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JavaScript is one of the most popular programming languages. However, its dynamic nature poses several
challenges to automated testing techniques. In this paper, we propose an approach and open-source tool sup-
port to enable white-box testing of JavaScript applications using Search-Based Software Testing (SBST)

techniques. We provide an automated approach to collect search-based heuristics like the common Branch

Distance and to enable Testability Transformations. To empirically evaluate our results, we integrated our
technique into the EvoMaster test generation tool, and carried out analyses on the automated system testing

of RESTful and GraphQL APIs. Experiments on eight Web APIs running on NodeJS show that our technique
leads to significantly better results than existing black-box and grey-box testing tools, in terms of code cov-
erage and fault detection.
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1 INTRODUCTION

As of 2020, according to the official statistics of GitHub [23] (the most popular hosting solution
for open-source software), JavaScript has been for several years the most common programming
language for its hosted repositories. JavaScript has been mainly known for running code in the
browser, but it can also be used for server-side applications using NodeJS [15], as well as desktop
applications (e.g., using Electron [7]) and mobile apps (e.g., using Ionic [9]).

JavaScript (more formally, ECMAScript [6]) is a weakly and dynamically typed language. These
language properties differentiate JavaScript from other popular programming languages, such as
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Java, C#, and C/C++. Unfortunately, the lack of strong typing significantly complicates static and dy-
namic analyses [27], including automated test generation. An approach to add types to JavaScript
is TypeScript, which is a programming language that is a superset of JavaScript (i.e., any JavaScript
code is valid in TypeScript). However, TypeScript does not run on either the browser or the server
(e.g., NodeJS runtime), and has to be transpiled to JavaScript (e.g., similarly to how Java programs
need to be compiled into bytecode to run on the JVM).

In this paper, we show how Search-Based Software Testing (SBST) [25, 65, 66, 79] techniques
can be used for JavaScript applications (and applications in other languages like TypeScript that get
transpiled into JavaScript). We describe how common techniques in the literature like the Branch
Distance [26, 55, 69] can be used for JavaScript source code. In particular, we deal with the issues of
dynamic types and exception handling in composed predicates and short-circuit operations. To the
best of our knowledge, this is the first full solution for the handling of SBST heuristics for JavaScript
source code. We implemented our technique in an open-source tool, as a fully automated plugin
for Babel [1] (which is a popular tool for JavaScript code transformations).

Our instrumentation would enable the use of SBST techniques in different testing contexts, for
example, unit testing. To empirically evaluate the effectiveness of our JavaScript instrumentation,
we integrated it into the EvoMaster [28] tool, which does automated system test generation for
RESTful and GraphQL APIs running on the JVM (e.g., compiled from programming languages such
as Java, Kotlin, and Scala). This can be considered as a form of fuzzing,1 as we generate system
level test cases to automatically find faults (e.g., due to software crashes that lead to responses with
HTTP 500 status code). EvoMaster uses evolutionary algorithms like MIO [29] enhanced with
adaptive hypermutation [90], based on fitness functions that exploit SBST heuristics.

The empirical study was conducted on eight different systems under test (SUTs) running on
NodeJS, in which we compared our white-box SBST approach with grey-box random testing (in
which only coverage metrics are employed, and no SBST heuristics are used), and three black-box
approaches: the one provided by EvoMaster, RESTler [40], and RestTestGen [86]. The results of
our experiments show that EvoMaster integrated with our SBST heuristics for JavaScript achieves
the best results, both in terms of code coverage and fault finding.

This paper is an extension of [93]. Here, we provide further novel research contributions by
designing techniques to enable testability transformation with taint analysis [35] in JavaScript pro-
grams (Section 3.5), as well as improving heuristics on short-circuit operations with purity analy-
sis (Section 3.4) and accesses to arrays/objects (Section 3.6) and handling of the ternary operator
(Section 3.7). Furthermore, besides adding one more RESTful API for the experiments, we also ex-
tended the experiments to include two GraphQL APIs, as now EvoMaster can generate tests for
this kind of Web API as well [43] (Section 4.1). We added new analyses to evaluate performance
of the compared algorithms through time (Section 4.3.2). Furthermore, we also repeated all the
experiments with the other black-box fuzzers (i.e., RESTler and RestTestGen), to use their most
recent versions, running them for a longer amount of time, 1 hour (Section 4.3.3).

This paper provides the following contributions to the state of the art:

• A full working approach to enable SBST for JavaScript applications;
• A novel algorithmic approach to handle SBST heuristics in JavaScript applications;

1The term “fuzz” originated from Miller et al. [81] that refers to a program which does facilitate “generating random input
strings” in order to test UNIX utilities [81]. “Fuzzing” (or ‘‘Fuzz testing”) now has been widely used to refer to an automated
software testing technique for detecting faults by automatically generating tests or test inputs [57, 75, 89, 96] that has been
applied in various contexts of software testing, e.g., security testing [56, 58, 59], GUI testing [61, 85], testing of Android
system services [49], compiler testing [50, 72], and Web API testing [40, 44, 74, 91, 92]. An implementation of “fuzzing” can
be called as “fuzzer” [91, 96].
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• An empirical study on the testing of RESTful and GraphQL APIs showing the improvement
of our approach compared to three state-of-the-art tools;
• An open-source implementation, together with all the scripts used to run the experiments.

The rest of the paper is organized as follows: related work is discussed in Section 2. Our proposed
approach is explained in Section 3 followed by its empirical study (Section 4). We discuss threats
to validity in Section 5, and conclude the paper in Section 6.

2 RELATED WORK

SBST [25, 65, 66, 79] techniques have been successfully used for more than three decades, in
several different testing contexts. Popular SBST examples are EvoSuite [53] for unit testing, and
Sapienz [76] for testing of mobile apps. Evolutionary algorithms are driven by the provided fitness
function. To achieve better results, different heuristics are employed to “smooth” the search land-
scape, providing “gradient” to the search algorithm to reach an optimal solution. In the context of
white-box testing, a popular technique introduced in the 90s by Korel [69] is the so-called Branch
Distance. It was first introduced to handle predicates involving numerical comparisons (e.g., a < b),
and then later refined for logical operators [55] (e.g., AND and OR) and string comparisons [26].

To the best of our knowledge, the only existing SBST work that deals with JavaScript instru-
mentation is the JEDI tool [52], which aims at unit testing of JavaScript code that interacts with
the DOM in the browser. However, this research does not specify how the instrumentation was
done, nor does it mention many of the issues we solve in this paper. It was claimed that JEDI is
open-source [52], but its repository [10] on GitHub is empty at the time of this writing, so it is not
possible to verify if such challenges were addressed.

SBST instrumentation poses quite a few challenges, e.g., when dealing with logic operators such
as && and ||, and exceptions during test evaluation. To compute the branch distance, the code needs
to be manipulated, but still we need to make sure that the semantics of the SUT are not changed.
Tools that work on the JVM (e.g., EvoSuite) have an advantage here, as the bytecode instructions
are significantly simplified compared to their original source code. For example, in JVM bytecode
there is no logical AND/OR operators, as those are compiled into a series of base predicates with
jump instructions. In the past, in the literature of SBST, there has been work on instrumentation
of source code, in particular for the C programming language [70, 88]. However, no full details
were given on how the instrumentation was done. At any rate, some of our techniques rely on spe-
cific properties of JavaScript (e.g., closures), which would not be applicable to other programming
languages such as C.

Regarding dynamic analyses on JavaScript programs with non-SBST techniques, we refer to the
survey of Andreasen et al. [27]. Nevertheless, no technique has been proposed that aimed at system
test generation for web services (e.g., RESTful and GraphQL APIs) written in JavaScript. Most of
the research has been conducted on unit testing (e.g., the more recent [82, 83]). One of the main
challenges here is that the entry point of the SUTs are TCP sockets, and this kind of application
often uses databases. This is a very different scenario compared to other kinds of applications like
parsers where there are no external dependencies. Other testing techniques that are not able to
handle networking and databases cannot, therefore, be used in this testing context.

In the past, tools like Jalangi [84] were proposed to enable different kinds of code analyses on
JavaScript programs. However, they do not support any of the SBST heuristics that we discuss in
this paper.

As far as we know, EvoMaster [28] is currently the only tool that does white-box system test
generation for Web APIs, where being able to deal with networking and databases is a major
requirement. All other techniques presented in the literature are black-box using different variants
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of random testing (e.g., [40, 51, 59, 68, 78, 86]), and so would not be able to exploit any source code
instrumentation.

3 JAVASCRIPT INSTRUMENTATION

3.1 Tool Support

JavaScript code is not compiled directly by users, although for performance reasons it can get
compiled on-the-fly by execution runtime like browsers and NodeJS. When downloading a third-
party library with package managers such as NPM, the source code would be downloaded, as
there is no intermediate compiled representation (like bytecode in environments such as JVM and
.NET). However, it is typical to apply transformations (referred to as transpilation) to JavaScript
source code. Examples are for minimizing the code size (e.g., by removing unnecessary empty lines,
line-return characters and code comments) to make those source files faster to download on the
browser, and to support old browsers (e.g., new features of JavaScript can be transpiled into the
equivalent code in older versions of JavaScript). Another example is to support different languages,
e.g., TypeScript and React JSX, to run on the browser (which only supports JavaScript, and more
recently WebAssembly).

At the time of this writing, the most used JavaScript transpiler is Babel [1], which can be easily
integrated in package managers such as NPM/YARN and bundlers like WebPack. Babel provides a
plugin system, in which different transformations can be applied in sequence.

