

Exploring the use of Al in odontology for paediatric patients : a systematic integrative review.

Diego Alexandre Adam Joda

Dissertação conducente ao Grau de Mestre em Medicina Dentária (Ciclo Integrado)

Gandra, maio de 2023

Diego Alexandre Adam Joda

Dissertação conducente ao Grau de Mestre em Medicina Dentária (Ciclo Integrado)

Exploring the use of AI in odontology for paediatrics patients : a systematic integrative review.

Trabalho realizado sob a Orientação de Mestre Selma Pascoal

DECLARAÇÃO DE INTEGRIDADE

Eu, Diego Alexandre Adam Joda, declaro ter atuado com absoluta integridade na elaboração deste trabalho, confirmo que em todo o trabalho conducente à sua elaboração não recorri a qualquer forma de falsificação de resultados ou à prática de plágio (ato pelo qual um indivíduo, mesmo por omissão, assume a autoria do trabalho intelectual pertencente a outrem, na sua totalidade ou em partes dele). Mais declaro que todas as frases que retirei de trabalhos anteriores pertencentes a outros autores foram referenciadas ou redigidas com novas palavras, tendo neste caso colocado a citação da fonte bibliográfica.

AGRADECIMENTOS

Gostaria de agradecer à minha família pelo apoio constante durante estes 5 anos, particularmente aos meus pais e minha irmã que confiaram em mim e sem os quais eu não teria podido ir a CESPU, a dez mil km da minha casa.

Obrigado a todas as pessoas que conheci aqui, e os meus amigos que tornaram estes 5 anos inesquecíveis, e mais divertidos. E graças a Karine o meu binómio durante este último ano.

Obrigado a minha namorada Camille.

Um grande obrigado à minha orientadora Selma Pascoal, que me ajudou na elaboração deste trabalho.

E um grande obrigado a todo o corpo docente da CESPU pelo acompanhamento durante os 5 anos de estudo.

RESUMO

Introdução: A inteligência artificial (IA) é a capacidade que um computador tem de reproduzir um determinado raciocínio, planeamento e mesmo a criatividade semelhante à do ser humano. A relevância desta revisão reside na oportunidade de explorar a importância da IA na nossa vida moderna, no futuro fluxo de trabalho dos consultórios dentários, sendo a literatura escassa no âmbito da IA em Odontopediatria.

Objetivo: Determinar de que forma a IA pode ser aplicada em odontologia pediátrica.

Materiais e métodos: Foi realizada uma pesquisa bibliográfica na base de dados PubMed. Os resultados incluem estudos publicados que cumprem os critérios no período de 2013 até 23 de janeiro 2023.

Resultados: Várias pesquisas foram realizadas em pacientes pediátricos em relação à estimativa de idade dentária, posicionamento dentário e diagnóstico de cárie. A maioria desses estudos encontrou conclusões positivas relativamente à precisão dos modelos de aprendizagem profunda aplicados à análise de imagens.

Discussão: Na literatura enfatiza a importância de investigações adicionais com amostras mais significativas. A aplicação desses modelos no fluxo de trabalho odontológico e as preocupações éticas foram também discutidas.

Conclusão: A Al mostra resultados promissores no campo da odontopediatria, mas mais pesquisas são necessárias, a regulamentação ética sobre privacidade de dados precisa ser adotada e aplicada.

ABSTRACT

Introduction: Artificial intelligence (AI) is the ability of a computer to reproduce a certain reasoning, planning and even creativity similar to that of a human being. The relevance of this review lies in the opportunity to explore the importance of AI in our modern life, in the future workflow of dental offices, since literature is scarce in the field of AI in Paediatric Dentistry.

Aim: To determine whether AI can be applied in paediatric dentistry.

Materials and methods: A literature search was conducted in the PubMed database. The results include published studies meeting the criteria in the period from 2013 to January 23, 2023.

Results: Several researches have been conducted in paediatric patients regarding dental age estimation, tooth positioning and caries diagnosis. Most of these studies found positive conclusions regarding the accuracy of deep learning models applied to image analysis.

Discussion: In the literature the importance of further investigations with more significant samples is emphasised. The application of these models in the dental workflow and ethical concerns were also discussed.

Conclusion: Al shows promising results in the field of paediatric dentistry, but more research is needed, ethical regulations on data privacy need to be adopted and enforced.

Contents

DECLARAÇÃO DE INTEGRIDADE	i
AGRADECIMENTOS	iii
RESUMO	v
ABSTRACT	viii
Index of Tables	xi
Index of figures	xiii
Index of abbreviations and acronyms	xvi
1. Introduction	1
2. Objective	3
3. Materiel and Method	3
3.1 Eligibility criteria	3
3.2 Inclusion criteria	4
3.3 Exclusion criteria	4
3.4 Research strategy	4
4. Results	7
5. Discussion	21
6. Conclusion	25
7. References	

Index of Tables

- Table 1. PICo Strategy
- Table 2. Combinations of keywords and articles found.
- Table 3. Details gathered from the selected studies.
- Table 4. Scientific Journal Ranking quality rating of academic journals.

Index of figures

Figure 1. PRISMA 2020 flow diagram for new systematic reviews, which included searches of databases and registers only.

Figure 2. Circular Diagram.

Index of abbreviations and acronyms

AI: Artificial Intelligence

ANN: Artificial Neural Network - a machine learning algorithm modelled after the structure of the human brain.

