)

= ψ (�r + �h),

where vector addition winds around the periodic boundary
conditions. This is equivalent to Eq. (2), as a translation ĥ acts
by adding �h to both input and output coordinates. One can

use similar arguments to show that several iterations of the
convolution (3), arbitrary “on-site” functions y(�r) = f [x(�r)],
and thus arbitrarily deep neural networks built from alternat-
ing these building blocks, are all equivariant. The projection
formula (1) also has a natural interpretation. The irreps of
the translation group are all one-dimensional and labeled by
the phases eiφ1 , . . . , eiφd acquired by the wave function upon
translation along each lattice vector: Eq. (1) thus becomes

ψ (�σ ) = 1

L1 . . . Ld

∑
�r

e−i �φ·�rψ�r (�σ ),

a Fourier transform that extracts a crystal momentum
eigenstate.

GCNNs [33,35] generalize this idea to arbitrary (non-
Abelian) groups. Since the group is no longer isomorphic to
the input lattice, we will require two types of linear layer: first,
an embedding layer

yg =
∑

�r
K (ĝ−1�r)σ (�r) (4a)

generates equivariant feature maps, indexed with group ele-
ments, from the input; this is followed by any number of group
convolutional [45] layers

zg = (W ◦ y)h ≡
∑
h∈G

W (h−1g)yh (4b)

and “on-site” nonlinearities. One can show [27] that such a
network satisfies Eq. (2).

A naïve alternative to GCNNs for space groups would
be applying all point-group operations (rotations, reflections,
etc.) on �σ and feeding each of these configurations into a
conventional CNN [28]. This too satisfies Eq. (2) and can be
projected onto any irrep using Eq. (1): In fact, it is equivalent
to a GCNN with the same number of features in each layer, in
which every kernel W is restricted to pure translations rather
than the whole space group. Thus, GCNNs of the same size
can have more variational parameters, and in every layer, each
output is determined by more inputs from the previous layers:
both of these features allow the network to be more expressive
at the same memory footprint. Indeed, GCNNs have outper-
formed symmetrized CNNs in both image-recognition [35]
and variational Monte Carlo [33] tasks.

A. Details of the GCNN ansatz

In this paper, we will consider spins on a lattice and
represent their wave functions in the σ z basis. The largest
symmetry group for which Eq. (1b) is applicable in this basis
is the direct product of the space group of the lattice and the
Z2 spin-parity group generated by P = ∏

i σ
x
i . [46]. Irreps of

this group are specified by the eigenvalue of P = ±1 and an
irrep of the space group. The latter are generally specified by
a set of crystal momenta related by point-group operations
(known as a star) and an irrep of the subgroup of the point
group that leaves these momenta invariant (known as the little
group) [27,47,48]. We shall denote space-group irreps using a
representative wave vector of the star and the Mulliken symbol
[49] of the little-group irrep: for example, the trivial irrep of
the square-lattice space group is written as �.A1 (cf. Fig. 1).

054410-2



HIGH-ACCURACY VARIATIONAL MONTE CARLO FOR … PHYSICAL REVIEW B 108, 054410 (2023)

FIG. 1. Arrangement of nonzero kernel entries for the square
(left) and triangular (center) lattices. The cross indicates the origin
of the lattice and/or pure point-group symmetries. Right: illustration
of high-symmetry points in the Brillouin zones of the square (top)
and triangular (bottom) lattices.

Parity eigenvalues will be included through a ± index, e.g.,
�.A+

1 .
All GCNN ansätze used in this work have a fixed number

of feature maps in every layer, connected by real-valued ker-
nels K,W . In most cases, we restrict the embedding kernels K
to the local clusters shown in Fig. 1. We also impose locality
on the convolutional kernels W : these are only nonzero for
g = t p, where p is a point-group symmetry that leaves the ori-
gin in place, and t is a translation by a lattice vector indicated
in Fig. 1.

All but the last layer is followed by the SELU activation
function [50], which allows us to train very deep (up to 16
layers in this work) networks without severe instabilities.
In the output layer, we combine pairs of feature maps into
complex-valued features, exponentiate them, and project the
result on the desired irrep:

h̃n,g = hn,g + ihn+F/2,g, (5a)

ψ (�σ ) =
∑
g∈G

χ∗
g

F/2∑
n=1

exp(h̃n,g), (5b)

where F is the number of (real-valued) feature maps. In-
cluding exponentiation in Eq. (5) is important to represent
the wide dynamical range of wave-function amplitudes: for
example, the amplitude of highly ferromagnetically correlated
basis states is exponentially suppressed in the ground state
of antiferromagnets [51], which neural networks do not rep-
resent efficiently without any structural bias [52]. Complex
exponentiation, however, separates amplitudes and phases,
which obstructs the learning of the accurate sign structure,
a formidably complex object for a highly frustrated magnet
[29,36,53]: constructing ψ as a sum of many terms alleviates
this problem, as cancellation between the terms allows learn-
ing destructive interferences more easily [54].

