
Vol.:(0123456789)

Software Quality Journal (2023) 31:1439–1465
https://doi.org/10.1007/s11219-023-09645-1

1 3

RESEARCH

.NET/C# instrumentation for search‑based software testing

Amid Golmohammadi1 · Man Zhang1 · Andrea Arcuri1,2

Accepted: 6 July 2023 / Published online: 1 September 2023
© The Author(s) 2023

Abstract
C# is one of the most widely used programming languages. However, to the best of our
knowledge, there has been no work in the literature aimed at enabling search-based soft-
ware testing techniques for applications running on the .NET platform, like the ones writ-
ten in C#. In this paper, we propose a search-based approach and an open source tool to
enable white-box testing for C# applications. The approach is integrated with a .NET byte-
code instrumentation, in order to collect code coverage at runtime during the search. In
addition, by taking advantage of Branch Distance, we define heuristics to better guide the
search, e.g., how heuristically close it is to cover a branch in the source code. To empiri-
cally evaluate our technique, we integrated our tool into the EvoMastEr test generation tool
and conducted experiments on three .NET RESTful APIs as case studies. Results show that
our technique significantly outperforms gray-box testing tools in terms of code coverage.

Keywords .NET instrumentation · White-box test generation · SBST · RESTful APIs

1 Introduction

C# is one of the most popular programming languages for building standalone and web
enterprise systems (The State of the Octoverse), e.g., cloud-based applications. However,
there are barely any existing techniques for automatically generating system tests for C#
applications.

Search-based testing techniques (SBST) have achieved many successful stories in both
research (Harman et al., 2012) and industry (Mao et al., 2016). To the best of our knowl-
edge, there does not exist any SBST tool for C# applications. Considering the widespread
use of C# in industry, this is a major gap in the research literature.

 * Man Zhang
 man.zhang@kristiania.no

 Amid Golmohammadi
 amid.golmohammadi@kristiania.no

 Andrea Arcuri
 andrea.arcuri@kristiania.no

1 Kristiania University College, Oslo, Norway
2 Oslo Metropolitan University, Oslo, Norway

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-023-09645-1&domain=pdf

1440 Software Quality Journal (2023) 31:1439–1465

1 3

EvoMastEr (Arcuri et al., 2021) is an open-source fuzzer which applies evolutionary
algorithms for enabling automated black-box and white-box testing of REST and GraphQL
APIs (Arcuri, 2018a; Belhadi et al., 2022). Regarding the white-box testing, however,
it only supports JVM and NodeJs based APIs (Arcuri, 2019; Zhang et al., 2022). The
performance of EvoMastEr in the white-box mode has been studied in several empirical
studies by comparing with other techniques (Arcuri, 2018b, 2020; Kim et al., 2022;
Zhang et al., 2022; Zhang & Arcuri, 2022). In this paper, we extend EvoMastEr (Arcuri
et al., 2021) for enabling the white-box fuzzing of.NET/C# REST APIs (i.e., adopt the
search algorithm and fitness function of EvoMastEr with our .NET/C# SBST heuristics).
C# is an object-oriented language which can be compiled into the Common Intermediate
Language (CIL) bytecode instruction set. To deal with white-box testing, we first
develop a .NET bytecode instrumentation and add probes for enabling collecting code
coverage at runtime. Additionally, for more effective search guidance, we employ branch
distance (Alshraideh & Bottaci, 2006) for our white-box SBST heuristics, in particular for
numeric and string data types.

To evaluate the effectiveness of our approach, we integrated our bytecode instrumenta-
tion and branch distance-based heuristics into EvoMastEr, named EvoMastEr.NET. Apart
from the configurations needed for enabling C#, we used EvoMastEr with its default set-
tings (e.g., Resource-based Sampling (Zhang et al., 2019)). We conducted an experiment
by comparing EvoMastEr.NET with a gray-box testing approach on three open-source .NET
REST APIs. Two of them are based on numerical (i.e., cs-rest-ncs) and string problems
(i.e., cs-rest-scs), whereas the third one is an API which handles a restaurant’s menu and
deals with a Postgres database (i.e., menu-api). Results show that our approach achieves a
clear and significant improvement over the gray-box testing approach for cs-rest-ncs and
cs-rest-scs and statistically equivalent results on menu-api. With further investigation into
code coverage achieved by the generated tests, we found that our approach is capable of
solving most of the numeric and string branches, demonstrated by a high line coverage (i.e.,
up to 98% for numeric problems and up to 86% for string problems). However, for menu-
api which deals with a database, no better performance was achieved, as implementing and
adapting techniques to handle SQL databases are necessary (Arcuri & Galeotti, 2020).

At the time of this writing, EvoMastEr has more than 260 stars on GitHub (EvoMaster,
2023), and it has been downloaded more than 1400 times. No large numbers by any
means, but it provides some indications of its actual usage among industrial practition-
ers. A concrete example is Meituan, a large Chinese e-commerce company with hun-
dreds of millions of customers, where EvoMastEr is currently successfully integrated
in their continuous integration systems (Zhang et al., 2022). When presenting EvoMas-
tEr at different industrial venues throughout the years, one of most common questions
from practitioners has been “does it support C#/.NET”? This has been the main indus-
try-driven (Arcuri, 2018; Garousi & Felderer, 2017; Garousi et al., 2016, 2017, 2019)
motivation for the scientific work carried out in this paper. Unfortunately, there is a
well-known documented gap between academic research and industrial needs, as major
software engineering efforts might be required to be able to scale academic proto-
types to be applicable to industrial systems. And all the research challenges are needed to
be addressed to get there might be mistakenly labeled as mere “technical work.” For
example, in the last few years, there has been many tools presented in the scientific lit-
erature for fuzzing RESTful APIs besides EvoMastEr (e.g., Atlidakis et al., 2019; Hat-
field-Dodds et al., 2022; Laranjeiro et al., 2021; Martin-Lopez et al., 2021; Viglianisi
et al., 2020; Wu et al., 2022). However, to the best of our knowledge, they are all black-
box, in which the source code of the tested applications is not analyzed. Building a

1441Software Quality Journal (2023) 31:1439–1465

1 3

white-box fuzzer for this problem domain (i.e., for C#/.NET APIs) took months of work
with over 10,000 lines of code just for the instrumentation and driver sides. It is far
from trivial, which might explain why, albeit EvoMastEr has been open-source since 2016, it
is still the only white-box fuzzer for Web APIs.

The main contributions in this work include the following:

• The first use of white-box SBST techniques in the literature for.NET applications.
• A novel bytecode instrumentation with SBST heuristics for .NET, which could be

plugged-in by other existing SBST techniques.
• An automated solution with an open-source tool implementation for enabling SBST of

.NET applications.
• An empirical study in which we successfully replicated the fuzzing of RESTful APIs

with SBST techniques.

The paper is organized as follows. Section 2 provides necessary information to better under-
stand the remaining parts of the paper. Section 3 discusses existing related work. Our approach
for instrumenting C#/.NET applications with SBST heuristics is discussed in Section 4. Our
empirical analyses are presented in Section 5. Threats to validity are discussed in Section 6.
Finally, Section 7 concludes the paper.

2 Background

2.1 .NET programming

.NET is a developer platform by Microsoft for building many types of applications. In
2016, Microsoft introduced .NET Core which is open source and cross platform (.NET
Platform). It is possible to develop programs with .NET in C#, F#, or Visual Basic.
Programs written in these languages are compiled into Common Intermediate Language
(CIL), which is an object oriented and entirely stack-based bytecode instruction set. C#
has been the most popular language for developing .NET applications, and currently, it
is among the most widely used programming languages in the world (The State of the
Octoverse). Let us consider the following simple method written in C#:

The code snippet above contains a method which takes as input a, which is of type
int. Then, it prints out a string to the console if a is greater than zero. The CIL code
for such program is as follows:

1442 Software Quality Journal (2023) 31:1439–1465

1 3

.NET has a rich set of bytecode instructions (ECMA-335), which has a few similari-
ties (and some differences) with the bytecode of the Java virtual machine (JVM). In this
example, ldarg.1 is pushing the value of the input a onto the stack. Then, the constant 0
is pushed with ldc.i4.0. The instruction cgt pops these two values and pushes either
0 or 1 based on their comparison. stloc.0 and ldloc.0 are only needed for helping
debugging (e.g., when putting break points from an IDE) and would not be there when
compiling in “release” mode. brfalse.s IL_0014 is a jump instruction. If the current
value on stack is 0 (i.e., a is not greater than 0), then the computation jumps to the instruc-
tion labeled IL_0014, which just returns with ret from the method call. Otherwise, the
constant string “a is greater than 0” is pushed onto the stack with ldstr, as needed to be
popped by the call to WriteLine.