Our instrumentation for SBST has been implemented as a plugin for Babel, written in TypeScript.
When an SBST technique is applied, Babel needs to be called (e.g., from NPM/YARN) to create an
instrumented version, which is the one that is going to be used as SUT. Probes are added to the
source code of the SUT, where the instrumentation runtime library is automatically added as a
dependency.

All the code instrumentation and transformations discussed in this paper are designed to pre-
serve the semantics of the SUT. For the same inputs, the instrumented SUT should produce the
same outputs as the original non-instrumented version. The motivation here is that test cases
generated for the instrumented version should still behave the same when run by the user for
debugging and regression testing. However, instrumentation can introduce time delays, as more
code is executed. If the SUT strongly depends on time behavior of the runtime of its executing
code (in contrast to waits on I/O operations), then such delays might break some time constraints.
Fortunately, although possible, we have not experienced this type of issue yet in the context of
white-box testing of Web APIs. However, it could happen if the techniques presented in this paper
are applied in other domains.

Instrumentation itself is not enough though, as it needs to be integrated with an SBST test
generation tool. For our experiments in this paper, we employed EvoMaster [28, 30, 36], which
generates system-level test cases for RESTful [31] and GraphQL [43] APIs. EvoMaster has two
main components: a core process and a driver process that is responsible to start/stop/reset the
SUT, plus applying code instrumentation with SBST heuristics. The two processes communicate
via HTTP, where the driver process exposes a series of functionalities as a RESTful API (e.g., having
HTTP endpoints to collect coverage information after a test case has been executed by the core
process as part of the fitness function evaluation). To use EvoMaster, we simply implemented a
new driver program written in JavaScript, implementing the same APIs of the original JVM driver
in EvoMaster. The only modification needed in the core program (which is written in Kotlin) was
to add a new kind of test output to support JavaScript. Currently, EvoMaster can output test cases
(which are sequences of HTTP calls) as JUnit [12] test suite files, in either Java or Kotlin, using the
library RestAssured [19] for making the HTTP calls. We simply implemented a further option to
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output the test cases in JavaScript, as Jest [11] test suite files, using the library SuperAgent [24] for
making the HTTP calls.

3.2 Code Coverage

A JavaScript program is composed of a series of source files, each one having code lines with code
statements. Each of these will become a testing target, and we keep track in our instrumentation
when they get covered by any test case execution. The goal of test generation tools like EvoMaster
is to generate test cases that maximize the number of covered targets.

For each statement in the program, we add a probe that, once executed, tells our instrumen-
tation runtime that the statement has been covered. Consider this simple example of a variable
assignment in a test.ts example file:

1 l e t x = 0 ;

then, its instrumented version would be:

1 const __EM__ = r e q u i r e ( "evomaster -client -js" ) . I n j e c t e d F u n c t i o n s ;

2 __EM__ . r e g i s t e r T a r g e t s ( [ "File_test.ts" , "Line_test.ts_00001" , "Statement_test.

ts_00001_0" ] ) ;

3 __EM__ . e n t e r i n g S t a t e m e n t ( "test.ts" , 1 , 0 ) ;

4 l e t x = 0 ;

5 __EM__ . c o m p l e t e d S t a t e m e n t ( "test.ts" , 1 , 0 ) ;

In the first line, we import the declaration of our runtime probes, with a unique name (e.g.,
__EM__) to avoid clashes with the existing variables of the SUT. Secondly, we mark all the existing
testing targets in this source file. This is needed to know what have not been covered after a test
execution (as which probes are executed depends on the control flow of the SUT). Each target gets
a unique id, with a meaningful name (which helps when debugging). In this case, there are three
targets: one for the file, one for the line, and one for the statement in that line.

In this case, two probes are added to the code: before the statement (i.e., enteringStatement),
and after it (i.e., completedStatement). Those functions take as input info to create the unique
ids for the targets (e.g., the file name, source line, and a unique counter value for each statement
on the same line).

For handling the SBST heuristic values, we use the same approach currently used in EvoMaster.
Each target will have a heuristic value in the range h ∈ [0,1], where 1 represents that the target
is fully covered, and 0 represents that the target is not even reached during a test case evaluation.
Values in between represent how heuristically close a test case was to covering the target.

When enteringStatement is executed, the targets for file and line are marked as covered, i.e.,
h = 1. The one for the statement is marked as 0.5, though. The idea here is that statements might
throw exceptions, and only once a statement is fully completed we can know that no exception
was thrown. This means that in completedStatement the heuristic value is then increased to
h = 1. It is important here to stress the importance of having two separated testing targets for
the line and the statement. Assume, for example, a test case in which an exception is thrown in
the statement (e.g., inside a method call), and so hs = 0.5. If there was no target for the line, then
the test case would not end up in the final output test suite of EvoMaster, as it only outputs
test cases for targets that are fully covered [30]. On the other hand, if we only reported the line
target with hl = 1, then the search would have no way to know that an exception was thrown,
and that there is still the need to do mutations to try to find input data for which an exception
is not thrown. Search algorithms like MIO [29] keep sampling and mutating test cases for targets
that are not fully covered (e.g., hs = 0.5), whereas, for the targets that are covered, the test cases
are saved in an archive, and no longer used in the search (unless there exist copies in the other
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populations for the non-covered targets [29]). Note, though, that a value like hs = 0.5 does not
really give gradient to find input data that leads to no exception. It is used to mainly tell the search
to keep trying to mutate that test case.

One problem, though, is that there are some cases in which completedStatement cannot be
used after a statement. This happens for statements that exit the execution flow, like return,
throw, and break/continue. In this case, we replace enteringStatement with completedState-
ment before the statement. For example, consider the following code snippet:

1 const x = function ( ) {

2 return ;

3 } ;

which would be instrumented into:

1 __EM__ . e n t e r i n g S t a t e m e n t ( "test.ts" , 1 , 0 ) ;

2 const x = function ( ) {

3 __EM__ . markSta tementForComple t ion ( "test.ts" , 2 , 1 ) ;

4 return ;

5 } ;

6 __EM__ . c o m p l e t e d S t a t e m e n t ( "test.ts" , 1 , 0 ) ;

However, there can still be cases in which a return statement could throw an exception, for
example when returning the result of a function call, e.g., return foo(x);. We still want the search
to evolve at least one test case for which no exception is thrown. In this case, the instrumentation
would look like:

1 __EM__ . e n t e r i n g S t a t e m e n t ( "test.ts" , 1 , 0 ) ;

2 return __EM__ . c o m p l e t i n g S t a t e m e n t ( foo ( x ) , "test.ts" , 1 , 0 ) ;

Here, completingStatement would mark the statement as covered (i.e., hs =1), and then return
the value of its first input (recall that the instrumentation should not change the semantics of the
SUT), which is the expression foo(x). Note that, if foo(x) throws an exception, then complet-
ingStatement would not be called, and the heuristic value would remain the same as the one set
in enteringStatement, i.e., hs = 0.5.

Another simple transformation needed here is that, for if, while, and for statements, we need
to add a code block (i.e., curly braces {}) if they have only one inside statement. For example,
something like if(x)foo(y) needs to be rewritten into if(x){foo(y)}. Otherwise, adding probes
(e.g., between the if and foo) would change the control flow execution.

3.3 Branch Distance

The control flow of the SUT can depend on complex predicates, e.g., conditions in if statements.
The branch distance [69] was introduced in the purpose of providing gradients that evolve test
inputs in order to solve those constraints. For example, consider a statement like if(x===42).
Here, if the input x is taken at random, there would be only 1 out of 264 possibilities to make that
predicate true (note that JavaScript has no integer type, but rather it has number type, which is a 64
bit double-precision floating-point number). However, a value like x = 50 would be heuristically
closer to solve that constraint than something like x = 900. Here, a branch distance would be
defined as d (x ) = |x − 42|, for any given input x .

To compute those distances, we replace all occurrences of these binary expression operators:
==, ===, ! =, ! ==, <, <=, >, >=. Given a binary expression A op B, we replace it with:
cmp(A,"op",B,id). The function cmp will return the same result of A op B. However, internally
it will create two new testing targets (based on the unique input id): one for when the expression
is evaluated as true, and one for when it is evaluated as false. Note that this transformation is
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applied anywhere in the code, and not just in the if statements. For example, const x = y > 42
would be instrumented into const x = cmp(y,">",42 ,0) (assuming id = 0). This also helps to
deal with the so called flag problem [64].

For each of these new targets, a heuristic h ∈ [0,1] is computed, which is based on the branch
distance (after a remapping transformation). Note that, when cmp is called, necessarily one of two
conditions will hold: e.g., the predicate is either true or false. So, one of the two targets will be
necessarily covered (i.e., h = 1). If either the evaluation of A or B (which could be functions)
throws an exception, then cmp would not be called anyway.

One challenge here is that JavaScript is weakly typed. It is perfectly valid JavaScript code to
compare an array to an object. For example, something like [] > {} does return false, i.e., an
empty array is not larger/bigger than an empty object. However, a comparison like [] == 0 returns
true, i.e., an empty array and the numeric constant 0 are the same for JavaScript (there are plenty of
these “oddities” in the JavaScript language, besides these simple examples). Therefore, the function
cmp can be called with any type of inputs for A and B, and their types cannot be guaranteed to be
known at instrumentation time. This poses a challenge to determine which branch distance to use
(if any).

