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Abstract
The discrete element method (DEM) is a computational technique extensively utilized for simulating particles on a large 

scale, specifically focusing on granular materials. Nonetheless, its implementation requires a substantial amount of computational 
power and accurate material properties. Consequently, this study delves into an alternative approach referred to as volume-based 
scaled-up modeling, aiming to simulate polypropylene particles using DEM while mitigating the computational burden and rege
nerating new material properties. This novel method aims to reduce the CPU time required for the simulation process and represent 
both the macro mechanical behavior and micro material properties of polypropylene particles. To accomplish this, the dimensions 
of the polypropylene particles in the DEM simulation were magnified by a factor of two compared to the original size of the prolate 
spheroid particles. In order to determine the virtual micro material properties of the polypropylene particles, a calibration me
thod incorporating the design of experiments (DOE) and repose surface methodology was employed. The predicted bulk angle of 
repose  (AOR) derived from the upscaled DEM parameters exhibited a remarkably close agreement with the empirical AOR test, 
demonstrating a small relative error of merely 1.69 %. Moreover, the CPU time required for the upscaled particle model proved to be 
less than 71 % of that necessary for the actual-scale model of polypropylene particles. These compelling results confirm the effec-
tiveness of enlarging the particle volume used to calibrate micro-material properties in the Discrete Element Method (DEM) through 
the DOE technique. This approach proves to be a reliable and efficient method.
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1. Introduction
The discrete element method (DEM) was introduced [1] as a valuable tool for simulating 

particle handling across industries such as mining, agriculture, geotechnical applications, and 
polymer processing [2–7]. DEM enables prediction of dynamic behavior, design optimization, and 
validation of virtual models for materials handling [8]. As granular material handling challenges 
are significant due to their prevalence in storage (over 40 %), accurate input parameters for material 
properties are crucial [9]. A robust calibration methodology is necessary, considering both macro 
and micro properties, to derive efficient parameters from experimental and numerical tests [10–12]. 
Parameters related to particle shape, material properties, optimization, and scaling play a vital role 
in effective calibration of bulk material parameters in DEM [10].

Several studies have contributed to the calibration of the discrete element method (DEM). 
The study [10] used shear box, angle of repose, and hopper discharge experiments to calibrate 
particle stiffness and friction coefficient in crushed rock particles. The researchers analyzed the 
behavior of spherical and convex particles, specifically looking at how the angle of repose is af-
fected by factors such as the number of particles and the friction coefficients [13]. The paper [14]  
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investigated iron ore particles, considering sliding and rolling friction coefficients and particle 
size. The simulations conducted by the researchers demonstrated a high level of concurrence with 
experimental results for alumina pellets, lunar soil particles, and wet coal particles, respective-
ly [15–17]. Other researchers [18–20] emphasized the importance of sliding and rolling friction 
coefficients and cohesion energy density for cohesive and cohesionless bulk materials. Free-flow 
tests were found to provide more accurate angle of repose determination compared to lifting cy
linder and shear box tests [21, 22]. Research groups have used genetic algorithms, neural network 
algorithms, and surrogate modeling-based calibration to optimize DEM parameters [23–29]. Scal-
ing up bulk particle research reduces computational time while maintaining macroscopic behavior 
and mechanical properties [30–32]. Scaling corn particles [31] improved agreement between DEM 
simulations and experiments.

No previous studies were found on scale-up DEM modeling specifically for polypropy
lene  (PP) particles, despite their widespread use and significance in the global plastics market [33]. 
This research focuses on investigating the scaled-up DEM model for PP material properties for 
reducing CPU time through calibration based on the angle of repose. Image processing techniques 
will validate the angle of repose for both DEM simulations and physical experiments. Micro ma-
terial parameters will be optimized using DOE, response surface methodology, and exact optimi-
zation methods.

