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Chapter

Shewhart Control Chart:  
Long-Term Data Analysis Tool with 
High Development Capacity
Vladimir Shper, Elena Khunuzidi, Svetlana Sheremetyeva  

and Vladimir Smelov

Abstract

This chapter suggests some of the ways in which we can enrich our understanding 
of the theory of variability when we extend our attention to a gap between the real 
problems any practitioner may encounter and the traditional theory of control charts 
stated in textbooks, guides, standards, etc. The benefits are about more than just cover-
ing additional ground, for this expanded focus also provides insights into how many 
real problems are being ignored, many new types of charts turn out to be excessively 
difficult for engineers, many tacit assumptions that traditional theory is based on stay 
not being understood by practitioners. We are going to consider the impact of different 
types of process instability, data homogeneity, nonnormality, and nonrandomness on 
the right application of Shewhart control charts. We also propose the recommenda-
tions to practitioners on how to avoid the above-mentioned problems and improve 
data-based decision-making.

Keywords: exploratory data analysis, shewhart control chart, process stability, 
assignable causes of variation, nonhomogeneity, nonrandomness, capability indices

1. Introduction

On 16 May 2024, the World will be celebrating the 100th anniversary of the 
Shewhart Control Chart (ShCC) – the most essential tool of process stability analysis 
used successfully in practically all areas of human activity. This 100-year-old tool of 
exploratory data analysis is described in many old and new books (see, e.g., [1–11], to 
name a few), and there are international standards devoted to control charting [12] as 
well as numerous sites on the Internet. On the other hand, most quality professionals, 
managers and engineers, CEOs, and even not a small amount of statisticians either are 
not familiar with this tool of data analysis or have just very superficial understanding 
of it [13]. Almost 30 years ago, R. Hoyer and W. Ellis claimed this thought in their 

Useful application of control charts starts and ends with education
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paper ([14], 63)1 in the following form: “… our experience indicated that a sizable 
majority of quality professionals are not knowledgeable about basic issues of statistics 
and Statistical Process Control (SPC). Our instructional activities in a broad range of 
academic, industrial, and service delivery environments have convinced us that there 
are many individuals who are “doing SPC” without understanding what it is about”. 
Then they made a conclusion (ibid): “Although it is disappointing that the technical 
content of the quality improvement discipline has progressed so little during the past 
65 years, that is probably not the most significant problem facing process control 
initiatives during the next decade. Instead, there is every reason to be concerned that 
many quality professionals are directing continuous process improvement activities 
without a sound understanding of the basic issues”. We are sure that this situation 
has not changed notably since those times [13], but this chapter is devoted just to 
“the technical content of the quality improvement discipline”. It is noteworthy that 
such prominent experts in Statistical Process Control (SPC) area as Lloyd Nelson and 
William Woodall argued emphatically [15] against the assertion of Hoyer and Ellis 
that “the technology of the quality science has been intellectually dormant for the past 
65 years” ([16], 73). The authors of [14] agreed with the experts that many interesting 
issues have been going on in the research journals devoted to quality improvement. 
“But, unfortunately, it appears to be primarily academics… and there are many real-
world settings in which these results are only marginally useful” ([15], 93). That is 
just what our paper is focused on. We will discuss several traditional assumptions that 
cover a minuscule part of reality and lead to many gaps between real process behavior 
and corresponding math models. Moreover, there are many practical questions that 
are not being discussed in the current literature at all, and have not been ever dis-
cussed in the past. In Section 2, we will give a brief survey of the problems that seem 
to be the most important to us. Then, Section 3 is devoted to the ambiguity in the 
notion of assignable causes of variation – one of the basic ideas of SPC. In Section 4, 
we will present our considerations on the data nonrandomness. Then, in Section 5, we 
will discuss the issues of highly skewed processes. Section 6 contains some examples 
revealing the limitation of current theory of ShCCs. Finally, in Section 7, we will share 
our concerns about the interaction between SPC and metrology, SPC and manage-
ment. Our proposals for further research are given in conclusion.