The solution here is to check the types at runtime, using the JavaScript typeof operator. If both
A and B are of type number, then Korel’s branch distance [69] is used to compute the h heuristics. If
they are both of type string, then we use the string distances defined in [26]. For all the other input
types, we simply use a binary flag:h = 1 for the target that is covered (i.e., either the true or false
condition), and a value h < 1 for the other (e.g., h = 0.01). Note that cmp will never assign a value
h = 0 for any non-covered target. The idea here is that the search should be able to distinguish
between a testing target that is not even reached (e.g., inside a code block that is not executed)
with a value h = 0 which is always lower (e.g., compared to h = 0.01) than the heuristics for a
target that has been evaluated, even if not covered, regardless of which kind of branch distance we
can use. This helps the search to keep on trying to solve that predicate, possibly keeping mutating
the current test case that led to the execution of that binary expression operator.

3.4 Logical Operators

A major challenge here is how to deal with AND/OR operators. In the 90s, the branch distance for
those operators was defined [55] as:

d (A&&B) = d (A) + d (B) (1)

d (A| |B) =min(d (A),d (B)) (2)

However, when dealing with source code like JavaScript, those equations cannot be directly
applied, due to short-circuited evaluations. For example, in A&&B, if A is false, then B is not com-
puted (recall it could be a function call that returns a boolean). Computing B to derive its branch
distance can lead to breaking the SUT’s semantics if B has side-effects (e.g., changing the value of
some variables). Unfortunately, there are further problems: how to deal with the branch distance
values when there are chained logical operators (e.g., A| |B | |C | |D) without breaking the SUT’s se-
mantics, and how to deal with exceptions. For example, if in A| |B the second clause B throws an
exception, we still want to compute and track the branch distance for A when it is false.

To address these issues, in this paper we provide a novel algorithm that relies on the use
JavaScript’s closure feature [6], which allows access to an outer function’s scope from an inner
function. Each use of | | and && gets replaced by a function call (i.e., or() and and()). However,
the two operands A and B get replaced with function call declarations, e.g., () => A (note that
the arrow operator => is used in JavaScript to define new functions, with the left side being inputs,
and right side being the code of the function). Consider the following code:
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1 const x = y == 42 | | f oo . bar ( ) ;

it will be replaced by:

1 const x = __EM__ . or (

2 ( ) => __EM__ . cmp ( y , "==" , 4 2 , "test.ts" , 1 , 1 ) ,

3 ( ) => foo . bar ( ) ,

4 "test.ts" , 1 , 0 ) ;

Writing something like () => foo.bar() declares a new function with no inputs, which, once
called, executes the function foo.bar() and returns its value. When the or() function is called,
foo.bar() is not executed yet. Note the importance of closures here, as inside or() we would
still need to be able to access the variables y and foo (which might be local to the function where
const x is declared).

The importance of using function declarations is that, inside the functions or() and and(), we
can create two new testing targets (for true and false results of the predicate), before either A or
B is executed (which could lead to exceptions). Their execution can be done inside a try/catch, in
which, if an exception is thrown, all heuristics can be computed and registered before re-throwing
the exception (recall that the semantics of the SUT have to be preserved).

Figure 1 shows our actual implementation of the or() function (written in TypeScript). We
omit the implementation of and(), as it is quite similar to or(). At any rate, as our EvoMaster
extension is released open-source on GitHub, it is available online, with long term storage on
Zenodo [38] (the interested reader can look at the script file HeuristicsForBooleans.ts).

There are a few problems that need to be taken care here. First, there is the need to be able to
access the branch distance (if any) of the left and right operands. This is done using a global
variable lastEvaluation, which needs to be updated inside the cmp function before it returns.
Note that, in JavaScript, there is no need to worry about concurrent access to such a variable from
different threads, as JavaScript has no multi-threading with shared memory.

The class Truthness is just an utility, to store the two heuristic values for the two new testing
targets (i.e., both possible boolean outcomes). Then, when left() is evaluated at line 8, there are
three possible outcomes that affect the heuristics: an exception was thrown, the operand had a
computed heuristics, or none was computed (e.g., when it was simply a boolean variable). In the
first case, both the true and false targets get the worst fitness (i.e., 0.005), but still greater than
0 (line 14), to reward evaluating the or() compared to not even executing it. If the operand had
no existing heuristics, then the two heuristic values will be 1 (for the covered target), and 0.01
(i.e., base) for the other. This depends on the outcome x of the left() evaluation. If there was an
existing heuristic value, before we can use it, it needs to be re-scaled to be not smaller than base
(line 12), which can be done with a simple function like d ′ = b + (1 − b)d .

The right operand can be evaluated only if the left one was evaluated as false, without throw-
ing any exception, or if right is a pure (i.e., with no side-effects) function (line 19). Otherwise,
we cannot guarantee the behavior of the SUT would not be changed by our instrumentation if we
invoke right(). The heuristic computation of right is the same as for left (line 23).

For determining if the right operand is pure, we use a conservative approach, done at instrumen-
tation time. In other words, if there is any possibility that the operand is non-pure (e.g., any kind
of function call or access on an object field that could throw an exception if the object is null), then
isRightPure is marked as false. For example, x==42 would be marked as pure, whereas y.x==42
and x()==42 would not. In other words, we need to make sure that the semantics of the SUT
are not changed, even though we might lose gradient in some cases. In future work, this purity
analysis could be extended with runtime information, to make a more precise evaluation to better
determine when operands are pure.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 6, Article 139. Publication date:
September 2023.

line:left
line:exception
line:rescale
line:pure
line:right


JavaScript SBST Heuristics to Enable Effective Fuzzing of NodeJS Web APIs 139:9

Fig. 1. Implementation for or().

The computation of the combination of the heuristics for left and right (line 31) is inspired
by Equations (1) and (2), but adapted from branch distances to h ∈ [0,1]. On the one hand, the
outcome true is taken when either of the two operands is true, so we can take the maximum
between these two values (line 32). On the other hand, the outcome false happens when both
operands are false, i.e., ¬(A ∨ B) = ¬A ∧ ¬B. Therefore, their heuristic values can be summed
together (like in Equation (1)), but then need to be divided by 2 to still remain in the [0,1] range
(line 33).
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When the left operand throws an exception, the heuristics for the or is based only on the
value of the left (line 35). However, an important detail here is that the heuristic value for the
outcome false still needs to be divided by 2. Otherwise, if after a mutation the left operand is
no longer true (or no longer throwing an exception), then the computation at line 33 could lead to
a worse heuristic value when adding the value for right, instead of being rewarded for making
left evaluated to false.

After the heuristics h are computed for both targets, their values are saved (line 36), and lastE-
valuation is updated (line 37). Then, we need to make sure that we do not change the behavior of
the SUT. If any exception was thrown, we re-throw it (lines 38–39). Otherwise, the original output
of the || is returned.

The last piece of the puzzle is how to deal with the negation !, for example in expressions like
!(x==42). As we already create two testing targets for each boolean expression, there is no need
to define any new heuristics for the ! operator, as no new gradient information can be provided to
help the search. However, we still instrument it, by replacing any !A with a function call not(A).
The reason is that the lastEvaluation variable needs to be updated (if any), by swapping the
heuristic values of the true and false outcomes.

3.5 Testability Transformations

To be able to effectively test an application, an SBST approach needs a fitness function that can
smooth the search landscape, providing easy-to-follow gradients for the algorithm to reach the
global optima. One major issue is when there is no gradient, and the heuristics for covering a
target is just a flag, i.e., either the target is covered or not covered. This is an issue that has been
studied in the past in the literature of SBST, as there are several sources for these kind of flags [26,
41, 42, 45, 60, 62, 63, 71, 73, 80, 87]. Consider the following example:

1 i f ( x . i n c l u d e s ( "a" ) )

If the variable x is a string, then the predicate would be true if such variable contains the letter ‘a’
inside it. This is a flag, as the condition is either true or false, and the branch distance (Section 3.3)
gives no help here. To address this issue in function calls that return booleans, or that throw an
exception if the input is invalid, in [35] we proposed a novel testability transformation technique.
For a set of specified methods in the existing APIs of the supported programming languages (e.g.,
the JDK in [35]), we provide replacement methods. During instrumentation, each of these methods
gets replaced with a new version, which is semantically equivalent. In other words, the execution of
the SUT is not changed. However, internally, such replaced methods will create two new testing
targets, one for when the function returns true (or throws an exception) and one for when it
returns false (or does not throw an exception). These extra targets will then be added to the
search, and optimized for like any other testing target.

For these replacement methods, the gradient for the two outcomes will depend on the seman-
tics of the replaced method. For example, for something like x.includes(‘‘a’’), for the true
outcome it would take the minimum distance (as numeric representation of a char) of ‘‘a’’ from
each character in the string (i.e., something like d =min( |x[i] − “a"|).