CNN: Convolutional Neural Network - a deep neural network commonly used in image and video recognition.

DL: Deep Learning - A specific branch of machine learning, known as deep learning, involves the utilization of neural networks that consist of three or more layers.

GDPR: General Data Protection Regulation – Privacy and security law of European Union.

ML: Machine Learning - a field of computer science that uses statistical models and algorithms to enable computers to learn from and make predictions on data.

1. Introduction

In this century, Artificial Intelligence (AI) is already an essential tool in medicine. The last research in AI tries to mimic human intelligence and approximate the power of the human brain. A large dataset is a prerequisite. Once trained with those data, the machine has the capability to enhance the diagnosis and treatment plan in the medical fields(1). In this century, AI is changing and will change society and the world economy at a surely faster pace than the computer revolution of the last century(2).

Al refers to techniques that aim to understand and imitate human intelligence to solve complex problems, such as image recognition. Machine learning (ML) is the set of techniques that allows a computer to learn. There are several types of learning, supervised, unsupervised learning, and reinforcement learning are the mains. Deep learning (DL) is a subgroup of ML. It consists of algorithms composed of several layers of artificial neurons capable of analysing unstructured data, such as dental X-rays. The term "deep" refers to neuron layers. The term "deep" refers to neuron layers(3): each neuron is connected to others in a weighted manner. Each synaptic connection can be strengthened or weakened by adjusting the weight through iterative learning (4).Thanks to Backpropagation during the training of the model. For Imaging diagnosis, Convolutional Neural Network (CNN) models are used. It is a form of a more complex neuron network, designed to be more efficient than a simple neuron network by adding filters called transformers blocs in the hidden layers to segment the image. It helps the model to analyse images more efficiently.

Indeed, the digital revolution has also affected the field of dentistry, thus influencing modern dentistry by disrupting the workflow of dental practices. It began by introducing advanced and less ionising complementary diagnostic tools such as panoramic radiography and cone beam computed tomography. Additionally, there have been significant advancements in prosthodontics, including the CAD/CAM system, digital impression-taking, and 3D scanning for impressions. More recently, there has been a growing use of deep learning-based diagnostic software to aid in diagnosis(3). Current knowledge already proves that AI techniques can aid dentists in infection control, clinical decision-making, oral

diagnosis, restorative dentistry, endodontics, orthodontics, and periodontics(5). Preclinical studies have shown encouraging results in localising root canal orifices, detecting vertical fractures, and dental cavities or evaluating bone loss. Nevertheless, further studies need to be performed to confirm all those information (6). Most of the Research previously quoted was performed on a pull of adult patients.

Advancements in medical imaging research, particularly those involving machine learning implementation. This leads to an interrogation of the quality of the results that could be obtained. Find the accuracy of such tools. Furthermore, the possibility of integrating these innovative technologies into the paediatric dental office workflow will show how such a disruptive instrument is regulated and controlled. The relevance of these review lives in the opportunity to explore the importance of AI in our modern life, in the future workflow of dental practices, due to the lack of literature review on the field of IA in Paediatric dentistry.

2. Objective

This systematic review aims to investigate AI's current clinical application and diagnostic performance in paediatric dentistry.

3. Materiel and Method

This systematic review was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines(7).

The electronic database PubMed was searched to find AI's different applications in paediatric odontology. Searches were performed from 2013 to January the 23rd, 2023.

All records were exported to an Excel file (Microsoft® Office), and the software filter removed the duplicates and then manually verified them. Two authors (D.J. and S.P.) independently screened the titles and abstracts of all identified studies. The same authors evaluated the full texts of the most relevant studies to assess their eligibility.

All data related to study characteristics and outcomes from the included studies were extracted to an Excel spreadsheet by one author (D, J) and reviewed by another author (S.P). Data related to the study characteristics were collected (year, study design, measured variables, and outcomes analysis).

3.1 Eligibility criteria

The research question and the selection of studies included in this systematic review were elaborated according to the PICo strategy and the inclusion and exclusion criteria.

Table	1.	PICo	Strategy
-------	----	------	----------

Ρ	Population	Paediatric subjects are susceptible to needs						
		diagnosis with a dental imaging tool.						
Ι	Interest	The events of interest will be measured if AI						
		implementation in dental imaging tools is a proper						

		increment in paediatric dentistry workflow in terms of accuracy and reliability.
Co	Context	In many developed countries, the traditional way of performing dental work has been replaced by a digital workflow using electronic tools and processes as imaging acquisition devices. In the past few years, AI researchers have made significant advances, and nowadays, AI models can be implemented in many sectors, and healthcare is a promising one.

3.2 Inclusion criteria

- Articles with a publication date between 2013 and January the 23rd, 2023
- Retrospective studies
- Paediatric population
- Radiology-based clinical studies using AI models for automatic diagnosis of tooth position, tooth recognition decays, age maturation or detection of cleft palate.

