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Abstract. This article introduces a novel class of Reich-type contractions that meet the graph
preservation criteria in the context of complete fuzzy metric spaces. The provided contraction
condition is satisfied through various forms of contractive mappings via directed graphs in the
literature. Our key result is the natural extension of fuzzy metric spaces to fuzzy metrics enriched
with a graph, which adds the understanding of fixed points in metric spaces within the realm of
graph structure. The findings are further supported by examples and applications.

Keywords: fixed point, fuzzy metric, graph, Reich contraction.

1 Introduction

Fixed point theory is an efficient mathematical approach with numerous applications both
within and outside of the field. The classical principle of contraction mapping states “if
(C, d) is a complete metric space and I : C → C such that d(I($), I(ς)) 6 αd($, ς)
for all $ς ∈ C, where α ∈ [0, 1), then I admits a unique fixed point”. Banach’s [1] fixed
point hypothesis helps to compute mathematics for examining the existence of solutions
to nonlinear integral equations, systems of linear equations, and nonlinear differential
equations, as well as manifesting algorithms related to convergence. Many variations on
Banach’s fixed point theorem have been proposed; see [24].

In 1971, Cirić [8], Reich [20], and Rus [19] established a fixed point theorem for
mappings I : C → C, which has been around for decades and meets the following
requirement:

d(I$, Iς) 6 ad($, ς) + b
(
d($, I$) + d(ς, Iς)

)
for all $ς ∈ C, (1)
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72 S. Jabeen et al.

where a, b > 0, and a+ 2b < 1. If b = 0, condition 1 reduces to Banach contraction:

d(I$, Iς) 6 a · d($, ς) for all $ς ∈ C,

where a ∈ [0, 1). If a = 0, condition 1 reduces to Kannan’s contraction:

d(I$, Iς) 6 b
(
d($, I$) + d(ς, Iς)

)
for all $ς ∈ C,

where b ∈ [0, 1/2).
Therefore, the fixed point results established in [8, 20] in slightly different forms are

true generalizations of Banach’s contraction principle [1] and Kannan’s [16] fixed point
theorem.

Kramosil and Michalek have presented the concept of fuzzy metric spaces in a variety
of ways [17]. The Hausdorff topology of metric spaces, which was subsequently described
by George and Veeramani [10], who extended an idea of fuzzy metric spaces. They
also demonstrated how any metric produces fuzzy metrics, and there is now a wealth of
literature on the subject. See [6, 9, 10, 13] for a few examples. It was with Grabiec’s [11]
paper that researchers first began looking into fixed point theory in fuzzy metric spaces.
Then, within the framework of fuzzy metric spaces, Gregori and Sapena [12] proposed
the concept of fuzzy contractive mappings and reported some fixed point results.

The study of fixed point theory with a graph plays a significant role in many recent
investigations. In 2006, Rus et al. [19] discussed fixed point theorems in orderedL-spaces.
However, in 2008, Jachymski [15] used the graphical structure to prove several fixed point
findings in fixed point theory. Obtaining a fixed point theorem for G-Kannan maps was
first proposed in 2012 by Bojor [3]. In 2014, Shukla et al. [22] generalized some fixed
point theorems in graphical metric space that have applications to integral equations. In
2020, Chen et al. [4] presented fixed point solutions for set-valued graphical contraction
mappings, and they also introduced a graphical convex metric space. In 2022, Younis et
al. [26] discussed the graphical structure of extended b-metric spaces.

The existing approaches in literature in the setting of fuzzy metric spaces are only
applicable to satisfy certain conditions. This limits their applicability in some cases. For
example, some types of contractions do not guarantee the uniqueness of the fixed point.
This can be a problem in some applications requiring a unique solution, whereas Reich
contractions apply to a wide range of fuzzy metric spaces. These contractions guaran-
tee the uniqueness of the fixed point, which is important in various applications. Reich
contractions have a faster convergence rate than other types of contractions, resulting in
quicker convergence to the fixed point.

We extend the definition of fM-space in the context of graph-preserving criteria. The
following are primary aims of this manuscript:

(a) to develop a novel concept of fM-spaces utilizing Reich-type contraction;
(b) to introduce the concept of a generalization of multiple contraction mappings and

fixed point results;
(c) to determine the presence of integral equation solutions using fuzzy graphical

fixed point theory.
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Convergence results based on graph-Reich contraction 73

This paper is two-fold. First, we provide fixed point and common fixed point theorems
for single-valued mappings in the realm of fuzzy metric spaces using Reich-type contrac-
tions. On the other hand, to prove fixed points, we introduce the I-Reich contractions as
an expansion of fuzzy I-contraction. Our findings represent an expansion of Jachymski’s
[15] and a generalization of Gregori and Sapna’s findings [12] in fuzzy metric spaces.

The work is divided into six sections. Section 2 is the summary of earlier literature that
acts as inspiration for this research. The section includes some basic definitions helping
to understand our findings more easily. In Section 3, we used fuzzy metric spaces to
construct fixed points and common fixed point theorems for single-valued Reich contrac-
tions. Section at discusses the fixed point of I-Reich contraction in fuzzy metric spaces
with a graph. The relevance of our findings is discussed in Section 5. Finally, Section 6
concludes with discussion of results and future prospects.

2 Preliminary concepts

To facilitate the reader, we will now review key concepts and properties that are relevant
to this study. Throughout the paper, we will write fuzzy metric spaces as fM-spaces, and
the sets of natural numbers be denoted by N. The set of integers, i.e., Z = N∪(−N)∪{0},
Z+ := N, and N0 = N∪{0}. The symbols R+

0 denote the set of nonnegative real numbers.
The notation E(£) stands for directed graph. Throughout the paper, all sets are assumed
to be nonempty.

Definition 1. (See [21].) The binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is a continuous
triangular norm, written as �-norm, if ([0, 1], ∗) is topological monoid with unit 1 and
satisfies the condition a ∗ b 6 c ∗ d whenever a 6 c, b 6 d, and a, b, c, d ∈ [0, 1].
Examples of �-norm:

(i) Minimum �-norm M($, ς) = min{$, ς};
(ii) Product �-norm P($, ς) = $ · ς;

(iii) Lukasiewicz �-norm L($, ς) = max{$ + ς − 1, 0}.

Definition 2. (See [10].) The 3-tuple (C, fM, ∗) is called fM-space if C is an nonempty
set, ∗ is triangular norm denoted by �-norm, and M is fuzzy set on C × C × [0,∞)
satisfying the following conditions for all $, ς, z ∈ C, and t, s > 0:

(i) fM($, ς, t) > 0;
(ii) fM($, ς, t) = 1 ⇔ $ = ς;

(iii) fM($, ς, t) = fM(ς,$, t);
(iv) fM($, ς, t) ∗ fM(ς, z, s) 6 fM($, z, t+ s);
(v) fM($, ς, t) : [0,∞)→ [0, 1] is left-continuous.

Definition 3. (See [10].) Let ($n) be a fM-space. The sequence ($n) is called conver-
gent in C⇔ fM($n, $, t)→ 1 whenever n→∞.