For the most used API methods in the JDK, in [35] we defined custom heuristics. For JavaScript,
we provide the same kind of method replacements, e.g., for handling API functions like includes
and startsWith on string objects, as well as operations like includes on collections. For instance,
a heuristic of a true target for the collection is calculated as Equation (3) whereC is the collection
and k is the value or variable to search if C includes it. Note, null and undefined are allowed
in a collection in JavaScript. The includes method is first executed. If the result is true, h = 1
indicates that the target is covered. If C is empty or k is null/undefined, low heuristics (i.e., 0.05

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 6, Article 139. Publication date:
September 2023.

line:notfalse
line:or:false
line:update:1
line:update:2
line:exception:x
line:exception:y


JavaScript SBST Heuristics to Enable Effective Fuzzing of NodeJS Web APIs 139:11

and 0.1, respectively) are provided for indicating that they are far from covering the target. As an
empty C always leads the result to be false with any value of k , we provide a lower value than k
with null/undefined. For other cases, we calculate all heuristics between k and every value in C
(with the ‘of’ operator2) using branch distance (Section 3.3), then take the maximum value as the
heuristic.

hc (k, C ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

1 C.include(k) is true

0.05 |C | = 0 reached but empty

0.1 k is null or undefined

max1≤i≤ |C |h
′
(k, C[i]) otherwise, note h

′
is a re-scaled value

(3)

The heuristics are the same as defined in [35], although some of the method names are different
(e.g., the equivalent of JavaScript includes on strings is called contains in Java). However, a
research challenge is how to decide when a method replacement should be applied in weakly typed
dynamic languages such as JavaScript. Recall the example of x.includes("a"), where x could be
anything. A substring pattern-matching (i.e., x is a string) is completely different in semantics
than an element comparison in a container (e.g., x is an array, and elements in the array are not
restricted to the same type). Furthermore, x could be a custom object defined in the business logic
of SUT with a method called includes, and not a pre-existing type of the JavaScript APIs (and so
we cannot prepare pre-defined heuristics for those custom objects). The type of x is not known at
instrumentation time, which poses the challenge of how to determine if x.includes("a") should
be subject to a testability transformation.

The solution here that we present in this paper is that we instrument ALL method calls in the
SUT. For example, the previous if statement would be rewritten into:

1 i f ( __EM__ . c a l l T r a c k e d ( "test.js" , 4 2 , 0 , x , "includes" , "a" ) )

Such method replacement __EM__.callTracked would take as input several parameters. The
first three are the name of the JavaScript file where the transformation is applied, together with
the line number and index of the call in that line (in case more than one function call is made on
the same line). This is needed to create unique ids for the two new testing targets that are created.
Then, as the semantics of the SUT must not be changed, internally callTracked is still going to
execute the method includes on the object x with input "a", and return its output. However,
internally, the type of x is analyzed at runtime, and, if we have defined any method replacement
for the function x["includes"], then we compute the custom heuristics for the two new testing
targets.

A further optimization that can be done here is a form of basic taint analysis, which in [35]
we called input tracking. Assume for example that x is a string, which is given as input in the
test case (e.g., a field in a JSON body payload of a POST request). And assume that such x is not
modified before used in an if statement. This is actually quite a common occurrence in Web APIs,
as often inputs are validated before being used (e.g., checking if strings are matching some regular
expression). Then, although the fitness function with the branch distance and our heuristics in the
method replacement would provide gradient to solve those constraints, it would be much more
efficient to use the needed values directly instead of mutating random strings until the right value
is evolved after a few generations. For example, consider this condition:

1 i f ( x === "Hello World!" )

2Note that an array in JavaScript could have properties, e.g., x = [ 1, 2, bar: 3 ], but the property (such as bar:3) is
not counted by includes operator, e.g., x.includes(3) and x.includes(‘bar’) would be evaluated as false. Then, we
employ the ‘of’ operator to iterate over every value of an array for the heuristic calculations.
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The branch distance defined in Section 3.3 would give a gradient to evolve such an input x.
However, it would be more efficient to use "Hello World!" directly as the value for x in the test
case (as long as x is not modified before the execution of that if statement). In [35], we applied
this simple technique, by using tainted values for strings in the generated test cases in the form
of evomaster_k_input (where k is a number to distinguish between the different tracked inputs).
Every time in a method replacement (or string comparison) we detect that an input is tainted (e.g.,
by checking the regular expression evomaster_\d+_input), the search gets feedback, and the
genotype of the evolving test gets the tainted input evomaster_k_input with the actual needed
value (e.g., "Hello World!" in this case). Although quite easy to implement, such basic technique
can significantly improve coverage [35] when testing RESTful APIs, especially when dealing with
strings that should match a given regular expression (as then the search can directly sample valid
strings for it). In this paper, we implemented the same technique for JavaScript.

3.6 Array/Object Access

In JavaScript, object is a datatype that could store a collection of data (e.g., numbers, strings and
functions) as properties, and array is considered as a special object representing an ordered col-
lection. Unlike strongly typed languages (e.g., Java), the properties/fields of object in JavaScript
are mutable. For example, you can remove a property named bar with delete data["bar"], and
add a property with data[{}] = "bar" (or replace it if the key {} is already an existing field).
In addition, the properties can be accessed dynamically using a variable within square brackets
notation (i.e., “[]”), as the example shown next.

1 const y = d a t a [ x ] ;

2 d a t a [ z ] = 4 2 ;

Writing data["foo"] is equivalent to writing data.foo. In other words, the square brackets “[]”
have different meaning based on what they are applied on (e.g., generic objects vs. arrays) and
what they take as input (e.g., numeric indices or not).

As array and object are the main data structures to manipulate data in JavaScript, whether the
variable accesses an existing property would often result in different flows of execution (e.g., y
with undefined or not). To enable better code coverage, we provide a gradient for such an access
to objects at runtime, by replacing “[]” accesses with a pre-defined function, i.e., squareBrackets.
However, in JavaScript, the access with square brackets operator (identified as MemberFunction)
is not only applied for getting the value but also for assignment. Calculating such a gradient for
the assignment is arguably not meaningful, e.g., the assignment could be used for adding a new
property. Therefore, at instrumentation, we replace square brackets operators that are used to get
values with squareBrackets, and skip cases performing assignments, such as update expression,
left hand side of assignment expression, and left hand side of assignment pattern. For example, the
previous statements with the squareBrackets would be rewritten into:

1 const y = __EM__ . s q u a r e B r a c k e t s ( "test.ts" , 1 , 0 , data , x ) ;

2 d a t a [ z ] = 4 2 ; // skip replacement of square brackets operator for assignments

In the squareBrackets function shown in the example, the first three arguments refer to de-
scriptive information for locating the square brackets operator, i.e., the script name ("test.ts"), a
line number (1), and an index of a target on the same line (0). The information is needed to define
a unique id for two testing targets to optimize, i.e., accessing (true) or not accessing (false) for
any existing property. The fourth argument is the caller (e.g., data variable), and the last is the
given key (e.g., x variable). The function would return the accessed value or throw an error if the
caller is null or undefined, to maintain the same code semantics. To provide the gradient for the
targets, a heuristic h for the accessed target with the given key is computed as:
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• h = 1 if the key exists in the caller using ‘in’ operator;
• h = hc (k, K ) if the key does not exists, we employ the heuristic for collection by comparing

the key with all existing keys as Equation (3).

Note that in JavaScript, the given key could be any type (e.g., object), and null and undefined
are also allowed as the key. Thus, we enable the above gradients only if the type of the given key
is either string or number. In addition, the property name is coerced to a string in JavaScript.
For instance with an object data = {42:0}, the value 0 could be accessed with either data[42]
or data[‘42’]. Therefore, when calculating the distance between the given key and the existing
property, the given key would be coerced to a string if it is a number.

Besides the gradients, to be more efficient to cover the accessed target, any existing key could be
directly used as a value for x. Then, all existing properties are considered as potential candidates
with taint analysis (Section 3.5).

3.7 Ternary Operator

In JavaScript, a ternary operator (also known as conditional operator) takes three operands for de-
ciding which expression to execute with a condition. Its syntax is test ? consequent : alter-
nate. consequent would be executed only if the test is truthy , otherwise alternate is executed.
An example is shown below:

1 const y = x < 42 ? foo ( x ) : ba r ( x ) ;

To better guide the search for covering all of the three operands, we explicitly handle the three
operands at instrumentation and enable four testing targets with gradients. For test, it could be
handled as two branch targets using branch distance (Section 3.3) for covering truthy and falsy. For
consequent and alternate, to further represent their executions, we identify them as statement
targets and handle their heuristics as h = 0.5 for any exception thrown and h = 1 for statement
completion. To enable the heuristics, we instrument ALL consequent and alternate with a pre-
defined function ternary. For example, the previous statement with the ternary operator would
be rewritten into:

1 const y = __EM__ . cmp ( x , "<" , 4 2 , "test.ts" , 1 , 0 )

2 ? __EM__ . t e r n a r y ( ( ) => __EM__ . c a l l B a s e ( ( ) => foo ( x ) ) , "test.ts" , 1 , 1 )

3 : __EM__ . t e r n a r y ( ( ) => __EM__ . c a l l B a s e ( ( ) => bar ( x ) ) , "test.ts" , 1 , 2 ) ;

4 EMPIRICAL STUDY

In this paper, we conducted an empirical study to answer the following research questions:

RQ1: Are our white-box SBST heuristics effective at guiding the search for maximizing code
coverage and fault finding?

RQ2: How does the search budget impact the achieved results?
RQ3: Compared with the selected baseline black-box techniques, how does our novel approach

fare?