3.3 Exclusion criteria

- Articles with a publication date prior to 2013.
- Article with others Imaging methods.
- Full text is not accessible.
- Review or meta-analysis, case studies or conference proceeding
- Articles not in English

3.4 Research strategy

Table with the number of results and combination of keywords

Platform	Combination of Mesh Terms	Results	Results after filters	Selected Articles
PubMed	Keys words: Artificial	1998	850	14
	Intelligence[Mesh] OR			
	Diagnosis, Computer-			
	Assisted[Mesh] OR Neural			
	Networks (Computer)[Mesh] OR			
	AI OR CNN OR Machine			
	learning OR Deep learning OR			
	Convolutional OR Automatic OR			
	Automated AND Diagnostic			
	imaging[Mesh] AND			
	Dentistry[Mesh]			

Table 2. Combinations of keywords and articles found.

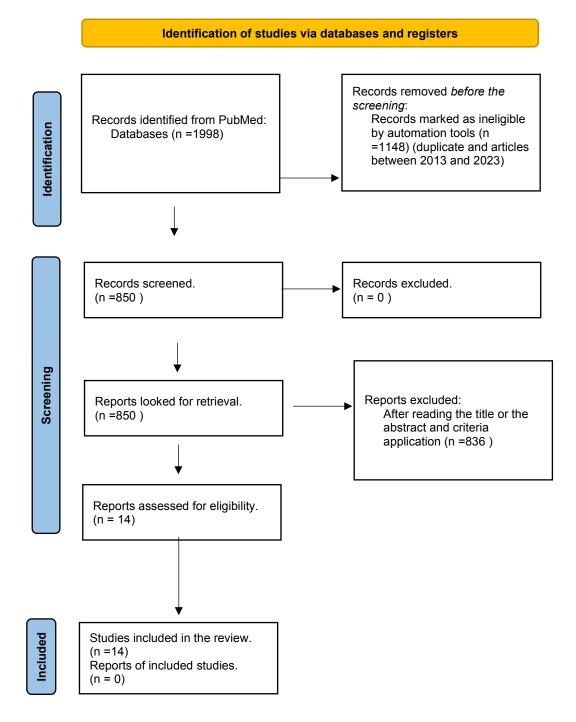


Figure 1. PRISMA 2020 flow diagram for new systematic reviews, which included searches of databases and registers only.

4. Results

The search in the PubMed database resulted in 1998 articles. The first analysis phase involved a date removal, and systematic review articles were also removed. During the second phase, titles and abstracts were read following the inclusion and exclusion criteria. After thoroughly reading the remaining articles, fourteen were used to prepare the table out of a total of articles used in this thesis.

In this paper, we review fourteen articles, six of which focused on the implementation of AI in different applications of radiographic diagnosis. four studied tooth positions in the alveolar arch, one detected and enumerated teeth, one focused on cleft alveolus with and without cleft palate detection and classification, one detects mesiodens and one on decay detection. All studies were performed on paediatric patients' panoramic radiographs, except one on cephalometric and hand-wrist X-rays.

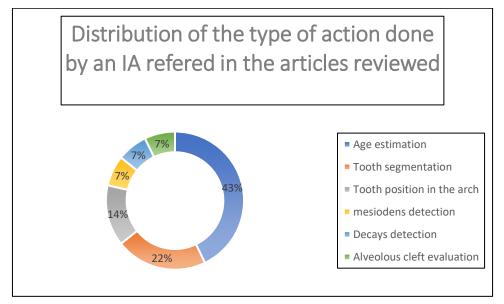


Figure 2 – Circular Diagram

Table 3. Details gathered from the selected studies.

Authors, year	Study	Objective	Material and methods	AI technique	Function	Outcome
	design					
Bunyarit <i>et al.,</i>	Retrosp	The study aims to	Dataset: 1015 Dental panoramic	ANN-MLP	Determinate	Chaillet and Demirjian's modified
2022 (8)	ective	set up a	tomographs of Malaysian Indians		age of a	eight-tooth method
	cross-	population-specific	aged 5.00-17.99 years.		specific	underestimated the dental age of
	sectiona	prediction model	Calculation of dental age using		population	Malaysian Indian children and
	l study	for accurate dental	Chaillet and Demirjian's eight-tooth		base on a	adolescents. The study set up a
		age estimation in	method and compared it to a		dataset	novel Malaysian Indian-specific
		this ethnic group.	population-specific prediction model		composed	prediction model using ANN-MLP
			using artificial neural networks		of	that resulted in highly correct
			multilayer perceptron.		panoramic	dental age estimation. The new set
					radiography	of dental maturity scores and
						prediction formula developed in
						the study can be used for correct
						dental age estimation in this ethnic
						group.
Zhu H et al.,	Retrosp	Compared	The paper used the nnU-Net algorithm	ANN named	detect	model based on nnU-Net
2022 (9)	ective	performance of an	to develop an AI model for	nnU-Net	ectopic	algorithm was able to
	study	ANN vs dentist in	automatically detecting and		eruption of	automatically detect and segment
		ectopic eruption of	segmenting ectopic eruption of first		first	ectopic eruption of first permanent
			permanent molars in early mixed		permanent	molars in early mixed dentition on

