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Abstract. In this paper, we investigate the stability of port-Hamiltonian systems with mixed time-
varying delays as well as input saturation. Three types of time delays, including state delay,
input delay, and output delay, are all assumed to be bounded. By introducing the output feedback
control law and utilizing serval Lyapunov–Krasovskii functionals, we present three delay-dependent
stability criteria in terms of the linear matrix inequality. Meanwhile, we use Wirtinger’s inequality,
constraint conditions, and Lyapunov–Krasovskii functionals of triple and quadruple integral form
to obtain less conservative results. Some numerical examples demonstrate and support our results.

Keywords: port-Hamiltonian system, input saturation, time-varying delay, stability, Lyapunov–
Krasovskii method.

1 Introduction

Port-Hamiltonian (PH) system is an important class of nonlinear systems. Since PH sys-
tems were proposed by Maschke and van der Schaft in [20], PH systems have been
studied by many scholars owing to its nice structural properties [24, 30, 32]. As the total
energy of systems, the Hamiltonian function of a PH system is often used as a good
candidate of Lyapunov function to deal with the stability problem. At the same time,
many effective control approaches have been established in the framework of PH systems,
such as passivity-based control [34], interconnection and damping assignment passivity-
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based control [22], interconnection control [21], etc. Therefore, many practical problems
can be converted into PH systems through modeling, and they can be further analyzed and
controlled [6, 15, 23, 25].

In many practical control systems, time delays and saturation constraints are unavoid-
able factors, such as mechanical systems, control systems, communication systems, etc.
Usually, the present of time delays and saturations will destroy the original structure of
systems or make the stability of systems very difficult. Therefore, many scholars devote
themselves to the stability design of systems. For time-delay systems, the Lyapunov–
Krasovskii functional method [12,14] is a very important approach to determine the stabil-
ity of systems. In addition, there are three methods to handle saturation terms, including
sector nonlinearity models [36], diagonal matrix method [8], and convex combination-
based method [39].

In recent years, many papers consider the stability of nonlinear systems with time
delays and input saturation constraints in the framework of PH systems [5, 28, 33, 35].
Cao et al. proposed delay-dependent and delay-independent stability conditions for linear
time-delay systems with input saturation by using the Lyapunov–Krasovskii functional
method in [3]. Sun studied the stability of port-controlled Hamiltonian systems with state
delay and input saturation; see [28]. Comparing with the criterion in [28], Aoues et al.
in [1] proposed a more tractable criteria and used Wirtinger’s inequality [13,26] to reduce
the conservatism. In [38], Yang proposed stability conditions of input saturated nonlinear
systems with state delay and input delay by constructing a new Lyapunov–Krasovskii
functional. Then Sun et al. studied the global asymptotic stability of singular nonlinear
Hamiltonian systems with input delay and output delay subject to input saturation, and
they investigated H∞ control problems with external disturbances in [29]. There are
a number of literatures about time-delay nonlinear systems with input saturation [10, 33,
35]. However, to the best of our knowledge, there are few results on the stability of PH
systems simultaneously with state delay, input delay, output delay, and input saturation.

In this paper, we study the asymptotic stability of the PH system with mixed delays
subject to input saturation under the action of the output feedback controller. Three delay-
dependent stability criteria are proposed as shown in three main theorems; see Theo-
rems 1, 2, and 3 in Section 3. The contributions of this paper are as follows: (i) We
consider three kinds of time delays, while considering input saturation, which generalized
the related results in the previous literatures; (ii) Since the considering situation is more
comprehensive and complex, we introduce Lyapunov–Krasovskii functionals in the forms
of triple and quadruple integrals; (iii) In order to further reduce the conservatism of the
system, we utilize Wirtinger’s inequality and introduce constraint conditions.

The rest of paper is organized as follows. Section 2 is the problem formulation and
preliminaries. In Section 3, we give three delay-dependent stability criteria based on
different Lyapunov–Krasovskii functionals, and in Section 4, some numerical examples
support our results. Finally, we give the conclusion in Section 5.

Notation. R is the set of real numbers; Rm denotes the m-dimensional Euclidean space,
and Rm×n is the set ofm×n real matrices. Im is amth order identity matrix. For a matrix
M ∈ Rm×m, we use MT, M−1 to denote the transpose matrix and the inverse matrix of
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M , respectively. The notation M < 0 (respectively, M 6 0) represents that matrix M is
negative definite (respectively, negative seminegative). For a mapping H(x): Rm → R
and a column vector x ∈ Rm, we denote the gradient of H(x) at x by ∇xH(x). The
Hessian matrix of H(x) at x is denoted as Hess(H(x)). ẋ is the derivative of x with
respect to t. The notation ∗ denotes the elements below the main diagonal of symmetric
matrix. For a scalar a, sign(a) is the signum function of a, and |a| denotes the absolute
value of a.