2.2 The MIO algorithm

In the context of white-box system testing, there could exist tens/hundreds of thousands of
testing targets to be optimized (e.g., each line is regarded as a target). To effectively handle
such an amount of targets, MIO employs dynamic populations management, i.e., each tar-
get owns a population with a maximum size n, and the targets along with populations are
managed dynamically during search. Inspired by (1+1) Evolutionary Algorithm (Lehre &
Yao, 2007), MIO is composed of two main operators, i.e., sampling and mutator.

1443Software Quality Journal (2023) 31:1439–1465

1 3

As shown in Algorithm 1, the search starts with an empty set of populations T and an
empty archive A which saves feasible solutions for the targets. At each iteration, with either
sampling (i.e., sample a test) or mutator (i.e., mutate a test sampled from T) controlled by
a probability P

r
 , a new test p could be produced and then executed (i.e., run the test on the

SUT). Note that with the execution, the testing targets could be not reached, reached, or
covered. Consider the example of a branch target for if(x == 42) (at line 3) as below:

When x is a negative number or 0 (e.g., −5), the target is not reached (as return − 1 is
executed). When x is any positive number but not 42, the target is reached but not covered
yet. Only if x is 42, the target could be considered covered. Thus, based on targets achieved
by executing p, the populations T could be updated (referred to as dynamic populations) as
follows:

• If the target k is newly reached, a new population T
k
 which contains p is created and

added to T.

1444 Software Quality Journal (2023) 31:1439–1465

1 3

• If the target k is covered, p would be added to the archive A, and T
k
 would be removed

from the populations T (i.e., the search would not need to optimize this target).
• Otherwise, add p to T

k
 , if the size of T

k
 exceeds n, then remove the worst solution.

At the end, the search outputs A which contains a set of best solutions (referred to as a test
suite) which are feasible to solve testing targets.

Regarding white-box system testing, there might exist some infeasible targets, and users
would only care about what targets are covered rather than how the targets are heuristi-
cally close to be covered. Thus, in order to focus on the targets which could be possibly
covered within the search budget, MIO integrates a feedback-directed sampling to sample
tests which achieve recent improvements as candidates to perform the next mutation (see
SampleIndividual(T) at line 7). In addition, to trade off between exploration and exploita-
tion of the search landscape, MIO handles parameters (such as F, P

r
 and n) dynamically

throughout the search. For instance, at the beginning of the search, the exploration (i.e.,
sampling) helps to reach new targets quickly. Based on the passing of time, the probability
of perforating the sampling P

r
 is linearly reduced. Then, at a certain point F (e.g., 50% of

the budget has been used), the search would start to focus more on the exploitation (i.e.,
P
r
= 0 and n = 1) in order to focus on covering the reached targets.

2.3 Branch distance

To achieve high code coverage, there is the need to define heuristics to guide the search to
generate inputs that can solve the constraints in the system under test (SUT) (e.g., complex
predicates in if statements). The most common heuristics in the literature is the so-called
branch distance (Korel, 1990). It was originally designed to handle numerical constraints,
but it has also been extended to handle string constraints (Alshraideh & Bottaci, 2006). As
an example, consider a simple statement such as if(x==42). In this statement, if x is
taken randomly, there would be 264 possibilities, where only one of them does fulfill the
constraint. However, a value such as x = 50 is heuristically closer to solve the constraint
compared to much larger numbers. In this example, for any given x, the branch distance
would be calculated as d(x) = |x − 42| . The search would hence have gradient to modify
x to minimize such distance d(x). For a full list of these distance functions, we refer the
reader to Korel (1990). A major research challenge we address in this paper is how to apply
these branch distances to .NET CIL bytecode.

3 Related work

EvoSuite (Fraser & Arcuri, 2011) is a SBST tool that produces unit test cases with asser-
tions for Java classes. EvoSuite does this by employing a hybrid technique that produces
and optimizes whole test suites in order to meet coverage objectives. EvoSuite is perhaps
the most known SBST tool and does bytecode instrumentation for the JVM, supporting
branch distance computations.

Where there has been much work on testing Java programs in literature (Panichella
et al., 2021) (besides EvoSuite), comparatively not so much has been done for .NET. The
most famous example is Pex (Tillmann & de Halleux, 2008), which uses dynamic symbolic
execution to generate small unit test suites for programs developed with .NET. Pex accom-
plishes this by determining test inputs for parameterized unit tests by a systematic program

1445Software Quality Journal (2023) 31:1439–1465

1 3

analysis. By observing execution traces, Pex learns about the program’s behavior. Pex gen-
erates new test inputs with varying program behavior with the help of a constraint solver.

Randoop (Pacheco et al., 2007) is a tool for Java and .NET that creates unit tests by the
aid of a feedback directed random testing technique. The goal is to avoid producing illegal
and redundant inputs by leveraging execution feedback from executing test inputs while
they are created. Randoop builds method sequences one at a time by picking a method call
at random and choosing arguments from previously built sequences which acts as a guide
to create the new inputs.

To the best of our knowledge, there does not exist any SBST technique in the literature
for white-box testing of.NET programs.

Regarding fuzzing RESTful APIs, several tools have been presented in the literature
besides EvoMastEr, such as Restler (Atlidakis et al., 2019), RestTestGen (Viglianisi
et al., 2020), Restest (Martin-Lopez et al., 2021), RestCT (Wu et al., 2022), bBOXRT
(Laranjeiro et al., 2021), and Schemathesis (Hatfield-Dodds et al., 2022). However, they are
all black-box. Different studies comparing such tools showed black-box EvoMastEr (with
no instrumentation and no SBST heuristics) giving better results (Kim et al., 2022; Zhang
& Arcuri, 2022), closely followed by Schemathesis (Hatfield-Dodds & Dygalo, 2022). In
these experiments, SBST white-box fuzzing gave better results than the black-box variant.
The work presented in this paper enables practitioners to use white-box testing for .NET
applications as well besides JVM ones, which provides better results than black-box
testing when the source code is available (e.g., in the case of developers and continuous
integration systems).

4 .NET instrumentation

4.1 Bytecode instrumentation

Our implemented instrumentation for .NET programs is done by the aid of Mono.Cecil1
library, which makes it possible to analyze and modify CIL code. It works with .NET
libraries that are compiled and generated as a DLL (i.e., dynamic linked library), which
means that the instrumentation is performed offline and we can not instrument .NET librar-
ies on the fly. Instrumentation needs to be integrated with an SBST technique to generate
tests. For conducting the experiments in this paper, we have taken advantage of EvoMas-
tEr, that generates system-level test cases for RESTful APIs. There are two main compo-
nents in EvoMastEr: a core process and a driver process which not only starts/stops/resets
the SUT, but also is responsible for applying the instrumentation on the SUT with SBST
heuristics and generate the instrumented version. The driver provides its functionalities as
RESTful APIs which the core communicates with them through HTTP. The instrumenta-
tion is implemented as a .NET Core console application. The main method of this console
application takes the path of the target SUT as an input parameter, performs instrumenta-
tion on it, and finally saves the instrumented file in the specified location.

To use EvoMastEr for an SUT, we have implemented a driver written in C# that imple-
ments the same endpoints as the original JVM driver. Regarding the core which is written
in Kotlin, all we had to do was adding a new sort of output type for C#. EvoMastEr is now

1 https:// www. mono- proje ct. com/ docs/ tools+ libra ries/ libra ries/ Mono. Cecil/

https://www.mono-project.com/docs/tools+libraries/libraries/Mono.Cecil/

1446 Software Quality Journal (2023) 31:1439–1465

1 3

able to generate test cases which are sequences of HTTP calls to the different endpoints of
the SUT based on xUnit. More details on how our technique for .NET is integrated in Evo-
MastEr will be discussed in Sect. 4.4.

4.2 Code coverage

A .NET program is made up of a number of assemblies, each one containing some classes.
Each class contains methods, which we instrument one by one. Each statement in a method
will become a testing target, and we insert probes before and after them to keep track of
whenever they get covered during the search. The aim of EvoMastEr is to generate system-
level test cases which yield the highest possible number of covered targets.