B. GCNNs with residual layers

While the GCNN wave function described above performs
quite well on the square lattice, we found that it struggles
to converge to state-of-the-art energies on the more chal-
lenging triangular-lattice models. In principle, this could be
remedied by making the network deeper; however, training
these very deep networks becomes unreliable and unstable. In

FIG. 2. Structure of the plain (top) and residual (bottom) GCNNs
used in this work. Red and blue boxes stand for the embedding layer
(4a) and the group convolutions (4b), respectively. Dark green boxes
indicate SELU (S) or RELU (R) activation functions. Light green boxes
represent the output layer (5).

machine-learning applications, this problem is remedied using
residual layers [55]: Instead of the full mapping from one of
hidden representation to the next, these learn the difference
between the two, which effectively controls the importance of
each layer and gives a controlled starting point for training
(namely, where all these differences are zero). In practice,
each layer learns to add a small but nonzero contribution,
which helps the network avoid numerical instabilities without
sacrificing the expressive power of deep neural networks.
In particular, since the Jacobian of each layer, ∂h(i+1)/∂h(i),
remains close to the identity matrix, residual networks do not
suffer from vanishing or exploding gradients, a common and
severe problem for training deep neural networks.

For the larger triangular-lattice simulations, therefore, we
used residual GCNNs (ResGCNNs) of the structure shown in
Fig. 2. Each hidden layer is of the functional form

h(i+1) = h(i) + tiW
(i)

2 ◦ relu
[
W (i)

1 ◦ h(i)
]
, (6)

that is, it applies a two-layer GCNN (with a RELU activation
function) on the input and adds the result to the values in
the previous hidden layer. The overall weight ti is a learned
parameter that gives a simple way for the training to control
the relative importance of layers. We initialize t = 0 for all
layers, which corresponds to the identity operation: Over the
course of training, ti move away from zero gradually, making
the learning trajectory more controlled. The embedding layer
Eq. (4a) and the construction Eq. (5) of ψ from the last hidden
layer remains unchanged.

C. Training protocol

We optimize our variational wave function using the
stochastic reconfiguration (SR) method [56], in which the
parameter updates δθ are found by solving the equation

S δ�θ = −η
∂E

∂�θ , (7)

where E is the variational energy 〈ψ |H |ψ〉/〈ψ |ψ〉, and
S is the quantum geometric tensor [57]. Equation (7) is
ill-conditioned, requiring regularization of the S matrix
[58]. We found that the standard approach of adding a
constant to diagonal entries leads to poor convergence,
while the scale-invariant regularizer of Ref. [58] is itself
numerically unstable. Adding both types of shift, on the
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other hand, stabilizes calculations and allows reliable
convergence. We thus use Sii 
→ Sii + ε1Sii + ε2 and set
η = 0.01, ε1 = 10−2, ε2 = 10−3 in all simulations. We have
not fine-tuned these hyperparameters and expect a wide range
of η and ε2 � ε1 to yield similar results.

The above scheme works reliably relatively near the
ground-state energy but it is often unstable at the start of
training. We found that this is greatly improved by biasing the
training towards states with similar amplitudes for all basis
states in this stage. A physically motivated approach is mini-
mizing a “free energy” F = E − TS , where the “entropy” is
defined in the computational basis as [59,60]

S = −
∑

�σ

|ψ (σ )|2∑
�τ |ψ (τ )|2 log

|ψ (σ )|2∑
�τ |ψ (τ )|2 ; (8)

the denominators are necessary as our wave functions are
generally not normalized. Even though we cannot calculate
S directly because of this, its gradients can be estimated via
Monte Carlo sampling, see Appendix A. The effective temper-
ature T is gradually lowered to zero as the training proceeds:
we used Tn = exp(−n/50)/2 in the nth step.

For the square lattice J1 − J2 model, the Marshall sign rule
associated with the Néel order at J2 = 0 [61] is a good first
approximation of the true sign structure even in the quantum
paramagnetic phases (cf. Appendix B), and applying it ex-
plicitly to NQS ansätze was found to improve their training
stability [28]. However, doing so biases the training towards
states that follow the sign rule exactly [29], which, while very
low in energy, cannot be the true ground state. Therefore, we
allowed the network to learn the sign structure without any
explicit sign rule bias.

To find low-energy variational states in nontrivial sym-
metry sectors, we used networks of the same architecture as
in the ground-state simulations and initialised them with the
converged parameters of the latter. This amounts to using the
ground state to generate an initial guess for the excited state by
changing the irrep characters χ in Eq. (1). We found that this
transfer learning process starts at variational energies close to
that of the ground state and converge quickly (100–300 SR
steps with 4096 Monte Carlo samples) to a stable variational
energy; we used 1000 steps to allow for full annealing of
the energy measurement. By contrast, networks trained from
scratch either became unstable or levelled off at extremely
high energies.