2. The most important problems of Shewhart control chart application

It was outlined in [13] that “There is no friendship between business and the 
theory of variation – incomprehension is going on and on” [13]. This is not just our 
viewpoint. We have already mentioned above similar statements of Hoyer and Ellis 
in [14–16]. A well-known expert in SPC W. Woodall in 2000 published a survey, 
“Controversies and Contradictions in Statistical Process Control” [17]. One of the 
main problems discussed there was the relationship between hypothesis testing and 
control charting. The main Woodall’s conclusion on this issue is that it is a simplifica-
tion to consider control charting as something equivalent to hypothesis testing ([17], 
343). This approach can be a serious obstacle to the right application of ShCCs in 
Phase I of process analysis. We agree. Moreover, this widely spread view of equiva-
lency between these two entities can prevent the right use of control charts both in 

1 Here and everywhere below the figure printed in Italic after comma indicates the page in the reference.
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Phase I and in Phase II. What is even more important is that very few practitioners 
know about this problem and hardly ever ponder on it.

D. Steinberg wrote in 2016 a survey of the state-of-the-art in industrial statistics, 
where he mentioned the following problems in SPC: multivariate data, profile data, 
and data from phasor measurement units [18]. He expressed his concern that too 
many research papers rely on unrealistic assumptions that do not exist in practice.

In 2017, W. Woodall wrote a follow-up to his 2000 survey called “Bridging the gap 
between theory and practice in basic statistical process monitoring” [19]. This time, 
he revisited some of the same problems he had talked about before, and discussed 
some new ones. Among the old problems, there was again the relation between 
statistical theory and practice. At the end of that paper, Woodall made several useful 
suggestions that could have improved the quality of statistical papers in the area of 
SPC and the quality of related studies. Simultaneously, he made a proposal that we 
think is completely unacceptable. According to Woodall, the use of the moving range 
chart should be ceased. We beg to differ from this suggestion and will explain our 
viewpoint below.

In 2022 W. Woodall published a new paper on SPC issues titled “Recent Critiques 
of Statistical Process Monitoring Approaches”. In the introductory section, he wrote: 
“Hundreds of flawed papers on statistical process monitoring (SPM) methods have 
appeared in the literature over the past five to ten years. The presence of so many 
flawed methods, and so many incorrect theories, reflects badly on the SPM research 
field. Critiques of the various misguided approaches have been published in the 
last two years in an effort to stem this tide” [20]. Let us look at the flawed meth-
ods enlisted by Woodall: Use of Inadvisable Weighted Averages, Use of Auxiliary 
Information, Rules Equivalent to Runs Rules, Neutrosophic Methods, Mixing Various 
Charts, The Generally Weighted Moving Average Chart, Misuses of the EWMA 
Statistic, Repetitive Sampling Methods, using the coefficient of variation, the multi-
variate coefficient of variation, and various capability indices, etc.

It is noteworthy that overwhelming majority of practitioners uses only simple 
ShCCs because many new types of charts (e.g., CUSUM, EWMA, changepoint, etc.) 
turn out to be too difficult for engineers, operators, and workers.

We are sure that there are at least two root causes of such a sad situation. One, 
mentioned above, was described in Hoyer, Ellis paper [14–16]. Another one is 
more fundamental. In the report written in 1996, G. Box noted [21]: “An important 
issue in the 1930s was whether statistics was to be treated as a branch of Science or 
Mathematics. Unfortunately, to my mind, the latter view has been adopted in the 
United States and in many other countries. Statistics has for some time been cat-
egorized as one of Mathematical Sciences, and this view has dominated “university 
teaching, research, the awarding of advanced degrees, promotion, tenure of faculty, 
the distribution of grants by funding agencies and the characteristics of statistical 
journals”. Judging by above-mentioned papers nothing has changed since 1996. All 
flawed techniques enlisted by Woodall in [20] are math’s exercises or “Statistical 
Gymnastics” as caustically noted Ch. Quesenberry in [22]. Shewhart’s close friend 
and associate W. Edwards Deming, ending the foreword to the 1939 Shewhart’s book, 
wrote: “Another half-century may pass before the full spectrum of Dr. Shewhart’s 
contributions has been revealed in liberal education, science, and industry” ([23], ii). 
It seems like another half-century may pass before all who are trying to use control 
charts efficiently have understood the main ideas of Shewhart and Deming.