To insert probes before and after each statement, the first step is to identify them. As
discussed in Sect. 4.1, we use Mono.Cecil to analyze and alter CIL code that are fetched
and iterated over for each method to detect the statements and insert probes before and
after them. In our method, for each instruction, we consider its starting coordination (i.e.,
line and column numbers) in the source code as an indicator of a new statement. That
information is obtained from an object of type SequencePoint which is assigned to the
instruction. If the obtained sequence point is not null and it posses different line and col-
umn numbers compared to the previously accessed instruction which we save at the end of
the loop, the current instruction is identified as beginning of a statement, and we insert an
EnteringStatement probe before it. This instruction is not only an indicator of a new state-
ment, but also could be the end of another statement, except the cases which the statement
is the first one in the method. As a result, we also insert another CompletedState-
ment probe to signal the end of previous statement. Take this simple instrumented code as
an example:

The instrumented code would be as follows:

The probes, i.e., EnteringStatement and CompletedStatement, are
inserted before and after the variable assignment. They are simply invocations of

1447Software Quality Journal (2023) 31:1439–1465

1 3

static methods inside the console application developed to support the instrumentation.
The parameters passed to these probes include class name, method name, line number,
and column number, respectively, as they are necessary to create unique IDs for the
targets (i.e., statements). The initial and final curly braces which surround the method’s
body are also considered statements. Their counterpart instructions in the CIL which is
nop and ret for the opening and closing curly braces, respectively, have their own line
and column number. Besides, it is useful to have them as we can find out if a method
is reached even if it is empty or if the execution of a method is completed. The probes
(i.e., MarkStatementForCompletion) to mark completion of the curly braces
are inserted at lines 3 and 7 in the instrumented code above. To provide the heuristics
on code coverage, we take the same technique with the SBST heuristic values as it is
done with EvoMastEr now. Each target will be assigned a heuristic value in the range
h ∈ [0, 1] , with 1 indicating that the target has been completely covered and 0 show-
ing that the target has not been reached throughout the test case evaluation. The values
between 0 and 1 show how close a test case came to covering the target heuristically.

As mentioned earlier, by executing each probe, a static method will be called. Whenever
EnteringStatement is executed, the targets for class and line are marked as covered
by setting their values to 1. For the statement, it is set to 0.5. The reason behind this is that
statements may throw exceptions, and we will not know if no exceptions were thrown until
the statement is fully executed. The heuristic value for statements is set to 1 only if the
CompletedStatement is reached. The significance of having two probes per statement
is clear here. If we merely reported the line targets with h = 1 , the search would have no
way to realize if an exception was thrown and would not exploit input data that does not
lead to an exception. On the other hand, consider the case where an exception is thrown in
the statement (e.g, a divide by zero operation), and h = 0.5 . Because SBST technique (such
as EvoMastEr) typically only outputs test cases for targets that are fully covered, if there
was no target for the line, the test case would not be included in the final output test suite.

Inserting EnteringStatement and CompletedStatement is not always
straightforward as shown in the example above. When it comes to instructions which
change the control flow, the program may become corrupted or the logic may change if not
handled cautiously. For any instruction that we put EnteringStatement before, it is
likely that it would be target of a jump instruction somewhere else in the code. In that case,
the EnteringStatement probe may not get reached. To solve this, we have to check if
the current instruction is the target of any jump. This is done by iterating over the method’s
body instructions which is an array. If yes, the target value of the jump(s) should change
to the first instruction of EnteringStatement probe. For CompletedStatement
probe, the main challenge is that they should not be put after instructions which perform
jump or exit unconditionally (i.e., br, throw, rethrow, endfinally, leave, and
ret). If this happens, we have to insert the CompletedStatement probe before
those instructions to mark them as completed. This should not be a problem as there is
no instruction in between which may throw exception or change the control flow. Another
issue that we faced during enabling instrumentation was that there exist instructions which
there is also a short form for them such as ldarg which is a two byte instruction and
ldarg.s that is one-byte. When altering CIL code, the number of arguments, local vari-
ables, or method bytes may change. In this case, an overflow may occur and affect the
CIL. To prevent that, we convert every short form instruction to its non-short version by
calling SimplifyMacros of Mono.Cecil which is an extension method for Meth-
odBody. When finally the instrumentation is done, we can call another method named
OptimizeMacros which converts them back to their short form if possible.

1448 Software Quality Journal (2023) 31:1439–1465

1 3

4.3 Branch distance

4.3.1 Numeric

Covering an acceptable number of targets is hard to achieve without taking the branch
instructions into consideration. Complex predicates, such as conditions in if statements,
can affect the SUT’s control flow. As the example shown in Listing 1 (Sect. 2.1), the if-
statement would be compiled into cgt, and brfalse.s is to manage the control flow
with a result (either 0 or 1) of the if predicate a>0.

There are different types of instructions that are identified as branch instructions.
Based on the values popped from the evaluation stack, numerical value types can
yield either one or two instructions. Table 1 shows all branch-related instructions that
we have handled in our instrumentation. We categorize these branch instructions into
three groups. One-arg jump instructions pop a value from the stack and transfer con-
trol to a target instruction based on the popped value. These instructions are brtrue,
brtrue.s, brfalse, and brfalse.s. They perform the transfer control provided
that the popped value is true, not null, or non-zero. Two-arg compare includes compari-
son instructions that pop two values from the stack, compare them, and push the result
which could be either 0 or 1. This group consists of ceq, clt, clt.un, cgt, and cgt.
un instructions. As an example, cgt compares two values and pushes 1 if the first one
is strictly greater; otherwise, 0 is pushed. Two-arg jump instructions perform a jump to
another instruction after popping and comparing two values from the stack. This includes
bgt, bgt.un, bge, bge.un, ble, ble.un, blt, blt.un, beq, bne.un, and also
their short forms (i.e.,followed by .s e.g.,bge.s). As an example, blt transfers control
to a target instruction if the first value is strictly lower than the second one.

In order to calculate branch distance, we insert another group of probes into the
code. These probes need the value(s) passed to the branch statement (e.g., an if state-
ment) to calculate how far they are to fulfill the constraint. However, since the values
are on top of the evaluation stack, and the branch instruction pops them, they have to
be duplicated. For one-arg jumps, the duplication is straightforward. In the code below,
brfalse.s pops from the evaluation stack and performs a jump to another instruc-
tion at IL_001C if the popped value is false (i.e., zero). Examples of the jumps and the
instrumented version would be as follows:

Table 1 Branch instructions that our instrumentation deals with for distance calculation

Name Branch instructions Description

One-arg jump brtrue, brtrue.s Jump instruction with one argument
brfalse, brfalse.s

Two-arg compare ceq, clt, clt.un Compare instruction with two arguments
cgt, cgt.un

Two-arg jump bgt, bgt.s, bgt.un, bgt.un.s Jump instruction with two arguments
bge, bge.s, bge.un, bge.un.s
ble, ble.s, ble.un, ble.un.s
blt, blt.s, blt.un, blt.un.s
beq, beq.s, bne.un, bne.un.s

1449Software Quality Journal (2023) 31:1439–1465

1 3

The probe for calculation of branch distance is inserted right before the branch instruction.
Apart from the values needed for marking the branch target that are opCode, className,
lineNo, and branchCounter (starts from zero, indicates the number of branches per
line), the actual value which the brfalse.s pops needs to be passed to the probe as well. It
is achieved by adding the dup instruction which duplicates the value pushed by its previous one
(i.e., ldloc.1 at IL_008a) onto the evaluation stack.

Calculating branch distance for two-arg compare and two-arg jump instructions presents
additional challenges. The first challenge is that these sorts of instructions take two values
as input, but it is not possible to duplicate the top two values on the stack as we handle for
one-arg jump instructions, as previously shown. As a result, we take advantage of bytecode
method replacements. Whenever an instruction of types two-arg compare and two-arg jump
is reached, we replace it with a method which performs the same semantic as the original
instruction in addition to calculating the branch distance.

For example, the ceq instruction pops two values from arguments of the method, com-
pares them, and pushes 1 if they both are equal and 0 if they are not. The instrumented code
for the example above would be like this:

1450 Software Quality Journal (2023) 31:1439–1465

1 3

The ceq instructionis no longer used and it is replaced by a method call Compar-
eAndComputeDistance. This method first calculates the distance by passing the first
two numeric values pushed by instructions at IL_012a and IL_012b. It then determines
the value to be pushed onto the stack based on the opcode string pushed at IL_012c.

For two-arg jump instructions, the replaced method is different. These kinds of instruc-
tions first compare the two input values and then jump to another point based on the com-
parison result which is on the evaluation stack. It allows us to replace each of them with a
two-arg compare instruction followed by a one-arg jump instruction. Table 2 contains the
information on how we map those instructions.