		first permanent	dentition on panoramic radiographs.		molars in	panoramic radiographs with high
		•				
		molars	The detecting performance of the		early mixed	accuracy and consistency. The
			nnU-Net was compared with that of		dentition on	model outperformed the detecting
			three dentists with different years of		panoramic	performance of dentists with
			experience		radiographs	different years of experience. The
						study confirmed the use of AI in
						dental radiography for more
						efficient and accurate detection of
						first permanent molars.
Kim J et al.,	Retrosp	The aim of this	The study used 988 panoramic	The study	Detect	- The segmentation network using
2022 (10)	ective	paper is to develop	radiographs of growing children, out of	developed two	mesiodens	the posterior molar space in
	study	and evaluate the	which 489 patients with mesiodens	deep learning	in a	panoramic radiographs was able
		performance of a	were classified as an experimental	networks: a	panoramic	to confine the ROI with high
		deep learning	group, and 499 patients without	segmentation	radiography	accuracy, which led to high
		model that can	mesiodens were classified as a	network		classification accuracy of
		automatically	control group.	(DeeplabV3plus		mesiodens
		diagnose) and a		- The results of this study
		mesiodens in		classification		confirmed the possibility of a fully
		growing children		network		automated process for diagnosing
		using only		(Inception-		mesiodens using only panoramic
		panoramic		resnet-v2).		radiographs.
		radiographs				- The study suggests that this DL
						model could be the basis for
						automatically finding other

						diseases using only panoramic radiographs.
Liu J et al.,	Compar	to develop an	- Two paediatric dentists with five	Convolutional	Detection of	- The study developed an
2022 (11)	ative	automatic model	years of clinical experience	neurone	ectopic	automated screening method with
	study	that can aid	independently evaluated two hundred	network	eruption of	high accuracy in detecting ectopic
		dentists in this task	regions from 100 panoramic		the	eruption of maxillary primary first
		and allow timelier	radiographs, which contained normal		maxillary	molars, comparable to that of
		interventions	and ectopic eruption cases.		first molar	experts.
			- The radiographs were selected to			- While the Al-assisted image
			cover a wide range of ectopic eruption			recognition model can slightly
			manifestations in children aged 4-9.			enhance the accuracy of manual
						interpretation, DL alone is not
			- 1580 images were included in the			entirely reliable in detecting
			training set, and 100 images (200			ectopic eruption.
			regions) in the testing set.			
						- Regular follow-ups and re-
						evaluations are necessary to
						address the potential risk of false
						negative diagnoses.
Zhao W et al.,	Retrosp	To compare the	Seven hundred forty-eight panoramic	ML-supervised	Dental age	The prediction accuracy of dental
2022 (12)	ective	accuracy of	images of adolescents aged 5 to 13	regression	estimation	age was affected by ML
	study	Demirjian and		algorithms: DT,		algorithms. MD, MAD, MSE, and

		Cameriere	years old, including 356 females and	BRR, and KNN		RMSE of the dental age predicted
		methods for	392 males.	were used to		by ML significantly decreased.
		deciding dental		predict dental		The KNN model based on the
		age using ML and		age.		Cameriere method had the highest
		to evaluate the				accuracy
		prediction				
		capabilities of				
		three ML				
		algorithms (DT,				
		BRR, KNN).				
Cieślińska K <i>et</i>	Retrosp	To develop neural	Three hundred x-rays of Polish	Two distinct	Evaluation	The study found that a RBF
<i>al.</i> , 2022(13)	ective	models for	children aged 6 to 10 years old,	types of ANN:	of the	network was the most right in
	study	evaluating the	including 165 males and 135 females.	RBF and MLP	second	predicting the position of the
		placement of the		Multilayer	premolar's	second premolar tooth's bud,
		second premolar		Perceptron.	bud position	achieving 91% accuracy. The
		tooth's bud by				study suggests that neural
		analysing tooth-				modelling techniques can be used
		bone markers of				to improve the accuracy of dental
		other teeth.				development assessments and
						treatment planning for orthodontic
						or other dental procedures. The
						method could be incorporated into
						a computer program to aid

						healthcare professionals in their practice.
Zhou X et al.,	Retrosp	Improve the	A reference group of individuals	Alexnet,	Carie	The context-aware CNN model
2022(14)	ective	accuracy of	without cavities of similar age. The	Googlenet,	diagnosis	had a higher accuracy rate than
	study	paediatric dental	database included 210 panoramic	VGG16,		the diagnoses made by two
		caries diagnosis	radiographs with at least one cavity	VGG19,		experienced doctors with five
		on panoramic X-	and ninety-four without cavities.	Resnet18,		years of experience.
		rays by enhancing		Resnet50,		However, the proposed model
		conventional		Resnet101, and		relies on manually extracting each
		convolutional		Xception		tooth from dental panoramic X-
		neural networks.		networks		rays, making it less practical for
				Context-aware		clinical use without added human
				CNN		annotation.
Shan W et al.,	Retrosp	The research	One thousand four hundred seventy-	SVR,	Dental age	The study compared different
2022 (15)	ective	examines the	seven panoramic radiographs from	BPNN,	estimation	methods for estimating dental age
	study	applicability of	southern China, with 644 males and	Random forest		in children aged 7-8. The Demirjian
		traditional	833 females between the ages of 2 to	AdaBoost,		method was more correct than the
		estimation	17.99 years old.	KNN,		modified and Willems methods.
		methods for		Light GBM,		However, for other age groups, the
		populations in		XGBoost,		Willems method was more exact.
		southern China		Extra trees,		The study also found that the use
		and evaluates the		Decision trees,		of ML methods, such as GBDT,

		effectiveness of		GBDT,		can effectively improve age
		various machine		CatBoost		estimation accuracy and supply
		learning algorithms				guidance for age assessment in
		when applied to				different regions.
		the same data.				
Kaya E <i>et al</i> .,	Retrosp	Evaluate the	4545 panoramic X-ray images of	-	Tooth	The proposed algorithm achieved
2022(16)	ective	performance of a	children between the ages of 5 and 13	YOLO V4	recognition	high accuracy and speed in tooth
	study	deep learning	were used for this study.		for	detection and numbering. By
		system in			permanent	combining the ability of dental
		automatically			and primary	professionals with the capabilities
		detecting and			tooth	of DL models, the proposed
		labelling teeth in				algorithm can improve treatment
		panoramic X-rays				outcomes and ease more accurate
		of children.				and efficient disease diagnoses.

