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Abstract. In this manuscript, we investigate the controllability of two different kinds of Hilfer
fractional differential equations with an almost sectorial operator and infinite delay. First, we
demonstrate the exact controllability of the Hilfer fractional system using the measure of
noncompactness. Next, we develop the results for the controllability of the system under impulsive
conditions. Finally, to show how the key findings may be utilised, applications are presented.

Keywords: Hilfer fractional derivative, measure of noncompactness, fixed point theorem, almost
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1 Introduction

Fractional calculus that include not only one but numerous fractional derivatives are
highly concentrated in many physical processes. Because of its astounding uses in exhibit-
ing the wonders of science and technology, fractional differential has recently received
a lot of interest on its significance. Numerous problems in a number of domains, such
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as fluid flow, electrical systems, visco-elasticity, electro-chemistry, and others, can be
managed through the use of fractional systems. There are many users and applications
for the extension of differential equations and inequalities called differential inclusions,
which may be thought of as an in optimal control theory. Dynamical systems having
velocities that are not just governed by the system’s state are simpler to investigate when
one is skilled at using differential inclusions. Studies on boundary value issues have
been conducted widely. Numerous studies have been done to determine whether there
are solutions for fractional differential equations and inclusions and whether there are
solutions for fractional differential inclusions. Consult research papers for further infor-
mation [1, 2, 6, 7, 17–20, 25, 27, 32–34].

In both linear and nonlinear control systems, controllability is a key term that is at
the foundation of mathematical control theory. In general, controllability pertains to the
ability of a dynamical control system to be steered from a given beginning state to a given
final state using a set of admissible control functions. Because controllability problems
are important in so many domains, including engineering, biological systems, defence,
controlling inflation rates in the economy, and control theory, a lot of scholars have
recently dedicated themselves to studying them. The articles [3, 14, 15, 28, 31] give the
excellent way to discuss the theory and applications related to controllability. In [9, 10],
researchers studied the approximate controllability of fractional differential systems via
fixed point approach. In [5, 13, 35], authors studied the existence of Hilfer fractional
differential system using almost sectorial operators.

The impulsive effects may be seen in a variety of events and processes, including
those in the sciences and engineering when the system state changes abruptly at specific
times. Impulsive effects can significantly alter the behaviour of a system. It can introduce
sudden changes, discontinuities, or jumps in the system’s variables, leading to deviations
from the expected or predicted behavior. This alteration can affect stability, convergence,
and overall system dynamics. The impulsive effect can be intentionally applied to control
or manipulate a system. By strategically introducing impulses, it is possible to drive the
system towards desired states, induce specific behaviours, or stabilise unstable dynam-
ics. Impulsive control strategies are employed in various fields, including engineering,
physics, and biology. In the paper [8], author introduced the concept of the infinite delay
on a functional impulsive differential equations. Nowadays, there are many researchers
focusing on the theory and concepts related to fractional impulsive differential systems
with infinite delay. We refer to [22–24, 29, 30, 38] and the references therein.

In [36], researcher studied existence of the mild solution for Hilfer fractional differ-
ential (HFDtial) equations given by

HDλ,ν
0 υ(%) = Aυ(%) + Λ

(
%, υ(%)

)
, % ∈ (0, T ],

I
(1−λ)(1−ν)
0+ υ(0) = υ0.

HDλ,ν
0 denotes the Hilfer fractional derivative (HFDve) of order 0 < λ < 1 and type

0 6 ν 6 1. Schauder fixed point theorem is used to prove the result, and here A is the
almost sectorial operator.
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In the research work [16], researchers focused on the controllability of HFDtial equa-
tions with infinite delay using MNC, the system defined as follows:

Dγ,δ
0+ υ(%) = Aυ(%) + Λ(%, y%) +Bu(%), % ∈ J

I
(1−γ)(1−δ)
0+ υ(%) = h(%) ∈ Gh.

Here Mönch’s fixed point theorem is used for the controllability of the equation.
Motivated from above works, we focus on the controllability of HFDtial equation using

MNC. In this study, we will examine the following topic: HFDtial system

Dp,σ
0+ q(y) = Aq(y) + H

(
y, qy

)
+ Bv(y), y ∈ J ′ = (0, b], (1)

I
(1−p)(1−σ)
0+ q(0) = ξ ∈ Oτ , y ∈ (−∞, 0], (2)

here A is the almost sectorial operator, Dp,σ
0+ denotes the HFDve with order p, 0 < p < 1,

and type σ, 0 6 σ 6 1. Suppose q(·) is the state in a Banach space Y with the norm ‖·‖.
The histories qy : (−∞, 0] → Oτ , qy(q) = q(y + q), q 6 0, with phase space Oτ . Take
J = [0, b]. Let H : J ×Oτ → Y is the Y -valued function, and consider v(·) in L2(J , U),
Banach space of admissible control function, the bounded linear operator B : U → Y .

The article consists of the following parts: Section 2 provides the theoretical concepts
related to fractional differential, semigroups, phase spaces, almost sectorial operators,
and measure of noncompatcness (MNC). Section 3 discussed the exact controllability of
system (1)–(2). In Section 4, we continue our research to see whether we can extend to
the controllability of an impulsive differential system (6). In Section 5, we provide two
examples to explain our key points. Finally, some conclusions and some possible future
directions for research are given.

2 Preliminaries

In this section, we present fundamental theorems, lemmas, and definitions that are used
throughout the whole work.

Let us consider the set of all continuous function from J to Y , which is represented
by Ω′′ and J = [0, b] with b > 0. Take

X =
{
q ∈ Ω′′: lim

y→0
y1−σ+pσ−pϑq(y) exists and finite

}
,

which is the Banach space with the norm ‖·‖X defined by

‖q‖X = sup
y∈J ′

{
y1−σ+pσ−pϑ∥∥q(y)

∥∥}.
Consider H with ‖H‖Lp(J ,R+) through H ∈ Lp(J ,R+) for some p along with p ∈ [1,∞].