The second challenge for two-arg compare and two-arg jump instructions is that not
only the two values should be duplicated, but also their data type has to be detected. The
values in the examples above are of type int, but they could be of any other numeric types
such as float or long. Knowing the data type is a must as it is necessary for calling the
right probe. A handy solution to this might be having a method which takes values of type
object as input so it can handle any type of value. However, this is not possible because
the input values first have to be boxed to object. There exists an instruction for boxing to
object, but it also takes the sub-type (e.g., int) as input which we do not have. There-
fore, a feasible solution would be to have methods with different overloading for handling
various numeric data types and detect the type of values pushed by the last two instructions
before the instruction of type two-arg jump during instrumentation in order to insert the
right probe to call.

The detected type depends on the last two instructions. The branch instruction
could appear after many kinds of instructions that push values on the evaluation stack.
Since both values are always of the same type, detecting the type of either of them suffices.
For FieldDefinition, VariableDefinition, and MethodReference (e.g.,
calling a method which puts an int onto the stack), the type can be inferred by casting

Table 2 Mapping two-arg jump instructions to two-arg compare and one-arg jump instructions

Original instruction Converted instructions Original instruction Converted instructions

bgt cgt + brtrue ble cgt + brfalse
beq ceq + brtrue blt clt + brtrue
bge clt + brfalse bne ceq + brfalse

1451Software Quality Journal (2023) 31:1439–1465

1 3

the instructions’ operand and returning its type property. If the instruction is loading from
method’s argument (e.g., ldarg_0 which pushes first parameter of the method), all we
have to do is to detect its index and find the element with the same index in the method’s
parameters which can be inferred using Mono.Cecil from current method’s metadata and
return its datatype. Another possibility is that the previous instruction is loading a local
variable (e.g., ldloc). These instructions load the local variable at a specific index onto
the evaluation stack. Every ldloc variable comes after a stloc which stores a value at
the specified index at the local variables list. However, these two instructions might not
be necessarily close to each other. For tackling this issue, we store every local variable
name and its datatype in a Dictionary by detecting stloc instructions. Whenever
we reach a ldloc, all we have to do is to get the type of the current local variable by
referring to the dictionary. There is also a group of instruction which their datatype can
be detected based on their title. For example, Ldc_I4, Ldc_I8, Ldc_R4, and Ldc_
R8 push a value of type int, long, double, and float respectively onto the stack.
Therefore, we can detect their data type just by parsing their OpCode.

4.3.2 String

Besides the numeric value types, there would be a need to provide branch distances for the
string type. To enable this, we identify all operators and methods of System.String
that return a boolean, such as “ == ” operator, Equals, Contains, StartsWith, and
EndsWith during the instrumentation. Then, we replace the method with a corresponding
probe which calculates the distance (e.g., based on Alshraideh & Bottaci, 2006) and per-
forms the intended operation (recall the instrumentation should not modify the semantics
of the program). Consider the code example a.Equals(b, StringComparison.
OrdinalIgnoreCase). Its equivalent CIL code is as follows:

The code above, takes a and b from method’s parameters, compares them, and
pushes the result onto the evaluation stack. During instrumentation, once the System.
String::Equals is identified, we would replace it with a method to enable SBST
white-box heuristics. The instrumented version is as follows:

1452 Software Quality Journal (2023) 31:1439–1465

1 3

As the instrumented version, the Equals method is replaced with a method call (i.e.,
StringCompare) which does calculates the branch distance, performs the compari-
son, and pushes the result onto the evaluation stack. There are four other CIL instructions
between the method call and the instructions for loading the arguments which push the
necessary information to mark the string comparison operation, i.e., string comparison
operator, class name, line number, and branch counter. With the four arguments, we define
a unique target ID as idTemplate for this comparison. Regarding string comparison
operator, we now support “ == ,” Equals, Contains, StartsWith, and EndsWith.
The implementation of Equals as this example is shown in Fig. 1. The method would
take caller (e.g.,a), anotherString (e.g.,b), and comparisonType as inputs.
The comparison operator ID, i.e., idTemplate, would result in two new testing targets,
i.e., true_branch and false_branch for the method call. Note that besides true_branch, we
are also considering false_branch as testing target, to provide better guidance to the search.
In this replacement method, it first ensures that caller is not null; otherwise, it throws
a NullReferenceException. Then, at line 4, it performs the same semantic as the
original string Equals method. Regarding the distance, we employed Truthness which
is a utility class to store the two heuristic values (i.e., ofTrue and ofFalse) between 0
and 1, representing possible outcomes, i.e., true or false respectively. One indicates
that the outcome (e.g., false) is covered. As seen from line 6, if anotherString is null,
we would set ofTrue with a constant value (H_REACHED_BUT_NULL) representing
Null case (e.g., 0.05) and set ofFalse with 1. Note that here instead of assigning 0 to

Fig. 1 An implementation of a replacement method for System.String.Equals

1453Software Quality Journal (2023) 31:1439–1465

1 3

ofTrue, we employ a small positive value for indicating to the search that the branch is
reached but far from being covered. Lines 11–17 are to handle situations whereby result
is true or false. Regarding true, the distance is assigned as 1 for ofTrue and a
constant value (H_NOT_NULL) representing NotNull case (e.g., 0.1 which is greater than
Null case) for ofFalse. If the result is false, lines 13–15 are to calculate a distance h
to represent how close it is to be true. For string comparison, we employed the same left-
alignment distance (Fraser & Arcuri, 2011) as EvoSuite (see line 14) and further scale the
value with H_NOT_NULL. Thus, with the above handling, we could calculate heuristic val-
ues of true_branch and false_branch, then update them at line 18. Those heuristics would
be further utilized by the search to evaluate a test.

In addition, to further handling strings, we also employ a taint analysis, by tracking how
input strings are compared at runtime, in the same way as done in EvoMastEr for programs
running on the JVM (Arcuri & Galeotti, 2021). For instance, for a.Equals(“foo”),
with the line 3, we would track that a was compared with “foo.” If the value of a is present
in the chromosome of the test, then such value “foo” can be directly set as the input (e.g.,
a=“foo”) during a mutation operation. This kind of technique can have drastic speed ups
to the search process (Arcuri & Galeotti, 2021).

Due to their length, we do not provide full algorithms for all these string method replace-
ments in this paper. However, note that our implementation is open-source on GitHub,
with long term storage on Zenodo at each new release (e.g., 1.5.0 (Arcuri et al., 2022)).
More details on the other replacement methods can be found there.

4.4 Integration with EvoMastEr for .NET testing

EvoMastEr is an open-source tool (Arcuri et al., 2021) aimed at automatically generating
system tests with SBST. It supports both white-box and black-box testing. EvoMastEr uses
Many Independent Objective (MIO) which is a population-based evolutionary algorithm
designed to deal with white-box system testing problem for automating test suite genera-
tion (Arcuri, 2018).

To apply our technique for testing .NET programs, we integrated it into EvoMastEr as
shown in Fig. 2. As shown in the figure, to enable our technique, we developed a .NET EM
driver which contains .NET Bytecode Instrumentation and SBST Heuristics and extended
core with a Test Writer which generates test suites written in C# (using xUnit). Note that
the Test Writer can also be used by EvoMastEr when applying black-box testing.

Fig. 2 Integrating our novel techniques into EvoMastEr for enabling white-box system test generation for
.NET applications

1454 Software Quality Journal (2023) 31:1439–1465

1 3

EvoMastEr is mainly composed of two parts, i.e., driver and core. At the driver side,
users will need to manually specify how to handle the SUT, e.g., start/stop/reset the SUT,
and provide a URL where to access its API schema (see Step 0). Then, with .NET Byte-
code Instrumentation, we automatically generate an instrumented SUT, where a set of
probes is injected, as discussed in Sect. 4 (see Step 1). From the core side, at the begin-
ning of the search, API Parsing (see Step 2) would parse the API schema in order to iden-
tify what endpoints are available (referred to as Action) and what data could be manipulated
(referred to as Genes). Then, with such Actions and Genes, the search will produce a test
(i.e., a sequence of requests with manipulated inputs) with an applicable search operator
(e.g., the mutator in MIO). Next, the Fitness Function would execute the test on the SUT
(see Step 4) and collect information on the targets achieved by this execution. The
achieved targets information (such as class coverage, line coverage, statement coverage
(Sect. 4.2), and branch coverage (Sect. 4.3)) are collected at runtime on the driver side,
based on SBST Heuristics with probes injected into the SUT (see Step 5). Such runtime
coverage information allows Fitness Function to evaluate a test, e.g., with our white-box
heuristics, we could know that x=50 is heuristically better than x=100 for covering the
branch if(x==42). A test with x=50 would have a higher chance to be evolved by the
search for optimizing that branch target. During the search, Steps 3, 4, and 5 would be
performed iteratively within the specified search budget, and, at the end, the best tests will
be outputted with a specified format, i.e., C# in our case (see Step 6).