For further synthesis and basic concepts like the Cauchy sequence, the convergence
of the Cauchy sequence, and completeness in fuzzy setup, we refer the readers to [10].
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Definition 4. (See [10].) Let (C, d) is a metric space. The triplet (C, dM, ∗) is called
standard fuzzy metric space generated by metric d, where

dM($, ς, t) =
t

t+ d($, ς)
.

It is worth noting that the topologies generated by the standard fuzzy metric and its
corresponding measure are similar to one another.

Lemma 1. (See [10].) Let (C, fM, ∗) be a fM-space. Then fM is continuous function on
C× C× (0,+∞).

Lemma 2. (See [5].) Let (C, fM, ∗) is a fM-space. Then fM($, ς, ·) is nondecreasing for
all $, ς ∈ C.

Definition 5. (See [12].) A self-mapping I : C → C within the context of a fM-space
(C, fM, ∗) is called I-uniformly continuous if for all q ∈ (0, 1), there exist p ∈ (0, 1)
such that for all $, ς ∈ C,

fM($, ς, t) > 1− p =⇒ fM(I$, Iς, t) > 1− q.

Remark 1. (See [12].) If I is I-uniformly continuous, then it is called uniformly contin-
uous for the uniformity produced by M and continuous for the topology inferred from M.
We recommend [24] for more information on a uniform structure in a fuzzy metric envi-
ronment.

Definition 6. (See [12].) A self-mapping I : C→ C defined on (C, fM, ∗) is called fuzzy
contractive mapping if there exists l ∈]0, 1[ such that

1

fM(f($), f(ς), t)
− 1 6 k

(
1

fM($, ς, t)
− 1

)
for every ς 6= $ ∈ C.

Proposition 1. (See [12].) Let (C, fM, ∗) be a fM-space. If I : C→ C is fuzzy contractive
mapping, then I is uniformly continuous.

The following graph’s concepts are similar to those in [14, 15, 25, 26].
Let C be a nonempty set in the sense of Jachymski [15], and let ∆ be the diagonal of

C × C. Also, consider the directed graph £ = (V(£),E(£)), where V(£) is the vertex
set of £ so that it coincides with the set C, and E(£) is the edge set of £ that contains all
the loops of £, that is, E(£) ⊇ ∆. We designate the graph that results from reversing the
orientation of E(£) as £−1. Assuming the graph £ has symmetrical edges, the notation
£̆ is used to indicate this, i.e.,

E(£̆) = E
(
£−1

)
∪ E(£).

Assume that £ is a directed graph with $, and ς as its vertices. A path in £ is described
as a series of vertices {$j}Mj=0 with m + 1 vertices such that v0 = $, vm = ς , and
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($j−1, $j) are all present in E(£), where j = 1, 2, . . . ,m. If there is a path connecting
each pair of its vertices, a graph £ is called linked or connected. We refer to a graph as
being weak connected when there is a path connecting every pair of its vertices and the
graph £ is undirected.

Shukla et al. [22] are to be credited with the following annotations [22]:

(a) [$]l£ = {ς ∈ C: in the graph £, there is a directed path with length l that con-
nects $ and ς}.

(b) (vPw)£: if there is a path leading from $ to ς in £ and ς ∈ (vPw)£, then ς is
on the path (vPw)£.

Unless otherwise stated, we consider all the graphs to be direct.
We review some fundamental ideas related to the connectedness of graphs. They may

all be found, for instance, in [14, 23, 25].
A path of length N (N ∈ N) in a graph £ from vertex $ directing to another vertex ς

is the sequence ($i)Ni=0 ofN+1 vertices such that$0 = $,$n = ς , and ($n−1, $n) ∈
E(£), 1 6 i 6 N .

Definition 7. (See [14].) A mapping I : C → C is called a £-fuzzy contraction in the
context of fM-space (C, fM, ∗) if the following assertions are contented:

(i) I is edge-preserving, i.e., for all $, ς ∈ C, ($, ς) ∈ E(£)⇒ (I$, Iς) ∈ E(£);
(ii) There exists λ ∈ (0, 1) such that for all $, ς ∈ C and t > 0,

($, ς) ∈ E(£) =⇒ 1

fM(I$, Iς, t)
− 1 6 λ

(
1

fM($, ς, t)
− 1

)
.

Example 1. (See [22].) Any constant function I : C→ C (that is, I$ = ς , $ ∈ C, where
ς ∈ C fixed) is a £-fuzzy contraction with arbitrary value of λ ∈]0, 1[.

Definition 8. (See [22].) Let (C, fM, ∗) be a fM-space, and let I : C → C be a self
mapping. We denote the nth iterate of I on $ ∈ C by In$, and In$ = IIn−1$ for all
n ∈ N with I0$ = $.

The mapping I is called Picard operator if I has a unique fixed point u and
limn→∞ fM(In$,u$, t) = 1 for all $ ∈ C, ς > 0. The mapping I is called a weak
Picard operator if for all $ ∈ C, there exists a fixed point u$ ∈ C (which may depend
on $) of I such that limn→∞ fM(In$,u$, t) = 1 for all t > 0.

It is worth noting that each Picard operator is also a weak Picard operator. The fixed
point of a weak Picard operator cannot be truely unique.

Definition 9. (See [22].) A subset A is called I-invariant if I(A) ⊂ A.

The next lemma will help with what comes next.

Lemma 3. (See [14].) Let I : C → C be a £-fuzzy contraction. Then given $ ∈ C and
ς ∈ [$]£̃, we have limn→∞ fM(In$, Inς, t) = 1 for all t > 0.

Nonlinear Anal. Model. Control, 29(1):71–95, 2024
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The component of £ that contains $ is made up of edges, vertices, and a path that
starts at $0. In this instance, the relation R is defined on V(£) by the rule:

• ςRz if there is a path in £ from ς to z. In this scenario, V(£$) = [$]£, where
the equivalence class of this relation is [$]£. Thus, the relationship between £$ is
self-evident.

We will now talk about different sorts of mapping continuity. The first is well known
in metric fixed point theory and is frequently employed.

Definition 10. (See [7].) A mapping I : C → C is called orbitally continuous if for all
$ ∈ C and the sequence (kn)n∈N of positive integers,

Ikn$ → ς ∈ C =⇒ I
(
Ikn$

)
→ Iς as n→∞.

Definition 11. (See [7].) A mapping I : C→ C is called orbitally £-continuous if given
$ ∈ C and the sequence ($n)n∈N such that

$n → $ and ($n, $n+1) ∈ E(£), n ∈ N =⇒ I$n → I$.

Recent findings provide the necessary criteria for mapping to a Picard operator (PO)
if (C, d) is graph-endowed. It was first discovered by Jachymski [15], who then explained
its connection to the Kelisky–Rivlin theorem on iterates of the Bernstein operators in
space C[0, 1].