2 Problem statement and preliminaries

Consider the following PH system with mixed time-varying delays subject to input satu-
ration:

ẋ =
(
J(x)−R(x)

)
∇xH(x) + T (x)∇x1H(x1) + g sat

(
u
(
t− h2(t)

))
,

y = gT∇x3
H(x3),

(1)

where x = x(t) ∈ Rn is the state vector, the terms x1 = x(t − h1(t)), u(t − h2(t)),
and x3 = x(t − h3(t)) are all time-varying delays. u, y ∈ Rm are the control input
and the output, respectively. J = J(x), R = R(x) ∈ Rn×n are the interconnection
matrix and damping matrix, which satisfy JT = −J , RT = R > 0. The Hamiltonian
functionH(x) ∈ R is the total energy of system (1), and it satisfiesH(x) > 0,H(0) = 0.
T = T (x) ∈ Rn×n is a matrix depending on the state x, and g ∈ Rn×m is a constant
input matrix.

Input saturation sat(u) = [sat(u1), sat(u2), . . . , sat(um)]T is the standard actuator
saturation function with sat(ui) = sign(ui)min{|ui|, ρi}, i = 1, 2, . . . ,m, and ρi is
a positive scalar. The time-varying continuous differentiable functions h1(t), h2(t), and
h3(t) are assumed to satisfy the following constraints:

0 6 h1(t) 6 α1, 0 6 h2(t) 6 α2, 0 6 h3(t) 6 α3,

ḣ1(t) 6 µ1 < 1, ḣ2(t) 6 µ2 < 1, ḣ3(t) 6 µ3 < 1,

where α1, α2, α3, µ1, µ2, and µ3 are all the positive scalars. The initial condition of
system (1) is x(s) = φ(s), s ∈ [−α, 0], where α = max{α1, α2, α3}.

Remark 1. For the PH system (1), Sun et al. considered the stability with h1(t) = 0,
h3(t) = 0 in [31], while Yang (see [38]) studied the stability in case of h1(t) = h2(t) = c,
h3(t) = 0, where c is a positive constant. Moreover, the stability of system (1) with
h2(t) = h3(t) = 0 was investigated in [1, 28]. These cases are all the special situations
of system (1).

Consider the output feedback controller

u
(
t− h2(t)

)
= −Ky = −KgT∇x23

H(x23), (2)

where x23 = x(t − h2(t) − h3(t − h2(t))), K ∈ Rm×m is a constant gain matrix
to be determined later. This paper is aimed to find sufficient stability conditions for
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system (1) under the action of the above controller (2). To this end, we need the following
preparations.

Firstly, according to the expression of (2), we define h23(t) = h2(t) + h3(t− h2(t)).
It is obviously that h23(t) 6 α2 + α3 = α23. Meanwhile, h23(t) satisfies the following
lemma.

Lemma 1. There exists a unique t∗ > 0 such that

t < h23(t), t < t∗,

t > h23(t), t > t∗.

Proof. Let f(t) = t− h23(t). Taking the derivative of f(t) with respect to t, we obtain

ḟ(t) = 1− ḣ23(t)
= 1− ḣ2(t)− ḣ3

(
t− h2(t)

)(
1− ḣ2(t)

)
= (1− ḣ2(t))

(
1− ḣ3

(
t− h2(t)

))
> 0.

It means that f(t) is an increasing function in the domain of definition. Since f(0) =
−h23(0) = −h2(0)−h3(−h2(0)) 6 0 and f(+∞) = +∞, there exists a unique t∗ such
that f(t∗) = 0, that is, t∗ = h23(t

∗). Therefore, when t < t∗, t < h23(t); when t > t∗,
t > h23(t).

It is obviously that α23 is the upper bound of t∗. Since system (1) cannot receive
any information from the controller when t < h23(t), so we only focus on t > h23(t).
According to Lemma 1, ḣ23 6 µ23 = 1 − (1 − µ2)(1 − µ3) < 1, where µ23 is also
a positive scalar.

Remark 2. In [16], Liu and Fridman assumed that there exists a unique t∗ such that
t − τ(t) < 0, t < t∗, and t − τ(t) > 0, t > t∗. This assumption also was introduced
by Sun and his collaborators; see [29, Ass. 2.1]. However, according to the definition of
h(t), the assumption holds naturally by using the idea of Lemma 1 in this paper.

In order to deal with the input saturation term, we introduce a transformation

v = sat(u)− u. (3)

In the meantime, in order to obtain the stability conditions, the following lemmas will be
needed.

Lemma 2. (See [36].) If there exists the nonlinear transformation (3), then the following
inequality holds:

vTv 6 uTu.

Lemma 3. For any vectors a, b ∈ Rm, then the following inequality is true:

2aTb 6 aTa+ bTb.
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Lemma 4 [Schur complement]. (See [2].) The linear matrix inequality(
A(x) B(x)
∗ C(x)

)
> 0

is equivalent to A(x) − B(x)C−1(x)BT(x) > 0 and C(x) > 0, where A(x) = AT(x),
C(x) = CT(x), and B(x) depend affinely on x.

Lemma 5. For any positive-definite matrix D ∈ Rm×m, positive scalar τ , and vector
function f : [−τ,+∞) → Rm such that the following integrations are well defined, the
inequalities

−τ
t∫

t−τ

fT(s)Df(s) ds 6 −

( t∫
t−τ

f(s) ds

)T

D

( t∫
t−τ

f(s) ds

)
, (4)

−τ
2

2

0∫
−τ

t∫
t+θ

fT(s)Df(s) dsdθ

6 −

( 0∫
−τ

t∫
t+θ

f(s) dsdθ

)T

D

( 0∫
−τ

t∫
t+θ

f(s) dsdθ

)
, (5)

and

−τ
3

6

0∫
−τ

0∫
β

t∫
t+θ

fT(s)Df(s) dsdβ dθ

6 −

( 0∫
−τ

0∫
β

t∫
t+θ

f(s) dsdβ dθ

)T

D

( 0∫
−τ

0∫
β

t∫
t+θ

f(s) dsdβ dθ

)
(6)

hold.