5 Empirical study

5.1 Research questions

To assess our technique, we carried out an empirical study to answer the following research
questions:

RQ1: Does our approach enable effective white-box SBST heuristics to guide the search
for fuzzing .NET/C# RESTful APIs?

RQ2: What type of constraints can be solved? And which ones cannot?
RQ3: What is the impact of applying time as stopping criterion on the performance of

the approach?

5.2 Experiment setup

Our novel technique enables the use of white-box SBST heuristics for testing.NET
programs. To evaluate it, we integrated our technique into EvoMastEr (denoted as
EvoMastEr.NET discussed in Sect. 4.4) and conducted our experiments with three
.NET REST APIs, i.e., C# REST Numerical Case Study (cs-rest-ncs), C# REST String
Case Study (cs-rest-scs) and Menu API (menu-api). The first two case studies were
initially designed for studying unit testing approaches on solving numerical (Arcuri
& Briand, 2011) and string (Alshraideh & Bottaci, 2006) problems. These two have
been re-implemented as RESTful APIs in various programming languages (e.g., Java
and JavaScript) to evaluate white-box test generation problems (Arcuri, 2019; Arcuri &
Galeotti, 2021; Zhang & Arcuri, 2021). Here, we re-implemented them with C# and made
them accessible via a REST API. The latter case study, i.e., menu-api, is one of the backend

1455Software Quality Journal (2023) 31:1439–1465

1 3

services of the popular Restaurant-App, which is an existing open-source project on
GitHub2 (with currently more than 500 stars). Unlike the two other case studies, menu-api
deals with a PostgreSQL database. Table 3 shows the statistics on these APIs. To ease the
replication of this study, all these APIs are included in the EMB repository (EvoMaster
Benchmark (EMB), 2022).

The APIs cs-rest-ncs and cs-rest-scs were chosen in this study to make sure that our
SBST heuristics for .NET do work properly for numeric and string constraints. As previous
results for the JVM show good results for SBST techniques on these APIs (e.g., Arcuri &
Galeotti, 2021), we should expect the same good results for .NET if our techniques work as
intended. To show the application of our techniques on actual RESTful APIs, we searched
GitHub for .NET RESTful APIs, prioritizing based on popularity (represented with num-
ber of stars). Unfortunately, although C#/.NET is widely popular in industry, for historical
reasons (e.g., due to close-source tooling and tights to the Windows platform), it is less so
among open-source projects (although in the recent years, things have started to change).
Finding suitable APIs among open-source projects turned out to be rather challenging. The
API menu-api was the first one that we found that met our criteria.

As discussed in Sect. 3, to the best of our knowledge, there is no existing SBST tech-
nique for white-box testing of .NET programs. Thus, to evaluate the effectiveness of our
approach, we performed a comparison between two algorithms developed in EvoMastEr,
i.e., MIO and random, regarding their performances achieved by generated tests. MIO is
the default algorithm employed with SBST heuristics in EvoMastEr for test generations,
while random is just a naive random search, used as baseline. Note that the random algo-
rithm could be regarded as gray-box testing since it still tracks tests based on what tar-
gets are covered (e.g., line coverage) and outputs the best of them at the end. We do not
compare with other black-box fuzzers in this paper, as black-box EvoMastEr (which just
does a random search) already gives the best results in existing tool comparisons (Kim
et al., 2022; Zhang & Arcuri, 2022).

In the context of software testing, we used four criteria to assess the performance of
the techniques, i.e., target coverage (#Targets), line coverage (%Lines), branch coverage
(%Branches), and detected faults (#Faults). #Targets is the aggregated criterion which
considers all coverage metrics that EvoMastEr optimizes for (e.g., including coverage of
HTTP status codes per endpoint). With our instrumentation, we enable class coverage,
line coverage, statement coverage, and branch coverage as parts of the #Targets to be opti-
mized. Regarding %Lines and %Branches, they are widely applied metrics to assess test-
ing approaches in practice. Faults are detected based on returned 500 HTTP status code
and on mismatches in the responses based on the API schemas. Regarding parameter set-
tings, in the first set of experiments, the search budget for the two algorithms is assigned
as 100,000 HTTP calls, which is a commonly used setting by existing research work with

Table 3 Statistics on the used
APIs, including the number
of lines of code (#LOCs) and
number of REST endpoints
(#Endpoints)

Name #LOCs #Endpoints

cs-rest-ncs 809 6
cs-rest-scs 759 11
menu-api 2706 12

2 https:// github. com/ chayx ana/ Resta urant- App

https://github.com/chayxana/Restaurant-App

1456 Software Quality Journal (2023) 31:1439–1465

1 3

EvoMastEr (Arcuri, 2019; Arcuri & Galeotti, 2021; Zhang & Arcuri, 2021). In the second
set of experiments, we used 1 h as stopping criterion. For the other parameters (e.g., F and
P
r
), we apply their default values as EvoMastEr. Considering randomness inherited from

search algorithms, we repeated our experiments 10 times for MIO and random algorithms
on the three case studies, by following common guidelines in the literature (Arcuri &
Briand, 2014). The experiment was executed on a DELL laptop with the following speci-
fications: Processor 11th Gen Intel(R) Core(TM) i9-11950 H @2.60GHz 2.61 GHz; RAM
32 GB; Operating System 64-bit Windows 10.

5.3 Experiment results

5.3.1 Results for RQ1

To answer RQ1, Table 4 presents average coverage results achieved by MIO and random
with #Targets, %Lines, %Branches, and #Faults. Based on the average results, MIO con-
sistently achieves the best for both numeric and string problems on all the four metrics. In
the table, we also performed a statistical analysis to compare MIO and random with four
metrics using Mann–Whitney-Wilcoxon U-tests (p-value) and Vargha-Delaney effect sizes
(Â12). In the table, the value in bold indicates that MIO is significantly better, i.e., p-value
< 0.05 (significance level) and Â12 > 0.5 . Considering the results shown in the Table 4 for
cs-rest-ncs and cs-rest-scs, MIO significantly outperforms random for all metrics, with
high effect sizes and low p-values on the case studies. For menu-api, there is no significant
difference between two algorithms.

Figure 3 reports plot-lines displaying changes on the number of covered targets achieved
by MIO and random throughout the search, collected at different time intervals.

For cs-rest-ncs and cs-rest-scs, MIO shows a clear advantage over random throughout
the whole search. This further demonstrates the effectiveness of white-box SBST heuristics
to solve numeric and string problems.

Regarding the number of found faults (i.e.,#Faults), MIO has managed to find one more
compared to random for cs-rest-ncs. However, no improvement is achieved for cs-rest-scs
and menu-api. This is understandable for menu-api as MIO did not have any higher cover-
age which reduces the likelihood of detecting more faults. The higher coverage could result

Table 4 Average and pairwise
comparison results for MIO and
random with four metrics, i.e.,
#Targets, %Lines, %Branches,
and #Faults

SUT Metrics MIO Random Â12
p-value Relative

cs-rest-ncs #Targets 992.1 656.4 1.00 ≤0.001 +51.14%
%Lines 85.5% 55.4% 1.00 ≤0.001 +54.36%
%Branches 76.4% 51.6% 1.00 ≤0.001 +47.93%
#Faults 6.0 5.0 1.00 ≤0.001 +20.00%

cs-rest-scs #Targets 967.8 617.6 1.00 ≤0.001 +56.71%
%Lines 73.6% 57.4% 1.00 ≤0.001 +28.03%
%Branches 32.5% 25.9% 1.00 ≤0.001 +25.33%
#Faults 1.0 1.0 0.50 NaN +0.00%

menu-api #Targets 333.5 333.7 0.43 0.588 –0.06%
%Lines 29.1% 29.1% 0.50 NaN +0.00%
%Branches 1.8% 1.7% 0.55 0.651 +2.70%
#Faults 22.7 23.0 0.35 0.077 –1.30%

1457Software Quality Journal (2023) 31:1439–1465

1 3

in more detected errors. Regarding cs-rest-scs, since it is an artificial SUT with less com-
plexity compared to menu-api, the one detected fault could be the only existing potential
fault in the code. Figure 4 shows a generated test case for menu-api that detects an internal
server error. The error occurs when the client tries to access a specific food item but the
resulted HTTP status code is 500 which denotes an error on the server side.