All simulations were carried out on a single NVIDIA A100
GPU. On both the square and triangular lattices, we found
that the training does not get stuck at local minima, but re-
liably converges to the essentially the same variational energy
for every random initialization. We verified this by running
simulations on smaller systems three times, which yielded
essentially identical variational energies; therefore, we ran the
more time-consuming simulations only once.

III. SQUARE LATTICE J1 − J2 MODEL

We first apply our approach to the square-lattice Heisen-
berg model with first- and second-neighbor couplings,

H = J1

∑
〈i j〉

�si · �s j + J2

∑
〈〈i j〉〉

�si · �s j ; (9)

TABLE I. Optimized ground-state energies (in units of J1/spin)
and estimates of the total spin 〈S2〉 for the J1 − J2 square-lattice
Heisenberg model, compared to the best known variational energies
for these systems [7].

J2/J1 System size Our work RBM+PP [7] 〈�S2〉
0.5 10 × 10 −0.497437(7) −0.497629(1) 0.038(4)

12 × 12 −0.496769(9) −0.496791(4) 0.098(8)
16 × 16 −0.496509(6) −0.496213(3) 0.156(10)

0.55 10 × 10 −0.486772(11) – 0.077(7)
12 × 12 −0.486068(10) −0.485735(7) 0.167(10)
16 × 16 −0.485583(8) −0.485208(4) 0.307(13)

we will set J1 = 1. The model orders both at small and
large values of J2, showing a Néel and a stripy pattern, re-
spectively. Near the classically maximally frustrated point,
J2/J1 = 0.5, both of these orders disappear: the current con-
sensus is that this region is split between a Z2 Dirac spin liquid
and a valence-bond solid (VBS) [7,8,62]. We benchmark our
method at J2/J1 = 0.5 and 0.55, thought to lie inside the
spin-liquid and VBS phases, respectively.

A. Ground-state energies

We estimated the ground state energy for the square-lattice
J1 − J2 model for linear cluster sizes L = 10, 12, 16. We used
GCNNs with L layers, each consisting of six group-indexed
feature maps. For most simulations, we performed 1000 SR
steps using 1024 Monte Carlo samples, followed by 500 steps
with 4096 samples. The first stage allows approaching the
ground state at relatively low computational cost, while train-
ing with more samples helps the network learn representations
of the wave function that generalize better to portions of the
Hilbert space that are not sampled [36].

Our best variational energies are summarized in Table I.
In all experiments, the converged variational energies come
very close to the best ones currently available in the literature
[7], generated by VMC on an ansatz combining many-variable
Gutzwiller-projected spinon-mean-field wave functions [44]
and restricted Boltzmann machines (RBMs). We achieve the
most marked improvements in energy (comparable to the
Hamiltonian gap) for the largest, 16 × 16 lattices: While for
small systems, a (small) linear combination of projected Slater
determinants is an excellent approximation of spin-liquid and
VBS ground states, this approximation deteriorates for larger
lattices, beyond the expressivity of the RBM correction factors
employed by Ref. [7]. By contrast, the deep networks used by
us are not subject to such a priori limitations. Furthermore,
the computational cost of our simulations are significantly
smaller: for the 16 × 16 lattice in particular, we require ap-
proximately 300 GPU hours, compared to the approximately
60 000 CPU hours of Ref. [7].

To further verify the quality of our converged wave func-
tions, we computed their total spin 〈S2〉, expected to be exactly
zero for an antiferromagnetic ground state. While we cannot
project the wave function on the S = 0 sector explicitly, we
find 〈S2〉 < 0.3 even for the 16 × 16 lattice, a substantial
improvement over 〈S2〉 ≈ 0.6 for L = 10 reported earlier for
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FIG. 3. Spin correlation function for the square lattice J1 − J2

model on a 16 × 16 lattice at J2 = 0.5 in real space (left) and in the
Brillouin zone (right). The true value of 〈�s0 · �s0〉 = 3/4 is clipped for
visibility.

various shallower NQS architectures [28,29]. The measured
value of 〈S2〉 is consistently higher for larger system sizes
as well as for J2 = 0.55, reflecting the increasing difficulty
of obtaining accurate wave functions. The spin structure fac-
tors 〈�s(−�q) · �s(�q)〉 and 〈sz(−�q)sz(�q)〉 showed similarly good
agreement for all wave vectors �q, showing that our wave
functions do not strongly break SU(2) spin rotation symmetry,
a common issue for earlier ansätze [63]. Furthermore, we
demonstrate in Appendix B that our method overcomes the
“sign problem” of neural quantum states [29,36], which has
hampered the performance of such ansätze as recurrent neural
networks for frustrated magnets [30].