4.1 Case Studies

In this empirical study, we employed eight Web APIs running on NodeJS as case studies. Their
detailed descriptive statistics are reported in Table 1, where we specify the programming language
in which these SUTs are written (i.e., either JavaScript or TypeScript), their type (i.e., REST or
GraphQL), the number of script files (i.e., files with suffix either .js or .ts), lines of codes (LOCs),
the number of endpoints, and type of database (if any is used in the SUT). For the REST APIs, the
number of endpoints includes all the different actions (i.e., HTTP verbs like GET and POST) for each
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Table 1. Descriptive Statistics of the Eight Web APIs used in our Experiments

SUT Language Type #Files LOCs #Endpoints Database
cyclotron JavaScript REST 25 5803 50 MongoDB
disease-sh-api JavaScript REST 57 3343 34 Redis
ecommerce-server TypeScript GraphQL 48 1791 17 Posrgres
react-finland TypeScript GraphQL 461 16206 13 –
realworld-api TypeScript REST 37 1229 12 MySQL
js-rest-ncs JavaScript REST 8 775 6 –
js-rest-scs JavaScript REST 13 1046 11 –
spacex-api JavaScript REST 63 4966 94 MongoDB
Total 712 35159 237

resource identified with a URL. For the GraphQL APIs, this represents the number of Query and
Mutation operations in their schema (i.e., all the entry-points for the API).

Two of the case studies (i.e., js-rest-ncs and js-rest-scs) are artificial APIs from an existing bench-
mark [8], used in our previous work when evaluating EvoMaster [30, 31, 94]. They are based
on numerical and string-based functions previously used in the literature of unit test genera-
tion [26, 32]. We simply re-implemented them in JavaScript, and put them behind a RESTful API
(with one distinct endpoint for each different function, where inputs are passed as URL path pa-
rameters). The other six APIs were selected from GitHub (a popular open-source repository). We
use the APIs of GitHub to search for REST and GraphQL APIs running on NodeJS, sorted by num-
ber of stars (which is one indicator for the popularity of these open-source projects). It was a long
process, as not all projects have clear documentation, and we were not able to run many projects
due to several technical issues (e.g., due to broken third-party dependencies). Also, we excluded
projects that were clearly too trivial. We stopped the process of finding suitable APIs once we had
found enough for an adequate empirical study (e.g., compared to other work in the literature on
the subject). Also, due to the high cost of running experiments for system test generation, using a
larger case study would require a significant amount of time.

Regarding the case studies, js-rest-ncs and js-rest-scs were previously implemented with Java,
based on code that was designed for studying unit testing approaches on solving numerical [32]
and string [26] problems. For this study, we re-implemented them with JavaScript. cyclotron [3] is
an application (with currently 1.6k stars on the GitHub) for creating dashboards using a REST API
that interacts with MongoDB [13] for persisting data. disease-sh-api [4] (currently with 2.4k stars
on GitHub) provides a set of APIs to get detailed statistics of various viruses (e.g., infected cases
with a specified country, and status of vaccine), especially for COVID-19. The statistics informa-
tion is collected from various online sources (e.g., Worldometers, The New York Times), updated
periodically by a separate service, and then stored in Redis [18]. In the context of RESTful API
testing, this separated service is not part of the testing. Thus, to test its REST API for retrieving
data, we initialized a fixed data sample into the Redis database. realworld-api [14] is a NestJS ap-
plication (2.0k stars on GitHub) that follows a real-world API specification [17] which has been
implemented by over 100 different solutions. The application also connects with a MySQL data-
base built with TypeORM/Prisma. spacex-api [22] is an unofficial API (9.3k stars on GitHub) to
retrieve information for launch, rocket, core, capsule, starlink, launchpad, and landing pad data
for the company SpaceX. It uses a MongoDB database. react-finland [16] is a GraphQL backend
(52 stars on GitHub) for the TOSKA conference in Finland about React (a web frontend framework
made by Facebook). Finally, ecommerce-server [5] is a GraphQL backend (127 stars on GitHub) for
an e-commerce service. It uses a Postgres database.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 6, Article 139. Publication date:
September 2023.



JavaScript SBST Heuristics to Enable Effective Fuzzing of NodeJS Web APIs 139:15

4.2 Experiment Setup

For this paper, our experiments are divided into three groups, with different settings, as explained
in more detail in the remainder of this section. Each experiment was repeated 30 times to take
into account the randomness of the used algorithms [33]. All settings of the experiments were
executed on an HP Z6 G4 Workstation with the following specs: processor Intel(R) Xeon(R) Gold
6240R CPU @2.40GHz 2.39GHz; RAM: 192G; Operating System 64-bit Windows 10.

Group A (for RQ1 and RQ2). To study the effectiveness of our white-box SBST heuristics, we
integrated them into EvoMaster, then conducted a comparison between MIO [29] (i.e., the default
evolutionary algorithm with SBST heuristics) and the Random-Search algorithm (without SBST
heuristics, denoted as Random). This latter can be considered as a grey-box testing technique (as
the SUT gets instrumented, and it still keeps track of which targets are covered, like line coverage,
when outputting the final test suites at the end of the search). For both techniques, experiments
were run on all the eight Web APIs. Regarding the search budget settings, we used 100k HTTP
calls as the stopping criterion. Using the number of HTTP calls as stopping criterion makes the
experiments easier to replicate, as they are independent of the employed hardware. Furthermore,
they are less dependent on implementation details that might negatively impact computational
performance. In addition, it is expected that a naive random search with no fitness computation
would be faster than a complex evolutionary algorithm. Given the same amount of time, the for-
mer would likely make more HTTP calls than the latter. Technically, the choice of using 100k
as stopping criterion is arbitrary: could had been higher, or lower. It was chosen here for con-
sistency, as it is the same value we used in all our previous work on testing RESTful APIs with
EvoMaster [35, 77, 90, 94]. Originally, the value 100k was chosen because it is a round number,
and roughly translates to 1 hour of computation time on average (although this strongly depends
on the selected SUTs and on the hardware used for experimentation). The amount of 1 hour could
represent a reasonable amount of time practitioners would use a tool like EvoMaster in practice,
without making the experiments too prohibitive to run in feasible time. For the given SUTs used
in this study, on the given hardware, running the search for 100k HTTP calls takes on average
around 4 minutes for js-rest-ncs and js-rest-scs, 13-20 minutes for react-finland, disease-sh-api, and
cyclotron, 1 hour for realworld-app, 2 hours for ecommerce-server and 3 hours for spacex-api. So,
around 50 minutes on average across these eight APIs. This also means that this set of experiments
with two compared configurations would take roughly 2 × (50m × 8) ∗ 30 = 16.6 days if run in
sequence.

Regarding the evaluation metrics, we selected covered testing targets (#Targets), line coverage
(%Lines), and the number of detected faults. The testing target (#Targets) is the default coverage
criterion in EvoMaster. It comprises and aggregates all metrics used in EvoMaster, such as code
coverage, HTTP status code coverage, and fault finding. For the experiment evaluations, these met-
rics can be used only by the techniques which integrate with our code instrumentation, i.e., MIO
and Random in this group of experiments. Currently, the line coverage collected by EvoMaster
only applies to the generated tests, and not on the bootstrapping of the SUT (i.e., when it starts,
before any test is executed). This means that the reported line coverage is currently an under-
estimation (i.e., a lower-bound). This will be fixed in future versions of EvoMaster (we realized
this only after all the experiments were completed). Regarding the found faults, this is based on
500 status codes and mismatches of the received responses with the API schema.

Group B (for RQ3). In the context of white-box testing, to the best of our knowledge, there does
not exist any other available test generation approach for Web APIs running on NodeJS. Therefore,
no comparisons can be made there. Still, it is important to put these novel results in context with
the current state of the art in fuzzing Web APIs. For this goal, we chose a set of state-of-the-art
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open-source black-box techniques as baseline techniques in our experiments. Based on a recent
empirical study on existing black-box testing generation tools for REST APIs [46], RESTler [20, 40]
and RestTestGen [21, 86] were evaluated as the most robust and the most effective black-box tech-
niques, respectively. We used their most recent versions at the time of this writing. For RESTler,
this was version 8.5.0. For RestTestGen, we used the version from its most recent replication
package [47, 48]. Besides these two tools, we also selected the black-box technique provided by
EvoMaster [31], which was not evaluated in [46]. Note that, for GraphQL APIs, we are aware of
no other existing fuzzer that is available. This means that this group of experiments was run only
on the six RESTful APIs. All of the selected techniques were applied on the selected case studies
using their default settings.

Each of the three tools was run for one hour on each SUT (and this was repeated 30 times), as
stopping criterion. In total, this needed 3 ∗ 6 ∗ 30 ∗ 1h = 22.5 days of computational effort. To
avoid bias in the results, the test code coverage of the black-box techniques are collected based
on their whole execution process using an external JavaScript instrumentation tool, i.e., C8 [2].
For instance, line coverage results are based on all executed HTTP calls during the whole search,
and not just by the generated tests. As the black-box tools have no information on the achieved
coverage, the output tests would be based only on black-box metrics (e.g., coverage of different
HTTP status code for each endpoint). As hundreds of thousands (if not millions) of HTTP calls
can be made during a fuzzing process, the output test suites are usually minimized. Minimizing
without code coverage information might lead to the loss of important test cases, and makes tool
comparisons more difficult. However, this also means that, if a tool crashes without making any
HTTP call, C8 would still report the coverage achieved during the bootstrapping of the SUT.