Definition 12. (See [15].) A self map f : C → C is called a Banach £-contraction
(£-contraction) if f preserves edges, i.e., for all $, ς ∈ C,

($, ς) ∈ E(£) =⇒
(
f($), f(ς)

)
∈ E(£),

and edge weights decrease as follows in £: there exist α∈(0, 1) such that for all$, ς∈C,

($, ς) ∈ E(£) =⇒ d
(
f($), f(ς)

)
6 αd($, ς).

Definition 13. (See [22].) A mapping I : C → C is called a Ćirić–Rus–Reich mapping
within the context of metric space (C, d) if for all $, ς ∈ C,

d(I$, Iς) 6 αd($, ς) + βd($, I$) + γd(ς, Iς),

α+ β + γ < 1, α, β, γ > 0.

Remark 2. This aforementioned condition is equivalent to the following statement by
utilizing the symmetry of distance: there exist nonnegative numbers α and β with α +
2β < 1 such that for all $, ς ∈ C,

d(I$, Iς) 6 αd($, ς) + β
[
d($, I$) + d(ς, Iς)

]
.

As per the results proved by Reich [20], Ćirić [8], and Rus [19], we say that Ćirić–
Reich–Rus mapping possesses a unique fixed point if (C, d) is complete.
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This paper proposes the idea of £-Reich operators in order to analyse the fixed points
for Reich operators in fM-spaces given a graph £. We assume that (C, d) is a metric space
and that £ is a directed graph with the criteria that V(£) = C,E(£) ⊇ ∆ and that £ has
no parallel edges. An instance of FixI is a collection of all fixed points for a mapping I.
The following concept serves as the foundation for the suggested outcomes throughout
the work.

Definition 14. (See [2].) A mapping I : C→ C in the framework of metric space (C, d)
is called £-Reich operator if the following assumptions hold true:

(i) ($, ς) ∈ E(£)⇒ (I$, Iς) ∈ E(£) for all $, ς ∈ C;
(ii) For each ($, ς) ∈ E(£),

d(I$, Iς) 6 αd($, ς) + βd($, I$) + γd(ς, Iς),

where α+ β + γ < 1 and α, β, γ > 0.

Lemma 4. (See [2].) Let £ be a graph endowing metric space (C, d), and let I : C→ C
be a £-Ćirić–Rus–Reich operator. If the assertion ($, I$) ∈ E(£) is satisfied by$ ∈ C,
then for all n ∈ N,

d
(
In$, In+1$

)
6 αnd($, I$),

where α = (a+ b)/(1− c).

Proof. Let $ ∈ C with ($, I$) ∈ E(£). An easy induction shows (In$, In+1$) ∈
E(£) for all n ∈ N,

d
(
In$, In+1$

)
6 ad

(
In−1$, In$

)
+ bd

(
In−1$ + In$

)
+ cd

(
In$, In+1$

)
,

which implies
d
(
In$, In+1$

)
6 αd

(
In−1$, In$

)
,

where α = (a+ b)/(1− c). So, for all n ∈ N, we get

d
(
In$, In+1$

)
6 αnd($, I$). �

3 Fuzzy-Reich-type contraction and related convergence results

This section is devoted to produce fixed point and common fixed results for single-valued
Reich-type contractions in the setting of fM-space.

Definition 15. Let (C, fM, ∗) be a complete fM-space. A self-mapping I : C → C is
called a fuzzy Reich contraction if there is α ∈ (0, 1) such that for all$, ς ∈ C and I > 0,

1

fM(I$, Iς, t)
− 1 6

{
a

(
1

fM($, ς, t)
− 1

)
+ b

(
1

fM($,T ($), t)
− 1

)
+ c

(
1

fM(ς, T (ς), t)
− 1

)}
with a+ b+ c < 1.

Nonlinear Anal. Model. Control, 29(1):71–95, 2024
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Theorem 1. Suppose (C, fM, ∗) is complete fM-space. Let S, I : C → C be self-map-
pings such that for all ($, ς) ∈ C× C,

1

fM(S$, Iς, t)
− 1 6

{
a

(
1

fM($, ς, t)
− 1

)
+ b

(
1

fM($,S($), t)
− 1

)
+ c

(
1

fM(ς, I(ς), t)
− 1

)}
(2)

with a, b, c ∈ [0,∞), a+ b+ c < 1. Then S and I have unique common fixed point in C.

Proof. Suppose $0 is an arbitrary point and define the sequence ($n) by

S$2j = $2j+1 and I$2j+1 = $2j+2, j = 0, 1, 2, . . . . (3)

Using (2) and (3), we can write

1

fM($2j+1, $2j+2, t)
− 1

=
1

fM(S$2j , I$2j+1, t)
− 1

6

{
a

(
1

fM($2j , $2j+1, t)
− 1

)
+ b

(
1

fM($2j ,S$2j , t)
− 1

)
+ c

(
1

fM($2j+1, I$2j+1, t)
− 1

)}
=

{
a

(
1

fM($2j , $2j+1, t)
− 1

)
+ b

(
1

fM($2j , $2j+1, t)
− 1

)
+ c

(
1

fM($2j+1, $2j+2, t)
− 1

)}
.

This implies

(1− c)
(

1

fM($2j+1, $2j+2, t)
− 1

)
6 (a+ b)

(
1

fM($2j , $2j+1, t)
− 1

)
=

1

fM($2j+1, $2j+2, t)
− 1

<
a+ b

1− c

(
1

fM($2j , $2j+1, t)
− 1

)
= λ

(
1

fM($2j , $2j+1, t)
− 1

)
,

where (a+ b)/(1− c) = λ. Similarly,

1

fM($2j+2, $2j+3, t)
− 1 <

a+ b

1− c

(
1

fM($2j+1, $2j+2, t)
− 1

)
= λ

(
1

fM($2j+1, $2j+2, t)
− 1

)
.
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Continuing in this way, we get

1

fM($n, $n+1, t)
− 1 < λ

(
1

fM($n−1, $n, t)
− 1

)
, n ∈ N,

which yields

1

fM($n, $n+1, t)
− 1 < λ

(
1

fM($n−1, $n, t)
− 1

)
< λ2

(
1

fM($n−2, $n−1, t)
− 1

)
< · · ·

< λn
(

1

fM($0, $1, t)
− 1

)
, n ∈ N. (4)

Using (4), we can write

1∑M−1
k=n fM($k, $k+1, t)

− 1

=

(
1

fM($n, $n+1, t)
− 1

)
+ · · ·+

(
1

fM($m−1, $M, t)
− 1

)
< λn

(
1

fM($0, $1, t)
− 1

)
+ · · ·+ λM−1

(
1

fM($0, $1, t)
− 1

)
< λn

[
1 + λ+ λ2 + · · ·+ λM−n−1

]( 1

fM($0, $1, t)
− 1

)
6

λn

1− λ

(
1

fM($0, $1, t)
− 1

)
, m > n.