B. Correlation functions

We computed the real-space spin correlation function 〈�s0 ·
�sr〉 and its Fourier transform,

S(�q) = 〈�s(�q) · �s(−�q)〉 = 1

N

∑
r

〈�s0 · �sr〉e−i �q·�r, (10)

and plotted them for the 16 × 16 cluster at J2 = 0.5 in Fig. 3.
As expected for a spin-liquid state, the pronounced antifer-
romagnetic correlations between nearby sites decay rapidly.
Likewise, there are no pronounced Bragg peaks in reciprocal
space, only a diffuse pattern with a smooth maximum at the
M point. The picture for J2 = 0.55 is very similar, with a
somewhat faster decay of the real-space correlator and a less
pronounced maximum at the M point.

To check for any residual spin ordering, we plotted the Néel
order parameter S(π, π ) as a function of system size in Fig. 4.
In an ordered phase, this is expected to scale as [32]

S(L)  S0 + α/L2, (11)

where the extrapolated order parameter S0 and the slope α are
fitting parameters. The data do not fit this relationship very
well (compared to the statistical error bars), and the error of
the extrapolated order parameter is far larger than that of each
data point. By contrast, we expect

S(L) ∝ L−z (12)

in a disordered phase; Ref. [7] estimated z ≈ 1.5 for the Néel
order parameter. Fitting Eq. (12) to our data points returns

FIG. 4. Néel order parameter S(π, π ) (left) and columnar dimer
order parameter D (right) as a function of system size for the
square-lattice J1 − J2 model. Solid and dashed lines show scaling
fits consistent with ordered (11) and disordered (12) ground states,
respectively.

similar values for z, and yields a much better overall fit,
indicating the lack of spin ordering at both J2 = 0.5 and 0.55.

We also computed the connected dimer correlation
function

D(i j, kl ) = 〈(�si · �s j )(�sk · �sl )〉 − 〈�si · �s j〉〈�sk · �sl〉. (13)

As D can be rewritten as the covariance of local estimators of
bond operators acting only on sites i, j and k, l , respectively
(Appendix B), we could compute it for all pairs of nearest-
neighbour sites at modest computational cost, allowing for
very accurate measurements. These correlators are plotted for
J2 = 0.5 in Fig. 5: they show a short-range columnar pattern,
consistent with Ref. [64], but decaying extremely quickly with
the separation of dimers.

FIG. 5. Real-space dimer correlation function (13) for the
square-lattice J1 − J2 model on a 16 × 16 lattice at J2 = 0.5 in real
space. The reference bond i j is shown in black; the true value of
D(i j, i j) = 0.2466(2) is clipped for visibility. The picture for J2 =
0.55 is very similar; the dimer order parameter is too small to be
directly visible.
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TABLE II. Energy gaps (in units of J1) to the optimized vari-
ational energies in several symmetry sectors for the square-lattice
J1 − J2 Heisenberg model, compared to the best known figures in the
literature [7]. Most of our gaps are marginally (by up to 10%) larger,
owing to the lower ground-state energies we attain.

Our work RBM+PP [7]

J2/J1 System size M.A−
1 X.B+

2 M− X +

0.5 10 × 10 0.2284(10) 0.2755(11) – –
12 × 12 0.1820(17) 0.2460(16) 0.1659(9) 0.2282(4)
16 × 16 0.1050(17) 0.1867(21) 0.0944(5) 0.1788(5)

0.55 10 × 10 0.2838(14) 0.2160(15) – –
12 × 12 0.2170(20) 0.1522(19) 0.2202(4) 0.1371(4)
16 × 16 0.2004(27) 0.1477(27) 0.1620(8) 0.0805(8)

Even though we expect dimer ordering at J2 = 0.55, the
plot of D(i j, kl ) is almost identical. To probe ordering more
carefully, we define the dimer order parameter

D = 1

2N2

∑
μ

∑
a,b∈μ

D(a, b)e−i �qμ·(�rb−�ra ), (14)

where μ = x, y are the possible orientations of nearest-
neighbor bonds, a, b are bonds of the same orientation, �qx =
(π, 0) and �qy = (0, π ) are the columnar ordering wave vec-
tors, and �ra,b are a reference point on each bond (e.g., their
midpoints). D is plotted in Fig. 4; it is quite small for every
system we probed, consistent with the rapid decay of D in
real space. For both J2 = 0.5 and 0.55, D fits the scaling form
(11). The extrapolated order parameter is very close to zero for
J2 = 0.5; it may well be eliminated by fitting to Eq. (12) with
z ≈ 2, consistent with the findings of Ref. [7]. By contrast, the
extrapolated D for J2 = 0.55 is similar in magnitude to the
finite-size measurements, which do not reasonably fit a power
law, indicating dimer order.