2. Materials and methods
2. 1. Polypropylene grain material properties
The spherical polypropylene particles (Fig. 1) were utilized. Their dimensions were mea-

sured using a digital Vernier caliper, with 100 random samples taken. Particle mass was determined 
by weighing 200 polypropylene particles on a precise digital scale [8]. The density of polypropy
lene was measured following ASTM guidelines [34]. Bulk density was obtained through a labo-
ratory test involving a cup and a filling funnel, with repeated weightings after filling the cup [8]. 
Bulk density was calculated using (1) [35]:

	 ρb
pc cM M

V
=

−
,	 (1)

where, ρb is the bulk density, Mpc is the mass of the polypropylene grains filled cup, Mc is the mass 
of the empty cup, and V is the inner volume of the cup.

Fig. 1. A polypropylene particle: a – an actual particle sample; b – its equivalent dimensions;  
c – a simplified spheroid particle; d – a scaled-up DEM polypropylene particle

2. 2. Coarse graining technique
The concept of upscaling particle methodology is introduced, suggesting that a system with 

larger grain dimensions can maintain an equivalent energy density to that of the original particle 
sizes [36]. In this methodology, the volume fraction and particle density should remain unchanged, 
as described in (2), where ρactual and ρc represents the density of original and upscaled particles.  
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(3) presents the scaling factor (s) for the relationship between the radius of the original particles (r) 
and the coarser particles (r′), assuming they have spherical shapes. In this research, a scaling factor 
of 2 will be applied [30, 32]:

	 ρ ρactual c= ,	 (2)

	 ′ =r sr .	 (3)

Accordingly, the mass and the moment of inertia (I ) of the up-scaled particles can provide 
according to (4) and (5) respectively:

	 ′ = ′ =m r s mc
4

3
3 3p ρ ,	 (4)

	 ′ = ′ ′ =I m r s I
2

3
2 5 .	 (5)

The equivalent mass (m′) is defined as the original particle mass (m), and the actual mass 
is denoted as m. The study [36] suggests that the kinetic energy can be derived by assuming that 
coarse grains exhibit similar kinetic energy behavior as indicated in (6):

	
1

2

1

2
2 3 2′ ′ =m v s mv .	 (6)

This research necessitates precise scaling of stiffness and damping values in (7)–(10) for the 
Hertz-Mindlin contact model:

	 F F F k i c v kn k n d n n n n n n n n= + = +, , ,δ δ
3
2

1
4

3

2
	 (7)

	 F F F k i c v kt k t d t t n t t t t t n= + = +, , ,δ δ δ
1
4 	 (8)

	 k E rn = ′
4

3
*  and c mn = − ′2

5

6
b ,	 (9)

	 k G rt = − ′8 *  and c mt = − ′2
5

6
b .	 (10)

kn and cn represent normal stiffness and damping coefficients, while kt and ct denote tan
gential counterparts. δn and δt refer to normal and tangential overlaps, and in and it represent 
normal and tangential unit vectors. E*, G* and β represent equivalent Young’s modulus, shear 
modulus, and coefficient of restitution.

Fig. 2 shows the spring and damper systems for both the original four particles and the coarse 
grain particle (s = 2) [32]. The stiffness ′( )kn  and damping ′( )cn  of the coarse grain particles should 
match the equivalent stiffness (ke) and damping (ce) of the cluster of original four particles. (11) de-
rives the relationship between the equivalent stiffness and the stiffness of the original particles:
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From Equation (9) of the Hertz-Mindlin model, the stiffness contact between the coarse and 
original systems can be expressed as Equation (12), where kseries represents the stiffness of each of the 
two pairs and the mechanical properties, like Young’s modulus (E), are preserved in the coarse system:

	 ′ = ′ ′ = ′ = =k E r s E r sk kn n e
4

3

4

3
* * * .	 (12)
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Fig. 2. The contact model: a – the up-scaled coarse grain particles;  
b – the equivalent actual particles

The tangential stiffness (kt) will be scaled according to (10), while the equivalent damping 
stiffness (ce) can be obtained by applying a scaling factor of s2 to the damping series of the original 
system (cseries), as shown in (13):
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(11) with δseries = sδn and equal velocities (vn) for both upscaled and original particles im-
plies that (9) yields the corresponding normal damping coefficient Equation (14), while the tangen-
tial damping coefficient remains the same as (10):