D. Steinberg, in his paper [18], cited well-known statistician B. Gunter, who wrote in 
2008 panel discussion in Technometrics on the future of industrial statistics: “I fear that 
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Technometrics has evolved from primarily making connections to the real, hard, and 
complex questions of scientific practice to primarily producing artificial formulations 
of those questions suitable for compact “solution” by mathematical characterization. 
To understand what is useful and not merely wrong in industrial statistical practice, 
we need to pay much more attention to the messy details that make up reality”. Then 
Steinberg did not agree with Gunter’s statement that most academic papers “has 
become completely cut off from real problems”. But he agreed “that many of the most 
challenging and exciting problems arising today are not getting space in our journals 
and that we need better theory to guide us in attacking such problems” ([18], 52).

Let us sum up the main idea of all papers cited above: too many statistical works 
went far away from real practice and do not help practitioners in solving their real 
problems. This is a direct contradiction to Shewhart-Deming approach and to the basic 
idea of Shewhart control chart, which “stands out as the only one that actually exam-
ines the data for the internal consistency which is a prerequisite for any extrapolation 
into the future. Thus, unlike all “tests” and “interval estimates” of statistical inference 
Shewhart’s process behavior charts are tools for Analytic Studies. Rather than math-
ematical modeling, or estimation, Shewhart’s charts are concerned with taking appro-
priate actions in the future based upon an analysis of the data from the past. Out of all 
the statistical procedures available today, they alone were designed for the inductive 
inferences of the real world” ([9], 19). We see this tendency to disregard reality for the 
world of math models and also ignore the problems of simple control charts in favor 
of more and more complex designs. Many books and standards that are being widely 
used by practitioners all over the world teach the theory of control charts based on 
very unrealistic assumptions about real processes and their behavior (see [1–5, 7, 12], 
to name a few). In the following discussion, we will examine more thoroughly some 
issues, such as the various types of assignable causes of variations, the examples of 
unanswered questions in the theory of control charts, and other related topics.

3. What is an assignable cause of variation, and how it changes a process?

According to Shewhart ([24], 14), “…in the majority of cases there are unknown 
causes of variability in the quality of a product which do not belong to a constant 
system…these causes were called Assignable”. He, further, explains that an assignable 
cause of variation is one which can be found without excessive waste of time and 
money. What is mostly important for us, Shewhart outlines the principal impossibil-
ity to establish a criterion of revealing an assignable cause a priori either by formal or 
by mathematical method.

A famous statistician and quality guru, Dr. Deming wrote in his foreword to 
Shewhart’s book ([23], ii): “The great contribution of control charts is to separate 
variation into two sources: (1) the system itself (‘chance causes’, Dr. Shewhart 
called them), the responsibility of management; and (2) assignable causes, called 
by Deming ‘special causes’, specific to some ephemeral event …” A process is called 
statistically controllable or stable or predictable if all assignable causes of variation 
are removed.

On the other hand, Wheeler and Chambers [6] defined assignable causes of varia-
tion as follows: “Uncontrolled variation that is characterized by a pattern of variation 
that changes over time”. In a paper written later, Wheeler [25] pointed out that chance 
or common causes differ from assignable causes due to their impact on a process. So, 
they are not principally contradictory.
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Woodall [17] provided the following definition: “‘Common cause’ variation is con-
sidered to be due to the inherent nature of the process and cannot be altered without 
changing the process itself. ‘Assignable (or special) causes’ of variation are unusual 
shocks or other disruptions to the process, the causes of which can and should be 
removed”.

Finally, Montgomery [10] stated that: “…common causes are sources of variability 
that are embedded in the system or the process itself, while assignable causes usually 
arise from an external source.”

Thus, there are slightly different views on whether assignable causes of variation 
are a result of intervention into the system from the outside or not; however, there is 
a full agreement that they are “some ephemeral events that can usually be discovered 
…and removed”. A tool for distinguishing assignable causes of variation from com-
mon causes is the control chart, coined by W. Shewhart in 1924. Up to 2010 there 
were more than 4000 research papers published on this topic [26]. Intensive analysis 
of books and main reviews in this area showed [1–10, 25, 27, 28] that practically 
all papers on the ShCCs considered very simple model of chart’s behavior. Almost 
all researchers studied the statistical properties of simple ShCC charts when some 
assignable cause of variation changed either the mean or the standard deviation or 
both of the underlying distribution, which stayed of unchanged type (and almost 
always was normal).