Definition 1. (See [37].) The RL fractional derivative of order p > 0, k − 1 6 p < k,
k ∈ N, for the function H : [b,+∞)→ R, is defined as

LDp
b+H(y) =

1

Γ(k − p)

dk

dyk

y∫
b

H(λ)

(y − λ)p+1−k dλ, y > b, λ ∈ R+.
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Definition 2. (See [37].) The Caputo fractional derivative of order p > 0, k−1 6 p < k,
k ∈ N, for the function H : [b,+∞)→ R, is presented by

CDp
b+H(y) =

1

Γ(k − p)

y∫
b

Hk(λ)

(y − λ)p+1−k dλ = Ik−pb+ Hk(y), y > b, λ ∈ R+.

Definition 3. (See [12].) The HFDtial of order 0 < p < 1 and type σ ∈ [0, 1] for the
function H : [b,+∞)→ R, is presented by

Dp,σ
b+ H(y) =

[
I

(1−p)σ
b+ D

(
I

(1−p)(1−σ)
b+ H

)]
(y).

In [8], we introduce the phase space, Oτ . Take the continuous function g : (−∞, 0]→
(0,+∞) with l =

∫ 0

−∞ g(y) dy < +∞. Now, for every m > 0, define

O =
{
δ : [−m, 0]→ Y

∣∣ δ(y) is measurable and bounded
}

with the norm

‖δ‖[−m,0] = sup
τ∈[−m,0]

∥∥δ(τ)
∥∥ ∀δ ∈ O.

Next, take

Oτ =

{
δ : (−∞, 0]→ Y

∣∣∣ ∀m > 0, ∃δ|[−m,0] ∈ O with

0∫
−∞

g(τ)‖δ‖[τ,0] dτ < +∞

}
.

Let Oτ be endowed with

‖δ‖g =

0∫
−∞

g(τ)‖δ‖[τ,0] dτ ∀δ ∈ Oτ ,

so (Oτ , ‖·‖) is a Banach space.
Now, we consider the set

O′τ =
{
q : (−∞, b]→ Y

∣∣ q ∈ Ω′′, ξ ∈ Oτ
}
.

Take the seminorm ‖·‖′g in O′τ defined as

‖q‖′g = ‖ξ‖g + sup
{∥∥q(τ)

∥∥, τ ∈ [0, b]
}
, q ∈ O′τ .

Definition 4. (See [26].) Suppose ϑ ∈ (0, 1), ϕ ∈ (0, π/2). Let Θ−ϑϕ be the collections
of closed linear operators, and let the sector Cϕ be defined by Cϕ = {θ ∈ C \ {0}:
| arg θ| 6 ϕ}. Then the operator A : D(A) ⊂ Y → Y is said to be almost sectorial
operator, which satisfies the given conditions:

(i) σ′(A) ⊆ Cϕ;
(ii) ‖(θI − A)−1

∥∥ 6 Lδ|y|−ϑ for all ϕ < δ < π, where Lδ is a constant,

i.e., A ∈ Θ−ϑϕ on Y .
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Lemma 1. (See [26].) Suppose ϑ ∈ (0, 1), 0 < ϕ ∈ (0, π/2), and A ∈ Θ−ϑϕ (Y ). Then

(i) T(p1 + p2) = T(p1) + T(p2) for any p1, p2 ∈ S0
π/2−λ;

(ii) There exists the constant κ0 > 0 such that ‖T(y)‖Ω′′ 6 κ0y
ϑ−1 for all y > 0;

(iii) Let R(T(y)) be the range of T(y), and let z ∈ S0
π/2−λ in D(A∞). Mainly,

R(T(y)) ⊂ D(Aθ) for all θ ∈ C with Re(θ) > 0,

AθT(y)x =
1

2πi

∫
Γγ

yθe−yzR(y;A)xdz ∀x ∈ Y,

and there exists a constant κ′ = κ′(β, θ) > 0 such that∥∥AθT(y)
∥∥
B(Y )

6 κ′y−β−Re(θ)−1 ∀y > 0.

Let us consider the family of operators {Sp(y)}y∈Sπ/2−ϕ and {Qp(y)}y∈Sπ/2−ϕ de-
fined as

Sp(y) =

∞∫
0

Wp(ε)T
(
ypε
)

dε and Qp(y) =

∞∫
0

pεWp(ε)T
(
ypε
)

dε,

where Wp(β) is the following Wright-type function:

Wp(β) =
∑
k∈N

(−β)k−1

Γ(1− pk)(k − 1)!
, β ∈ C.

Lemma 2. System (1)–(2) is equivalent to a integral equation stated by

q(y) =
ξ

Γ(σ(1− p) + p)
y(1−p)(σ−1)+p)

+
1

Γ(p)

y∫
0

(y − λ)p−1
[
Aqλ + H

(
λ, qλ

)
+ Bv(λ)

]
dλ.

Proof. The proof is similar to that of Lemma 2.12 in [11], so we omit it.

Definition 5. The mild solution of system (1)–(2) is a function q(y)∈C(J ′, Y ) such that

q(y) = Sp,σ(y)ξ +

y∫
0

Kp(y − λ)H(λ, qλ) dλ

+

y∫
0

Kp(y − λ)Bv(λ) dλ, y ∈ J , (3)

where
Sp,σ(y) = I

σ(1−p)
0+ Kp(y) and Kp(y) = yp−1Qp(y),
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i.e.,

q(y) = Sp,σ(y)ξ +

y∫
0

(y − λ)p−1Qp(y − λ)H(λ, qλ) dλ

+

y∫
0

(y − λ)p−1Qp(y − λ)Bv(λ) dλ.

Lemma 3. (See [36].) Assume that T(y) is equicontinuous, then Qp(y), Kp(y), and
Sp,σ(y) are strongly continuous, that is, for all y ∈ Y and y2 > y1 > 0,∥∥Qp(a2)q−Qp(a1)q

∥∥→ 0,
∥∥Kp(a2)q−Kp(a1)q

∥∥→ 0,∥∥Sp,σ(a2)q− Sp,σ(a1)q
∥∥→ 0 as a2 → a1.