Proof. The first inequality (4) was proposed in [11], and the second one (5) has been
proved in [27]. The third inequality is used in [7, 37] with no proof. For the convenience
of readers, we give the proof of the third inequality in the following.

Notice that (
fT(s)Df(s) fT(s)

f(s) D−1

)
> 0. (7)

Integrate three times of (7) on the intervals [t+ θ, t], [β, 0], and [−τ, 0] in turn, we have(∫ 0

−τ
∫ 0

β

∫ t
t+θ

fT(s)Df(s) dsdβ dθ
∫ 0

−τ
∫ 0

β

∫ t
t+θ

fT(s) dsdβ dθ∫ 0

−τ
∫ 0

β

∫ t
t+θ

f(s) dsdβ dθ τ3

6 D
−1

)
> 0, (8)

where θ ∈ [−β, 0], β ∈ [−τ, 0]. Here
∫ 0

−τ
∫ 0

β

∫ t
t+θ

D−1 dsdβ dθ = (τ3/6)D−1. By
using Schur complement (see Lemma 4), (8) is equivalent to inequality (6). Hence, we
complete the proof.
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Lemma 6. (See [26].) For a given positive-definite matrix W ∈ Rn×n and for all
continuous functions f : [a, b]→ Rn, the following inequality holds:

b∫
a

ḟT(s)Wḟ(s) ds >
1

b− a

(
Ω0

Ω1

)T(
W 0
∗ 3W

)(
Ω0

Ω1

)
, (9)

where Ω0 = f(b)− f(a), Ω1 = f(b) + f(a)− (2/(b− a))
∫ b
a
f(s) ds.

Remark 3. As mentioned in [26], the first term of the right-hand side of inequality (9)
is Jensen’s inequality. Since the second term (3/(b − a))ΩT

1 WΩ1 is nonnegative defi-
nite. Therefore, Wirtinger’s inequality encompasses Jensen’s inequality. In another word,
Wirtinger’s inequality is less conservative than Jensen’s inequality.

By introducing the output feedback controller (2) and combining the transforma-
tion (3), system (1) becomes the closed-loop system

ẋ = (J −R)∇xH(x) + T∇x1
H(x1)− gKgT∇x23

H(x23) + gv
(
t− h2(t)

)
. (10)

Therefore, our object is to study the asymptotic stability condition of system (10), which
is equivalent to the asymptotic stability condition of system (1) under the action of the
controller (2).

3 Main results

In this section, we establish three types of stability sufficient conditions by constructing
three different Lyapunov–Krasovskii functionals.

Theorem 1. Consider system (10). If there exist positive-definite symmetric matrices
Q, P and a matrix K with proper dimensions such that Ψ < 0, then system (10) is
asymptotically stable, where

Ψ =


−2R+Q+ P + ggT −gKgT T 0

∗ −(1− µ23)Q 0 gKT

∗ ∗ −(1− µ1)P 0
∗ ∗ ∗ −Im×m

 .

Proof. Choose a Lyapunov–Krasovskii functional as

V = V1 + V2, (11)
where

V1 = 2H(x),

V2 =

t∫
t−h23(t)

(
∇xH

(
x(s)

))T
Q∇xH

(
x(s)

)
ds

+

t∫
t−h1(t)

(
∇xH

(
x(s)

))T
P∇xH

(
x(s)

)
ds,
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and Q, P are positive-definite symmetric matrices, which to be determined later. Calcu-
lating the derivatives of Vi, i = 1, 2, along the trajectory of system (10), we obtain

V̇1 = 2
(
∇xH(x)

)T
(J −R)∇xH(x) + 2

(
∇xH(x)

)T
T (x)∇x1

H(x1)

− 2
(
∇xH(x)

)T
gKgT∇x23H(x23) + 2

(
∇xH(x)

)T
gv
(
t− h2(t)

)
and

V̇2 =
(
∇xH(x)

)T
Q∇xH(x)−

(
1− ḣ23(t)

)(
∇x23

H(x23)
)T
Q∇x23

H(x23)

+
(
∇xH(x)

)T
P∇xH(x)−

(
1− ḣ1(t)

)(
∇x1H(x1)

)T
P∇x1H(x1).

According to Lemmas 2 and 3, the last term of V̇1 satisfies

2
(
∇xH(x)

)T
gv
(
t− h2(t)

)
6
(
∇xH(x)

)T
ggT∇xH(x) + v

(
t− h2(t)

)T
v
(
t− h2(t)

)
=
(
∇xH(x)

)T
ggT∇xH(x) +

(
∇x23

H(x23)
)T
gKTKgT∇x23

H(x23).