Since limn→∞(λn/(1− λ))fM($0, $1, t) = 0, for any δ > 0, there exists some n′ ∈ N
such that

0 <
λn

1− λ

(
1

fM($0, $1, t)
− 1

)
< δ, n > n′,

which yields that ($n) is a Cauchy sequence in C. Since (C, fM, ∗) is complete, there
exists v ∈ C such that

lim
n→∞

fM($n, v, t) = 1, t� θ.

To prove that v is a fixed point of S, assume that fM(Sv, v, t) > 0. Then

1

fM(Sv,$2j+2, t)
−1

=
1

fM(Sv, I$2j+1, t)
−1

6 a

(
1

fM(v,$2j+1, t)
−1

)
+b

(
1

fM(v,Sv)
−1

)
+c

(
1

fM($2j+1, I$2j+1, t)
−1

)

Nonlinear Anal. Model. Control, 29(1):71–95, 2024
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= a

(
1

fM(v,$2j+1, t)
−1

)
+b

(
1

fM(v,Sv, t)
−1

)
+c

(
1

fM($2j+1, $2j+2, t)
−1

)
→ b

(
1

fM(v,Sv, t)
−1

)
as n→∞,

and

lim sup
n→∞

(
1

fM(Sv,$2j+2, t)
− 1

)
6 b

(
1

fM(Sv, v, t)
− 1

)
, t > θ,

which implies

(1− b)
(

1

fM(v,Sv, t)
− 1

)
< 0, t > θ.

Noticing that b < 1, since a+ b+ c < 1, then fM(v,Sv, t) = 1, i.e., Sv = v. Similarly,
Suppose 1/fM(v,Iv,≈) − 1 > 0.

1

fM(Iv,$2j+1, t)
− 1

=
1

fM(Iv,S$2j , t)
− 1

6 a

(
1

fM(v,$2j , t)
− 1

)
+ b

(
1

fM($2j ,S$2j , t)
− 1

)
+ c

(
1

fM(v, Iv, t)
− 1

)
= a

(
1

fM(v,$2j , t)
− 1

)
+ b

(
1

fM(v,Sv, t)
− 1

)
+ c

(
1

fM($2j , $2j+1, t)
− 1

)
→ c

(
1

fM(v, Iv, t)
− 1

)
as n→∞,

i.e.,

(1− c)
(

1

fM(v, Iv, t)
− 1

)
< 0.

Then

lim sup
n→∞

(
1

fM(Iv,$2j+1, t)
− 1

)
6 c

(
1

fM(Iv, v, t)
− 1

)
, t > θ,

which implies

(1− c)
(

1

fM(Iv, v, t)
− 1

)
< 0, t > θ.

Noticing that c < 1, since a+ b+ c < 1, then fM(v, Iv, t) = 1, i.e., Iv = v.
Let u ∈ C be any fixed point of I, and let S ∈ C, i.e., u 6= v. Then

1

fM(u, v, t)
− 1 =

1

fM(Su, Iv, t)
− 1

6 a

(
1

fM(u, v, t)
−1

)
+ b

(
1

fM(u,Su, t)
−1

)
+ c

(
1

fM(v, Iv, t)
−1

)
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= a

(
1

fM(u, v, t)
− 1

)
+ b

(
1

fM(u, u, t)
− 1

)
+ c

(
1

fM(v, v, t)
− 1

)
= (1− a)

(
1

fM(u, v, t)
− 1

)
.

Since (1 − a) < 1, we get fM(u, v, t) = 1 and u = v. That is, I has a unique fixed
point.

Corollary 1. Suppose (C, fM, ∗) is a complete fM-space. Let I : C → C be a self-
mapping such that for all ($, ς) ∈ C× C,

1

fM(I$, Iς, t)
− 1 6 a

(
1

fM($, ς, t)
− 1

)
+ b

(
1

fM($, I$, ς)
− 1

)
+ c

(
1

fM(ς, Iς, t)
− 1

)
with a+ b+ c > 1, a, b, c > 0. Then there is only one fixed point in C for I.

The following corollary is derived from the assumption that b = 0 = c in Corollary 1.

Corollary 2. Suppose (C, fM, ∗) is a complete fM-space. Let I : C → C be a self-
mapping such that for ($, ς) ∈ C× C,

1

fM(I$, Iς, t)
− 1 6 a

(
1

fM($, ς, t)
− 1

)
with a ∈ (0,∞). Then I have at most one fixed point in C.

In addition to the above significant findings, Theorem 1 leads us to the following fixed
point result based on Kannan-type mappings.

Corollary 3. Suppose (C, fM, ∗) is complete fM-space. Let S, I : C → C be self-
mappings. Suppose that for k ∈ [0, 1),

1

fM(S$, Iς, t)
− 1 6

k

2

(
1

(fM($,S$, t)
− 1 +

1

fM(ς, Iς, t)
− 1

)
where ($, ς) ∈ C× C. Then S and I have at most one common fixed point in C.

Proof. Assuming that $0 is an arbitrary point, define the sequence ($n) as follows:

S$2j = $2j+1 and I$2j+1 = $2j+2, j = 0, 1, 2, . . . .
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Using (2) and (3), we can write

1

fM($2j+1, $2j+2, t)
− 1

=
1

fM(S$2j , I$2j+1, t)
− 1

6
k

2

{(
1

fM($2j ,S$2j , t)
− 1

)
+

(
1

fM($2j+1, I$2j+1, t)
− 1

)}
=
k

2

{(
1

fM($2j , $2j+1, t)
− 1

)
+

(
1

fM($2j+1, $2j+2, t)
− 1

)}
.

This implies(
1− k

2

)(
1

fM($2j+1, $2j+2, t)
− 1

)
6
k

2

(
1

fM($2j , $2j+1, t)
− 1

)
=

1

fM($2j+1, $2j+2, t)
− 1

<
k

2− k

(
1

fM($2j , $2j+1, t)
− 1

)
= λ

(
1

fM($2j , $2j+1, t)
− 1

)
,

where k/(2− k) = λ. Similarly.

1

fM($2j+2, $2j+3, t)
− 1 <

k

2− k

(
1

fM($2j+1, $2j+2, t)
− 1

)
= λ

(
1

fM($2j+1, $2j+2, t)
− 1

)
.

The common fixed point of S and I obtained by proceeding in the same manner as in
Theorem 1.

The following is the outcome of a single mapping in which S with I.

Corollary 4. Suppose (C, fM, ∗) is a complete fM-space. Let I : C→ C be self-mapping.
Suppose that for k ∈ [0, 1) and ($, ς) ∈ C× C,

1

fM(I$, Iς, t)
− 1 6

k

2

(
1

fM($, I$, t)
− 1 +

1

fM(ς, Iς, t)
− 1

)
.

Then mapping I has at most one common fixed point in C.

4 Fixed points of graph-Reich contractions

Definition 16. Let (C, fM, ∗) be a fM-space endowed with graph £. The operator I :
C→ C is called fuzzy £-Reich operator if:

(i) ($, ς) ∈ E(£)⇒ (I$, Iς) ∈ E(£) for all $, ς ∈ C;

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Convergence results based on graph-Reich contraction 83

(ii) The values a, b, c are all positive, and for every pair ($, ς) ∈ E(£), we have

1

fM(£$,£ς, t)
− 1 6

{
a

(
1

fM($, ς, t)
− 1

)
+ b

(
1

fM($,£($), t)
− 1

)
+ c

(
1

fM(ς,£(ς), t)
− 1

)}
.