Alternatively, if one looks through the explanation of assignable causes of varia-
tion in the very popular SPC Manual [29], used in auto industry for many years, she/
he will see the picture (page 30 in [29]), which clearly shows that an assignable cause 
of variation can lead to an arbitrary change of the distribution function type2. Just 
this was the main idea of the work [30]. The authors studied the case‘when after a 
special cause of variation emerged, the underlying normal distribution function (DF) 
transformed into either uniform or log-normal distribution. It was found that the 
probabilities of detecting a shift in the mean changed radically from the case of nor-
mal DF (see Figures 4–7 in Ref. [30]). Indeed, as soon as one accepts the opportunity 
of DF type to change after the impact of assignable cause of variation, a lot of differ-
ent possibilities emerges, and only one of them has been investigated and described in 
the literature. It was proposed in Ref. [30] to introduce two types of assignable causes 
of variation: not changing the underlying DF and changing it. It is worth stressing 
that this idea can be generalized, as ShCCs do not need any assumptions about DF 
type. So, a more general proposal could be an introduction of two types of assign-
able causes of variation: not changing the system where the process is going on, and 
changing that system. Though more than 10 years have passed since the paper [30] 
was published, this idea has not been either supported or refuted by statistical com-
munity. Here, we would like to revisit this notion from a different angle. Let us look at 
Figure 1, taken from our work [31]. One can see in Figure 1, the ShCC with two red 
circles and two green ovals on it. Red circles relate to the points falling beyond chart’s 
limits, and ovals show the points where the process mean jumped. Obviously, both 
situations emerged due to some special causes of variations. But is there any differ-
ence between these two cases: one when the assignable cause was evanescent, and 
the system has not changed, and second when the assignable cause has changed the 
system? As far as we know, such a question has never been discussed in SPC literature. 
Does it deserve to be discussed? We are sure it does because in the first case the search 

2 It is noteworthy that using an appropriate ShCC to analyze stability of key processes is a mandatory 

requirement in the automotive standard ISO/TS 16949.
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for the root cause of interference in the process has to be made by the process team 
(engineers, operators, linear managers, etc.), and in the second case this search is an 
act of top management – only CEOs are responsible for the system as a whole. This 
forces us to come back to the idea of different types of assignable causes of variations. 
Having generalized and slightly modified the definitions from [30, 31] we suggest the 
following version:

Definition 1: An assignable cause of variation of type I (Intrinsic) does not change 
the system within which a process works (e.g., does not change the type of the under-
lying DF). As a result, it is quite natural to consider such a type of assignable causes as 
belonging to the system (though this is not a necessary condition).

Definition 2: An assignable cause of variation of type X (eXtrinsic) changes the 
system within which a process works (e.g., changes the parameters, or type or both of 
the underlying DF). As a result, it is quite natural to consider such a type of assign-
able cause as, most probably, not belonging to the system (though this is also not 
necessary).

If the statistical community agrees with our suggestions, then the difference 
between dissimilar types of assignable causes of variation will help practitioners to 
grasp who, in the first place, has to interfere in the process. This is highly impor-
tant knowledge to improve the process with success. The instability due to assign-
able causes of type I requires searching for a root cause within the system. The 
instability due to assignable causes of type X requires searching for a root cause 
outside the system.

4. The importance of time order of process values

As stressed by Shper and Adler [32], the problem of data nonrandomness has 
been underestimated in recent years, though it was of primary importance to 
Shewhart. More than once, W. Shewhart returned to this issue, explaining the key 
role of the order of points for understanding whether a process is stable or not. 
On page 12 of [23], he clarifies that all attempts to determine some DF that could 

Figure 1. 
Daily sales of a distribution network. Here 1 centner = 100 kilograms.
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thoroughly describe a state of statistical control are useless and senseless. Some 
statisticians considered the normal law to be such DF, but these hopes turned out 
to be refuted completely. Further on page 27, W. Shewhart continues: “…the sig-
nificance of observed order is independent of the frequency distribution…” and “… 
are primitive”. Shewhart’s conclusion about the importance of the point order was 
firmly supported by such outstanding gurus as W. Deming (see Deming’s Foreword 
in [23]) and G. Box [33].

Let us consider a revealing example of an erroneous conclusion caused by the 
neglecting of the role of the order of points in real processes. A well-known expert in 
SPC, W. Woodall has long since his survey of 2000 [17], stood up for the elimination 
of the moving range chart from an arsenal of SPC tools. His arguments were based on 
the results of random data simulation, which follows from the paper of Rigdon et al. 
[34], which Woodall referred to in [17]. However, the moving range automatically 
takes into account the order of points due to the structure of successive differences. 
That is why it contains much more important information about the process than the 
standard deviation (SD). The SD completely ignores the succession of process points. 
Therefore, using the average of the moving range of two (AMR) to estimate the ShCC 
limits allows anyone to take into account the order of points within a process. If we 
eliminate the moving range chart from using, we automatically neglect many patterns 
within a process.