Combining the above equations, we obtain

V̇ 6
(
∇xH(x)

)T{−2R+ P +Q+ ggT
}
∇xH(x)

+ 2
(
∇xH(x)

)T
T∇x1

H(x1)− 2
(
∇xH(x)

)T
gKgT∇x23

H(x23)

+
(
∇x23

H(x23)
)T{

gKTKgT −
(
1− ḣ23(t)

)
Q
}
∇x23

H(x23)

−
(
1− ḣ1(t)

)(
∇x1

H(x1)
)T
P∇x1

H(x1)

6 ηTΦη,

where

η =

 ∇xH(x)
∇x23

H(x23)
∇x1

H(x1)

 ,

Φ =

−2R+Q+ P + ggT −gKgT T
∗ gKTKgT − (1− µ23)Q 0
∗ ∗ −(1− µ1)P

 .

Since Φ is a nonlinear matrix, we get a linear matrix inequality Ψ < 0, which is equivalent
to inequality Φ < 0 by utilizing the Schur complement.

Therefore, we have V̇ < 0. By the Lyapunov–Krasovskii functional stability theorem,
system (1) is asymptotically stable under the feedback controller (2).

Remark 4. For Theorem 1, we can easily determine the values ofQ, P , K, which satisfy
Ψ < 0. However, in order to reduce conservatism, we introduce constraint conditions and
other types of Lyapunov–Krasovskii functionals.
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Remark 5. When h1(t), h2(t), h3(t) are all positive scalars, the above Theorem 1 is
a delay-independent stability criterion. In [38], the author investigated the stabilization
problem for a class of nonlinear time-delay Hamiltonian systems with actuator saturation
and constant input delay. Sun [28] considered the stabilization of a class of Hamiltonian
systems with time-varying state delay and input saturation. Theorem 1 extends the results
in these papers and solves more complex cases involving input and output delays.

Next, we give a less conservative stability criterion by introducing constraint condi-
tions and other types of Lyapunov–Krasovskii functionals, and we use Wirtinger’s in-
equality [26] to deal with the derivative terms.

Theorem 2. Consider system (10). If there exist positive-definite symmetric matrices Q,
P , W , M , free weighted matrices N1, N2, and a proper dimensions matrix K such that
Θ < 0, then system (10) is asymptotically stable, where

Θ =



Θ11 Θ12 Θ13 6W 6M Θ16 N1g 0 0
∗ Θ22 0 6W 0 0 −gKT −gKT −gKT

∗ ∗ Θ33 0 6M TTNT
2 0 0 0

∗ ∗ ∗ −12W 0 0 0 0 0
∗ ∗ ∗ ∗ −12M 0 0 0 0
∗ ∗ ∗ ∗ ∗ Θ66 0 N2g 0
∗ ∗ ∗ ∗ ∗ ∗ −Im×m 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Im×m 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Im×m


,

where

Θ11 = −2R+Q+ P − 4W − 4M + ggT +N1(J −R) + (J −R)TNT
1 ,

Θ12 = −2W − gKgT, Θ13 = −2M + T +N1T,

Θ16 = −N1 + (J −R)TNT
2 , Θ22 = −(1− µ23)Q− 4W,

Θ33 = −(1− µ1)P − 4M, Θ66 = α2
23β1 + α2

1β2 −N2 −NT
2 ,

and β1 = (Hess(H(x)))W (Hess(H(x)))T, β2 = (Hess(H(x)))M(Hess(H(x)))T.

Proof. Choose the Lyapunov–Krasovskii functional with

V = V1 + V2 + V3.

Here V1, V2 are functions described as in (11), and

V3 = α23

0∫
−α23

t∫
t+s

(
∇xḢ

(
x(v)

))T
W
(
∇xḢ

(
x(v)

))
dv ds

+ α1

0∫
−α1

t∫
t+s

(
∇xḢ

(
x(v)

))T
M
(
∇xḢ

(
x(v)

))
dv ds.

Nonlinear Anal. Model. Control, 29(1):124–145, 2024

https://doi.org/10.15388/namc.2024.29.33822


132 Y. Chen, Q. Liu

Taking the derivatives of Vi, i = 1, 2, 3, along the trajectory of system (10), we obtain

V̇1 = 2
(
∇xH(x)

)T
(J −R)∇xH(x) + 2

(
∇xH(x)

)T
T∇x1

H(x1)

− 2
(
∇xH(x)

)T
gKgT∇x23

H(x23) + 2
(
∇xH(x)

)T
gv
(
t− h2(t)

)
,

V̇2 =
(
∇xH(x)

)T
Q∇xH(x)−

(
1− ḣ23(t)

)(
∇x23

H(x23)
)T
Q∇x23

H(x23)

+
(
∇xH(x)

)T
P∇xH(x)− (1− ḣ1(t))

(
∇x1

H(x1)
)T
P∇x1

H(x1),

and

V̇3 = α2
23(ẋ)

Tβ1ẋ− α23

t∫
t−α23

(
∇xḢ

(
x(s)

))T
W
(
∇xḢ

(
x(s)

))
ds

+ α2
1(ẋ)

Tβ2ẋ− α1

t∫
t−α1

(
∇xḢ

(
x(s)

))T
M
(
∇xḢ

(
x(s)

))
ds,

where β1 = (Hess(H(x)))W (Hess(H(x)))T, β2 = (Hess(H(x)))M(Hess(H(x)))T.
With the advantage of Wirtinger’s inequality, as showed in Lemma 6, we know the

second and the last terms in V3 satisfying

−α23

t∫
t−α23

(
∇xḢ

(
x(s)