For this group of experiments, we report only code coverage with C8, and no information on
detected faults. The reason is that there is no clear, easy, and unbiased way to detect faults for each
tool. Each tool can self-report the number of faults it finds, but how those are calculated might
vary greatly from tool to tool, making any comparison likely meaningless. Some heuristics could
be derived, e.g., based on the analysis of the logs of the SUTs, but we found it unnecessary for
answering the research questions in this paper. Furthermore, not all SUTs output exception info
into logs when exceptions are thrown during the test executions. Checking for executed endpoints
returning HTTP status 500 is not simple either, as each tool generates output test cases in different
formats. Trying to compute such values by analyzing network traffic (e.g., using a tool like Wire-
shark to capture all HTTP traffic) could be doable. However, there would be challenges when using
loopback addresses and when running experiments in parallel on the same machine. But, even in
such a case, this would represent only one type of fault that this kind of fuzzer can find [77]. Faults
related to the schema (e.g., a response that is not matching the expected structure given in the API
schema) or to the expected behavior of the API (e.g., it should not be possible to retrieve a resource
X with a GET after a successful DELETE operation on it) would be harder to compute and collect in
the same way for each compared tool.

An alternative approach would be to use mutation testing [67], but we are aware of no tools that
support it for system testing of Web APIs. Creating different versions of the API with only one
known, manually seeded fault per version is possible, although it would require quite an engineer-
ing effort. Whether faults are found depends on whether there exist any faults. And there are many
faults in these kinds of APIs on GitHub [77], as they are not particularly robust to wrong inputs
(which often results in a 500 crash instead of returning a more proper 4xx “user error” response).

Regardless, there is a positive correlation between code coverage and fault detection. For ex-
ample, a fault cannot be detected if its source in the code is never executed. Even if it is a possi-
bility that a tool with lower code coverage might achieve higher fault detection, techniques can
be combined. For example, if a tool has a better handling and wider scope of automated oracles
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to detect different kinds of faults, improving its code coverage results would likely be further
beneficial.

Group C (for RQ3). To compare our novel white-box techniques with the current state of the
art in black-box fuzzing of Web APIs, we run MIO for 1 hour on each SUT, i.e., the same duration
as for the black-box experiments. Based on the previous discussions, comparing the line coverage
reported by EvoMaster with the one reported by C8 would be quite pointless. To compare with
the black-box techniques, we need to use the same code coverage tool. However, we cannot use
C8 directly when the SUT starts, as our novel instrumentation changes the number of lines in the
files of the SUT. To make fair comparisons, for white-box EvoMaster we measure the coverage of
the final test suite outputted by EvoMaster at the end of the search. This test suite is run with C8
without any instrumentation by EvoMaster. We also make sure to filter out from the coverage
reports any extra files, like the tests themselves and the EvoMaster driver.

One issue we faced is with the SUT realworld-api, which is written in TypeScript. When running
experiments with black-box tools, C8 uses the .ts files to report code coverage (note NodeJS
runs JavaScript, the mapping from JavaScript to source TypeScript files is done via .js.map files
outputted by the TypeScript compiler). For some reason (possibly a bug in C8), when running the
tests with C8, those map files are ignored, and coverage is measured on the JavaScript files. C8
does not seem to provide any option to setup/configure this automated handling of TypeScript.
Although the number of lines between a source foo.ts file and its transpiled version foo.js
would be different (the latter is usually bigger/longer), the ratio of covered lines could likely be
similar. It is likely that this is not a major issue, but still needs to be kept in mind when analyzing
the results.

Experiment Cost. Running experiments with system testing on Web APIs is computationally
expensive. In our case, our experiment setup for the three groups takes roughly 16.6+ 22.5+ 7.5 =
46.6 days of computation, if run in sequence.

Even when running experiments in parallel, it can still take some days. A further complication
is that, regardless of the number of cores the employed machines have, there are limits on how
many experiments can be run in parallel on the same machine. For example, each experiment not
only requires to run a process instance of EvoMaster and one of the SUT, but also possibly a
database via Docker, and these can take a significant amount of RAM, with possible bottlenecks
on I/O driver buffers if too many experiments are run in parallel (this latter issue can be partially
addressed by mapping the filesystem accessed by the databases directly into RAM). Furthermore,
most Web APIs do communications via TCP. Web servers can close down connections on errors,
or after a certain number of HTTP requests (e.g., to mitigate DoS attacks). Continuously opening
and closing TCP connections can be problematic, as operating systems can take up to 2 minutes
before the resources (e.g., a local port) of a closed connection can be re-used for a new connection.
If too many experiments are run in parallel, it can happen that the operating systems can run out
of local ephemeral ports needed to establish new TCP connections, messing up with the results
of the experiments (e.g., EvoMaster would fail to make calls to the APIs if it cannot establish a
new TCP connection because there is no local port available). For the JVM, we have addressed this
problem using testability transformations [35] (in particular, “Testability Transformations for TCP
Performance”), by forcing the web servers to never shut down an open TCP connection established
with EvoMaster (more details can be found in [35]). But this is not something we do yet for
NodeJS, as it requires a non-trivial amount of work.

One consequence of the high cost of running this kind of experiment is that we have not eval-
uated each different technique presented in this paper in isolation, one at a time.Some techniques
might have more impacts than others on the final results. Still, for each single technique, to make
sure that it works as intended, we have created artificial examples. On such artificial examples, it
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Fig. 2. API example, used to verify the taint analysis technique presented in Section 3.5.

Table 2. Average #Target and Pairwise Comparison between MIO

and Random using #Targets

SUT MIO Random Â12 p-value relative
cyclotron 947.9 919.5 0.93 ≤0.001 3.09%

disease-sh-api 1247.1 1109.4 1.00 ≤0.001 12.41%

ecommerce-server 359.2 340.5 1.00 ≤0.001 5.49%

js-rest-ncs 839.9 582.3 1.00 ≤0.001 44.25%

js-rest-scs 743.3 509.8 1.00 ≤0.001 45.80%

react-finland 528.1 294.2 1.00 ≤0.001 79.52%

realworld-app 737.3 711.1 1.00 ≤0.001 3.68%

spacex-api 1285.1 1291.6 0.09 ≤0.001 −0.50%

Values in bold or red mean that there is a statistically significant difference,
i.e., p-value < 0.05 and Â12 � 0.5. Values in bold are for the cases in
which MIO gets better results than Random, while values in red are for the
cases in which MIO gets worse results than Random.

should be trivial for EvoMaster to solve them with the new techniques presented in this paper.
So trivial, that we can use these artificial examples as end-to-end tests to verify the correctness of
EvoMaster itself.

Figure 2 shows one such example we used. Here, to cover the branch returning status code 200,
a query parameter named value needs to be provided, matching a specific string. Such a string is
long, and unlikely to be matched by sampling strings at random. Branch distance computations
defined on string comparisons can provide gradient for the search to evolve the right matching
string via mutation operators. However, considering the length of the string, it can take many gen-
erations in the evolutionary process. On the other hand, the use of taint analysis (recall Section 3.5)
makes this trivial to cover in just a couple of iterations.

4.3 Experiment Results

4.3.1 Results for RQ1. To answer RQ1, Table 2 reports the average #Targets achieved by MIO
and Random for each of the case studies. Results show that MIO consistently achieves the best
performance on average #Target for all the case studies, but one (i.e., spacex-api). However, in this
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Table 3. Average %Lines and Pairwise Comparison between MIO

and Random using %Lines

SUT MIO Random Â12 p-value relative
cyclotron 31.1 30.7 0.89 ≤0.001 1.42%

disease-sh-api 19.6 18.2 1.00 ≤0.001 7.49%

ecommerce-server 8.1 8.2 0.14 ≤0.001 −2.23%
js-rest-ncs 82.6 52.8 1.00 ≤0.001 56.25%

js-rest-scs 62.2 47.7 1.00 ≤0.001 30.31%

react-finland 1.8 0.9 1.00 ≤0.001 88.91%

realworld-app 24.6 24.6 0.22 ≤0.001 -0.30%
spacex-api 41.8 42.0 0.20 ≤0.001 -0.39%

Values in bold or red mean that there is a statistically significant
difference, i.e., p-value < 0.05 and Â12 � 0.5. Values in bold are for the
cases in which MIO gets better results than Random, while values in red
are for the cases in which MIO gets worse results than Random.

Table 4. Average #Faults and Pairwise Comparison between MIO

and Random using #Faults

SUT MIO Random Â12 p-value relative
cyclotron 34.0 29.5 1.00 ≤0.001 15.37%

disease-sh-api 34.2 29.0 1.00 ≤0.001 18.18%

ecommerce-server 30.3 27.9 0.97 ≤0.001 8.59%

js-rest-ncs 5.0 5.0 0.50 1.000 0.00%
js-rest-scs 4.0 4.0 0.50 1.000 0.00%
react-finland 30.5 24.5 1.00 ≤0.001 24.66%

realworld-app 35.4 24.0 1.00 ≤0.001 47.64%

spacex-api 51.7 54.3 0.03 ≤0.001 −4.79%

Values in bold or red mean that there is a statistically significant
difference, i.e., p-value < 0.05 and Â12 � 0.5. Values in bold are for the
cases in which MIO gets better results than Random, while values in red
are for the cases in which MIO gets worse results than Random.

case the difference is minimal (just six targets). In addition, based on an analysis of the pairwise
comparisons using Mann-Whitney-Wilcoxon U-tests (p-value) and Vargha-Delaney effect sizes
(Â12), MIO significantly outperforms Random, with a high effect size (i.e., Â12 ≥ 0.93) and a low p-
value (i.e., p ≤ 0.001). Regarding the relative improvement, MIO achieves the most on react-finland
(i.e., +79.52%) and the least on cyclotron (i.e., +3.09%).