Another famous SPC expert, L. Nelson, also recommended avoiding using the 
moving ranges because of problems with their interpretation [34]. But, in fact, he 
considered the moving ranges necessary to calculate the limits of the x-chart because 
they are better than SDs. The reason is clear: the moving range measures variations 
from point to point irrespective of their level, which can vary due to trends, oscil-
lations, patterns, etc. Now, one may ask: how often are any patterns present in real 
processes, and if they influence the outcomes or not?

Without any doubt patterns are present at all real processes, but sometimes their 
influence may be small, and, consequently, ignored. The famous Box adage about 
models is working, of course. But, in practice, the level of pattern influence is rarely 
known beforehand. Shewhart foresaw this many years ago: “… a sequence is called 
random if it is known to have been produced by a random operation, but is assumed 
to be nonrandom if occurring in experience and not known to have been given by a 
random operation” ([23], 17). This means that if an observed sequence is or is not 
random, it can be verified only in the future and not by any ingenious math. It follows 
immediately from this Shewhart remark that there is no and cannot even exist any 
universal indicator of process nonrandomness. So, what should we do in such a situa-
tion? We need to have a variety of dissimilar metrics/indices/rules revealing different 
types of nonrandomness. There are a number of such indices that are well-known 
and widely used. The so-called additional rules for ShCC interpretation are the first 
coming to mind. These rules are described in practically all books, guides, standards, 
etc., of SPC (see, e.g., §5.7 in [9]). It is noteworthy that each such rule can reveal only 
one single case of nonrandomness. In other words, the standard set of rules covers a 
minuscule part of potential opportunities. Except for these rules, there is a run test 
on randomness [35] – a useful rule based on the number of series in data. Again, it 
reveals only one type of nonrandomness – a relationship between a number of points 
lying above and below a chart central line.

A new test on data randomness was proposed in [32]. It is the ratio of AMR to SD. 
As noted above, the value of AMR is very sensitive to any patterns of nonrandom-
ness, so this ratio deviates from its standard value as soon as data have some kind of 
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nonrandomness3. What is important about this index is that it covers not a single case 
of nonrandomness but, rather, an unknown set of possibilities. In Figure 2 (taken 
from [32]), one can see the dependence of confidence limits for AMR/SD on the 
number of points (k) under investigation. If the value of AMR/SD lies above or below 
the lines on that picture, then one may state that with 95% confidence, the data are 
not random. The exact values of probabilities are given in [32].

There was the question raised in Shper and Adler [32]: why do current studies of 
ShCCs ignore the order of points? Our version is as follows. This ignorance is caused 
by the lack of understanding of the difference between analytic and enumerative 
studies. As Deming explained many times (see, e.g., [37]), an enumerative study 
deals with units taken from some population that have a definite value of mean, SD, 
DF, etc. An analytic study deals with a process that is going on and on; it does not have 
a definite mean or DF because it changes permanently. Many statistical methods such 
as confidence intervals and hypothesis testing can be applied to enumerative studies 
but are inapplicable to analytical ones. Deming’s conclusion in Ref. [37] turned out 
to be quite unambiguous: “Statistical theory for analytic problems has not yet been 
developed” [37].

5. The impact of non-normality on the control limits of ShCCs

It is well-known that the traditional theory of ShCCs is based on (1) assumption 
of data randomness and (2) assumption of data being distributed normally. We 
discussed the first assumption in the previous paragraph. Below, we will consider the 
second.

It is assumed here that the reader is somewhat familiar with the construction and 
use of ShCCs. According to a generally accepted view, each ShCC has limits, separat-
ing the zone of system variability from the area of the assignable cause habitation. 
These limits can be calculated with very simple formulas based on the three-sigma 

3 The reverse ratio of SD to (AMR/d2) was called a stability index in [36] (d2 is one of the constants used to 

construct ShCC). We think that this name is incorrect, but this is a topic of another paper.