C. Excited states

We further benchmarked our method by obtaining varia-
tional energies in the symmetry sectors corresponding to the
lowest-lying excitations of the two ordered phases bordering
the Dirac spin-liquid phase. In the Néel state, these come from
a tower of states corresponding to the gapless magnon mode
at the M point [41]: the lowest entry of this tower is a triplet
transforming according to the M.A1 irrep of the space group.
In the columnar valence-bond-solid proposed by Ref. [64],
breaking translational symmetry yields four degenerate sin-
glet ground states, including a pair transforming according to
the X.B2 irrep, which become the lowest-lying excited states
in a finite-size system.

We trained networks of the same structure as used for the
ground-state estimates using the transfer learning procedure
outlined in Sec. II C. Our best estimates for the gaps between
the excited and ground-state energies in these two symmetry
sectors are given in Table II. These gaps all match the corre-
sponding results of Ref. [7] within 10%, suggesting that the
necessarily more complex sign structure of the excited states
poses little additional difficulty for the GCNN.

IV. TRIANGULAR-LATTICE J1 − J2 MODEL

The phase diagram of the triangular-lattice Heisenberg an-
tiferromagnet is similar to the square-lattice case: the small
and large J2 limits show three-sublattice 120◦ and stripy
orders, respectively, with a quantum paramagnetic phase be-
tween the two orders near the point of maximal frustration,
J2 = J1/8 [10–12]. However, the triangular lattice is not bipar-
tite: the resulting geometrical frustration heavily suppresses
the 120◦ order parameter even at J2 = 0 and gives rise to
dynamics not captured accurately by linear spin-wave theory
[65,66]. For the same reason, reliable numerical simulation
is much more challenging than in the square-lattice case,
and indeed, the extent and nature of the paramagnetic phase
remains uncertain, with viable proposals of both spin-liquid
and VBS ground states [12].

We benchmarked our GCNN wave functions at the nearest-
neighbor point J2 = 0 and at the point of maximal frustration,
J2 = J1/8, by computing ground-state energies and correla-
tion functions, as well as excited state gaps. For the 36-site
simulations, as well as the 108-site simulation at J2 = 0, the
plain GCNN introduced in Sec. II A was able to find accurate
ground and excited states. We used 4096 Monte Carlo samples
and GCNNs with four (eight) layers of six feature maps each
for the 36- (108-) site simulations. We trained the 36-site
models for 12 h (∼1500 steps) and the 108-site model for four
days (∼2000 steps).

For the more challenging J2 = J1/8 model, we found that
even deep GCNNs struggled to resolve the ground states
of the 108- and 144-site clusters with sufficient accuracy,
and their training became unstable with increasing depth.
To remedy this, we used the residual GCNN architecture
shown in Sec. II B, with 12 residual blocks of six feature
maps. Instead of the standard SR step (7), we trained these
very deep networks using a modified algorithm, dubbed Lay-
erSR, discussed in detail in Appendix C. Since this algorithm
only requires constructing only a small portion of the quan-
tum geometric tensor at a time, we were able to use more
Monte Carlo samples, which considerably improved the con-
verged wave functions. In particular, we used 4096 samples
until the energy plateaued, which took four days (∼600
steps), and then 16 384 samples for an additional eight days
(∼300 steps). After training, we further improved the vari-
ational energies by applying a Lanczos step as described in
Appendix D.

A. Ground-state energies

Our variational energies are summarized in Table III,
together with the best variational benchmarks in the lit-
erature [10,67,68]. On the 36-site cluster, GCNNs achieve
energies extremely close to exact-diagonalization results for
both the nearest-neighbour and maximally frustrated mod-
els within a few GPU hours. On the 108-site cluster too,
GCNNs achieve state-of-the-art variational accuracy. GCNNs
outperform other state-of-the-art neural-network benchmarks
[68] by a wide margin, especially at the highly frus-
trated point J2 = J1/8. Our results also surpass those from
Gutzwiller-projected fermionic mean-field ansätze with ad-
ditional variational Lanczos steps [10]. Upon including
one Lanczos step, we far outperform all other variational
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TABLE III. Optimized ground-state energies (in units of J1/spin) and estimates of the total spin 〈S2〉 for the J1 − J2 triangular-lattice
Heisenberg model, compared to exact and variational benchmarks in the literature. The “exact/interpolated” energies are obtained from the
thermodynamic limit estimated in Ref. [10] and the exact 36-site energy [67], assuming that finite-size effects scale as 1/L3 [68].

J2/J1 N GCNN GCNN+LS Exact/Interpolated [10,67] Graph NN [68] Gutzwiller+LS [10] 〈S2〉
0 36 −0.560313(3) – −0.5603734 – – 0.0022(5)

108 −0.55315(3) – – −0.5519(4) – 0.131(4)

1/8 36 −0.515386(9) – −0.515564 −0.5131(8) −0.512503(3) 0.0067(8)
108 −0.51175(7) −0.51268(9) −0.51297 −0.5069(8) – 0.208(7)
144 −0.51101(6) −0.51218(9) −0.51275 – −0.510558(5) –

approaches and reach relative errors of about 10−3 compared
to ground-state energy estimates extrapolated from exact diag-
onalisation. We find that we need at least this level of precision
in order to resolve excited-state gaps.