))T
W
(
∇xḢ

(
x(s)

))
ds 6 −ξT1 (t)

(
W 0
∗ 3W

)
ξ1(t)

and

−α1

t∫
t−α1

(
∇xḢ

(
x(s)

))T
M
(
∇xḢ

(
x(s)

))
ds 6 −ξT2 (t)

(
M 0
∗ 3M

)
ξ2(t),

respectively, where

ξ1(t) =

(
∇xH(x)−∇x23H(x23)

∇xH(x)+∇x23
H(x23)− 2

h23(t)

∫ t
t−h23(t)

(∇xH(x(s)))TW (∇xH(x(s))) ds

)
,

and

ξ2(t) =

(
∇xH(x)−∇x1

H(x1)

∇xH(x)+∇x1H(x1)− 2
h1(t)

∫ t
t−h1(t)

(∇xH(x(s)))TM(∇xH(x(s))) ds

)
.

From the expression of system (10) let z = ẋ. We have

(J −R)∇xH(x) + T∇x1
H(x1)− gKgT∇x23

H(x23)

+ gv
(
t− h2(t)

)
− z = 0. (12)
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Next, we introduce the following constraint conditions:(
∇xH(x)

)T
N1

{
(J −R)∇xH(x) + T∇x1H(x1)− gKgT∇x23H(x23)

+ gv
(
t− h2(t)

)
− z
}
= 0 (13)

and

zTN2

{
(J −R)∇xH(x) + T∇x1

H(x1)− gKgT∇x23
H(x23)

+ gv
(
t− h2(t)

)
− z
}
= 0, (14)

where N1 and N2 are free weighted matrices with proper dimensions. Since z = ẋ,
V̇3 becomes

V̇3 = α2
23z

Tβ1z − α23

t∫
t−α23

(
∇xḢ

(
x(s)

))T
W
(
∇xḢ

(
x(s)

))
ds

+ α2
1z

Tβ2z − α1

t∫
t−α1

(
∇xḢ

(
x(s)

))T
M
(
∇xḢ

(
x(s)

))
ds.

Substituting V̇1, V̇2, V̇3, (13), and (14) into V̇ , we obtain

V̇ 6 ηTΘ0η,

where

η =


∇xH(x)
∇x23

H(x23)
∇x1

H(x1)
1

h23(t)

∫ t
t−h23(t)

∇xH
(
x(s)

)
ds

1
h1(t)

∫ t
t−h1(t)

∇xH
(
x(s)

)
ds

 ,

Θ0 =


Θ0

11 Θ0
12 Θ13 6W 6M Θ16

∗ Θ0
22 0 6W 0 −gKTgTNT

2

∗ ∗ Θ33 0 6M TTNT
2

∗ ∗ ∗ −12W 0 0
∗ ∗ ∗ ∗ −12M 0
∗ ∗ ∗ ∗ ∗ Θ0

66


with Θ0

11 = Θ11 + N1gg
TNT

1 , Θ0
12 = Θ12 − N1gKg

T, Θ0
22 = Θ22 + 3gKTKgT,

Θ0
66 = Θ66+N2gg

TNT
2 . Terms 2(∇xH(x))TN1gv(t−h2(t)) and 2zTN2gv(t−h2(t))

can be handled in the same way as the last term of V̇1 in Theorem 1.
Since Θ0 is a nonlinear matrix, we obtain a linear matrix inequality Θ < 0, which

is equivalent to inequality Θ0 < 0 by using Lemma 4. Therefore, we have V̇ < 0.
By utilizing the Lyapunov–Krasovskii functional stability theorem, system (1) is also
asymptotically stable under the feedback controller (2).
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Remark 6. In fact, the construction of equation (12) is a common technique, which is
called the descriptor system method; see [9] for instance. The free weighted matrices
N1, N2 are introduced to reduce the conservatism. Since Theorem 2 is derived using
the descriptor system method and Wirtinger-based integral inequality, it exhibits less
conservatism than the results presented in [28, 38].

Next, we give another criterion by using triple and quadruple integral form Lyapunov–
Krasovskii functionals. We have the following theorem.

Theorem 3. Consider system (10). If there exist positive-definite symmetric matrices Q,
P , W , M , R1, R2, Z1, Z2, free weighted matrices N1, N2, and matrix K with proper
dimensions such that Υ < 0, then system (10) is asymptotically stable, where

Υ =



Υ11 Υ12 Υ13 6W 6M Υ16 Υ17 Υ18 Υ19 Υ110 N1g 0 0
∗ Υ22 0 6W 0 0 0 0 0 0 −gKT −gKT −gKT

∗ ∗ Υ33 0 6M TTNT
2 0 0 0 0 0 0 0

∗ ∗ ∗ −12W 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ −12M 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Υ66 0 0 0 0 0 N2g 0
∗ ∗ ∗ ∗ ∗ ∗ −R1 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −R2 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Z1 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Z2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Im 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Im 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Im


with

Υ11 = −2R+Q+ P − 4W − 4M + ggT +N1(J −R) + (J −R)TNT
1

− α2
23R1 − α2

1R2 −
α4
23

4
Z1 −

α4
1

4
Z2,

Υ12 = −2W − gKgT, Υ13 = −2M + T +N1T,

Υ16 = −N1 + (J −R)TNT
2 , Υ17 = α23R1,

Υ18 = α1R2, Υ19 =
α2
23

2
Z1, Υ110 =

α2
1

2
Z2,

Υ22 = −(1− µ23)Q− 4W, Υ33 = −(1− µ1)P − 4M,

Υ66 = α2
23β1 + α2

1β2 −N2 −NT
2 +

α4
23

4
β3 +

α4
1

4
β4 +

α6
23

36
β5 +

α6
1

36
β6,

and βi = (Hess(H(x)))Si(Hess(H(x)))T, i = 1, . . . , 6, S = {W,M,R1, R2, Z1, Z2}.