	 ′ = ′ = ′ = =c m s m s c cn n e2
5

6
2

5

6
1 5 1 5b b* . * . .	 (14)

The normal contact force in upscaled materials is s3 times that of the actual particle sys-
tem [37]. Consequently, the relationship between tangential (Ft) and normal (Fn ) forces will also 
be s3 times for upscaled particles. This scaling factor applies to the kinetic rotational energy of  
the coarse-grained system, as demonstrated in (15), (16):

	 ′ = ′ =F F s Ft s n s nm m 3 ,	 (15)

	
1

2

1

2
2 3 2′ ′ =I s I θ θ .	 (16)

µs represents the static friction coefficient and θ denotes the rotational velocity. All formu-
las show the equivalent properties between coarse and actual systems.
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2. 3. Scaled-up polypropylene particle and fixed funnel equipment establish
Fig. 3, b demonstrates DEM simulation tests aiming to replicate fixed funnel laboratory 

tests on a real scale, with particles poured from a funnel, forming a heap in a cup (Fig. 3, a, b). The 
angle of repose was determined using image analysis and the inverse tangent rule [30, 32].

Fig. 3. Fixed funnel: a – experimental test; b – Discrete Element Method simulation

2. 4. Discrete Element Method material constitution 
The EDEM software simulated the angle of repose using the fixed funnel method and shear 

box test. The Hertz Mindlin model calculated particle geometry and interactions, while (6), (7) de-
termined the forces. Constitutive equations were derived using Coarse graining. Table 1 provided 
initial values for the DEM PP particle. Simulation settings included a Rayleigh Time step, 20 s 
total simulation time, and a save interval of 0.02s. The computer had 12-core processors, 3.7 GHz, 
and 16 GB RAM.

Table 1
Initial DEM material properties estimation

Material type Parameters Values Sources
Material Properties

Polypropylene (PP)
Poisson’s ratio 0.36, 0.41 c, g

Solid density (kg⋅m–3) 889, 910, 1107 b, g, a
Elastic modulus (GPa) 1.3, 1.9, 2 e, f, c

Steel
Poisson’s ratio 0.3 c

Solid density (kg⋅m–3) 7800 d
Elastic modulus (GPa) 198 c

Interaction parameters

Coefficient of static friction
PP-PP 0.1, 0.153, 0.22, 0.3, 0.6 a, g, j, b, d

PP-Steel 0.26, 0.3 j, d, e

Coefficient of dynamic friction
PP-PP 0.05, 0.44 g, e

PP-Steel 0.246, 0.28 j, e

Coefficient of restitution
PP-PP 0.3, 0.49, 0.9, 0.97 d, g, b, a

PP-Steel 0.55, 0.71 j, e

Source: a – 38; b – 39; c – 40; d – 41; e – 42; f – 43; g – 7; j – experiment results

2. 5. Indirect measurement of angle of repose
Fig. 4 presents an algorithm for determining the angle of repose. The algorithm involves se-

lecting the appropriate area, creating binary images, filtering out noise, mapping pixel coordinates 
to x and y axes, and plotting pixel values. The resulting arched figure in Fig. 4 is used to estimate 
the angle of repose through linear regression using the least square method.

 
a b



Original Research Article:
full paper

(2023), «EUREKA: Physics and Engineering»
Number 6

39

Chemical Engineering

Fig. 4. The algorithm of angle of repose procedure both experiment and Discrete Element Method 
simulation tests

2. 6. The research methodology
Fig. 5 illustrates the flowchart of the methodology, which includes gathering micro para

meters, screening important parameters, designing experiments, creating an angle of repose model, 
finding optimal values, performing DEM simulation, comparing with empirical test, and obtaining 
suitable micro parameters for Upscaling DEM Model. 

Fig. 5. Flow chart of methodology

 

Start

Identification of Micro Parameters from laboratory and literatures

Plackett-Burmann Screening Experiment

Orthogonal Array by Central Composite Design

Creating Angle of Repose model by Respond Surface
Methodology (RSM) to be the fitness function

RSM implementation

Empirical Test

Getting suitable micro parameters of Upscaling DEM Model

End

Experiment vs. RSM

DEM (EDEM)

DEM (EDEM)

DEM (EDEM)

Fixed Funnel Lab.
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Both empirical and simulation-based Angle of Repose (AOR) tests were conducted using  
an indirect measurement method employing image processing techniques.