B. Correlation functions

We computed the reciprocal-space spin structure factors
S(q) for the converged 108-site GCNN wave functions and
plotted them in Fig. 6. At J2 = 0, we see strong Bragg peaks
at the K points, consistent with 120◦ order; their relatively low
intensity and the strong diffuse component is compatible with
a small ordered moment suppressed by frustration [67,69]. At
the point of maximal frustration, we find no distinct Bragg
peak at either the K points or the M points expected for
the large-J2 stripy phase. Instead, we see a broad continuum
around the edges of the Brillouin zone, consistent with an
intermediate quantum paramagnetic phase [10–12].

To gain further insight into this intermediate phase, we
computed the connected dimer-dimer correlators D(i j, kl ) for
all relative positions of the nearest-neighbor pairs i j and kl .
These are plotted in Fig. 7: dimer correlations appear to decay
to very small values over a correlation length of about three
unit cells. While simulations on larger system sizes would
be needed to exclude the possibility of a small residual VBS
order parameter, these results are most compatible with a
spin-liquid state.

C. Excited states

In addition to the ground state, we also estimated the en-
ergy of low-lying excited states in nontrivial symmetry sectors
using the transfer learning procedure described in Sec. II C.
The tower of states for the 120◦ order is generated by gapless
magnon modes at the K points: the lowest-lying entries are
triplets transforming under the K.A1 and �.B1 irreps of the
space group [42]. For the stripy phase at large J2, the lowest

FIG. 6. Spin structure factor in the Brillouin zone for the 108-site
triangular cluster at J2 = 0 (left) and J2 = J1/8 (right).

lying triplet excitation transforms as M.A1; in addition, the
spontaneous breaking of point-group symmetry gives rise to
a �.E2 singlet. The proposed intermediate Dirac spin liquid
phase has a plethora of gapless excitations that can be captured
either as pairs of gapless spinons or monopoles of the U (1)
gauge field [70,71]; all states mentioned above lie in this
manifold.

Our numerical results are summarized in Table IV. On
36-site clusters, we recover the exact gaps [12,42] to a good
approximation. For J2 = 0, the gap estimate of the K.A−

1 state,
corresponding to 120◦ order, is seen to decrease, while the
others remain approximately the same, as expected for the
ordered phase.

In the paramagnetic phase, we find that when we supple-
ment our wave functions with a Lanczos step, the gaps for all
three irreps decrease going from 36 to 108 sites, indicating
that they may be gapless modes. However, they do not appear
to scale as N−1/2, as would be expected for a Dirac spin liquid
[72]. This may be partially related to differences between
the 36- and 108-site geometries, but we believe it is mostly
due to the increased difficulty to obtain accurate variational
energies on larger clusters. Indeed, we find that all of the gaps
of all three irreps decrease when a Lanczos step is applied,

FIG. 7. Real-space dimer correlation function (13) for the
triangular-lattice J1 − J2 model on a 144-site lattice at J2 = 1/8 in
real space. The reference bond i j is shown in black; the true value of
D(i j, i j) = 0.2445(8) is clipped for visibility.
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TABLE IV. Energy gaps (in units of J1) to the optimized varia-
tional energies in several symmetry sectors for the triangular-lattice
J1 − J2 Heisenberg model. For J2 = J1/8, we list the gap both before
and after applying a Lanczos step.

J2/J1 System size K.A−
1 M.A−

1 �.E+
2

0 36 0.3499(5) 0.9064(7) 0.9040(13)
108 0.198(6) 0.780(7) 1.039(11)

1/8 36 0.4865(12) 0.5906(16) 0.2206(7)
108 0.396(12) 0.591(13) 0.242(11)

108 + LS 0.350(15) 0.414(16) 0.176(20)

indicating that the variational excited states are less accurate
than the ground state.

V. CONCLUSION

In summary, we demonstrated the power of deep neu-
ral networks to represent highly entangled many-body wave
functions. In particular, we used group convolutional neural
networks (GCNNs) to study the J1 − J2 Heisenberg model
on the square and triangular lattices, both of which are
thought to host a quantum spin-liquid phase. We demon-
strated that GCNNs achieve competitive variational energies
in the quantum paramagnetic phases of the square lattice
with a relativity modest computational effort. For the more
difficult triangular lattice model, we showed that GCNNs
with residual layers could improve upon previous state-of-
the-art results by almost an order of magnitude, especially
when supplemented with a Lanczos step. These results high-
light deep neural networks, and GCNNs in particular, as
promising ansätze to study challenging quantum many-body
problems.