Proof. Let us construct a Lyapunov–Krasovskii functional with

V = V1 + V2 + V3 + V4 + V5,
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where

V1 = 2H(x),

V2 =

t∫
t−h23(t)

(
∇xH

(
x(s)

))T
Q∇xH

(
x(s)

)
ds

+

t∫
t−h1(t)

(
∇xH

(
x(s)

))T
P∇xH

(
x(s)

)
ds,

V3 = α23

0∫
−α23

t∫
t+θ

(
∇xḢ

(
x(s)

))T
W
(
∇xḢ

(
x(s)

))
dsdθ

+ α1

0∫
−α1

t∫
t+θ

(
∇xḢ

(
x(s)

))T
M
(
∇xḢ

(
x(s)

))
dsdθ,

V4 =
α2
23

2

0∫
−α23

0∫
θ

t∫
t+λ

(
∇xḢ

(
x(s)

))T
R1

(
∇xḢ

(
x(s)

))
dsdλ dθ

+
α2
1

2

0∫
−α1

0∫
θ

t∫
t+λ

(
∇xḢ

(
x(s)

))T
R2

(
∇xḢ

(
x(s)

))
dsdλ dθ,

and

V5 =
α3
23

6

0∫
−α23

0∫
φ

0∫
θ

t∫
t+λ

(
∇xḢ

(
x(s)

))T
Z1

(
∇xḢ

(
x(s)

))
dsdλ dθ dφ

+
α3
1

6

0∫
−α1

0∫
φ

0∫
θ

t∫
t+λ

(
∇xḢ

(
x(s)

))T
Z2

(
∇xḢ

(
x(s)

))
dsdλ dθ dφ.

The derivative of terms V1, V2, V3 have been calculated in the proof of Theorem 2. Hence,
we only consider V4 and V5. Taking the derivatives of Vi, i = 4, 5, along the trajectory of
system (10), we get

V̇4 =
α4
23

4
(ẋ)Tβ3ẋ−

α2
23

2

0∫
−α23

t∫
t+θ

(
∇xḢ

(
x(s)

))T
R1

(
∇xḢ

(
x(s)

))
dsdθ

+
α4
1

4
(ẋ)Tβ4ẋ−

α2
1

2

0∫
−α1

t∫
t+θ

(
∇xḢ

(
x(s)

))T
R2

(
∇xḢ

(
x(s)

))
dsdθ
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and

V̇5 =
α6
23

36
(ẋ)Tβ5ẋ−

α3
23

6

0∫
−α23

0∫
φ

t∫
t+θ

(
∇xḢ

(
x(s)

))T
Z1

(
∇xḢ

(
x(s)

))
dsdθ dφ

+
α6
1

36
(ẋ)Tβ6ẋ−

α3
1

6

0∫
−α1

0∫
φ

t∫
t+θ

(
∇xḢ

(
x(s)

))T
Z2

(
∇xḢ

(
x(s)

))
dsdθ dφ.

For the second and the fourth terms of V4, utilizing inequality (5) in Lemma 5, we have

−α
2
23

2

0∫
−α23

t∫
t+θ

(
∇xḢ

(
x(s)

))T
R1

(
∇xḢ

(
x(s)

))
dsdθ

6 −

(
α23∇xH(x)−

t∫
t−α23

∇xH
(
x(s)

)
ds

)T

R1

×

(
α23∇xH(x)−

t∫
t−α23

∇xH
(
x(s)

)
ds

)
and

−α
2
1

2

0∫
−α1

t∫
t+θ

(
∇xḢ

(
x(s)

))T
R2

(
∇xḢ

(
x(s)

))
dsdθ

6 −

(
α1∇xH(x)−

t∫
t−α1

∇xH
(
x(s)

)
ds

)T

R2

×

(
α1∇xH(x)−

t∫
t−α1

∇xH
(
x(s)

)
ds

)
.

For the second and the fourth terms of V5, using inequality (6) in Lemma 5, we also obtain

−α
3
23

6

0∫
−α23

0∫
φ

t∫
t+θ

(
∇xḢ

(
x(s)

))T
Z1

(
∇xḢ

(
x(s)

))
dsdθ dφ

6 −

(
α2
23

2
∇xH(x)−

0∫
−α23

t∫
t+φ

∇xH
(
x(s)

)
dsdφ

)T

Z1

×

(
α2
23

2
∇xH(x)−

0∫
−α23

t∫
t+φ

∇xH
(
x(s)

)
dsdφ

)
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and

−α
3
1

6

0∫
−α1

0∫
φ

t∫
t+θ

(
∇xḢ

(
x(s)

))T
Z2

(
∇xḢ

(
x(s)

))
dsdθ dφ

6 −

(
α2
1

2
∇xH(x)−

0∫
−α1

t∫
t+φ

∇xH
(
x(s)

)
dsdφ

)T

Z2

×

(
α2
1

2
∇xH(x)−

0∫
−α1

t∫
t+φ

∇xH
(
x(s)

)
dsdφ

)
.