Remark 3. Any Reich contraction is a Reich £0-contraction with £0 defined byE(£0) =
C × C. If a mapping I is Reich £-contraction with parameters a, b, c, and b = c, then it
is a Reich £̃-contraction.

Definition 17. Let (C, fM, ∗) be a metric space endowed with a directed graph £. A map-
ping I : C → C is called £-Reich contraction. For all ($, ς) ∈ E(£), the following
conditions are true if and only if α, β, γ ∈ [0, 1] and α+ β + γ < 1:

(i) (I$, Iς) ∈ E(£);

(ii)
1

fM(I$, Iς, t)
− 1 6 a

(
1

fM($, ς, t)
− 1

)
+ b

(
1

fM($, I$, t)
− 1

)
+ c

(
1

fM(ς, Iς, t)
− 1

)
.

When a, b, and c are given, we say that I is a £-Reich contraction.

Theorem 2. Let (C, fM, ∗) be a complete metric space endowed with a directed graph £.
I : C→ C is a £-Reich contraction under the following assumptions:

(i) For any sequence {$n} in C, if limn→∞$n = $ ∈ C and ($n, $n+1) ∈ E(£)
for all n ∈ N, then there is a subsequence {$nk} of {$n} such that ($nk, $) ∈
E(£) for all k ∈ N.

(ii) If £ is I-connected, then I is a PO.

Specifically, we assume that (C, fM, ∗) is a fM-space endowed with a graph £ and £
is directed graph such that the set V (£) = C, E(£) ⊇ ∆. Let £ has no parallel edges.
We assign to each edge a unique element (C, fM, ∗).

In order to demonstrate the forthcoming fixed point theorems, the following results
are useful.

Definition 18. Let (C, fM, ∗) be a fM-space endowed with a graph £, and let I : C→ C
be a mapping. We say that the graph £ is I-connected if for all vertices $i, ς of £ with
($i, ς) /∈ E(£), there exists a path in £, ($i)

N
i=0 from $ to ς such that$0 = $,$n = ς

and ($i, I$i) ∈ E(£) for all i = 1, . . . , N − 1. A graph £ is weak I-connected if £̃ is
I-connected.

Lemma 5. Let (C, fM, ∗) be a fM-space endowed with a graph £, and let I : C → C
be a £-Ćirić–Reich operator such that the graph £ is I-connected. For all $ ∈ C, the
sequence (In$)n∈N is a Cauchy sequence.
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Proof. Put $ ∈ C as a fixed value. Two cases are discussed:
Case 1. If ($, I$) ∈ E(£), then by Lemma 4 we have

1

fM(In$, In+1$, t)
− 1 6 αn

(
1

fM($, I$, t)
− 1

)
for all n ∈ N∗, where α = (a+ b)/(1− c). Because α < 1, we get

∞∑
n=0

1

fM(In$, In+1$, t)
− 1 =

1

1− α

(
1

fM($, I$, t)
− 1

)
<∞,

and the usual reasoning demonstrates that Cauchy sequences have the form (In$)n∈N.
Case 2. If ($, I$) /∈ E(£), there is a path from$ to I$ in £, ($i)

N
i=0, where$0 =

$, $n = I$ with ($i−1, $i) ∈ E(£) for all i = 1, . . . , N , and ($i, I$i) ∈ E(£) for
all i = 1, . . . , N − 1. Consequently, by using the inequality of the fuzzy metric triangle,
we have

1

fM(In$, In+1$, t)
− 1

6
N∑
i=1

(
1

fM(In$i−1, In$i, t)
− 1

)

6 a
N∑
i=1

(
1

fM(In−1$i−1, In−1$i, t)
−1

)
+ b

N∑
i=1

(
1

fM(In−1$i−1, In$i−1, t)
−1

)

+ c

N∑
i=1

(
1

fM(In−1$i, In$i, t)
− 1

)

6 a
N∑
i=1

(
1

fM(In−1$i−1, In−1$i, t)
− 1

)
+ b

(
1

fM(In−1$, In$, t)
− 1

)

+ bαn−1
N∑
i=2

(
1

fM($i−1, I$i−1, t)
− 1

)
+ c

(
1

fM(In$, In+1$, t)
− 1

)

+ cαn−1
N−1∑
i=1

(
1

fM($i, I$i, t)
− 1

)
.

So, let us define

$n :=

N∑
i=1

1

fM(In$i−1, In$i, t)
− 1, n ∈ N,

and

r($) := (b+ c)

N∑
i=2

1

fM($i−1, I$i−1, t)
− 1.
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After that,
$n 6 (a+ b)$n−1 + (b+ c)αn−1r($) + c$n,

hence,

$n 6 α$n−1 +
b+ c

1− c
αn−1r($), α :=

a+ b

1− c
.

Via elementary computations, we get

$n 6 n
b+ c

1− c
αn−1r($)

for all n ∈ N. Since α ∈ [0, 1], we find that

∞∑
n=0

1

fM(In$, In+1$, t)
− 1 6

∞∑
n=0

$n 6
b+ c

1− c
r($)

∞∑
n=0

nαn−1

=
b+ c

(1− c)(1− α)2
r($) <∞.

A common proof technique reveals that (In$)n>0 is a Cauchy sequence.

This article’s main result is stated in the following theorem.

Theorem 3. Let (C, fM, ∗) be a complete fM-space endowed with a graph £, and let
I : C→ C be a £-Reich operator. Assume that:

(i) £ is I-connected;
(ii) For any ($n)n∈N in C, if $n → $ and ($n, $n+1, t) ∈ E(£) for n ∈ N, then

a subsequence ($kn)n∈N with ($kn, $, t) ∈ E(£) for n ∈ N.

Then I is a PO.

Proof. By Lemma 5, (In$)n>0 is a Cauchy sequence for all$ ∈ C, and from hypothesis
we have that (In$)n>0 is convergent. Let $, ς ∈ C, then (In$)n>0 → $∗, and
(Int)n>0 → ς∗ as n→∞.

Case 1. If ($, ς) ∈ E(£), we have (In$, Inς, t) ∈ E(£) for all n ∈ N. Then

1

fM(In$, Inς, t)
− 1 6 a

(
1

fM(In−1$, In−1ς, t)
− 1

)
+ b

(
1

fM(In−1$, In$, t)
− 1

)
+ c

(
1

fM(In−1ς, Inς, t)
− 1

)
for all n ∈ N∗. Letting n→∞, 1/fM($∗, ς∗, t)− 1 6 a(1/fM($∗, ς∗, t)− 1), because
a ∈ [0, 1), we obtain $∗ = ς∗.
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Case 2. If ($, ς, t) /∈ E(£), there is a path in £, ($i)Ni=0 from $ to ς such that
$0 = $,$n = ς with ($i−1, $i) ∈ E(£) for all i = 1, . . . , N , and ($i, I$i) ∈ E(£)
for all i = 1, . . . , N−1. Then (In$i−1, I

n$i) ∈ E(£) for all n ∈ N, and i = 1, . . . , N ,
and by the triangle inequality we get

1

fM(In$, Inς, t)
− 1 6

N∑
i=1

1

fM(In$i−1, In$i, t)
− 1

6 a

( N∑
i=1

1

fM(In−1$i−1, In−1$i, t)
− 1

)

+ b

( N∑
i=1

1

fM(In−1$i−1, In$i−1, t)
− 1

)

+ c

( N∑
i=1

1

fM(In−1$i, In$i, t)
− 1

)
.