While we were able to consistently achieve excellent
ground-state variational energies, doing so for excited states
proved significantly harder. Projecting on nontrivial irreps of
the space group often leads to an unstable training trajectory,
as well as excessive variational gap estimates. In future work,
we plan to understand the origin of this issue and propose
ways to remedy it in order to gain reliable access to the
low-lying spectrum, a key diagnostic for establishing phase
diagrams.

Note added. While revising this manuscript, we be-
came aware of Ref. [73], which systematically studies
NQS design choices, including the role of the sign struc-
ture for frustrated systems. Their numerical results sup-
port the arguments leading to our choice of architecture
in Sec. II A.
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APPENDIX A: GRADIENTS OF THE
COMPUTATIONAL-BASIS ENTROPY

Consider a wave function ansatz ψ (�σ ; θ ) with real param-
eters θ . For brevity, we introduce p(�σ ) ≡ |ψ (�σ ; θ )|2, P =∑

σ p(�σ ), and q(�σ ) = p(�σ )/P. Now, the derivative of Eq. (8)
with respect to θ is

∂θS = −
∑

�σ

[
∂θq(�σ ) log q(�σ ) + q(�σ )

∂θq(�σ )

q(�σ )

]

= −
∑

�σ
∂θq(�σ ) log q(�σ ) − ∂θ

[∑
�σ

q(�σ )

]

= −
∑

�σ
∂θq(�σ ) log p(�σ ) + ∂θ

[∑
�σ

q(�σ )

]
log P

= −
∑

�σ

[
∂θ p(�σ )

P
− p(�σ )

P

∂θP

P

]
log p(�σ )

= −〈log p ∂θ (log p)〉 + 〈log p〉〈∂θ (log p)〉, (A1)

where the final expectation values are taken with respect to
the Born distribution q(�σ ). We repeatedly use the fact that∑

�σ q(�σ ) = 1, so its derivative vanishes. Eq. (A1) gives a
Monte Carlo estimator for ∂θS that can be used for unnor-
malized ansätze. Furthermore, as log p = 2 Re log ψ , we can
incorporate Eq. (A1) in the usual Monte Carlo estimator of
the energy gradient [58] at minimal computational overhead
by adding T log p to the local energy 〈�σ |H |ψ〉/〈�σ |ψ〉.

APPENDIX B: COMPUTING SPIN AND DIMER
CORRELATION FUNCTIONS

The expectation value of any Hermitian operator Ô with
respect to a variational wave function can be evaluated as the
Monte Carlo average of the local estimator

Oloc(�σ ) = 〈�σ |Ô|ψ〉
〈�σ |ψ〉 (B1)

with respect to the Born distribution q(�σ ) introduced above
[58]. Furthermore, the variance of the local estimators con-
verges to the quantum mechanical variance var Ô = 〈Ô2〉 −
〈Ô〉2. We used this directly for Ô = �si · �s j to estimate real-
space spin correlators. To limit the effect of not fully
translationally invariant sampling on the results, we computed
〈�si · �s j〉 for all pairs of spins, at the expense of using fewer
independent Monte Carlo samples.

To ensure that our wave functions do not break spin-
rotation symmetry, we also computed 〈sz

i s
z
j〉 for the square-

lattice ground state, expected to be one third of the
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FIG. 8. Average sign of the best converged wave function after
Marshall transformation. For both values of J2, they are very closely
exponential in system size (fitted lines). The error bars are smaller
than the symbols.

corresponding 〈�si · �s j〉. Since these operators are diagonal in
the computational basis, they can be computed as the covari-
ance of the appropriate σ z in the sampled bit strings �σ . Not
having to compute local estimators using Eq. (B1) allows us
to use significantly more samples at the same computational
cost. Their variance can be obtained by noting that (sz

i s
z
j )

2 is a
constant (in the spin-operator normalization, 1/16).

Making use of the identity

〈ÂB̂〉 = 1

〈ψ |ψ〉
∑

�σ
〈ψ |Â|�σ 〉〈�σ |B̂|ψ〉

=
∑

�σ
q(�σ )A∗

loc(�σ )Bloc(�σ ), (B2)

dimer correlators (13) were computed as the covariance of
the local estimators of �si · �s j and �sk · �sl . The advantage of
this method over computing 〈(�si · �s j )(�sk · �sl )〉 directly using
Eq. (B1) is that computing the local estimators for each
nearest-neighbor bond operator O(NsampleN ) yields all O(N2)
dimer correlators, allowing us to use substantially more
independent Monte Carlo samples. (Computing the covari-
ance takes negligible time compared to the wave-function
evaluations needed for sampling and computing the local
estimators.) However, this method does not allow us to
directly obtain the variance of D(i j, kl ); instead, we esti-
mated its error from the variance of translationally equivalent
estimates.