Lemma 4. (See [36].) For any fixed y > 0, Qp(a), Kp(a), and Sp,σ(a) are linear
operators, and for all q ∈ Y ,∥∥Qp(a)q

∥∥ 6 L′a−p+pϑ‖q‖,
∥∥Kp(a)q

∥∥ 6 L′a−1+pϑ‖q‖,∥∥Sp,σ(a)q
∥∥ 6 L′′a−1+σ−pσ+pϑ‖q‖,

where

L′ = κ0
Γ(ϑ)

Γ(pϑ)
, L′′ = κ0

Γ(ϑ)

Γ(σ(1− p) + pϑ)
.

Lemma 5. (See [8].) Suppose q ∈ O′τ , then for y ∈ J , qy ∈ Oτ . Moreover,

l
∣∣q(y)

∣∣ 6 ‖qy‖g 6 ‖ξ‖g + l sup
r∈[0,y]

∣∣q(r)
∣∣, l =

0∫
−∞

g(y) dy <∞.

Definition 6. Suppose O is the bounded set in a Banach space Y , the Hausdorff MNC η
is given by

η(O) = inf
{
ε > 0: O can be covered by a finite number of balls with radii ε

}
.

Lemma 6. (See [4].) IfE ⊂ C([p1, p2], Y ) is bounded and equicontinuous, then η(E(y))
is continuous for p1 6 y 6 p2, and

η(E) = sup
{
η
(
E(y)

)
, p1 6 y 6 p2

}
,

where E(y) = {y(y), y ∈ E} ⊆ Y .

Lemma 7. (See [4].) Suppose Y is a Banach space and G1, G2 ⊆ Y are bounded. Then
the following statements hold:

(i) G1 is precompact iff η(G1) = 0;
(ii) η(G1) = η(G1) = η(conv(G1)), where conv(G1) and G1 denote the convex

hull and closure of G1, respectively;
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(iii) If G1 ⊆ G2, then η(G1) 6 η(G2);
(iv) η(G1 +G2) 6 η(G1)+η(G2), whereG1 +G2 = {b1 +b2: b1 ∈ G1, b2 ∈ G2};
(v) η(G1 ∪G2) 6 max{η(G1), η(G2)};

(vi) η(λG1) = |λ|η(G1 for every λ ∈ R when Y is a real Banach space;
(vii) If the operator Ψ : D(Ψ) ⊆ Y → Y1 is Lipschitz continuous and Λ1 is the

constant, then we know that ρ(Ψ(G1)) 6 Λ1η(G1) for any bounded subsetG1 ⊂
D(Ψ), where ρ represents the Hausdorff MNC in the Banach space Y1.

Theorem 1. (See [32]. If {qk}∞k=1 is a set of Bochner-integrable functions from J to Y
with the estimate property ‖qk(y)‖ 6 µ1(y) for almost all y ∈ J and every k > 1, where
µ1 ∈ L1(J ,R), then the function ϕ(y) = µ({qk(y), k > 1}) is in L1(J ,R) and satisfies

µ

({ y∫
0

qk(ω) dω, k > 1

})
6 2

y∫
0

ϕ(ω) dω.

Lemma 8. (See [4].) If G ⊂ C([a, b], Y ) is bounded and equicontinuous, then η(G(y))
is continuous for a 6 y 6 b, and

η(G) = sup
{
η
(
G(y)

)
, a 6 y 6 b

}
,

where G(y) = {q(y), q ∈ G} ⊆ Y .

Lemma 9. (See [21].) Let E be a closed convex subset of a Banach space Y , and let
0 ∈ E. Assume that H : E → Y is continuous map satisfying Mönch’s condition, i.e.,
E1 ⊂ E is countable, and E1 ⊂ conv({0} ∪ H(E1)) implies that E1 is compact. Then
H has a fixed point in E.

3 Controllability

We require the following hypotheses:

(R1) The operator A generated semigroup T(y) satisfies ‖T(y)‖ 6 K1, whereK1 > 0
is the constant.

(R2) H : J × Oτ → Y is the function with:

(i) H(·, q) is strongly measurable for all q ∈ Oτ , H(y, ·) is continuous for a.e.
y ∈ J , and H(·, ·) : [0, b]→ Y is strongly measurable;

(ii) There exist 0 < p1 < p, m ∈ L1/p1(J ,R+), and nondecreasing continu-
ous function h : R+ → R+ such that ‖H(y, q)‖ 6 m(y)h(‖q‖), q ∈ Y ,
y ∈ J , where h satisfies lim infk→∞ h(k)/k = 0;

(iii) There exists a constant 0 < p2 < p and h ∈ L1/p2(J ,R+) such that, for
all bounded subsets O ⊂ Y , η(H(y,O)) 6 h(y)η(O) for a.e. y ∈ J .

(R3) (i) Let B : L2(J , U) → L1(J , Y ) be the bounded linear operator, L :

L2(J , U) → Y defined by Lv =
∫ b

0
(b − λ)p−1Qp(b − λ)Bv(λ) dλ has

an inverse operator L−1, which take the values in L2(J , U)/ ker L, and
K2,K3 > 0 with ‖B‖L2(U,Y ) 6 K2, ‖L−1‖L2(Y,U/ ker L) 6 K3;

https://www.journals.vu.lt/nonlinear-analysis
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(ii) There exists a constant p0 ∈ (0, p) and KJ ∈ L1/p0(J ,R+) such that, for
all bounded sets Q ⊂ Y , η((L−1Q)(y)) 6 KL(y)η(Q).

To make things easier for us, we introduce

Kpj =
pj − 1

pϑ− 1
b(pϑ−1)/(pj−1), j = 1, 2,

K4 = Kp1‖h‖L1/p1 (J ,R+) and K5 = K2
p2‖h‖L1/p2 (J ,R+).

Theorem 2. Suppose (R1)–(R3) hold, then the HF system (1)–(2) has a solution on J
with K̂ = b1−σ+pσ−pϑ(L′K4 + L′2K2K5KL) < 1 and θ > 1 + ϑ.

Proof. Consider the operator Ψ : O′τ → O′τ given by

Ψ
(
q(y)

)
=


Ψ1(y), (−∞, 0],

y1−σ+pσ−pϑ[Sp,σ(y)ξ

+
∫ y

0
(y − λ)p−1Qp(y − λ)H

(
λ, qλ

)
dλ

+
∫ y

0
(y − λ)p−1Qp(y − λ)Bv(λ) dλ], y ∈ J .