Shen S et al.,	Retrosp	evaluate the	Seven hundred forty-eight children,	RF, SVM, and	Dental age	ML algorithms can improve the
2021 (17)	ective	accuracy and	356 females and 392 males aged	LR	estimation	accuracy of dental age estimation
	study	reliability of the	between 5.00 to 13.99 years.			compared to traditional methods
		Cameriere				such as the European or Chinese
		method, using				Cameriere formulas. Specifically,
		seven lower left				the SVM, LR, and RF models
		permanent teeth,				proved higher accuracy in
		for dental age				predicting dental age. These
		estimation in				results support using ML
		children				algorithms as a superior
						alternative to traditional Cameriere
						formulas for dental age estimation.
Kuwada C et	Retrosp	Detection and	Panoramic radiographs of 383	The study	Detection	The DL model has the potential to
<i>al.</i> , 2021(18)	ective	diagnosis of cleft	patients with unilateral cleft alveolus,	developed two	and	detect and classify cleft alveolus
	study	lip and palate using	with a mean age of 9.3 years for both	CNN using	classificatio	on panoramic radiographs.
		a DL object	male and female patients. Two	DetectNet 1.	n of	The model was trained using a
		detection	groups: 174 cleft alveolus only group,	The first model	unilateral	small dataset with a regular group,
		technique. The	and 209 had cleft alveolus and cleft	was trained	cleft	so the results cannot be
		researchers aimed	palate.	solely on	alveolus	generalised.
		to assess the		panoramic	with and	Further research should use larger
		model's	To compare the performance of the	radiographs with	without cleft	datasets from multiple hospitals
		performance with	DL models with human observers, two	anomalies, and	palate	and different panoramic machines
		and without	radiologists with more than four years	two. model was		to improve the model's
		average data in the	of experience in interpreting	trained using a		performance.

		learning process	panoramic radiographs classified the	dataset of		The model with a dataset of
		and find any	same testing data used to verify the	panoramic		panoramic without cleft lip and
		appearance	deep learning models' performance.	radiographs		palate performed better than the
		features related to		both with and		one with only anomalies.
		its performance.		without		Model 2 had an accuracy of
		Another goal was		anomalies. In		82.2%, while the two radiologists
		to compare the DL		this study,		had an accuracy of 73.3%., Almost
		model's		anomalies		a 10 % difference in favour of AI in
		performance with		referred to cleft		terms of precision.
		that of human		lip and palate.		
		observers to				
		evaluate its				
		usefulness.				
Kök H <i>et al.</i> ,	Retrosp	Use an ANN to	- The study included 419 patients	The researchers	Determinati	- The ANN algorithm showed
2021(4)	ective	identify growth and	between the ages of 8 and 17.	employed a	on of growth	promising results :
	study	development	- An ANN was trained on reference	supervised	and	- The 6 th Model exhibited the
		stages and gender	points from the radiographs to predict	learning	developmen	highest accuracy with a score of
		based on cervical	the age group of patients.	algorithm called	t periods in	0.94.
		vertebrae	- The data was split into three sets for	"Scaled	orthodontics	- The study highlights the potential
		characteristics.	training, testing, and validation.	Conjugate		for using ANN in orthodontics for
			- Two ANN models with high accuracy	Gradient		age prediction.
			were selected, and their results were	Backpropagatio		
			reported in the paper.	n."		

Vranckx M et	Retrosp	Develop an AI tool	- The study used 838 panoramic	CNN, Restnet-	Predict the	- The study developed an AI tool
al. , 2020(3)	ective	capable of	radiographs, with 588 used for training	101	first molar	that accurately measures the
, _0_0(0)	study	segmenting	and technical validation and 250 for		eruption	angle of molars in panoramic
	Study	mandibular molars	clinical validation.		path.	radiographs.
					patri.	
		on panoramic	- In two stages, the fully CNN used a			- The tool was validated and
		radiographs and	pre-trained Resnet-101 model for			shown to predict segmentation
		extracting their	molar segmentation and orientation			maps and orientation lines for third
		orientations, which	estimation.			molar eruption prediction.
		could help predict	- Accuracy was evaluated by			- Dental practitioners can use this
		the probability of	comparing the network's angle			tool to improve routine care and
		third molars	measurements with human reference			increase diagnostic accuracy.
		erupting.	measurements within a predefined			- The tool has a high accuracy rate
			error range.			of 98.1% with a 5-degree margin of
						error.
Banar N <i>et al.</i> ,	Retrosp	Fully automate the	The study used a dataset of 400	Yolo-like	Third molar	The study proposed a model that
2020(19)	ective	staging process by	panoramic images selected by three	architecture	developmen	can automate determining third
	study	maximising CNN	observers.	convolutional	t staging	molar stages in less than 3
		and integrating	The process involved three stages:	neural network		seconds, outperforming the
		them into every	localisation, segmentation, and			manual process. Although the
		procedure stage.	classification.			dataset was limited, the fully
			CNN were used in each stage to			automated method showed
			complete the staging process's			promising results compared to the
			automation.			manual determination of third
						molar stages.