On the square lattice, the sign structure of the J2 = 0
ground state is governed by the Marshall sign rule [61];
the frustrated J1 − J2 model, by contrast, has a nontrivial
sign structure even after applying the Marshall transforma-
tion. Monte Carlo estimates of the Marshall-adjusted average
sign for our best converged wave functions are plotted in
Fig. 8: they decay exponentially in the number of sites, as ex-
pected for a sign-problematic Hamiltonian [21]. The decay is
much faster at J2 = 0.55, consistent with the higher degree of
frustration.

For the square-lattice wave functions, we used 211 Monte
Carlo samples to compute 〈�si · �s j〉 and the same 218 sam-
ples to obtain 〈sz

i s
z
j〉, D(i j, kl ), and the average sign. For the

36- (108-) site triangular lattice, we used 217 (214) samples for
both spin and dimer correlators.

APPENDIX C: LAYERSR ALGORITHM

To train the residual GCNN ansätze, we use an alternative
to the standard stochastic reconfiguration (7). As shown in
Ref. [75], if the number of samples is less than the number
of neural-network parameters, Eq. (7) is equivalent to

O δ�θ = −ηE loc, (C1)

where Eloc is the local estimator (B1) of the Hamiltonian, O =
[∂ log(ψi)/∂θ j]i j is the Jacobian of log ψ with respect to the
parameters θ , and the overline stands for subtracting the mean
across samples:

Oi j = Oi j − 〈Oj〉; Ei,loc = Ei,loc − 〈Eloc〉. (C2)

If the number of samples is less than the number of neural-
network parameters, Eq. (C1) is also underdetermined, so we
are free to constrain the parameter updates further.

For LayerSR, we require that the updates δ�θlayer of the
parameters of each layer in the network satisfy

Olayer δ�θlayer = −ηE loc

nlayer
, (C3)

where nlayer is the number of layers. Summing Eq. (C3) for all
layers recovers Eq. (C1), so as long as there are fewer samples
than parameters in each layer [i.e., Eq. (C3) is underdeter-
mined too], the solutions of the former give a valid solution of
the latter too. Equation (C3) can be recast in the standard SR
form (7), which we solved using the regularization described
in the main text.

Computationally, LayerSR improves on the implementa-
tions of standard SR available in NetKet [27], which either
recompute the Jacobian O on the fly many times (and are
thus impractically slow for a deep network) or store it in full
(causing severe memory limitations on GPUs). LayerSR only
requires storing the Jacobian of a single layer Olayer in mem-
ory, which results in a memory cost reduction proportional
to the number of layers at the modest cost of performing the
backpropagation needed to obtain O once for each layer. This
allows us to use more samples on the single GPU, leading
to significantly better converged energies. We also found that
LayerSR tends to improve the convergence of the GCNN with
residual layers during the early stages of training.

APPENDIX D: IMPLEMENTATION
OF THE LANCZOS STEP

We implement one Lanczos step for the optimized GCNN
wave functions |ψ0〉; that is, we find the wave function with
minimum variational energy in the two-dimensional Krylov
space spanned by |ψ0〉 and the orthogonal component of
H |ψ0〉,

|ψ1〉 = H − 〈H〉
σ

|ψ0〉, (D1)
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which we normalized with the variance σ 2 = 〈H2〉 − 〈H〉2.
We thus have to diagonalize the 2 × 2 matrix

HL =
(〈ψ0|H |ψ0〉 〈ψ0|H |ψ1〉

〈ψ1|H |ψ0〉 〈ψ1|H |ψ1〉
)

= 〈H〉 +
(〈ψ0|H − 〈H〉|ψ0〉 〈ψ0|H − 〈H〉|ψ1〉

〈ψ1|H − 〈H〉|ψ0〉 〈ψ1|H − 〈H〉|ψ1〉
)

= 〈H〉 + σ

(
0 1

1 μ3

)
, (D2)

where µ3 = 〈(H − 〈H〉)3〉/σ 3 is the standardiszd third mo-
ment of the Hamiltonian acting on |ψ0〉. The lower eigenvalue
of (D2) is

EL = 〈H〉 + σ

⎛
⎝μ3

2
−

√
μ2

3

4
+ 1

⎞
⎠, (D3)

which is the first-order Lanczos estimate of the ground-state
energy. We compute σ and µ3 by finding the local estimators
(B1) of the operators H − 〈H〉 and (H − 〈H〉)2, labeled εloc

and νloc, respectively, for 214 Monte Carlo samples, from
which we estimate

σ 2 = 〈νloc〉; μ3 = cov(εloc, νloc)

σ 3
. (D4)

This procedure is slightly different from Refs. [76,77],
which use local estimators of H and H2 (without the mean
subtraction) to compute estimates of 〈Hn〉. This introduces
an ambiguity in computing 〈H2〉 from the local estimators
of either H or H2: We found that the combination of the
two implied by subtracting the mean from our estimators
significantly improves statistical accuracy.
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