For Ψ1 ∈ Oτ , we define Ψ̂ by

Ψ̂(y) =

{
Ψ1(y), y ∈ (−∞, 0],

Sp,σ(y)ξ, y ∈ J ,

then Ψ̂ ∈ O′τ . Let q(y) = y(y) + Ψ̂(y), −∞ < y 6 b, q fulfill from a simple standpoint
from (3) iff y satisfies y0 = 0 and

y(y) =

y∫
0

(y − λ)p−1Qp(y − λ)H
(
λ, yλ + Ψ̂λ

)
dλ

+

y∫
0

(y − λ)p−1Qp(y − λ)Bv(λ) dλ,

where

v(y) = L−1

[
q1 − Sp,σ(b)ξ −

b∫
0

(b− λ)p−1Qp(b− λ)H(λ, yλ + Ψ̂λ) dλ

]
.

Let O′′τ = {y ∈ O′τ : y0 ∈ Oτ}. For any y ∈ O′τ ,

‖y‖′g = ‖y0‖g + sup
{
‖y(λ)‖, 0 6 λ 6 b

}
= sup

{∥∥y(λ)
∥∥, 0 6 λ 6 b

}
.

Thus, (O′′τ , ‖·‖′g) is a Banach space.
Let P > 0, take OP = {y ∈ O′′τ : ‖y‖g 6 P}, then OP ⊂ O′′ι is uniformly bounded,

and for y ∈ OP , from Lemma 5

‖yy + Ψ̂y‖g 6 ‖yy‖g + ‖Ψ̂‖g 6 l
(
P + L′′y−1+σ−pσ+pϑ

)
+ ‖Ψ1‖g = P′.
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Consider the operator Φ : O′′τ → O′′τ defined as

Φy(y) =


0, y ∈ (−∞, 0],∫ y

0
(y − λ)p−1Qp(y − λ)H(λ, yλ + Ψ̂λ

)
dλ

+
∫ y

0
(y − λ)p−1Qp(y − λ)Bv(λ) dλ, y ∈ J .

Now, we prove that Φ has a fixed point.

Step 1. Show that Φ(OP) ⊆ OP.
Suppose that the condition is not true, so, for all P > 0, there exists yP ∈ OP, but

Φ(yP) /∈ OP,

P < sup y1−σ+pσ−pϑ∥∥Φ(yP(y)
)∥∥

6 b1−σ+pσ−pϑ

y∫
0

(y − λ)p−1
∥∥Qp(y − λ)H

(
λ, yPλ + Ψ̂λ

)∥∥dλ

+ b1−σ+pσ−pϑ

y∫
0

(y − λ)p−1
∥∥Qp(y − λ)BvP(λ)

∥∥dλ

6 b1−σ+pσ−pϑ

[ y∫
0

(y − λ)p−1
∥∥Qp(y − λ)

∥∥∥∥H(λ, yλ + Ψ̂λ
)∥∥

+

y∫
0

(y − λ)p−1
∥∥Qp(y − λ)

∥∥
×

∥∥∥∥∥BW−1

(
q1 −Sp,σ(b)ξ −

b∫
0

(b− λ)p−1Qp(b− λ)H(λ, yλ + Ψ̂λ)

)
dλ

∥∥∥∥∥
]

6 b1−σ+pσ−pϑ
[
M∗1 + L′K2K3

bpϑ

pϑ

(
q1 − L′′b−1+σ−pσ+pϑ −M∗1

)]
.

Dividing P in both side, from the limit value we get a contradiction to our assumption
(here M∗1 = L′(bpϑ/pϑ)m(b)h(P′)). So, Φ(OP) ⊆ OP.

Step 2. Prove that Φ is continuous on OP.
Φ maps OP into OP. For any ym, y ∈ OP, m = 0, 1, 2, . . . , with limm→∞ ym = y,

we know limm→∞ ym(y) = y(y) and limm→∞ y1−σ+pσ−pϑym(y) = y1−σ+pσ−pϑy(y).
By (R2),

H
(
y, qm(y)

)
= H

(
y, ymy + Ψ̂y

)
→ H(y, yy + Ψ̂y) = H(y, qy) as m→∞.

Take

Fk(λ) = H
(
λ, ykλ + Ψ̂λ

)
and F (λ) = H(λ, yλ + Ψ̂λ).

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Study on the controllability of Hilfer fractional differential system 175

Then from hypotheses (R2) and Lebesgue’s dominated convergence theorem we can
obtain

y∫
0

(y − λ)p−1
∥∥Fk(λ)− F (λ)

∥∥dλ→ 0 as m→∞, y ∈ J . (4)

Next,

vk(y) = L−1

[
q1 − Sp,σ(b)ξ −

b∫
0

(b− λ)p−1Qp(b− λ)H
(
λ, ykλ + Ψ̂λ

)
dλ

]
∥∥vk(y)− v(y)

∥∥
= L−1

[ b∫
0

(b− λ)p−1Qp(b− λ)
∥∥H(λ, ykλ + Ψ̂λ

)
− H(λ, yλ + Ψ̂λ)

∥∥]. (5)

From (4), Eq. (5) converges to zero as k →∞.
Now,∥∥Φyk(y)− Φy(y)

∥∥
g

6

y∫
0

(y − λ)p−1Qp(y − λ)
(∥∥Fk(λ)− F (λ)

∥∥dλ+ B
∥∥vk(y)− v(y)

∥∥) dλ.

Using (4) and (5), we obtain ‖Φyk − Φy
∥∥
g
→ 0 as k →∞. So, Φ is continuous on OP.