The localisation stage found the	
region of interest having the dentition.	
The segmentation stage delineated	
the individual teeth in the region of	
interest.	
The classification stage used a deep	
learning model to stage the dental	
development of each tooth.	

Legend: AI: Artificial Intelligence ; ANN: Artificial Neural; BPNN: Backpropagation Neural Network; BRR: Bayesian Ridge Regression; CNN: Convolutional Neural Network; DetectNet: a deep learning framework developed by NVIDIA for object detection in images and video; DL: Deep Learning; DT: Decision; GBDT: Gradient Boosting Decision Tree; GBM: Gradient Boosting Machine; GBPM: Gradient Boosting Permutation Method; KNN: k-Nearest Neighbors; LR: Logistic Regression; MAE: Mean Absolute Error ML: Machine Learning; MLP: Multilayer Perceptron; OPG: Orthopantomogram; RBF: Radial Basis Function; RF: Random; RMSE: Root Mean Squared; ROI: Region of Interest; ROI-P: Region of Interest; ResNet: Residual; SVM: Support Vector; SVM-RFE: Support Vector Machine Recursive Feature Elimination; SVR: Support Vector Regression; YOLO: You Only Look Once

The Scientific Journal Ranking score was also used to evaluate the scientific influence of academic journals by publication date for each selected study. Their respective rankings are showed in the following table (Table 4). 50% of the article are in the top ranking of the journal, 14,3% are in the second quartile. The 35,7% remaining are in the third quartile of the ranking.

Table 4 - Scientific Journal Ranking quality rating of academic journals

Study	Journal	Rank
Bunyarit <i>et al.</i> , 2022 (8)	Annals of Human Biology	Quartile 3
Zhu H <i>et al.</i> , 2022(9)	International Journal of Paediatric Dentistry	Quartile 1
Kim J et al., 2022 (10)	Dentomaxillofacial Radiology	Quartile 1
Liu J <i>et al.</i> , 2022 (11)	Journal of Dentistry	Quartile 3
Zhao et al., 2022 (12)		
Cieślińska K <i>et al.</i> , 2022(13)	International Journal of	Quartile 2
	Environmental Research and	
	Public Health	
Zhou X et al., 2022(14)	Computational and	Quartile 3
	Mathematical Methods in	
	Medicine	
Shan W <i>et al</i> ., 2022 (15)	Nature	Quartile 1
Kaya E <i>et al</i> ., 2022(16)	International Journal of	Quartile 3
	Clinical Paediatric Dentistry	
Shen S <i>et al.</i> , 2021 (17)	BMC Oral Health	Quartile 1
Kuwada C et al., 2021(18)	Nature	Quartile 1
Kök H <i>et al</i> ., 2021(4)	Orthodontics and Craniofacial	Quartile 1
	Research	
Vranckx M <i>et al.</i> , 2020(3)	International Journal of	Quartile 2
	Environmental Research and	
	Public Health	
Banar N <i>et al.</i> , 2020(19)	International Journal of Legal	Quartile 1
	Medicine	

5. Discussion

Zhou X et al. (2022) (14) compared the ability to diagnose a cavity on a dataset of dental radiographies of patients from the Beijing children's hospital. The results showed a significantly diminution of the time needed between two five-year attending doctors and the CNN context aware. The machine needed sixty-four fewer times to make a diagnosis. The CNN context aware were also compared to mainstream models as Alexnet Googlenet or Resnet18 for example. All the evaluation metrics demonstrate the superiority of the professionals versus the CNN context aware model of this study but, this paper advances the possibility for CNN to be an Aid-Diagnosis for practicians, and the limitation was that the model in this research could only give a binary answer to the presence of decay, while in dentistry, we use classifications to diagnose cavities stages (13). A study by Devlin H et al. (2021) (20) published in the journal of the British Dental Association showed that a dentist assisted by a CNN context aware named "AssistDent" had better sensitivity to assessing proximal caries, but less sensibility compared to an unassisted dentist. Indeed, the use of AssistDent increased the detection of enamel-only proximal caries by 71%, assisted participants were 11% less likely to correctly find healthy proximal surfaces as non-carious. Notably, the use of an aid diagnosis software here allows an increase in the percentage of detection of carious lesions, but at the same time, also an augmentation of false positives. In other terms, a sensibility augmentation with a specificity diminution.