Conclusion for RQ1: With results on two of the case studies, our white-box tech-
nique achieved significant higher code coverage over the gray-box random testing in
the two out of three case studies. This demonstrates the effectiveness of SBST heu-
ristics in guiding white-box testing of numerical and string programs in .NET.

5.3.2 Results for RQ2

Based on the results in Table 4, MIO achieved 85.5% line coverage on cs-rest-ncs, 73.6%
line coverage on cs-rest-scs, and 29.1% line coverage on menu-api on average with 10 rep-
etitions. To analyze the performance in detail, we further investigated code coverage by
executing the best and worst tests on the SUTs using Jetbrains Rider (JetBrains Rider).
Note that the line coverage reported by EvoMastEr instrumentation excludes the coverage
achieved at boot-time. Therefore, the coverage reported by Rider would be higher than the
coverage in Table 4.

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Budget Percentage

C
ov

er
ed

 T
ar

ge
ts

5 10 20 30 40 50 60 70 80 90 100

MIO
RAND

(a) cs-rest-ncs
60

0
70

0
80

0
90

0

Budget Percentage

C
ov

er
ed

 T
ar

ge
ts

5 10 20 30 40 50 60 70 80 90 100

MIO
RAND

(b) cs-rest-scs

32
0.

6
32

0.
8

32
1.

0
32

1.
2

32
1.

4
32

1.
6

Budget Percentage

C
ov

er
ed

 T
ar

ge
ts

5 10 20 30 40 50 60 70 80 90 100

MIO
RAND

(c) menu-api

Fig. 3 Average covered targets (y-axis) achieved by MIO (blue) and random (red) throughout the search
(RQ1) at every 5% intervals of the budget spent by the search (x-axis)

Fig. 4 An example of a generated test case which detects a potential fault based on 500 HTTP status code

1458 Software Quality Journal (2023) 31:1439–1465

1 3

Figure 5 shows the code of one test generated for cs-rest-ncs. Here, an asynchronous
HTTP call is made toward the endpoint /api/triangle/653/653/653. Then, the
test verifies that the status code of the HTTP request is 200, the body payload is of type
JSON, and finally the JSON response has a field called result with value equal to
3. Note that, when a test suite is generated containing several tests, scaffolding code is
generated as well, like, for example, the one presented in Fig. 6. Here, the API is started,
reset at each test execution, and shut down once all tests are completed (using the driver
classes directly, like NcsDriver.EmbeddedEvoMasterController() in this
case). This is essential to be able to use these kinds of tests for regression testing.

Fig. 5 Example of generated test for cs-rest-ncs

Fig. 6 Example of generated test suite scaffolding

1459Software Quality Journal (2023) 31:1439–1465

1 3

Regarding cs-rest-ncs, we found that most of the numerical branches could be solved,
i.e., the line coverage on NCS.Imp namespace is between 93 (the worst test suite of 10
repetitions) and 98% (the best test suite of 10 repetitions) on Fisher, Remainder,
Triangle, Bessj, Expint, and Gammq. By checking the uncovered code, they are
due to dead-code, e.g., if(n==2) branch of Bessj.BessjFunction(n,x) cannot
be covered since there is precheck before invoking the method. Then, cs-rest-ncs could be
regarded as a solved problem.

Regarding cs-rest-scs, the code coverage on SCS.Imp namespace is between 72 (the
worst) and 86% (the best). In most of cases, MIO is capable of achieving over 73% cov-
erage on Costfuns, DateParse, NotyPevear, Ordered4, Title, Text2Txt,
Calc, Cookie, Regex, and Pat. By comparing the worst and the best, Ordered4
shows a large difference on Ordered4 (i.e., 33% by the worst vs. 100% by the best). The
uncovered code by the worst run is related to int string.Compare(x,y) (e.g.,
string.Compare(z, y, StringComparison.Ordinal)> 0). Since we do
not have heuristic for this method which returns int, covering such branches would be by
chance. Further heuristic with replacement method would be needed to better cover such
branches. Another large difference between the worst and the best is on Pat related to
length of a string (55% vs. 95%), which does not have any direct string input. Then, in
order to solve such branches, there might need a larger search budget. This is an experi-
ment that would be conducted in the future. Moreover, both of the worst and the best run
achieved 73% line coverage on Regex and limited coverage (i.e., 16%) on FileSuf-
fix. For Regex, it is related to predicates using a method System.Text.Regu-
larExpressions.Regex.IsMatch(txt, pattern). The pattern could be
url or date in this case study. To cover such branch, testability transformations (Arcuri &
Galeotti, 2021) are required to be implemented in our approach for.NET programs. For
FileSuffix, there is no code which could be covered after line 3 as below:

The branch target could be solved if there exists at least one “.” in the string file.
However, we now only enable replacing methods of String which are related to boolean
predicates (as discussed in Sect. 4.3.2). To effectively have such string separa-
tor, taint analysis and replacement methods are needed to support for the methods, e.g.,
Split, which have not been handled yet. Thus, without any further handling on these meth-
ods with white-box heuristics, related branches might be not easy to solve by the search
within the given budget (i.e., 100k HTTP calls). However, those methods could be further
supported, e.g., by involving string separator of Split as parts of our taint analysis.

Regarding menu-api, there is no difference between the worst and the best. Both achieve
67% line coverage on Menu.API namespace. In addition, as it is shown in Table 4, no sig-
nificant better results are yielded in any of the metrics by MIO. As we checked in the uncov-
ered code, this is mainly due to lack of supporting databases in our instrumentation heuris-
tics. For JVM white-box testing, EvoMastEr supports SQL handling (Arcuri & Galeotti,
2020) which can calculate heuristics for SQL queries and insert data directly into database.
However, currently, for this replication study, we did not implement yet such technique in
our bytecode instrumentation, as it is a complex engineering effort. This is also an area for
further improvement in the future. Based on above analysis, we can conclude the following:

1460 Software Quality Journal (2023) 31:1439–1465

1 3

Conclusion for RQ2: With a further analysis on code coverage in detail, we found
that our white-box SBST heuristics are capable of fuzzing .NET/C# REST API,
i.e., the line coverage achieved by generated tests is between 67 and 98%. However,
we also identify some limitations due to lack of handling on database which can be
addressed in future work.

5.3.3 Results for RQ3

The evaluation conducted to answer the first two research questions used stopping criterion
100,000 as the maximum number of evaluated actions (i.e., HTTP calls), as each test case
could have a different number of actions in them (and so the number of fitness evaluations
would not be a fair metric for comparisons). With the maximum 100,000 HTTP calls as
stopping criterion, the average execution time per run was 23min. But, the time spent for
different case studies or configurations could be different.

To investigate impacts of different stopping criterion (i.e., the maximum number of
HTTP calls vs. time budget), we conducted a further experiment with 1 h time budget as
stopping criterion. Table 5 contains the results of these new experiments. The obtained
results do not show any meaningful difference with that of Table 4. It shows that applying
time as stopping criterion has not made any significant difference.

Table 5 Average and pairwise
comparison results of run with
1-h time budget for MIO and
random with four metrics, i.e.,
#Targets, %Lines, %Branches
and #Faults

SUT Metrics MIO Random Â12
p-value Relative

cs-rest-ncs #Targets 991.8 656.6 1.00 ≤0.001 +51.05%
%Lines 85.8% 55.5% 1.00 ≤0.001 +54.63%
%Branches 76.1% 51.5% 1.00 ≤0.001 +47.69%
#Faults 6.0 5.0 1.00 ≤0.001 +20.00%

cs-rest-scs #Targets 916.2 661.0 1.00 ≤0.001 +38.61%
%Lines 70.8% 60.7% 1.00 ≤0.001 +16.72%
%Branches 32.0% 27.7% 0.95 ≤0.001 +15.81%
#Faults 1.0 1.0 0.50 NaN +0.00%

menu-api #Targets 333.7 333.6 0.55 0.681 +0.03%
%Lines 29.1% 29.1% 0.50 NaN +0.00%
%Branches 1.7% 1.7% 0.55 0.681 +2.78%
#Faults 23.0 23.0 0.50 NaN +0.00%

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Budget Percentage

C
ov

er
ed

 T
ar

ge
ts

5 10 20 30 40 50 60 70 80 90 100

MIO
RAND

(a) cs-rest-ncs

65
0

70
0

75
0

80
0

85
0

90
0

Budget Percentage

C
ov

er
ed

 T
ar

ge
ts

5 10 20 30 40 50 60 70 80 90 100

MIO
RAND

(b) cs-rest-scs

32
1.