Step 3. Next, we need to prove that Φ is equicontinuous.
For q ∈ OP and 0 6 y1 < y2 6 b, we have∥∥Φq(y2)− Φq(y1)

∥∥
=

∥∥∥∥∥y1−σ+pσ−pϑ
2

( y2∫
0

(y2 − λ)p−1Qp(y2 − λ)H(λ, yλ + Ψ̂λ) dλ

+

y2∫
0

(y2 − λ)p−1Qp(y2 − λ)Bv(λ) dλ

)

− y1−σ+pσ−pϑ
1

( y1∫
0

(y1 − λ)p−1Qp(y1 − λ)H(λ, yλ + Ψ̂λ) dλ

−
y1∫

0

(y1 − λ)p−1Qp(y1 − λ)Bv(λ) dλ

)∥∥∥∥∥
6

∥∥∥∥∥y1−σ+pσ−pϑ
2

y1∫
0

(y2 − λ)p−1Qp(y2 − λ)H(λ, yλ + Ψ̂λ) dλ
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− y1−σ+pσ−pϑ
1

y1∫
0

(y1 − λ)p−1Qp(y2 − λ)H(λ, yλ + Ψ̂λ) dλ

∥∥∥∥∥
+

∥∥∥∥∥y1−σ+pσ−pϑ
1

y1∫
0

(y1 − λ)p−1Qp(y2 − λ)H(λ, yλ + Ψ̂λ) dλ

− y1−σ+pσ−pϑ
1

y1∫
0

(y1 − λ)p−1Qp(y1 − λ)H(λ, yλ + Ψ̂λ) dλ

∥∥∥∥∥
+

∥∥∥∥∥y1−σ+pσ−pϑ
2

y2∫
y1

(y2 − λ)p−1Qp(y2 − λ)H(λ, yλ + Ψ̂λ) dλ

∥∥∥∥∥
+

∥∥∥∥∥y1−σ+pσ−pϑ
2

y1∫
0

(y2 − λ)p−1Qp(y2 − λ)Bv(λ) dλ

− y1−σ+pσ−pϑ
1

y1∫
0

(y1 − λ)p−1Qp(y2 − λ)Bv(λ) dλ

∥∥∥∥∥
+

∥∥∥∥∥y1−σ+pσ−pϑ
1

y1∫
0

(y1 − λ)p−1Qp(y2 − λ)Bv(λ) dλ

− y1−σ+pσ−pϑ
1

y1∫
0

(y1 − λ)p−1Qp(y1 − λ)Bv(λ) dλ

∥∥∥∥∥
+

∥∥∥∥∥y1−σ+pσ−pϑ
2

y2∫
y1

(y2 − λ)p−1Qp(y2 − λ)Bv(λ) dλ

∥∥∥∥∥
6

6∑
i=1

Ii.

I1 6

∥∥∥∥∥
( y1∫

0

y1−σ+pσ−pϑ
2 (y2 − λ)p−1 − y1−σ+pσ−pϑ

1 (y1 − λ)p−1

)

×Qp(y2 − λ)H(λ, yλ + Ψ̂λ) dλ

∥∥∥∥∥
6 L′

∥∥∥∥∥
( y1∫

0

y1−σ+pσ−pϑ
2 (y2 − λ)p−1 − y1−σ+pσ−pϑ

1 (y1 − λ)p−1

)

× (y2 − λ)−p+pϑ dλ

∥∥∥∥∥m(b)f(P′)
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implies I1 → 0 as y2 → y1.

I2 6

∥∥∥∥∥y1−σ+pσ−pϑ
1

y1∫
0

(y1 − λ)p−1
[
Qp(y2 − λ)−Qp(y1 − λ)

]
H
(
λ, yλ + Ψ̂λ

)
dλ

∥∥∥∥∥
6

∥∥∥∥∥y1−σ+pσ−pϑ
1

y1∫
0

(y1 − λ)p−1
[
Qp(y2 − λ)−Qp(y1 − λ)

]
dλ

∥∥∥∥∥m(b)f(P′).

From Lemma 3 we obtain that I2 → 0 as y2 → y1.

I3 =

∥∥∥∥∥y1−σ+pσ−pϑ
2

y2∫
y1

(y2 − λ)p−1Qp(y2 − λ)H(λ, yλ + Ψ̂λ) dλ

∥∥∥∥∥
6 L′

∥∥∥∥∥y1−σ+pσ−pϑ
2

y2∫
y1

(y2 − λ)pϑ−1 dλ

∥∥∥∥∥m(b)f(P′).

Integrating and y2 → y1 imply I3 = 0.

I4 =

∥∥∥∥∥y1−σ+pσ−pϑ
2

y1∫
0

(y2 − λ)p−1Qp(y2 − λ)Bv(λ) dλ

− y1−σ+pσ−pϑ
1

y1∫
0

(y1 − λ)p−1Qp(y2 − λ)Bv(λ) dλ

∥∥∥∥∥
6

∥∥∥∥∥
y1∫

0

(
y1−σ+pσ−pϑ

2 (y2 − λ)p−1 − y1−σ+pσ−pϑ
1 (y1 − λ)p−1

)
×Qp(y2 − λ)Bv(λ) dλ

∥∥∥∥∥
6 L′K2

∥∥∥∥∥
y1∫

0

(
y1−σ+pσ−pϑ

2 (y2 − λ)p−1 − y1−σ+pσ−pϑ
1 (y1 − λ)p−1

)
× (y2 − λ)−p+pϑv(λ) dλ

∥∥∥∥∥
implies I4 → 0 as y2 → y1.

I5 6

∥∥∥∥∥y1−σ+pσ−pϑ
1

y1∫
0

(y1 − λ)p−1
(
Qp(y2 − λ)−Qp(y1 − λ)

)
Bv(λ) dλ

∥∥∥∥∥.
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Since Qp(y) is uniform continuous, we get I5 → 0 as y2 → y1.

I6 =

∥∥∥∥∥y1−σ+pσ−pϑ
2

y2∫
y1

(y2 − λ)p−1Qp(y2 − λ)Bv(λ) dλ

∥∥∥∥∥
6 L′K2

∥∥∥∥∥y1−σ+pσ−pϑ
2

y2∫
y1

(y2 − λ)pϑ−1v(λ) dλ

∥∥∥∥∥.
Integrating and applying limit imply I6 = 0. Therefore, Φ is equicontinuous on J .

Step 4. Prove Mönch’s conditions.
Let O0 ⊂ OP by countable, and let O0 ⊂ conv({0} ∪ Φ(O0)). We prove η(O0) = 0.