Also, other studies on Paediatric patient's panoramic radiography have been conducted and shown promising results. For example, a precision of 85% in the detection and enumeration of primary and permanent teeth would be suggested in the conclusion of the research conducted by Kaya E *et al.* (2022) (16) They concluded that combination of deep learning-based models with the practice of dental experts may provide better treatment outcomes and accurate diagnoses of diseases in less time. In the field of detection and enumeration, some investigators trained models on their ability to detect the angulation of a tooth in the arch (13,19) or to predict the eruption area as Vranckx *et al.*(2020) (3) showed

after demonstrate that the model were two to four times more quicker than the manual orientation method, conclude that the CNNs that they trained can assist dentist in the adolescents' third molar eruption of and angulation prediction in a fast, consistent and accurate way. Liu J et al. (2021) (11) showed that ectopic eruption of primary first molar detection diagnosis and interpretation can be as correct as experts' level of performance. Additionally, they concluded in this paper that it should also be study the effect of possible false negative diagnosis and follow-ups and revaluation is needed(10). Also, in 2022 Cieślińska et al. (13) published a method to determine with a machine learning model based on 21 tooth and bone parameters the second premolars' bud position, the results demonstrated that this methodology can be used as an algorithm for implementation in a computer application that will automatically determine the position of bud on panoramic radiographs of children and adolescents aged 6 to 10 years, and concluded that it is a promising tool to help practitioners in their clinical work (12). But as mentioned Kök H et al. (4) in their study on the determination of growth development stage, further studies need to be performed to obtain fully automated systems or aid-system that doctors could rely on. But, on the other hand Kim J et al. (2022) conclude that a fully automated process for diagnosing mesiodens is already possible (9).

In our review most of the research articles were on implementing an ML model in software that decided tooth maturation, some of them compared the Demirjian method *versus* the Cameriere method (8,17,21,22). One limitation was that the dataset was too narrow on a specific geographical zone and had few images. Willem's method also has been studied by Shan W *et al.* (2021) (14). All articles reviewed conclude that the ML model trained to estimate age was significantly more exact than other methods studied.

Kuwada C *et al.* (2021) (18) studied the capacity of CNN to detect a Clef alveolus and classify it into two categories, with or without palate involvement. The result is encouraging despite the limitation of the size of the data sample, indeed, to obtain trustful tools powered by DL technology, Large and best-quality data samples are required (17).

The use of machine learning in medical imaging has the potential to improve healthcare, but it is also raise important ethical and legal questions. Algorithms may perpetuate bias in the diagnosis and treatment of dental diseases. Additionally, there are questions about patient privacy and the security of medical data collection to train AI systems. Clear guidelines on the use of AI are needed to ensure that these technologies are used safely and effectively. That is why in Europe, the General Data Protection Regulation (GDPR) is an essential regulation tool, effective since 2018 in the European Union and in the European Economic Area. Its first aim is to protect privacy and persona data of citizen of the EU/EEA. Medical images are considerate as sensitive personal data under the GDPR. This mean added safeguards must be put in place to protect the data: explicit consent from the patient, in a way that ensures its confidentiality and integrity. It also gives patients the right to access their data and request that it be corrected or removed if it is inaccurate or no longer necessary for its intended purpose(23).

After, reviewing these studies, its seems that promising results are describe in the domain of tooth enumeration, age estimation/angulation, cleft alveolus detection, or simple decay detection for paediatric patients. Nevertheless, exciting outcomes in research led to dentistry on adults subjects, for example, root canal detection, study of anatomy, disease prediction, treatment plan, implant planning and tumour detection, with high accuracy and precision results (21).

It is important to note that large-quality datasets are needed to train a trustful model. In the AI field, bias in the algorithm construction can lead to outperformance during the clinical application, for this reason, ethical concerns about the use of AI in medicine are essential.

In the near future, it will be possible for patients to fill out their medical history online, it would be available digital aid assistant to analyse every type of medical imaging that could give a diagnosis and treatment plan and after validation, the DL-powered assistant could send by email all the information about the treatment. Then, after treatment, the patient will be able to dialogue with chatbots pre-trained about how to behave and calm anxieties. Even further, saliva

could be analysed in real-time thanks to small chips, or the clinician could also evaluate the quality of brushing with a "Smart toothbrush".

Gordon Moore, one of the co-founders of Intel Corporation, saw in 1965 that the number of transistors on a microchip doubled approximately every two years while the cost per transistor decreased, which allowed it to run on more powerful hardware every two years DL algorithm. Technical limits in 1989, when Yann Lecun, a pioneer in AI, demonstrated the feasibility of imaging recognition with the help of CNN (24), do not exist today. Yann Lecun describes that in 2025 processors will be able to have the same computing capacity as a human brain. Also, the increasing number of papers published in dentistry in this domain shows a growing interest in those solutions.

Dental practitioners are susceptible to embrace those tools in the digital workflow of their practice because they have the moral and ethical obligation to implement the best means and technologies. IA is efficient in extensive data analysis, recognising all shades of grey where a human can distinguish just a few. How Dentists might adapt the best to those innovative technologies could be the subject of a new systematic review.

6. Conclusion

Al shows promising results in various aspect of paediatric dentistry, such as decays detection, orthodontic treatment plan, age estimation, detection of anatomical areas in panoramic. However, more research in the field of paediatric dentistry is needed with wider and qualitative dataset. Different model architectures needed to be done to evaluate the long-tern efficacy and reliability of AI in clinical settings. Moreover, ethical, and legal implication must be taken seriously by authorities to develop a regulation in digital tools powered by AI that dentists can use. Overall, the integration of AI in paediatric dentistry has the potential to improve the quality of care and improve patient outcomes.