Here we also add constraints conditions (13) and (14). Taking z = ẋ, V̇4 and V̇5 become

V̇4 =
α4
23

4
zTβ3z −

α2
23

2

0∫
−α23

t∫
t+θ

(
∇xḢ

(
x(s)

))T
R1

(
∇xḢ

(
x(s)

))
dsdθ

+
α4
1

4
zTβ4z −

α2
1

2

0∫
−α1

t∫
t+θ

(
∇xḢ

(
x(s)

))T
R2

(
∇xḢ

(
x(s)

))
dsdθ

and

V̇5 =
α6
23

36
zTβ5z −

α3
23

6

0∫
−α23

0∫
φ

t∫
t+θ

(
∇xḢ

(
x(s)

))T
Z1

(
∇xḢ

(
x(s)

))
dsdθ dφ

+
α6
1

36
zTβ6z −

α3
1

6

0∫
−α1

0∫
φ

t∫
t+θ

(
∇xḢ

(
x(s)

))T
Z2(∇xḢ(x(s))) dsdθ dφ.

Combining the above discussion, constraint conditions (12), (13), and using V̇1, V̇2,
and V̇3 in Theorem 2, we get

V̇ 6 ζTΥ0ζ,

where

ζ =

((
∇xH(x)

)T
,
(
∇x23H(x23)

)T
,
(
∇x1H(x1)

)T
,

1

h23(t)

t∫
t−h23(t)

(
∇xH

(
x(s)

))T
ds,

1

h1(t)

t∫
t−h1(t)

(
∇xH

(
x(s)

))T
ds, z,

t∫
t−α23

(
∇xH

(
x(s)

))T
ds,

t∫
t−α1

(
∇xH

(
x(s)

))T
ds,

0∫
−α23

t∫
t+φ

(
∇xH

(
x(s)

))T
dsdφ,

0∫
−α1

t∫
t+φ

(
∇xH

(
x(s)

))T
dsdφ

)T

,
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Υ0 =



Υ 0
11 Υ

0
12 Υ13 6W 6M Υ16 Υ17 Υ18 Υ19 Υ110

∗ Υ 0
22 0 6W 0 Υ 0

26 0 0 0 0
∗ ∗ Υ33 0 6M TTNT

2 0 0 0 0
∗ ∗ ∗ −12W 0 0 0 0 0 0
∗ ∗ ∗ ∗ −12M 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Υ 0

66 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −R1 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −R2 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Z1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Z2


with Υ 0

11 = Υ11 + N1gg
TNT

1 , Υ 0
12 = Υ12 − N1gKg

T, Υ 0
22 = Υ22 + 3gKTKg, Υ 0

26 =

−gKTgTNT
2 , and Υ 0

66 = Υ66 +N2gg
TNT

2 , where terms 2
(
∇xH(x)

)T
N1gv(t− h2(t))

and 2zTN2gv(t−h2(t)) are handled in the same way as the last term of V̇1 in Theorem 1.
Since Υ0 is a nonlinear matrix, we obtain a linear matrix inequality Υ < 0, which is

equivalent to inequality Υ0<0, by utilizing the Schur complement. Hence, we have V̇ <0.
By the Lyapunov–Krasovskii functional stability theorem, system (1) is asymptotically
stable under the feedback controller (2).

Remark 7. Here we construct the Lyapunov–Krasovskii functionals with the form of
triple and quadruple integrals. It is the first time to introduce these Lyapunov–Krasovskii
functionals in the framework of the PH system. As mentioned in [7,27,37], they play key
roles in the further reduction of conservativeness.

Remark 8. In [1], Aoues et al. studied state-delay PH systems subject to input saturation
by using the Wirtinger-based integral inequality. By employing Wirtinger-based integral
inequality method, Sun presented an improved stability analysis method for Hamiltonian
systems with input saturation and time-varying delay. Compared to the results presented
in [1, 28, 31, 38], Theorem 3 has less conservative with the aid of triple and quadruple
integral form Lyapunov–Krasovskii functionals.

4 Numerical examples

In this section, we give numerical examples to verify the validity of our main results.
Specifically, consider a PH system with mixed time-varying delays subject to input satu-
ration:

ẋ = (J −R)∇xH(x) + T∇x1
H(x1) + g sat

(
u
(
t− h2(t)

))
,

y = gT∇x3H(x3),
(15)

where

J =

(
0 1
−1 0

)
, R =

(
4 0
0 4

)
, T =

(
−1 −0.7
0.3 −0.5

)
, g =

(
0
1

)
.
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Here the Hamiltonian function is H(x) = 0.5x21 + sin2x2, and

sat(ui) = signmin
{
|ui|, 0.03

}
, i = 1, 2.

State-delay, input-delay, and out-delay functions h1(t), h2(t), h3(t) are given by

h1(t) =
π + 2arctan t

6
, h2(t) = 0.2 sin2 t, h3(t) =

π + 2arctan t

4
,

respectively. It is obviously that the delay functions satisfy

0 6 h1(t) 6
π

3
, 0 6 h2(t) 6 0.2, 0 6 h3(t) 6

π

2
,

ḣ1(t) 6
1

3
< 1, ḣ2(t) 6 0.2 < 1, ḣ3(t) 6

1

2
< 1.