Suppose that O0 = {yk}∞k=1. We have to show that Φ(O0)(y) is relatively compact in Y
for each y ∈ J .

η
(
Φ(O0)

)
= η

(
Φ
({
yk
}∞
k=1

))
6 η

(
y1−σ+pσ−pϑ

y∫
0

(y − λ)p−1Qp(y − λ)H
(
λ,
{
ykλ + Ψ̂λ

}∞
k=1

)
dλ

+

y∫
0

(y − λ)p−1Qp(y − λ)Bv(λ) dλ

)

6 η

(
y1−σ+pσ−pϑ

y∫
0

(y − λ)p−1Qp(y − λ)H
(
λ,
{
ykλ + Ψ̂λ

}∞
k=1

)
dλ

)

+ η

(
y1−σ+pσ−pϑ

y∫
0

(y − λ)p−1Qp(y − λ)Bv(λ) dλ

)
= J1 + J2,

where

J1 = η

(
y1−σ+pσ−pϑ

y∫
0

(y − λ)p−1Qp(y − λ)H
(
λ,
{
ykλ + Ψ̂λ

}∞
k=1

)
dλ

)

6 b1−σ+pσ−pϑ

y∫
0

(y − λ)p−1Qp(y − λ)η
(
H
(
λ,
{
ykλ + Ψ̂λ

}∞
k=1

)
dλ
)

6 L′b1−σ+pσ−pϑ

y∫
0

Qp(y − λ)pϑ−1h(λ)η
(
O0

)
dλ
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6 L′b1−σ+pσ−pϑ

( y∫
0

(y − λ)(pϑ−1)/(1−p1) dλ

)p1−1( y∫
0

∥∥h(λ)
∥∥p1 dλ

)1/p1

η
(
O0

)
6 L′b1−σ+pσ−pϑKp1‖h‖L(1/p1)(J ,R+)η(O0),

J2 = η

(
y1−σ+pσ−pϑ

y∫
0

(y − λ)p−1Qp(y − λ)Bv(λ) dλ

)

6 b1−σ+pσ−pϑη

( y∫
0

(y − λ)p−1Qp(y − λ)

× BL−1

(
q1 −Sp,σ(b)ξ −

b∫
0

(b− λ)p−1Qp(b− λ)H
(
b,
{
ykλ + Ψ̂λ

}∞
k=1

))
dλ

)

6 L′2K2b
1−σ+pσ−pϑ

b∫
0

(b− λ)2pϑ−2η
(
L−1H

(
λ,
{
ykλ + Ψ̂λ

}∞
k=1

))
dλ

6 L′2K2KLb
1−σ+pσ−pϑ

b∫
0

(b− λ)2pϑ−2η
(
H
(
b,
{
ykλ + Ψ̂λ

}∞
k=1

))
dλ

6 L′2K2KLb
1−σ+pσ−pϑ

( b∫
0

(b− λ)(pϑ−1)/(p2−1) dλ

)2p2−2( b∫
0

‖h‖p2 dλ

)p2

η(O0)

6 L′2K2KLb
1−σ+pσ−pϑK2

p2‖h‖L(1/p1)(J ,R+)η(O0).

Now,

J1 + J2 6 b1−σ+pσ−pϑ[L′K4 + L′2K2K5KL

]
η(O0).

Therefore,

η
(
Φ(O0)

)
6 K̂η

(
O0

)
,

where K̂ = b1−σ+pσ−pϑ(L′K4 + L′2K2K5KL).
Therefore, using Mönch’s condition, we get

η(O0) 6 η
(
conv

(
{0} ∪ Φ(O0)

))
= η

(
Φ(O0)

)
6 K̂η(O0)

=⇒ η(O0) = 0.

Then from Lemma 9 Φ has a fixed point q in OP . So q = y + Ψ̂ is the mild solution
of Eqs. (1)–(2) such that q(b) = q1. Therefore, system (1)–(2) is controllable in Y .
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4 Impulsive conditions

Consider the HF impulsive differential equations

Dp,σ
0+ q(y) = Aq(y) + H(y, qy) + Bv(y), y ∈ J ′ = (0, b], y 6= ym,

∆q(ym) = Im
(
q(y+

m)
)
, m = 1, 2, . . . , n,

I
(1−p)(1−σ)
0+ q(0) = ξ ∈ Oτ , y ∈ (−∞, 0],

(6)

where Im : Y → Y , 0 < y1 < y2 < y3 < · · · < ym < ym+1 = b, and

∆q|y=qym = q
(
y+
m

)
− q
(
y−m
)
,

q
(
y+
m

)
= lim
δ→0+

q(ym + δ), q
(
y−m
)

= lim
δ→0−

q(ym + δ).

Here we introduce the set

O′′′τ =
{
q : (−∞, b]→ Y :

∣∣ q|Jm ∈ C(Jm, Y ),

∃u
(
y+
m

)
, u
(
y−m
)
: u
(
y+
m

)
= u
(
y−m
)
, u0 = ξ, ξ ∈ Oτ

}
,

where u|Jm is the restriction of u to Jm = (ym, ym+1], m = 0, 1, 2, . . . , n. The function
‖·‖′g is the seminorm in O′′′τ defined as

‖u‖′g = sup
{∣∣u(τ)

∣∣, τ ∈ [0, b]
}

+ ‖ξ‖g, u ∈ O′′′τ .

(R4) (i) Let Im : Y → Y be the continuous function, and there exists a constant
K6 such that, for all y ∈ I , we have∥∥Im(u1)− Im(u2)

∥∥ 6 K6‖u1 − u2‖.

(ii) There exists K∗6 > 0 such that∥∥Im(u)
∥∥ 6 K∗6 ∀u ∈ Y,m = 1, 2, . . . , n.

(iii) There exist p3 ∈ (0, p) and K7 ∈ L(1/p3)(Jm, Y ) such that, for every
bounded sets Om ⊂ Y , m = 1, 2, . . . , n, η(Im(Om)) 6 K7 × η(Om).