2. 6. 1. Identification of micro parameter for upscaling DEM model
Relevant parameters were collected from previous research papers and laboratory  

tests [38–44]. The initial analysis used fractional two-level factors, with the parameter ranges 
shown in Table 2.

Table 2
Micro parameters and levels

Screening Experiment (Unit) Symbol
Level

Low High
1. Poisson’s ratio (PP) A 0.36 0.41
2. Solid density(kg/m3) (PP) B 889 1107
3. Elastic modulus (GPa) (PP) C 1.3 2
4. Coefficient of restitution (PP-PP) D 0.30 0.97
5. Coefficient of restitution (PP-Steel) E 0.55 0.71
6. Coefficient of static friction (PP-PP) F 0.1 0.6
7. Coefficient of static friction (PP-Steel) G 0.26 0.3
8. Coefficient of dynamic friction (PP-PP) H 0.05 0.44
9. Coefficient of dynamic friction (PP-Steel) I 0.25 0.28

Note: poisson ratio of steel = 0.3, solid density of steel (kg/m3) = 7800, and elastic modulus of steel (GPA) = 198

2. 6. 2. Plackett-Burmann Screening Experiment
The parameter screening stage evaluates main and interaction effects without considering 

the quadratic regression model. Plackett-Burmann (PB) method is commonly used for initial main 
effect analysis [16–18]. Table 3 shows the 9-factor PB method with two levels each. The angles of 
repose results guide the selection of influential micro parameters through indirect measurement 
and significance analysis.

Table 3
Plackett-Burmann screening experiments through EDEM simulation software

No.
Factors

AOR (°)
A B C D E F G H I

1 0.41 1107 2 0.3 0.71 0.6 0.26 0.44 0.246 37.05
2 0.41 1107 1.3 0.97 0.55 0.1 0.26 0.44 0.28 15.77
3 0.36 1107 2 0.3 0.71 0.1 0.26 0.05 0.28 22.10
4 0.41 1107 1.3 0.97 0.71 0.1 0.3 0.05 0.246 19.42
5 0.41 889 1.3 0.3 0.71 0.6 0.3 0.05 0.28 29.53
6 0.41 889 2 0.97 0.55 0.6 0.26 0.05 0.246 27.29
7 0.36 889 1.3 0.3 0.55 0.1 0.26 0.05 0.246 21.94
8 0.36 1107 2 0.97 0.55 0.6 0.3 0.05 0.28 28.89
9 0.36 1107 1.3 0.3 0.55 0.6 0.3 0.44 0.246 39.27
10 0.36 889 2 0.97 0.71 0.1 0.3 0.44 0.246 16.61
11 0.41 889 2 0.3 0.55 0.1 0.3 0.44 0.28 22.78
12 0.36 889 1.3 0.97 0.71 0.6 0.26 0.44 0.28 25.16

2. 6. 3. Response surface implementation
Screening identifies influential factors used in response surface method (RSM), as shown 

in Table 4. RSM is employed to model the angle of repose based on micromechanical para
meters  [44]. It explores the quadratic relationship between parameters and angle of repose, as 
shown in Fig. 6.
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Table 4
Central composite design (CCD) as face centered composite design type

Factors Symbol
Level

–α –1 0 1 α
Coefficient of static friction (PP-PP) F 0.1 0.1 0.35 0.6 0.6

Coefficient of restitution (PP-PP) D 0.3 0.3 0.635 0.97 0.97
Solid density (kg/m3) (PP) B 889 889 998 1107 1107

Fig. 6. Flow chart of Response surface methodology

2. 6. 4. Central composite design
The central composite design (CCD) designs experiments with all essential factors, followed 

by building the quadratic model. the central composite face-centered (CCF) design is used in this 
research, with 8 cube points, 6 center points, 6 axial points, and a radius of 1.0 (Table 5). AOR 
results evaluate the main factors and establish the quadratic equation.