By Lemma 5 and the hypothesis we state that the series (In$i)n>0 is convergent as
does the continuity, which states that the sequence (1/fM(In$i− 1, In$i, t) − 1)n∈N
is convergent. Let limn→∞ 1/fM(In$i− 1, In$i, t) − 1 := `i for all i = 1, . . . , N .
When n→∞, we obtain `i = 0 for all i = 1, . . . , N , that is,

1

fM($∗, ς∗, t)
− 1 6 0.

Hence $∗ = ς∗. Therefore, for all $ ∈ C, there exists a unique $∗ ∈ C such that

lim
n→∞

In$ = $∗.

We will explain that now $∗ ∈ FixI. Because the graph £ is I-connected, there is at
least $0 ∈ C such that ($0, I$0) ∈ E(£), so (In$0, I

n+1$0) ∈ E(£) for all n ∈ N.
But limn→∞ In$0 = $∗, then there is a subsequence (Ikn$0)n∈N with (Ikn$0, $

∗) ∈
E(£) for all n ∈ N. We get

1

fM($∗, I$∗, t)
− 1

6

(
1

fM($∗, Ikn+1$0, t)
− 1

)
+

(
1

fM(Ikn+1$0, I$∗, t)
− 1

)
6

1

fM($∗, Ikn+1$0, t)
− 1 + a

(
1

fM(Ikn$0, $∗, t)
− 1

)
+ b

(
1

fM(Ikn+1$0, Ikn$0, t)
− 1

)
+ c

(
1

fM($∗, I$∗, t)
− 1

)
.

Now, letting n→∞, we obtain

1

fM($∗, I$∗, t)
− 1 6 c

(
1

fM($∗, I$∗, t)
− 1

)
=⇒ $∗ = I$∗,
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Figure 1. Validation of inequality (5).

that is, $∗ ∈ FixI. If we have Iς = ς for some ς ∈ C, then from above we must have
Inς → $∗, so ς = $∗, and therefore, I is a PO.

Example 2. Let C = Q ∪ Q′ = R, and let fM : C × C × (0,∞) → (0, 1] be the fuzzy
metric defined by fM($, ς, t) = ς/(ς+d($, ς)), where d is the usual metric on C. Define
the transformation I : R→ R by

I$ =

{
1 if $ ∈ Q,
0 if $ ∈ Q′.

Suppose that η(ς) =
√
ς for all ς ∈ (0, 1). If $, ς ∈ Q, then I$ = Iς = 1 and

E$ = Eς = [0, 4]. Also,

fM(I$, Iς, kt) = 1 > η
(
fM(E$,Eς, t)

)
when $, ς ∈ Q′. Then I$ = Iς = 0 and E$ = Eς = [7, 9]. In this case, we have

fM(I$, Iς, kt) = 1 > η
(
fM(E$,Eς, t)

)
.

If $ ∈ Q and ς ∈ Q′ or $ ∈ Q′, and ς ∈ Q, then E$ = [0, 4] and Eς = [7, 9] or
E$ = [7, 9] and Eς = [0, 4]. For k > 3/4, we have

fM

(
I$, Iς,

3

4
t

)
=

3
4 ς

3
4 ς + 1

> η
(
fM(E$,Eς, t)

)
. (5)

Note that I(C) = {0, 1} ⊂ E$ = [0, 4]∪ [7, 9]. Thus all the conditions of Theorem 3 are
fulfilled.

4.1 Well posedness in fMfMfM-spaces

Definition 19. Let (C, fM, ∗) be fM-space, and let I be a set of self-mappings C. The
common fixed point problem of I is called well-posed if

(i) I has a unique common fixed point $ in C, that is, $ is the unique point in C
such that A$ = $ for all A ∈ I;
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(ii) For every sequence {$n} in C,

lim
n→∞

fM($n, A$n, t) = 1, A ∈ I =⇒ lim
n→∞

fM($n, $, t) = 1.

Example 3. Let (C, fM, ∗) be a fM-space, and let I : C→ C be a Reich contraction. The
operator I provides a positive framework of the fixed point problem. Indeed, FixI = {u},
and let $n ∈ C, n ∈ N, be such that 1/fM($n, I$n, t)− 1→ 0 as n→∞. We have

1

fM($n, u, t)
− 1 6 ς

(
1

fM($n, I$n, t)
− 1 +

1

fM(I$n, Iu, t)
− 1

)
6 ς

{
1

fM($n, I$n, t)
− 1 + a

(
1

fM($n, I$n, t)
− 1

)
+ b

(
1

fM(u, Iu, ς)
− 1

)
+ c

(
1

fM($n, u, t)
− 1

)}
,

1

fM($n, u, t)
− (1− cς) 1

fM($n, u, t)
− 1 6 ς

(
1

fM($n, I$n, t)
− 1

)
+ aς

(
1

fM($n, I$n, t)
− 1

)
(1− cς) 1

fM($n, u, t)
− 1 6 (ς + aς)

1

fM($n, I$n, t)
− 1

1

fM($n, u, t)
− 1 6

ς + aς

1− cς
1

fM($n, I$n, t)
− 1→ 0

as n→∞.

Corollary 5. Let (C, fM, ∗) be a complete fM-space endowed with a graph £, and let
I : C→ C performs the role of an operator. Suppose that:

(i) £ is weak I-connected;
(ii) There exist nonnegative numbers a and b satisfying the condition a+2b < 1 such

that, for each ($, ς, t) ∈ E(£), we have

1

fM(I$,Tς, t)
− 1 6 a

(
1

fM($, ς, t)
− 1

)
+ b

(
1

fM($, I$, t)
− 1 +

1

fM(ς, Iς, t)
− 1

)
;

(iii) For any ($n)n∈N in C, if $n → $ and ($n, $n+1, t) ∈ E(£) for n ∈ N, there
is a subsequence ($kn)n∈N with ($kn, $, t) ∈ E(£) for n ∈ N.

Then I is a PO.

Proof. The operator I is clearly a £̃-Reich operator with b = c. As a result of Theorem 3,
the conclusion is drawn.
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Corollary 6. Let (C, fM, ∗) be a complete fM-space endowed with a graph £, and let
I : C→ C be a Banach £-contraction. We suppose that:

(i) £ is weak I-connected;
(ii) For any ($n)n∈N in C, if $n → $ and ($n, $n+1) ∈ E(£) for n ∈ N, there is

a subsequence ($kn)n∈N with ($kn, $) ∈ E(£) for n ∈ N.