Definition 7. A continuous function q : (−∞, b] → Y is known as the mild solution of
Eq. (6) if there exists q0 = ξ ∈ Oτ on (−∞, 0] such that

q(y) = Sp,σ(y)ξ +

y∫
0

(y − λ)p−1Qp(y − λ)H
(
y, qy

)
dλ

+

y∫
0

(y − λ)p−1Qp(y − λ)Bv(λ) dλ+
∑

0<ym<y

Sp,σ(y − ym)Im
(
q(ym)

)
,

is satisfied.
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Theorem 3. Suppose (R1)–(R4) hold, then (6) is controllable on [0, b] with ξ ∈ D(Aθ),
θ > 1 + ϑ, and

K̂∗ = b1−σ+pσ−pϑ(L′K4 + L′2K2K5KL

)
+ L′′nK7

((
L′K2KLb

pϑ/(pϑ)
)

+ 1
)
< 1.

Proof. Consider the operator Ψ∗ : O′′′τ → O′′′τ given by

Ψ∗(q(y)) =


Ψ∗1 (y), (−∞, 0],

y1−σ+pσ−pϑ[Sp,σ(y)ξ +
∫ y

0
(y − λ)p−1Qp(y − λ)H(λ, qλ) dλ

+
∫ y

0
(y − λ)p−1Qp(y − λ)Bv(λ) dλ

+
∑

0<ym<y Sp,σ(y − ym)Im(q(ym))], y ∈ J .

For Ψ∗1 ∈ Oτ , we define Ψ̂∗ by

Ψ̂∗(y) =

{
Ψ∗1 (y), y ∈ (−∞, 0],

Sp,σ(y)ξ, y ∈ J ,

then Ψ̂∗ ∈ O′τ . Let q(y) = y(y) + Ψ̂∗(y), −∞ < y 6 b, q fulfill from a simple standpoint
from (3) iff y satisfies y0 = 0 and

y(y) =

y∫
0

(y − λ)p−1Qp(y − λ)H
(
λ, yλ + Ψ̂∗λ

)
dλ

+

y∫
0

(y − λ)p−1Qp(y − λ)Bv(λ) dλ+
∑

0<ym<y

Sp,σ(y − ym)Im(ym + Ψ̂∗m),

where

v(y) = L−1

[
q1 − Sp,σ(b)ξ −

b∫
0

(b− λ)p−1Qp(b− λ)H
(
λ, yλ + Ψ̂∗λ

)
dλ

−
∑

0<ym<b

Sp,σ(b− ym)Im(ym + Ψ̂∗m)

]
.

Let O′′′∗τ = {y ∈ O′′′τ : y0 ∈ Oτ}. For any y ∈ O′τ ,

‖y‖g = ‖y0‖g + sup
{∥∥y(λ)

∥∥, 0 6 λ 6 b
}

= sup
{∥∥y(λ)

∥∥, 0 6 λ 6 b
}
.

Thus, (O′′′∗τ , ‖·‖′b) is a Banach space.
Consider P∗ > 0 and take OP∗ = {y ∈ O′′τ : ‖y‖g 6 P∗}. Then OP∗ ⊂ O′′′∗τ is

uniformly bounded, and for y ∈ OP , from Lemma 5

‖yy + Ψ̂y‖g 6 ‖yy‖g + ‖Ψ̂‖g 6 l
(
P∗ + L′′y−1+σ−pσ+pϑ

)
+ ‖Ψ1‖g = P′∗.
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Let Φ∗ : O′′′∗τ → O′′′∗τ be the operator defined by

Φ∗y(y) =


0, y ∈ (−∞, 0],∫ y

0
(y − λ)p−1Qp(y − λ)H(λ, yλ + Ψ̂λ) dλ

+
∫ y

0
(y − λ)p−1Qp(y − λ)Bv(λ) dλ

+
∑

0<ym<y Sp,σ(y − ym)Im(ym + Ψ̂∗m), y ∈ J .

Obviously, the statement that the operator Ψ∗ has a fixed point is equivalent to that Φ∗ has
one. So it turns out to prove that Φ∗ has a fixed point.

Step 1. We prove that Φ∗(OP∗) ⊆ OP∗ .
From Step 1 of the previous part and (R4) we can easily prove it.

Step 2. Prove that Φ∗ is continuous.
Φ∗ maps OP∗ into OP∗ . Take yk, y ∈ OP∗ , k = 0, 1, 2, . . . , such that limk→∞ yk = y.

Then we have limk→∞ ym(y) = y(y) and limk→∞ y1−σ+pσ−pϑyk(y) = y1−σ+pσ−pϑy(y).
From hypotheses (R4)

Im(ykm) = Im
(
ykm + Ψ̂∗m

)
→ Im(ym + Ψ̂∗m)

=⇒
∑

0<ym<y

∥∥Sp,σ(yk − ykm)Im
(
ykm + Ψ̂∗m

)
− Sp,σ(y − ym)Im

(
ym + Ψ̂∗m

)∥∥→ 0 (7)

since Sp,σ(y) is strongly continuous. By (4), (5), and (7) we get that Φ∗ is continuous.
Step 3. Next, we have to show Φ∗ is equicontinuous.
Using hypotheses (R4) and Step 3 in previous section, we can verify the equicontinu-

ity of Φ∗.
Step 4. Show Mönch’s conditions.
Using Step 4 in previous part and hypotheses (R4)(ii), take

J3 = η

(
y1−σ+pσ−pϑ

∑
0<ym<y

Sp,σ(y − ym)Im
(
q
{(
ykm + Ψ̂∗m

)}∞
k=1

))
6 b1−σ+pσ−pϑ

∑
0<ym<y

Sp,σ(y − ym)η
(
Im
(
q
{(
ykm + Ψ̂∗m

)}∞
k=1

))
6 L′′nK7η(Oo).

Thus, by expressions of J1, J2, J3 and (R4) we can verify Mönch’s conditions. Hence,
by Lemma 9 system (6) is controllable in Y .