Table 5
Design and results of central composite design (CCD) experiments

Run Order
Factors

AOR (°)
F D B

1 2 3 4 5
1 0.10 0.635 998 19.54
2 0.60 0.635 998 30.61
3 0.60 0.970 1107 25.28
4 0.35 0.635 998 27.37
5 0.60 0.970 889 23.80
6 0.35 0.635 998 30.11
7 0.35 0.635 998 30.11
8 0.35 0.635 889 24.54
9 0.35 0.970 998 21.89
10 0.10 0.970 889 16.43
11 0.60 0.300 1107 27.85
12 0.10 0.300 889 18.54

Start

Defining independent factors and ranges

Orthogonal Array by CCD as FCC

Simulating analysis via DEM (EDEM)

Performing the quadratic model analysis

Getting predicted angle of repose model

End

Compare results of Prediction

Yes

Performing ANOVA

No
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1 2 3 4 5
13 0.35 0.635 1107 26.07
14 0.35 0.635 998 30.11
15 0.10 0.970 1107 16.88
16 0.35 0.635 998 30.11
17 0.60 0.300 889 26.94
18 0.35 0.300 998 27.61
19 0.35 0.635 998 30.11
20 0.10 0.300 1107 20.93

2. 6. 5. Creating predicted model and analysis of variance (ANOVA)
Establish the quadratic model using DEM simulation results of AOR (17):

	 Y A A X A X X A Xi i ij i j ii i
i

k

i j

k

i

k

= + + +
=<=
∑∑∑0

2

11

.	 (17)

Y is the AOR response, Xi are variables, and A0, Ai, Aii, and Aij are coefficients. ANOVA vali-
dates the AOR quadratic model’s reliability, considering the influential parameters indicated in (17).

2. 6. 6. Optimal micro parameter for AOR model
Using RSM methodology, the fitness function is defined to seek suitable micro parameters 

based on the AOR laboratory test, shown in (18), (19):

	 Find X = [F, D, B],	 (18)

	 Maximum Y x( ),	 (19)

Subject to: 0.1 ≤ F ≤ 0.6,

0.3 ≤ D ≤ 0.97, 889 ≤ B ≤ 1107 (kg/m3).

Fixed micro material parameters for the AOR test include: Poisson ratio of steel (0.3), Pois-
son ratio of polypropylene (0.36), Elastic modulus of steel (198 GPa), Elastic modulus of polypro-
pylene (1.3 GPa), solid density of steel (7800 kg/m3), coefficient of static friction (PP-Steel) (0.26), 
coefficient of dynamic friction (PP-PP) (0.05), coefficient of dynamic friction (PP-Steel) (0.246).

3. Result and discussions
Table 6 displays the measured axial dimension, equivalent diameter, particle mass, solid 

density, bulk density, and observed angle of repose of polypropylene particles. All values in Table 5 
have a COV below 10 %, indicating reliability [8]. The empirical angle of repose was 30.18°±0.51°, 
informing micromechanical material properties, while the solid density (910±0.889 kg/m3) aligns 
with Fan et al’s study [7].

Table 6
Physical properties and AOR of polypropylene measured in the laboratory

Axial dimension Mean Standard Deviation (COV %) Min Max
Length (mm) 3.00 0.03 1.00 2.95 3.05
Width (mm) 3.01 0.01 1.11 2.95 3.05

Equivalent geometric particle diameter (mm) 3 0.011 0.37 2.98 3.02
Particle density (kg/m3) 910 0.889 0.098 908 911
Angle of repose (degree) 30.18 0.51 1.67 29.25 30.86

Continuation of Table 5
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Table 2 sets DEM micro properties with low and high levels. PB design (12 runs) is shown 
in Table 3. Steel properties are fixed. AOR results (16.43° to 30.61°) are dependent responses.  
Table 7 concludes PB results, highlighting key parameters: PP-PP friction, restitution, and PP density. 
Their contribution exceeds 90 %.