7. References

- 1. Retrouvey JM, Conley RS. Decoding Deep Learning applications for diagnosis and treatment planning. Dental Press J Orthod. 2022;27(5).
- Zador A, Escola S, Richards B, Ölveczky B, Bengio Y, Boahen K, et al. Catalyzing next-generation Artificial Intelligence through NeuroAI. Nat Commun [Internet].
 2023 Mar 22;14(1):1597. Available from: https://www.nature.com/articles/s41467-023-37180-x
- 3. Vranckx M, Van Gerven A, Willems H, Vandemeulebroucke A, Leite AF, Politis C, et al. Artificial intelligence (Ai)-driven molar angulation measurements to predict third molar eruption on panoramic radiographs. Int J Environ Res Public Health. 2020 May 2;17(10).
- 4. Kök H, Izgi MS, Acilar AM. Determination of growth and development periods in orthodontics with artificial neural network. Orthod Craniofac Res. 2021 Dec 1;24(S2):76–83.
- Ahmed N, Abbasi MS, Zuberi F, Qamar W, Halim MS Bin, Maqsood A, et al. Artificial Intelligence Techniques: Analysis, Application, and Outcome in Dentistry - A Systematic Review. Vol. 2021, BioMed Research International. Hindawi Limited; 2021.
- 6. Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review. Dentomaxillofacial Radiology. 2019;49(1).
- 7. PRISMA-P (Preferred Reporting Items for Systematic review and Meta-Analysis Protocols) 2015 checklist: recommended items to address in a systematic review protocol* Section and topic Item No Checklist item.
- 8. Bunyarit SS, Nambiar P, Naidu M, Asif MK, Poh RYY. Dental age estimation of Malaysian Indian children and adolescents: applicability of Chaillet and Demirjian's modified method using artificial neural network. Ann Hum Biol. 2022;49(3–4):192–9.
- 9. Zhu H, Yu H, Zhang F, Cao Z, Wu F, Zhu F. Automatic segmentation and detection of ectopic eruption of first permanent molars on panoramic radiographs based on nnU-Net. Int J Paediatr Dent. 2022 Nov 1;32(6):785–92.
- 10. Kim J, Hwang JJ, Jeong T, Cho BH, Shin J. Deep learning-based identification of mesiodens using automatic maxillary anterior region estimation in panoramic radiography of children. Dentomaxillofac Radiol. 2022 Sep 1;51(7):20210528.
- 11. Liu J, Liu Y, Li S, Ying S, Zheng L, Zhao Z. Artificial intelligence-aided detection of ectopic eruption of maxillary first molars based on panoramic radiographs. J Dent. 2022 Oct 1;125.
- 12. Zhao W, Chen Y wen, Festa F, Tao J, Zhao J. Evaluation of a machine learning algorithms for predicting the dental age of adolescent based on different preprocessing methods.
- Cieślińska K, Zaborowicz K, Zaborowicz M, Biedziak B. Evaluation of the Second Premolar's Bud Position Using Computer Image Analysis and Neural Modelling Methods. Int J Environ Res Public Health. 2022 Nov 1;19(22).
- 14. Zhou X, Yu G, Yin Q, Liu Y, Zhang Z, Sun J. Context Aware Convolutional Neural Network for Children Caries Diagnosis on Dental Panoramic Radiographs. Comput Math Methods Med. 2022;2022.

- 15. Shan W, Sun Y, Hu L, Qiu J, Huo M, Zhang Z, et al. Boosting algorithm improves the accuracy of juvenile forensic dental age estimation in southern China population. Sci Rep. 2022 Dec 1;12(1).
- 16. Kaya E, Gunec HG, Gokyay SS, Kutal S, Gulum S, Ates HF. Proposing a CNN Method for Primary and Permanent Tooth Detection and Enumeration on Pediatric Dental Radiographs. J Clin Pediatr Dent. 2022 Jul 1;46(4):293–8.
- 17. Shen S, Liu Z, Wang J, Fan L, Ji F, Tao J. Machine learning assisted Cameriere method for dental age estimation. BMC Oral Health. 2021 Dec 1;21(1).
- 18. Kuwada C, Ariji Y, Kise Y, Funakoshi T, Fukuda M, Kuwada T, et al. Detection and classification of unilateral cleft alveolus with and without cleft palate on panoramic radiographs using a deep learning system. Sci Rep. 2021 Dec 1;11(1).
- 19. Banar N, Bertels J, Laurent F, Boedi RM, De Tobel J, Thevissen P, et al. Towards fully automated third molar development staging in panoramic radiographs. Int J Legal Med. 2020 Sep 1;134(5):1831–41.
- 20. Devlin H, Williams T, Graham J, Ashley M. The ADEPT study: a comparative study of dentists' ability to detect enamel-only proximal caries in bitewing radiographs with and without the use of AssistDent artificial intelligence software. Br Dent J. 2021 Oct 1;231(8):481–5.
- 21. Galibourg A, Cussat-Blanc S, Dumoncel J, Telmon N, Monsarrat P, Maret D. Comparison of different machine learning approaches to predict dental age using Demirjian's staging approach. Available from: https://doi.org/10.1007/s00414-020-02489-5
- 22. Mu CC, Li G. Age Estimation using Panoramic Radiographs by Transfer Learning. Chin J Dent Res. 2022 Jun 10;25(2):119–24.
- 23. I (Legislative acts) REGULATIONS REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) (Text with EEA relevance).
- 24. Cun L, Henderson J, Le Cun Y, Denker JS, Henderson D, Howard RE, et al. Handwritten Digit Recognition with a Back-Propagation Network.