To get better insight in these results, we report the average line coverage in Table 3 (however,
recall these values do not include the coverage achieved by just bootstrapping the SUT before
running any test). For js-rest-ncs and js-rest-scs, we have a large improvement of MIO over Random
(up to nearly+30%). Those are SUTs with many numeric and string constraints, which become easy
to solve with the SBST techniques we introduced in this paper for JavaScript applications. However,
relatively, the largest improvement is for react-finland. It might seems that coverage is low on this
SUT, but this is a very peculiar SUT where most of its code is executed at bootstrapping (the SUT
does not use a database, and all the info of the conference is stored in JavaScript files that are
executed when the API starts). Running those generated tests in an IDE demonstrates more than
80% code coverage. For the other SUTs, there is not much difference in achieved code coverage (up
to 1.5% difference). An analysis of these SUTs and the generated test cases shows this being mainly
due to constraints based on interactions with databases. This is an important research topic that
will need to be addressed to achieve better results.
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In Table 4, we report the number of potential faults identified by MIO, which are due to 5xx
status code and unexpected responses based on the API schemas. After a manual analysis of those
found faults, most of those are related to invalid input handling, i.e., lack of checks or constraint
specifications on the parameters of the requests. There also exist some faults due to improper ser-
vice configuration. For instance, there is a potential fault (with 500 status) detected by the following
generated test for testing GET request on /ldap/search. By debugging the SUT with the test, we
found out that the problem can refer to an empty check on a configuration file of the service. Thus,
the test would help set up a proper configuration for the SUT.

1 test("test_7_with500", async () => {

2 await superagent.get(baseUrlOfSut + "/ldap/search?q=LHmM6EfXJDcSiyf").set('

3 Accept ', "*/*") // src/middleware/cors.js_32_10;

4 });

On average, 225 faults were found in these eight APIs. This is consistent with previous studies on
APIs running on the JVM [77], where it was shown that often these kinds of APIs do not properly
do input validation, which leads to crashes (resulting in HTTP 500 status code).

Based on the above analysis, we can conclude that:

RQ1: In terms of target coverage, our white-box approach demonstrates consistent and significant
improvements (up to relatively 79.52%) compared with the grey-box random testing, for 7 out of the

8 case studies. On average, 225 faults were found in these APIs.

4.3.2 Results for RQ2. In Figure 3, we show plot-lines for demonstrating the performance of
MIO and Random in detail with the number of covered targets (including code coverage and fault
detection) over the course of the search. This data was collected at each 5% interval of the search
(i.e., at every 5k HTTP calls). As shown in the figures, for most of the SUTs, MIO consistently
outperforms Random by a clear large margin throughout the whole search process. This further
shows that our white-box SBST heuristics provide an effective guide to the search for maximizing
code coverage and fault finding.

One exception is spacex-api, where the performance of MIO is lower than Random by the end of
the search. However, for the first 35% of the search, MIO gives better results. This can be explained
if our heuristics provide gradients for some of the constraints in the SUT (so better results for MIO),
but those constraints are not too complex. Therefore, given enough time, even a naive random
search does catch up. After this point, if there is no gradient in the fitness landscape for MIO to
follow, the evolutionary search would stagnate in specific areas of the search landscape, i.e., local
optima. On the other hand, Random would keep sampling tests from the whole search space, which
might get to cover new targets by chance outside those local optima.

To shed light on this peculiar behavior, we have run more experiments and in-depth analyses
of the source-code of spacex-api, to try to understand the culprit of this phenomenon. Two issues
seem at play here: relations between POST-GET operations on a resource, and lack of gradient on the
queries to the database. For example, to successfully test the GET on endpoint /v4/launches/next,
a POST operation on /v4/launches needs to be executed to create such resource. Such resource
needs to be created with some specific values (e.g., some booleans set to true), as the GET oper-
ation does a database query searching for entries using those values. However, our heuristics on
resource-operation relations do not handle such cases [95], so test cases with this POST-GET se-
quence get sampled less often by MIO in contrast to random search. As there is no gradient in
the GET operation when dealing with the database query, MIO is actually rewarded by removing
the POST operation from the test case, as the test becomes shorter while keeping the same fitness
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Fig. 3. Average covered targets (y-axis) of MIO and Random throughout the search, reported at 5% intervals

of the used budget allocated for the search (x-axis).
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value regarding the coverage of the GET. This problem would be easily fixed by adopting here the
database handling techniques presented in [34].

This phenomenon that we see in spacex-api could in theory happen in any of the other SUTs as
well, given a bigger search budget (i.e., more than 100k HTTP calls). Also, for spacex-api, we would
have drawn different conclusions if we used a smaller search budget like 10k. In other words, the
choice of search budget does play a major role when comparing search algorithms (and fuzzers in
general).

Ideally, the choice of the search budget should be based on how practitioners would use these
fuzzers in practice. This likely would be based on time, e.g., 10 minutes, 2 hours or 1 day. However
it is unlikely that a practitioner would run these fuzzers for long periods of time, e.g., more than
a week. For example, it would make little sense to run a fuzzer for 5 years, as, by the time the test
cases are generated, the tested version of the SUT would be long deprecated. Therefore, even if
random search could eventually achieve the same coverage or higher, it does not mean it can do
it within a viable amount of time.

At the time of this writing, in our documentation we currently recommend practitioners that
download EvoMaster to run it somewhere between 1 and 24 hours per API. But this is just an
educated guess, as how much time is needed depends on the API. The output of EvoMaster also
provides some information to help deciding on how long to run EvoMaster after the first time.
From our current documentation [37]:

“For how long should the search be left running? The info Needed budget helps with
this question, as it keeps track of the last time there was an improvement in the search
(e.g., a new line is covered, or a new fault is discovered). If the Search budget (i.e.,
for how long the search is left running) is 100 minutes, and the Needed budget is 53%,
then it means that the last improvement was achieved after 53 minutes, with the last 47
minutes of the search not finding any useful new test data. High values (e.g., > = 90%)
likely mean that, if you leave EvoMaster running for longer, likely you are going to
get better results. But what values should you aim for Needed budget? Hard to say
for sure, as it depends on the tested API and how/where/when you run EvoMaster
(e.g., if using a dedicated CI machine running long fuzzing jobs during the night, then
you might not care much about Needed budget). But, if you run EvoMaster for at
least 1 hour, and Needed budget is lower than 50% (e.g., 42%), then it is unlikely that
you will get significantly better results by increasing the search budget.”

The more complex the SUT is, the longer it will take to answer to HTTP requests (especially if
the SUT accesses external services like databases and third-party Web APIs). Looking at Figure 3,
this means that, if we run EvoMaster only for 1 hour, it would result in around 33k HTTP calls
for spacex-api (as 100k take roughly 3 hours), which would lead to better results for MIO compared
to Random (which is what we are going to show in the next set of analyses).

RQ2: Our novel SBST heuristics provide significant improvement throughout the whole search, for
the given search budget.

4.3.3 Results for RQ3. Table 5 shows the average line coverage achieved by each tool on each
SUT. Table 6 shows the pairwise comparison results between white-box EvoMaster (i.e., using
MIO) and the three other black-box baselines. Recall that these experiments were run for 1 hour
per tool (repeated 30 times), and only including RESTful APIs.

MIO gives the best results on four out of six SUTs. The worse results for realworld-app might
be due to the bug in C8 we discussed in Section 4.2. The case for cyclotron is rather interesting.
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Table 5. Average Line Coverage of the Four Compared Tools, on Each SUT

SUT EvoMaster BB RESTler RestTestGen EvoMaster WB
cyclotron 70.1 (1) 41.3 (3.5) 41.3 (3.5) 66.7 (2)
disease-sh-api 60.7 (2) 48.4 (3.5) 48.4 (3.5) 61.9 (1)

js-rest-ncs 92.7 (2) 44.3 (3.5) 44.3 (3.5) 99.0 (1)

js-rest-scs 82.3 (2) 54.1 (3.5) 54.1 (3.5) 89.0 (1)

realworld-app 67.1 (1) 65.1 (2) 59.7 (4) 63.8 (3)
spacex-api 84.8 (2) 76.3 (3) 76.1 (4) 93.7 (1)

Average 76.3 (1.7) 54.9 (3.2) 54.0 (3.7) 79.0 (1.5)

BB stands for black-box, whereas WB stands for white-box. The best coverage results have
rank 1, and are displayed in bold.