Then I is a PO.

Proof. If I is a Banach £-contraction with constant α ∈ [0, 1), then I is a £̃-Reich
operator with constants a = α, b = c = 0. Then mapping I is PO from Corollary 5.

Corollary 7. Let (C, fM, ∗) be a complete metric space endowed with a graph £, and let
I : C→ C be a £-Kannan mapping. We suppose that:

(i) £ is weak I-connected;
(ii) For any ($n)n∈N in C, if $n → $, and ($n, $n+1) ∈ E(£) for n ∈ N, there

is a subsequence ($kn)n∈N with ($kn, $) ∈ E(£) for n ∈ N.

Then I is a PO.

Proof. If I is a £-Kannan with constant α, then I is a £̃-Reich operator with the constants
a = 0, b = c = α, and the resulting mapping is PO from Corollary 5.

Using Theorem 3, we can determine that the fixed point of the Ćirić–Rus–Reich
operator holds true in partially ordered metric spaces.

Corollary 8. Consider the case where the set (C,6) is only partially ordered, and the
metric space (C, fM, ∗) is complete. Just for argument, assume that the increasing oper-
ator I : C→ C is valid. Three statements below hold true:

(i) There exist the real numbers a, b, c > 0 with a + b + c < 1 such that, for each
$, ς ∈ C with $ 6 ς , we have

1

fM(I$, Iς, t)
− 1 6 a

(
1

fM($, ς, t)
− 1

)
+ b

(
1

fM($, I$, t)
− 1

)
+ c

(
1

fM(ς, Iς, t)
− 1

)
;

(ii) For each $, ς ∈ C, incomparable elements of (C,6), there exists z ∈ C such
that $ 6 z, ς 6 z, and z 6 Iz;

(iii) If an increasing sequence ($n) converges to $ in C, then $n 6 $ for all n.

Then I is a PO.

Proof. Consider the graph £ with V(£) = C and

E(£) =
{

($, ς, t) ∈ C× C: $ 6 ς
}
.

The mapping I is a Ćirić–Rus–Reich operator since it is increasing and (i) holds. The
graph £ is I-connected via Theorem 3. This result is deduced from the premises in this
theorem.
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In the ones that follow, we demonstrate that Theorem 3 is a corollary of [18]’s fixed
point theorem for cyclic Reich operators.

Let p > 2, and let {Ai}pi=1 be nonempty closed subsets of a complete metric space C.
A mapping I : ∪pi=1Ai → ∪

p
i=1Ai is called cyclical operator if

T (Ai) ⊆ Ai+1, i ∈ {1, 2, . . . , p}, and Ap+1 := A1.

Theorem 4. Let A1, A2, . . . , Ap, Ap+1 = A1 be nonempty closed subsets of a complete
metric space (C, d), and let I: ∪pi=1Ai → ∪

p
i=1Ai be a cyclical operator. There exist

nonnegative numbers a, b, c, a+ b+ c < 1, such that for each pair ($, ς, t) ∈ Ai×Ai+1,
i ∈ {1, 2, . . . , p},

1

fM(I$, Iς, t)
− 1 6 a

(
1

fM($, ς, t)
− 1

)
+ b

(
1

fM($, I$, t)
− 1

)
+ c

(
1

fM(ς, Iς, t)
− 1

)
.

Then I is a PO.

Proof. Denote Y = ∪pi=1Ai. Then (Y, d) is a complete metric space. Consider the
graph £ with V(£) = Y and

E(£) =
{

($, ς, t) ∈ Y × Y : there exist i ∈ {1, 2, . . . , p} such that

$ ∈ Ai and ς ∈ Ai+1

}
.

Because I is a cyclic operator, we get

(I$, Iς) ∈ E(£), for all ($, ς, t) ∈ E(£).

Via hypothesis, the operator I is a £-Reich operator, and the graph £ is I-connected.
Let ($n)n∈N be in C such that $n → $, and let ($n, $n+1, t) ∈ E(£) for n ∈ N.

Then there is j ∈ {1, 2, . . . , n} such that $ ∈ Aj . However, the sequence {$n} has an
infinite number of terms in eachAi for all i ∈ {1, 2, . . . , p}. The subsequence of sequence
{$n} is formed by the terms, which are in Aj−1 and satisfy the requirements (ii) of
Theorem 3.

5 Applications

Let C be any set, and let symbol ∆ represents the diagonal formed by the C×C. £(V,E)
is an undirected graph, where the set of vertices V is a subset of C, and E is the set of
graph’s edges that contains all loops, i.e., ∆ ⊆ E. Assuming that the graph £ does not
have any parallel edges, it can be matched to the pair (V,E).

We present the procedure of a natural selection of transformation I, which is moti-
vated by the aforementioned fact: V → V .
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If ($, ς) are in the V , then ($, ς) represents an edge between $ and ς . We say there
is a path between vertices $ and ς of a structure if certain edges connect $ and ς . In
this instance, we define [$, ς] as a path that originates at $ and ends at ς (we designate
vertex ς as terminal vertex and vertex$ as a reference vertex). A vertex w ∈ V is referred
as a natural selection of I : V → V if Iw is terminal vertex of [w, Iw].

Let $ and ς represent the two vertices of a £. Giving each edge of a graph a specific
weight is a common practice. The weight of an edge between $ and ς can be determined
by multiplying the positive real value produced by the distance calculation between $
and ς .

In this illustration, we allot fuzzy weight fM($, ς, t) (a number between 0 and 1) to an
edge ($, ς) at I, where I is translated as a time. In this case, we have bigger adaptability
in choosing the weights particularly when one is questionable or confounded at a certain
point of time in assigning a weight to an edge ($, ς). We establish the existence of a graph
vertex v such that its image, subjected to a graphical transformation satisfying specific
contraction requirements, becomes the last vertex of a path starting at v.

fM($, ς, t) = 1 for all I > 0 if and only if a path [$, ς] defines a loop.
Define

D(E$,Eς, t) = sup
{
fM(u, v, t), u ∈ E$, v ∈ Eς

}
.

In this last section, we prove that our results built up within the previous section enable
us to solve a few certain functional integral equations. Also, we provide few applications
related to our results.

Definition 20. (See [2].) Let Ψ denote all functions Ψ : [0,∞)→ [0,∞) satisfying:

(i) Ψ is strictly increasing and continuous;
(ii) Ψ(t) = 0 if and only if t = 0.

We define Ψ(co) =
∫ co
0
$(ς) dt, where $ is strictly increasing and continuous func-

tion for all ς > 0. Moreover, for each ς > 0, $(ς) > 0. This implies that $(co) = 0 if
and only if co = 0.