60
32

1.
62

32
1.

64
32

1.
66

32
1.

68
32

1.
70

Budget Percentage

C
ov

er
ed

 T
ar

ge
ts

5 10 20 30 40 50 60 70 80 90 100

MIO
RAND

(c) menu-api

Fig. 7 Average covered targets (y-axis) achieved by MIO (blue) and random (red) throughout the search
(RQ3) at every 5% intervals of the 1-h time budget spent by the search (x-axis)

1461Software Quality Journal (2023) 31:1439–1465

1 3

In addition, Fig. 7 shows changes on the number of covered targets achieved by MIO
and random throughout the experiment with 1-h time budget. Similar to Fig. 3, MIO has
yielded better results compared to random when applied to cs-rest-ncs and cs-rest-scs.
However, there is no significant improvement by applying MIO to menu-api as it deals
with databases which we currently lack supporting them in our instrumentation heuristics.

Conclusion for RQ3: We applied 1-h time budget as stopping criterion for the search
algorithms, but the outcome did not indicate any significant difference.

6 Threats to validity

Conclusion validity This study is in the context of SBST. To consider randomness of the
search algorithm, our experiment was repeated 10 times for avoiding results obtained by
chance. With the results, we employed statistical analysis methods, i.e., Mann–Whitney-Wil-
coxon U-tests (p-value) and Vargha-Delaney effect sizes (Â12), for drawing the conclusion.
Internal validity It is hard to guarantee that there is no bug in our implementation. How-
ever, we have made our implementation and case studies available online (i.e., on GitHub
and Zenodo) that allows anyone to review and replicate this study.

External validity This study was conducted with two artificial .NET REST APIs and one
open-source .NET API. To better generalize our results, there is a need to involve more
case studies. However, in the context of REST API testing, there is only few open-source
projects that are available. This makes difficult to find more case studies when conduct-
ing this kind of experiments. At any rate, our results clearly show the need to handle SQL
databases before expanding such case study, but it is a major engineering and research
endeavor. Our techniques could be used also in other contexts, like, for example, unit test
generation (e.g., EvoSuite for Java (Fraser & Arcuri, 2011)). But, without empirical valida-
tion, we cannot be sure they would be effective in those contexts as well.

7 Conclusions

.NET/C# is one of the most popular programming languages, widely used in industry for
building cloud-based and internet-connected applications. However, to the best of our
knowledge, there does not exist any SBST technique in the literature for automating white-
box testing of .NET/C# programs.

In this paper, we developed a .NET bytecode instrumentation to apply existing white-
box SBST heuristics based on branch distance. With such techniques, we could enable
runtime coverage collection and provide effective guidance to search for testing of C#
applications, replicating existing SBST success stories for Java and JavaScript program-
ming languages.

We integrated our novel techniques as an extension to the open-source tool EvoMas-
tEr. We conducted experiments with three .NET RESTful APIs. The results yielded by
two of these experiments show that our approach achieves significantly better performance
than a gray-box random testing technique. However, based on the results by one of the

1462 Software Quality Journal (2023) 31:1439–1465

1 3

case studies which handles a database, our approach does not perform better than random
testing. In addition, with a further analysis on code coverage achieved by the generated
tests, we found that our approach is quite effective at solving numerical and string related
branches. It achieves line coverage between 67 (at least) and 98% (at most), among the 10
repetitions on two of the case studies.

In theory, any application that is being converted into CIL code can use the instrumen-
tation component. As it is based on EvoMaster, which is dependent on OpenAPI schema,
our proposed approach has only been empirically tested for REST APIs. It is difficult to
determine right now without adequate empirical information how it could perform on other
types of applications. Our solution does not directly advance black-box testing; instead, it
only concentrates on white-box testing. The ability to produce test cases in C#, if neces-
sary, for black-box testing is still of potential value. However, rather than being a scientific
novelty, that would be more of a technical/usability improvement.

As this is the first work in the literature on the application of white-box SBST for
.NET/C# applications, more needs to be done (e.g., effective support for databases) to be
able to scale these techniques to large industrial systems. Another possible future work can
be to try to improve effectiveness of generating test inputs by the aid of machine learn-
ing techniques for inferring potential relationships among actions and parameters of REST
APIs. Still, this work provides the important first initial scientific steps toward such direc-
tion. Furthermore, all our code implementation is available on GitHub and Zenodo, which
can be used as bootstrap for other applications of SBST techniques for .NET applications
besides web services like RESTful APIs.

Author contribution All authors contributed to the writing of the main manuscript. The first draft of the
manuscript was written by Amid Golmohammadi and Man Zhang. Then, Andrea Arcuri updated and com-
mented on previous versions of the manuscript. All authors reviewed the manuscript and approved the final
version.

Funding Open access funding provided by Kristiania University College. This work is supported by the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gram (grant agreement no. 864972).

Data availability All data used to conduct the experiment (i.e., source code of EvoMastEr.NETwith .NET
bytecode instrumentation, statistics of generated tests, scripts for deploying the experiment, and analyzing
results) is available on GitHub (www. evoma ster. org).

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

https://www.evomaster.org
http://creativecommons.org/licenses/by/4.0/

1463Software Quality Journal (2023) 31:1439–1465

1 3

References

Alshraideh, M., & Bottaci, L. (2006). Search-based software test data generation for string data using pro-
gram-specific search operators. Software Testing, Verification, and Reliability, 16(3), 175–203. https://
doi. org/ 10. 1002/ stvr. v16:3

Arcuri, A. (2018a). EvoMaster: Evolutionary multi-context automated system test generation. In IEEE
International Conference on Software Testing, Verification and Validation (ICST). IEEE.

Arcuri, A. (2018b). Test suite generation with the Many Independent Objective (MIO) algorithm. Infor-
mation and Software Technology, 104, 195–206.

Arcuri, A. (2018c). An experience report on applying software testing academic results in industry: We
need usable automated test generation. Empirical Software Engineering, 23(4), 1959–1981.

Arcuri, A. (2019). RESTful API automated test case generation with EvoMaster. ACM Transactions on
Software Engineering and Methodology (TOSEM), 28(1), 3.

Arcuri, A. (2020). Automated black-and white-box testing of restful APIs with EvoMaster. IEEE Soft-
ware, 38(3), 72–78.

Arcuri, A., Galeotti, J. P., Marculescu, B., & Zhang, M. (2021). EvoMaster: A search-based system test
generation tool. Journal of Open Source Software, 6(57), 2153.

Arcuri, A., ZhangMan, asmab89, Bogdan, Gol, A., Galeotti, J. P., Seran, A., López, A. M., Aldasoro, A.,
Panichella, A., & Niemeyer, K. (2022). EMResearch/EvoMaster: (v1.5.0). Zenodo. https:// doi. org/
10. 5281/ zenodo. 66516 31

Arcuri, A., & Briand, L. (2011). Adaptive random testing: An illusion of effectiveness? In ACM Interna-
tional Symposium on Software Testing and Analysis (ISSTA), pp. 265–275.

Arcuri, A., & Briand, L. (2014). A hitchhiker’s guide to statistical tests for assessing randomized algo-
rithms in software engineering. Software Testing, Verification and Reliability (STVR), 24(3),
219–250.

Arcuri, A., & Galeotti, J. P. (2020). Handling SQL databases in automated system test generation. ACM
Transactions on Software Engineering and Methodology (TOSEM), 29(4), 1–31.

Arcuri, A., & Galeotti, J. P. (2021). Enhancing search-based testing with testability transformations for
existing APIs. ACM Transactions on Software Engineering and Methodology (TOSEM), 31(1), 1–34.

Atlidakis, V., Godefroid, P., & Polishchuk, M. (2019). RESTler: Stateful REST API fuzzing. In ACM/
IEEE International Conference on Software Engineering (ICSE), pp. 748–758.

Belhadi, A., Zhang, M., & Arcuri, A. (2022). Evolutionary-based automated testing for GraphQL APIs.
In Genetic and Evolutionary Computation Conference (GECCO).