Table 6. Pairwise Comparison on Each SUT of White-box (WB)

EvoMaster with the other Three Tools, including Black-box

(BB) EvoMaster

SUT Tool Â12 p-value relative
cyclotron EvoMaster BB 0.00 ≤0.001 −4.73%

RESTler 1.00 ≤0.001 61.63%

RestTestGen 1.00 ≤0.001 61.63%

disease-sh-api EvoMaster BB 1.00 ≤0.001 1.86%

RESTler 1.00 ≤0.001 27.88%

RestTestGen 1.00 ≤0.001 27.88%

js-rest-ncs EvoMaster BB 1.00 ≤0.001 6.72%

RESTler 1.00 ≤0.001 123.53%

RestTestGen 1.00 ≤0.001 123.53%

js-rest-scs EvoMaster BB 1.00 ≤0.001 8.11%

RESTler 1.00 ≤0.001 64.38%

RestTestGen 1.00 ≤0.001 64.38%

realworld-app EvoMaster BB 0.23 ≤0.001 -4.89%
RESTler 0.20 ≤0.001 -2.00%
RestTestGen 1.00 ≤0.001 6.90%

spacex-api EvoMaster BB 1.00 ≤0.001 10.49%

RESTler 1.00 ≤0.001 22.85%

RestTestGen 1.00 ≤0.001 23.16%

White-box MIO is better than RESTler and RestTestGen, but not black-box EvoMaster. For
RESTler and RestTestGen, we found that they crash when parsing the schema of this case study,
thus the reported coverage is based only on the bootstrapping of the SUT. Regarding cyclotron,
this REST API is mainly for interacting with a MongoDB database,3 such as searching and fil-
tering data. Thus, the amount of available data in the database has a direct impact on the code
coverage. In the black-box testing, the data in the database is accumulated over the course of
the search, each time a fuzzer makes a call to add new data. For white-box testing (WB EvoMas-
ter), the data in the database is cleared at every test execution (to make the tests be independent,
which is a requirement for using generated tests for regression testing). But for WB EvoMas-
ter with JavaScript, there are limited capabilities to manipulate states of the database (e.g., SQL
heuristics are not enabled), and the states of the database could be only manipulated with the
API endpoints. Since the data is cleared at every test execution, such manipulation might limit

3https://github.com/ExpediaGroup/cyclotron#rest-api.
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the amount of available data, due to the length of test cases (currently up to 10 HTTP calls per
test). This might be a reason for the underperformance of WB EvoMaster on this case study.
Furthermore, there are additional challenges to address for NoSQL databases such as MongoDB
used in cyclotron.

Another interesting case is spacex-api, where in these experiments, when running white-box
EvoMaster for 1 hour we get better comparison results (Table 6) than in the comparisons when
running for 100k HTTP calls (Table 3). As discussed in Section 4.3.2, this can be explained by
looking at the plots in Figure 3: 1 hour would roughly mean around 33k HTTP calls for white-
box EvoMaster, which is before the point in time in which a random search becomes more
effective.

RQ3: In most cases, white-box testing of NodeJS Web APIs provides significantly higher code
coverage than existing black-box fuzzers.

4.3.4 Discussion. Based on our experiments, our white-box technique shows its advantage
over the black-box techniques, especially in code coverage on the case studies which have many
branches to be optimized involving numeric and string constraints (e.g., js-rest-ncs and js-rest-scs).
Regarding the fault detection, most of the found faults are related to improper input validation, be-
fore the business logic of the SUTs is executed. Therefore, even a naive random search can detect
this kind of fault. This is consistent with previous fault analysis on fuzzing RESTful APIs running
on the JVM [77]. However, with code instrumentation, the white-box technique can provide the
potential location of the bug, based on the last executed statement in the business logic. This can
help to distinguish among different bugs when there exist multiple bugs in the same endpoint
resulting to a 500 HTTP server error status code.

Regarding the database handling, with black-box testing techniques, there is a lack of control
of the database. It means that we cannot prevent the side-effects of previously executed tests, e.g.,
the 100,000th request is executed with a state of a SUT which depends on the executed 99,999
previous requests. This is a major issue for debugging: if a test case reveals a fault, re-executing
such test case might not reveal it again, if it depends on the state modified by all previous tests.
Making each test case independent is essential for debugging purposes (e.g., as we do in our white-
box technique when in EvoMaster the configuration drivers are implemented by the user [31]).
Furthermore, when we have a small optimized test suite that can automatically start/stop/reset the
SUT, such generated tests can be used for regression testing (e.g., added to the repository of the
SUT, and run automatically as part of a Continuous Integration server).

In our white-box approach, once we prepare the driver scripts to start and stop the SUT, we also
reset the state of the database. We provide library support for all the databases used in the SUTs
of our empirical study (Table 1), which are MongoDB, MySQL, Postgres, and Redis. This enables
EvoMaster to generate test cases that are independent from each other.

Although line coverage achieved in each SUT is more than 60% (Table 5), a manual analysis
of what is not covered clearly points to issues with handling databases. In this kind of applica-
tion, control-flow conditions in the code of the SUT often rely on the state of the database, and
on the results of queries on it. Without any heuristics, it might be hard to generate input data
for which, for example, the WHERE clause of a SQL query is satisfied. EvoMaster has support for
handling heuristics on SQL databases for the JVM [34]. These techniques could be extended for
NodeJS as well, although there are research and technical challenges when dealing with the dy-
namic nature of JavaScript and the fact that there is no standard way for accessing SQL databases
in NodeJS (e.g., on the JVM, all drivers for the different SQL databases implement the specs of
java.sql, and all Java libraries for accessing databases, like Hibernates and JOOQ, use those specs
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internally). EvoMaster would need special handling for each different driver for each different
kind of SQL database. These are non-trivial challenges to overcome, although overcoming them is
necessary to address when dealing with this kind of web/enterprise application running on NodeJS.
Furthermore, we are aware of no technique in the literature dealing with NoSQL databases like
Redis and MongoDB in the context of fuzzing Web APIs.

5 THREATS TO VALIDITY

Conclusion validity. Our experiments are in the context of search-based software engineering, and
the search algorithms have a stochastic nature. To take into account such stochastic behaviors,
we repeated our experiments 30 times following the guidelines from [33]. Then, we performed
further statistical analyses on the results with these 30 runs. To demonstrate the effectiveness of
our approach, we employed widely used metrics in the context of testing, i.e., line coverage and the
number of detected faults with their average values. In the analysis of the comparisons with the
baseline techniques, we applied statistical methods and reported the statistical results in detail, i.e.,
the Mann-Whitney U-test (p-value) at significance level α = 0.05 for pairwise difference analysis,
along with the Vargha-Delaney (Â12) effect size. Besides, we computed relative improvement for
further illustrating the improvement over the baseline techniques.

Construct validity. First, for all of the employed techniques, we used their default settings, which
typically are the best configurations of the technique chosen by their authors. All experiments are
conducted on the same machine to prevent side-effects, related to hardware and operating system,
on the techniques and SUTs. The metrics we used such as line coverage are not direct outputs of
the techniques. To properly collect such information and make them comparable, we employed the
same external tool (i.e., c8) for accessing coverage reports achieved by all the different techniques.
Furthermore, for black-box techniques, there might lack some code coverage with their outputs
(i.e., executable output tests which are composed of a sequence of HTTP requests). Therefore, the
code coverage for them are collected with all requests executed during the whole process. Com-
paring different tools is always a challenge. Ideally, one would want to compare techniques and
not actual tools, as the performance of these latter can be strongly affected by accessible configu-
rations and low level code implementation details. Also, tools can have bugs. For example, in some
cases both RESTler and RestTestGen crash due to inability to parse the given OpenAPI schemas,
or they fail to derive valid URLs to connect to the APIs (e.g., by looking at their logs, it seems they
have some problems dealing with basePath entries declared as ’/’). In theory, it could be pos-
sible to find APIs for which EvoMaster crashes whereas RESTler and RestTestGen work fine.
Therefore, an unbiased selection of SUTs would be preferable [54]. But this is not trivial to do for
Web APIs. For this reason, all APIs that we have been using for evaluating EvoMaster throughout
the years (since 2017) are collected in a single open-source repository on GitHub, currently called
EMB [8]. Developers of other fuzzers can use these APIs, and make sure their tools do not crash
when fuzzing them.

Internal validity. This is related to the threat on our implementation used in the experiments.
Although we carefully tested our implementation, we cannot guarantee that it is free of bugs.
However, our implementation and case studies are open-source and available online, which allows
anyone to review them and replicate the experiments.

External validity. It is related to the threat on how our results can generalize to other case studies.
In this study, we conducted our experiments with eight NodeJS Web APIs, both REST and GraphQL
ones. Two of them are artificial that we re-implemented with JavaScript, whereas the other six are
open-source from GitHub. It is a fact that REST APIs are widely used in industry, but fewer of
them are open-source and available in open-source repositories. GraphQL APIs are even less easy
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to find among open-source projects. Furthermore, experiments on systems testing are expensive
to run. This is a problem limiting how many APIs can be used for experimentation.

6 CONCLUSIONS

JavaScript is one of the most widely used programming languages. However, testing applications
written in JavaScript is quite challenging due to its dynamic nature, especially for white-box test-
ing. To the best of our knowledge, there does not exist any other white-box system-level test
generation for JavaScript Web APIs. In this paper, we enable code instrumentation for JavaScript,
and further integrate it into an open-source white-box testing tool, i.e., EvoMaster. Besides, we
propose an automated approach to calculate search-based heuristics like the common Branch Dis-
tance that enables system test generation for JavaScript applications using Search-Based Software
Testing (SBST) techniques. To evaluate our approach, we conducted an empirical experiment on
the automated system testing of RESTful and GraphQL APIs. In the experiments, we compared our
approach with four baseline techniques (i.e., one grey-box testing technique and three black-box
testing techniques) on eight NodeJS Web APIs, in terms of code coverage and fault finding. Results
show that our technique leads to significantly better results than existing black-box and grey-box
testing tools.

For future work, to improve code coverage results, it will be important to extend our JavaScript
instrumentation to handle and analyze all interactions with SQL (e.g., Postgres and MySQL) and
NoSQL (e.g., MongoDB and Redis) databases.

To enable replicated studies, and to support new research effort on the use of SBST techniques
for JavaScript programs, our Babel plugin for JavaScript instrumentation, and our extension to the
EvoMaster tool together with all the used case studies, are released as open-source on GitHub,
with each new release automatically archived on Zenodo (e.g., [38, 39]). For more information, see
www.evomaster.org.
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