5 Applications

Application 1

Suppose the HFDtial equation is given by
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D
2/3,σ
0+ q(y, τ) = qττ (y, τ) + Wϕ̂(y, τ) + χ

(
y,

y∫
−∞

χ1(λ− y)q(y, τ) dλ

)
,

I
1/3(1−σ)
0+ q(0, τ) = q0(τ), τ ∈ [0, π],

q(y, 0) = q(y, π) = 0, y ∈ J ,
q(y, τ) = ξ(y, τ), y ∈ (−∞, 0],

(8)

where D2/3,σ
0+ is the HFDtial of order p = 2/3 and type σ ∈ [0, 1], χ : J × Oτ → Y and

ξ are continuous, which satisfies some smoothness conditions.
Let Y = U = L2[0, π], and let A : D(A) ⊂ Y → Y be defined as Ax = x′ such that

D(A) =
{
x ∈ Y : x, x′ are absolutely continuous, x′′ ∈ Y, x(0) = x(π) = 0

}
,

where A is the almost sectorial operator of the semigroup T defined as T(y)%(λ) =
%(y+λ) for % ∈ Y . The semigroup T(y) is noncompact semigroup in Y with η(T(y)O) 6
η(O), where η denotes the Hausdorff MNC, and there exists a constant K1 > 1 such that
supy∈J ‖T(y)‖ 6 K1. Furthermore, y→ %(y2/3θ+ λ)q is equicontinuous for y > 0 and
0 < θ <∞.

Define

q(y)(τ) = q(y, τ), H
(
y, qy

)
(τ) = χ

(
y,

y∫
−∞

χ1(λ− y)q(y, τ) dλ

)
.

Let us consider B : U → Y defined as

(Bv)(τ) = Wη(y, τ), τ ∈ (0, π).

Taking into account the entries A, B, and H, system (8) looks like this:

Dp,σ
0+ q(y) = Aq(y) + H

(
y, qy

)
+ Bv(y), p =

2

3
∈ (0, 1), y ∈ J ,

I
(1−p)(1−σ)
0+ (q0) = ξ ∈ Oτ .

We set

χ

(
y,

y∫
−∞

χ1(λ− y)q(y, τ) dλ

)
= C0 sin

(
q(y)

)
with a constant C0. Then the required system (8) satisfies the assumption, so we conclude
that the HFDtial system (1)–(2) is controllable.

Application 2

Consider the Hilfer fractional impulsive differential system

D
2/3,σ
0+ q(y, τ) =

∂2

∂τ2
(y, τ) + Zϕ̂(y, τ) +

y∫
−∞

F(y, τ, λ− y)Λ
(
q(λ, τ)

)
dλ,

y ∈ [0, b], τ ∈ [0, π], y 6= ym,
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q
(
y+
m, τ

)
− q
(
y−m, τ

)
= Im

(
q
(
y+
m, τ

))
, m = 0, 1, . . . , n,

I
1/3(1−σ)
0+ q(0, τ) = q0(τ), τ ∈ [0, π],

q(y, 0) = q(y, π) = 0, y ∈ J ,
q(y, τ) = ξ(y, τ), y ∈ (−∞, 0].

HereD2/3,σ
0+ specify the Hilfer fractional derivative of order 2/3 and type σ. Also, F : J×

[0, π]×(−∞, 0]→ Y is continuous function such that F(y, τ, ω) > 0,
∫ 0

−∞ F(y, τ, ω) dω <
∞, and Λ : (−∞, 0]× [0, π], Im : Y → Y are the continuous functions.

Take Y = U = L2[0, π], and let A : D(A) ⊂ Y → Y be defined as Ax = x′ such that

D(A) =
{
x ∈ Y : x, x′ are absolutely continuous, x′′ ∈ Y, x(0) = x(π) = 0

}
and

Ax =

∞∑
k=1

k2〈x, xk〉xk, x ∈ D(A),

where xk(x) is the orthogonal set of eigenvectors of A.
Suppose we took the function g = e4λ, λ < 0. Then l =

∫ 0

−∞ g(λ) dλ = 1/4, and
we define ∥∥ξ∥∥

g
=

0∫
−∞

g(λ) sup
ω∈[λ,0]

∣∣ξ(ω)
∣∣
L2 dλ.

Thus, if (y, ξ) ∈ J × Oτ , then ξ(ω)(τ) = ξ(ω, τ), (ω, τ) ∈ (−∞, 0] × [0, π]. Here we
take

q(y)(τ) = q(y, τ), H(y, ω)(τ) =

0∫
−∞

F(y, τ, ω)Λ
(
ξ(ω)(τ)

)
dω.

Then we can analyze∥∥H(y, ξ)
∥∥
L2

=

[ π∫
0

( 0∫
−∞

F(y, τ, ω)Λ
(
ξ(ω)(τ)

)
dω

)2

dτ

]1/2

6

[ π∫
0

( 0∫
−∞

F
(
y, τ, ω

)
dω ·Ξ

( 0∫
−∞

e4λ
∥∥ξ(λ(·)

)∥∥
L2 dλ

)
dω

)2

dτ

]1/2

6

[ π∫
0

( 0∫
−∞

F
(
y, τ, ω

)
dω ·Ξ

( 0∫
−∞

e4λ sup
λ∈ω,0

∥∥ξ(λ)
∥∥
L2 dλ

)
dω

)2

dτ

]1/2

6

[ π∫
0

( 0∫
−∞

F
(
y, τ, ω

)
dω

)2

dτ

]1/2

Ξ
(
‖ξ‖g

)
=

[ π∫
0

(
K(y, τ)

)2
dτ

]1/2

Ξ
(
‖ξ‖g

)
,

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Study on the controllability of Hilfer fractional differential system 185

where
∫ 0

−∞ F(y, τ, ω) dω = K(y, τ) is continuous nondecreasing function. So the re-
quired hypotheses and Theorem 3 are satisfied, hence the system is controllable.

6 Conclusion

In this article, we discussed the controllability of the Hilfer fractional differential equation
with and without impulsive conditions via infinite delay. The abstract Cauchy problem
was proved using fractional calculus, almost sectorial operators, measure of noncompact-
ness, and the fixed point technique. Firstly, we proved the exact controllability of the
fractional system, then extended the system to an impulsive condition and proved the
controllability. Finally, we provided two applications to illustrate the theory. In the future,
we will try to focus on the controllability of the Ψ -Hilfer fractional impulsive differen-
tial systems with infinite delay. Also, we will study some real-life problems related to
fractional differential systems via semigroup theory.
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