Table 7
DEM parameters from the Plackett-Burmann design of experiment according to their order of the 
percent contribution

Parameters Symbol Effect Mean Square Percent Contribution (%) Contribution Order
A –0.354 0.377 0.06 9
B 3.197 30.654 5.14 3
C 0.607 1.104 0.19 8
D –6.589 130.232 21.84 2
E –1.012 3.069 0.51 7
F 11.429 391.849 65.70 1
G 1.198 4.302 0.72 6
H 1.244 4.646 0.78 5
I –2.896 25.16 4.22 4

Obtaining the coefficients of static friction (PP-PP, F), coefficient of restitution (PP-PP, D),  
and solid density (PP, B) constitutes the primary outcomes of the initial screening phase. The 
face-centered composite design (FCC) was employed to simulate AOR results, presented in Table 5.  
Subsequently, an analysis of variance (ANOVA) was conducted for the predictive AOR mo
del of scaled-up particles, employing a backward elimination process detailed in Table 8.  
ANOVA significant terms, including «df» (degrees of freedom), «Adj SS» (adjusted sum of squares),  
«Adj Ms» (adjusted mean squares), «F-Value» (ratio of variation between sample means and with-
in the samples), and «P-Value» (probability, less than 0.05), were investigated. Table 8 reveals  
a coefficient of predicted determination (R-Sq (prediction)) exceeding 88%, indicating the mo
del’s high reliability. The backward elimination process highlights the prominent impact of static 
friction (PP-PP, F) and coefficient of restitution (PP-PP, D) on the scaled-up AOR phenomenon, 
including linear and square action impacts of both factors. Consequently, the response surface 
methodology generates a polynomial AOR equation for the main two factors, as expressed in 
Equation (20):

	 AOR °( ) = + + − ∗ − ∗7 64 51 3 33 3 49 3 30 36. . . . . .F D F F D D 	 (20)

Table 8
ANOVA table for AOR model (after backward elimination)

Source df Adj SS Adj MS F-Value P-Value
Model 4 376.878 94.219 29.33 0.000
Linear 2 208.513 104.256 32.45 0.000

F 1 177.611 177.611 55.28 0.000
D 1 30.902 30.902 9.62 0.007

Square 2 168.365 84.182 26.20 0.000
F*F 1 30.329 30.329 9.44 0.008
D*D 1 37.147 37.147 11.56 0.004
Error 15 48.190 3.213 – –

Lack-of-Fit 10 41.952 4.195 – –
Pure Error 5 6.238 1.248 – –

Note: S = 1.79240, R-Sq = 88.66 %, R-Sq (adjust) = 85.64 %
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By substituting (20) into (19) to form a fitness equation, the coefficient of static fric- 
tion (PP-PP, F) and coefficient of restitution (PP-PP, D) were optimized using the RSM method. 
The optimal values for F and D were found to be 0.52 and 0.55, respectively. The other factors have 
been established at constant values: the Poisson ratio for steel set at 0.3, for polypropylene at 0.36, 
the elastic modulus for steel at 198 GPa, for polypropylene at 1.3 GPa, the solid density for steel 
at 7800 kg/m³, the coefficient of static friction (PP-Steel) at 0.26, the coefficient of dynamic fric-
tion (PP-PP) at 0.05, and the coefficient of dynamic friction (PP-Steel) at 0.246. When comparing 
the empirical laboratory AOR of 30.18° with the DEM simulation test results of 29.14° for 3-mm 
particles and 29.67° for 6-mm particles, with a fixed solid density of PP at 910 kg/m3, the error 
percentages were 3.45 % and 1.69 % respectively. Future work involves validating these calibrated 
DEM parameters for various applications like hopper discharge and material handling equipment.

4. Conclusions
1. Establishing a scaled-up spheroid DEM polypropylene particle model (6-mm diameter) 

resulted in significant computational savings (71 %) compared to the unscaled particle in AOR 
simulations.

2. Using experimental designs and methodologies revealed that micromechanical proper-
ties  (the coefficient of static friction (PP-PP, F) and coefficient of restitution (PP-PP, D) strongly 
influence scaled-up spheroid polypropylene particles.

3. A predictive equation successfully explained the relationship between DEM-predicted 
AOR, with a small error percentage (1.69 %) compared to laboratory tests.
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