Theorem 5. Let (C, fM, ∗) be a complete fM-space, and let f : C → C be a mapping
satisfying

fM($, ς, t) = 1,

fM(f$,fς,kς)∫
0

$(ς) dς >

λ($,ς,t)∫
0

$(ς) dς,

where

λ($, ς, t) = min

{
fM(ς, fς, t)[1 + fM($, f$, t)]

[1 + fM($, ς, t)]
, fM($, ς, t)

}
for all $, ς ∈ C, $ ∈ Ψ and k ∈ (0, 1). Then f has a unique fixed point.

Proof. By taking $(ς) = 1 and applying Theorem 3, we obtain the result.
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Theorem 6. Let (C, fM, ∗) be a complete fM-space, and let f : C → C be a mapping
satisfying

fM($, ς, t) = 1,

fM(f$,fς,kς)∫
0

$(ς) dς > φ

{ λ($,ς,t)∫
0

$(ς) dt

}
,

where

λ($, ς, t) = min

{
fM(ς, fς, t)[1 + fM($, f$, t)]

[1 + fM($, ς, t)]
, fM($, ς, t)

}
for all $, ς ∈ C$ ∈ Ψ , k ∈ (0, 1), and φ ∈ Φ. Then f has a unique fixed point.

Proof. Since φ(a) > a, 0 < a < 1, this result is the consequence of Theorem 3.

Theorem 7. Consider the following implicit-type integral equation:

γ$(ς) +

ς∫
−1

κ
(
ς, s,$(s), I$(s)

)
ds, 0 < γ <

1

3
, ς ∈ [−1, 1],

where κ ∈ C([−1, 1]) in Banach spaceE = C([−1, 1],R) is scalar continuous functions.
The investigation is essentially based on the properties of kernel κ(·, ·, ·, ·), and $(s) ∈
C[−1, 1] is the unknown function.

Also, suppose the following assumptions contend:

(i) κ(ς, s,$(s), I$(s)) > 0 for I, s ∈ [−1, 1] such that κ(·, ·, 0, ·) 6= 0;
(ii) The mapping I defined by I$(ς) =

∫ ς
−1 κ(ς, s,$(s), I$(s)) ds satisfies

I$ ∈ R for all $ ∈ R and

‖I$ − Iς‖ < (1− γ)‖$ − ς‖, $, ς ∈ R ($ 6= ς);

(iii) For a given ε > 0, there exists δ < (1 − 3γ)/2 such that if $, ς ∈ R and
‖$ − ς‖ > ε,∣∣I$(ς)− Iς(ς)

∣∣ 6 δ(|$ − I$|+
∣∣ς(ς)− Iς(ς)

∣∣), I ∈ [−1, 1].

Then I has unique fixed point in R.

Proof. Consider the metric d defined on C[−1, 1] by

d($,ψ) = max
ς∈[−1,1]

∣∣$(ς)− ψ(ς)
∣∣) = max

ς∈[0,1]

∣∣$(ς)− ψ(ς)
∣∣

for all $,ψ ∈ C[−1, 1]. Then (C[−1, 1], d) is a complete metric space. The binary
operation ∗ is defined by product �-norm P($, ς) = $ · ς .

A standard fuzzy metric dM : U2 × (0,∞)→ [0, 1] is given as

1

dM($, ς, t)
− 1 =

d($, ς)

t
for t > 0, $, ς ∈ C.
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Then, easily one can verify that dM is triangular and (C, fM, ∗) is a complete fuzzy metric
space.

Let C = C[−1, 1], and define the operator I : C→ C by

I$(ς) = γ $(ς) +

ς∫
−1

κ
(
ς, s,$(s)

)
, ς ∈ C.

We have

$(ς)− I$(ς) = (1− γ)$(ς)−
ς∫
−1

κ
(
ς, s,$(s), I$(s)

)
ds.

Let $, ς ∈ R with ‖$ − ς‖ > ε. Then by using our assumptions we get∣∣I$(t)− Iς(t)
∣∣

=

∣∣∣∣∣γ($(t)− ς(t)
)

+

ς∫
−1

κ
(
ς, s,$(s), I$(s)

)
ds−

ς∫
−1

κ
(
ς, s, ς(s), Iς(s)

)
ds

∣∣∣∣∣
6 γ

∣∣$(ς) + I$(ς)− I$(ς) + Iς(ς)− Iς(ς)− ς(ς)
∣∣

+

∣∣∣∣∣
ς∫
−1

[
κ(ς, s,$(s), I$(s)

)
− κ
(
ς, s, ς(s), Iς(s)

)]
ds

∣∣∣∣∣
6 γ

(
‖$ − I$‖+ ‖ς − Iς‖+ ‖I$ − Iς‖

)
+ δ
(
‖$ − I$‖+ ‖ς − Iς‖

)
,

which gives that

‖I$ − Iς‖ 6 γ‖I$ − Iς‖+ (γ + δ)
(
‖$ − I$‖+ ‖ς − Iς‖

)
.

Hence

‖I$ − Iς‖ 6 γ + δ

1− γ
(
‖$ − I$‖+ ‖ς − Iς‖

)
,

which satisfies

1

fM(I$, Iς, t)
− 1 6 a

(
1

fM($, ς, t)
− 1

)
+ b

(
1

fM($, I$, ς)
− 1

)
+ c

(
1

fM(ς, Iς, t)
− 1

)
for all ($, ς) ∈ C×C and a+ b+ c > 1, a = 0 and b, c > 0. Then there is only one fixed
point in C for I.

Since 0 < δ < (1−3γ)/2, then (γ+δ)/(1−γ) < 1/2, and the result is an immediate
consequence of Theorem 3.

Nonlinear Anal. Model. Control, 29(1):71–95, 2024

https://doi.org/10.15388/namc.2024.29.33668


94 S. Jabeen et al.

6 Conclusion and future scope

In the situation of fM-spaces, we developed new and suitable extensions of Reich con-
traction and discovered their applicability to the solution of integral equations. This is
the first attempt to solve £-graph-Reich contraction in fM-spaces that we are aware of.
A few nontrivial examples and an application confirm the solution’s uniqueness. Finally,
we have used the manuscript’s major contents to offer a new application in which we can
derive the existence of a solution to the class of integral equations under very generic
conditions.

On the one hand, additional research is needed to reformulate the contractivity condi-
tion so that fixed point theory can be developed in more general abstract metric spaces.
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Univ. “Ovidius” Constanţa, Ser. Mat., 20(1):31–40, 2012.

4. L. Chen, N. Yang, Y. Zhao, Z. Ma, Fixed point theorems for set-valued G-contractions in
a graphical convex metric space with applications, J. Fixed Point Theory Appl., 22(4):88,
2020, https://doi.org/10.1007/s11784-020-00828-y.

5. B.S. Choudhur, K. Das, P. Das, Extensions of Banach’s and Kannan’s results in fuzzy metric
spaces, Commun. Korean Math. Soc., 27(2):265–277, 2012, https://doi.org/10.
4134/CKMS.2012.27.2.265.

6. R. Chugh, S. Kumar, Common fixed point theorem in fuzzy metric spaces, Bull. Calcutta
Math. Soc., 94:17–22, 2002.
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