Therefore, α1 = π/3, α2 = 0.2, α3 = π/2, µ1 = 1/3, µ2 = 0.2, and µ3 = 1/2.
According to the expression of h23(t) = h2(t)+h3(t−h2(t)), ḣ23 = ḣ2+ḣ3(t−h2(t))×
(1− ḣ2), we take µ23 = 0.6, α23 = 0.2 + π/2.

Since the matrix g = (0, 1)T, it is obviously that the first component of
g sat(u(t − h2(t))) is 0. Hence, we only consider the saturation control sat(u2). In ad-
dition, when t < h23(t), system (15) cannot receive any information from the controller.
In other words, u = 0 for t < h23(t).

Firstly, we verify Theorem 1. By applying MATLAB tool box, we obtain Ψ < 0 with
the following parameters:

Q =

(
2.8745 0

0 2.5370

)
, P =

(
2.7520 0

0 2.4810

)
, K = −0.3853.

Hence, we introduce the output feedback controller u = 0.3853y = 0.3853 ×
sin(2x2(t − h23(t))). The simulation with the initial condition x0 = (−0.3, 0.5) is
given in Fig. 1. Figure 1(a) depicts the response of the system state, Fig. 1(b) shows
the motion trajectory of the state variable x of the system, and Fig. 1(c) represents the
control saturation input of the system. These numerical results all show that system (15)
is asymptotically stable under the action of the controller u = 0.3853y. This is consistent
with the result of our Theorem 1.

For Theorem 2, we also use Matlab tool box to get the inequality Θ < 0 with

Q =

(
1.7127 0.0664
0.0664 2.6009

)
, P =

(
1.8850 0.1311
0.1311 1.3575

)
,

W =

(
0.0314 0.0008
0.0008 0.0035

)
, M =

(
0.0938 0.0020
0.0020 0.0134

)
,

N1 =

(
0.4761 0.1096
0.0434 0.1213

)
, N2 =

(
0.3438 0.0236
0.0489 0.1697

)
, K = 0.4672.

Given controller u = −0.4672y with initial condition x0 = (−0.25, 0.2), there are
also three figure in Fig. 2, which represent the response of the system state, the motion
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(a) State response (b) State trajectory

(c) Input saturation

Figure 1. The simulations of Theorem 1 with x0 = (−0.3, 0.5), u = 0.3853y.

(a) State response (b) State trajectory

(c) Input saturation

Figure 2. The simulations of Theorem 2 with x0 = (−0.25, 0.2), u = −0.4672y.
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(a) State response (b) State trajectory

(c) Input saturation

Figure 3. The simulations of Theorem 3 with x0 = (0.3, 0.2), u = −0.3217y.

trajectory of the state, and the control saturation input of the system. The results show
that system (15) is asymptotically stable under the action of the controller u = −0.4672y.
This also verifies Theorem 2.

Similarly, calculating Υ < 0 in Theorem 3, we have the following parameters:

Q =

(
1.0487 0.0700
0.0700 1.5373

)
, P =

(
1.2552 0.2694
0.2694 1.2091

)
,

W =

(
0.0164 0

0 0.0022

)
, M =

(
0.0529 0.0001
0.0001 0.0081

)
,

R1 =

(
0.0200 0.0002
0.0002 0.0024

)
, R2 =

(
0.1661 0.0018
0.0018 0.0277

)
,

Z1 =

(
0.0596 0.0004
0.0004 0.0105

)
, Z2 =

(
1.4453 0.0054
0.0054 0.2457

)
,

N1 =

(
0.0114 0.04935
0.3387 −0.0283

)
, N2 =

(
0.3093 0.0089
0.0672 0.1994

)
, K = 0.3217.

Using MATLAB tool box, three figures representing the state response, the state trajec-
tory, and the input saturation can be obtained as shown in Fig. 3 with initial condition
x0 = (0.3, 0.2). It can be found from these figures that under the action of the controller
u = −0.3217y, system (15) is also asymptotically stable. This is also consistent with the
result of our Theorem 3.
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5 Conclusion

In this paper, we propose three delay-dependent stability criteria in terms of linear ma-
trix inequality by utilizing three different form Lyapunov–Krasovskii functionals. Us-
ing Wirtinger’s inequality, constraint conditions, and triple and quadruple integral form
Lyapunov–Krasovskii functionals, we prove that system (1) is asymptotically stable under
the action of controller (2). Simulations show that the results obtained in this paper are
very effective in analyzing the stabilization of some PH systems with mixed time delays
subject to input saturation.

Recently, as in the case of nonlinear equations, there are studies on nonlocal equa-
tions, involving the reflection points, for example, nonlocal nonlinear Schrödinger-type
equations [18, 19]. Such nonlocal differential equations, involving all three reflection
points (−x, t), (x,−t), and (−x,−t), are integrable, namely, they possess infinitely many
symmetries and conservation laws. It would be particularly interesting and helpful to
remark on whether the presented methodology could be applied to establishing stability
of soliton solutions to such nonlocal equations or other stability [4, 17].
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