ECMA-335. Common Language Infrastructure (CLI). https:// www. ecma- inter natio nal. org/ publi catio ns-
and- stand ards/ stand ards/ ecma- 335/. Online, Accessed 3 August 2023

EvoMaster. https:// github. com/ EMRes earch/ EvoMa ster. Online, Accessed 3 August 2023
EvoMaster Benchmark (EMB). https:// github. com/ EMRes earch/ EMB. Online, Accessed 20 May 2022.
Fraser, G., & Arcuri, A. (2011). EvoSuite: Automatic test suite generation for object-oriented software.

In ACM Symposium on the Foundations of Software Engineering (FSE), pp. 416–419.
Garousi, V., Eskandar, M. M., & Herkiloğlu, K. (2016). Industry-academia collaborations in software

testing: Experience and success stories from Canada and Turkey. Software Quality Journal, 1–53.
Garousi, V., & Felderer, M. (2017). Worlds apart: A comparison of industry and academic focus areas in

software testing. IEEE Software, 34(5), 38–45.
Garousi, V., Felderer, M., Kuhrmann, M., & Herkiloğlu, K. (2017). What industry wants from academia

in software testing? Hearing practitioners’ opinions. In Proceedings of the 21st International Con-
ference on Evaluation and Assessment in Software Engineering, pp. 65–69. ACM.

Garousi, V., Pfahl, D., Fernandes, J. M., Felderer, M., Mäntylä, M. V., Shepherd, D., Arcuri, A., Coşkunçay,
A., & Tekinerdogan, B. (2019). Characterizing industry-academia collaborations in software engineer-
ing: Evidence from 101 projects. Empirical Software Engineering, 24(4), 2540–2602.

Harman, M., Mansouri, S. A., & Zhang, Y. (2012). Search-based software engineering: Trends, tech-
niques and applications. ACM Computing Surveys (CSUR), 45(1), 11.

Hatfield-Dodds, Z., & Dygalo, D. (2022). Deriving semantics-aware fuzzers from web API schemas. In
2022 IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), pp. 345–346. IEEE

JetBrains Rider. https:// www. jetbr ains. com/ rider. Online, Accessed 3 August 2023
Kim, M., Xin, Q., Sinha, S., & Orso, A. (2022). Automated test generation for REST APIs: No time to

rest yet. arXiv. https:// doi. org/ 10. 48550/ ARXIV. 2204. 08348, https:// arxiv. org/ abs/ 2204. 08348
Korel, B. (1990). Automated software test data generation. IEEE Transactions on Software Engineering,

16(8), 870–879.

https://doi.org/10.1002/stvr.v16:3
https://doi.org/10.1002/stvr.v16:3
https://doi.org/10.5281/zenodo.6651631
https://doi.org/10.5281/zenodo.6651631
https://www.ecma-international.org/publications-and-standards/standards/ecma-335/
https://www.ecma-international.org/publications-and-standards/standards/ecma-335/
https://github.com/EMResearch/EvoMaster
https://github.com/EMResearch/EMB
https://www.jetbrains.com/rider
https://doi.org/10.48550/ARXIV.2204.08348
https://arxiv.org/abs/2204.08348

1464 Software Quality Journal (2023) 31:1439–1465

1 3

Laranjeiro, N., Agnelo, J., & Bernardino, J. (2021). A black box tool for robustness testing of rest ser-
vices. IEEE Access, 9, 24738–24754.

Lehre, P. K., & Yao, X. (2007). Runtime analysis of (1+1) EA on computing unique input output
sequences. In IEEE Congress on Evolutionary Computation (CEC), pp. 1882–1889.

Martin-Lopez, A., Segura, S., & Ruiz-Cortés, A. (2021). RESTest: Automated black-box testing of
RESTful Web APIs. In ACM International Symposium on Software Testing and Analysis (ISSTA),
pp. 682–685. ACM.

Mao, K., Harman, M., & Jia, Y. (2016). Sapienz: Multi-objective automated testing for android applications.
In ACM International Symposium on Software Testing and Analysis (ISSTA), pp. 94–105. ACM.

Pacheco, C., Lahiri, S. K., Ernst, M. D., & Ball, T. (2007). Feedback-directed random test generation. In
ACM/IEEE International Conference on Software Engineering (ICSE), pp. 75–84.

Panichella, S., Gambi, A., Zampetti, F., & Riccio, V. (2021). SBST tool competition 2021. In 2021 IEEE/
ACM 14th International Workshop on Search-Based Software Testing (SBST), pp. 20–27. IEEE.

The State of the Octoverse. https:// octov erse. github. com/. Online, Accessed 3 August 2023
Tillmann, N., & de Halleux, J. (2008). Pex — White box test generation for .NET. In TAP’08: International

Conference on Tests And Proofs. LNCS, vol. 4966, pp. 134–253. Springer.
Viglianisi, E., Dallago, M., & Ceccato, M. (2020). RESTTESTGEN: Automated black-box testing of restful

APIs. In IEEE International Conference on Software Testing, Verification and Validation (ICST). IEEE.
Wu, H., Xu, L., Niu, X., & Nie, C. (2022). Combinatorial testing of restful APIs. In ACM/IEEE Interna-

tional Conference on Software Engineering (ICSE).
Zhang, M., & Arcuri, A. (2021). Adaptive hypermutation for search-based system test generation: A

study on rest APIs with EvoMaster. ACM Transactions on Software Engineering and Methodology
(TOSEM), 31(1).

Zhang, M., & Arcuri, A. (2022). Open problems in fuzzing restful APIs: A comparison of tools. arXiv pre-
print: arXiv: 2205. 05325

Zhang, M., Arcuri, A., Li, Y., Xue, K., Wang, Z., Huo, J., & Huang, W. (2022). Fuzzing microservices in
industry: Experience of applying EvoMaster at Meituan. arXiv. https:// doi. org/ 10. 48550/ ARXIV. 2208.
03988, https:// arxiv. org/ abs/ 2208. 03988

Zhang, M., Belhadi, A., & Arcuri, A. (2022). Javascript instrumentation for search-based software testing:
A study with restful APIs. In IEEE International Conference on Software Testing, Verification and
Validation (ICST). IEEE.

Zhang, M., Marculescu, B., & Arcuri, A. (2019). Resource-based test case generation for restful web ser-
vices. In Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1426–1434.

.NET Platform. https:// github. com/ dotnet. Online, Accessed 3 August 2023

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Amid Golmohammadi is a researcher and software developer. He
works as a PhD Research Fellow at Kristiania University College,
where he is a member of the Artificial Intelligence in Software Engi-
neering (AISE) lab. His research currently focuses on applying evolu-
tionary techniques to improve automated testing of RESTful APIs.

https://octoverse.github.com/
https://arxiv.org/abs/2205.05325
https://doi.org/10.48550/ARXIV.2208.03988
https://doi.org/10.48550/ARXIV.2208.03988
https://arxiv.org/abs/2208.03988
https://github.com/dotnet

1465Software Quality Journal (2023) 31:1439–1465

1 3

Man Zhang is a Senior Researcher at the Artificial Intelligence in Soft-
ware Engineering (AISE) Lab, Kristiania University College, Norway.
She obtained her PhD in Computer Science at Simula Research Labora-
tory and University of Oslo, Norway (2015 - 2018). Her main research
focuses on developing novel approaches with advanced techniques
(such as AI) for automated test generation for enterprise systems.

Prof. Andrea Arcuri is a Professor of Software Engineering at Kristiania
University College and Oslo Metropolitan University, Oslo, Norway.
His main research interests are in software testing, especially test case
generation using evolutionary algorithms. Having worked 5 years in
industry as a senior engineer, a main focus of his research is to design
novel research solutions that can actually be used in practice. Prof.
Arcuri is the main-author of EvoMaster and a co-author of EvoSuite,
which are open-source tools that can automatically generate test cases
using evolutionary algorithms. He received his PhD in search-based
software testing from the University of Birmingham, UK, in 2009.

	.NETC# instrumentation for search-based software testing
	Abstract
	1 Introduction
	2 Background
	2.1 .NET programming
	2.2 The MIO algorithm
	2.3 Branch distance

	3 Related work
	4 .NET instrumentation
	4.1 Bytecode instrumentation
	4.2 Code coverage
	4.3 Branch distance
	4.3.1 Numeric
	4.3.2 String

	4.4 Integration with EvoMaster for .NET testing

	5 Empirical study
	5.1 Research questions
	5.2 Experiment setup
	5.3 Experiment results
	5.3.1 Results for RQ1
	5.3.2 Results for RQ2
	5.3.3 Results for RQ3

	6 Threats to validity
	7 Conclusions
	References