Figure 2. 
The limits of AMR/SD ratio for k = 10, 20, 30, 40, 50, 100, 150, and 200.
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rule suggested by Shewhart [24]. Typical formula for the control limits (CL) of many 
popular control charts for variables looks like [38]:

 = ±CL Average Scaling Factor • Some Measure of Dispersion    (1)

Scaling factors in (1) are frequently named as control chart constants and are usu-
ally denoted by different capital letters with indices, for example, A2, D3, D4, and E2 
(to name a few most widely used). They, in turn, depend on the so-called bias correc-
tion factors d2, d3, and d4 ([9], 416):
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The factors d2, d3, and d4 (and, therefore, chart coefficients) are considered 
constant in the SPC literature, mostly widely used by practitioners (e.g., [6, 8–10]). 
Though, statisticians working in the field have known for a long time that non-
normality has a great impact on bias correction factors. Why is this? On the one hand, 
this opinion is based on the works of many outstanding statisticians of the first half of 
the last century (see references and other details in [39], and, e.g., §7.3 in the excellent 
book [40]). On the other hand, the bias correction factors do change insignificantly 
in many cases but not in all possible ones. This issue was carefully studied in our work 
[39], where such skewed distributions as exponential, log-normal, Weibull, Burr 
and Pareto were simulated, and the values of d2, d3, and d4 were estimated. The main 
results of that paper are as follows.

In conclusion to his landmark work of 1967 [41], Irwing Burr wrote: “… we can 
use the ordinary normal curve control charts constants unless the population is 
markedly non-normal. When it is, the tables provide guidance on what constants to 
use.” Unfortunately, Burr did not point out what the words “markedly non-normal 
population” meant operationally. Moreover, there has been no discussion on this issue 
up to now. So, we proposed in [39] that a twofold increase in the probability of falling 
beyond the control limits be considered as the condition of significant deviation. 
Then, after simulation, the results shown in Tables 1–3 were obtained. In Table 1, 
the parameters of investigated DFs and their notation are presented. β1 and β2 are the 
squared skewness and traditional kurtosis, respectively. The means of d2, d3, d4, and 
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the corresponding values of A2, E2, and E5, calculated by using Eqs. (2)–(6), as well 
as their relative deviations from the standard values for the x-mR chart, are given in 
Table 2. Table 3 provides similar information for X -R chart with subgroup size n = 2 
and 3. The DFs having a relative probability increase of less than twofold are excluded 
from Table 3. Almost all figures in Table 2 show the values that relate to DFs having 

# DF Parameters of DF β1 β2 Notation

1 Normal Mean = 0 SD = 1 0.00 3.00 Gau

2 Uniform Mean = 0 SD = 1 0.00 1.80 Uni

3 Exponential λ = 0.1; 0.2; 0.01 4.00 9.00 Exp

4 Log-normal Mean = 0 SD = 0.5 3.06 8.90 Lgau1

5 Mean = 0 SD = 0.6 5.11 13.27 Lgau2

6 Mean = 0 SD = 0.7 8.34 20.79 Lgau3

7 Mean = 0 SD = 1.0 38.25 113.94 Lgau4

8 Weibull Shape parameter = 0.8 7.92 15.7 Wei1

9 Shape parameter = 1.5 1.15 4.40 Wei2

10 Shape parameter = 0.7 12.24 23.54 Wei3

11 Logistic Mean = 0 SD = 1 0.00 4.20 Lgi

12 Burr’s c = 2, k = 4 from Burr’s 

table I

2.04 7.36 B5

13 Pareto Shape parameter = 20 5.48 9.13 Prt

Table 1. 
Notations and parameters of DFs studied in [39].

d2 d3 d4 E2 E5 D4 δE2, %** δE5,% δD4, %

Gau* 1.129 0.851 0.955 2.66 3.14 3.26 −0.10 −0.12 −0.21

1.128 0.853 0.954 2.660 3.145 3.268

Uni 1.156 0.816 1.017 2.60 2.95 3.12 −2.44 −6.21 −4.60

Exp 1.003 0.994 0.699 2.99 4.29 3.97 12.44 36.47 21.58

Wei1 0.927 1.068 0.567 3.24 5.29 4.46 21.66 68.24 36.36

Wei2 1.091 0.899 0.871 2.75 3.44 3.47 3.37 9.52 6.24

Wei3 0.866 1.112 0.476 3.46 6.30 4.85 30.23 100.40 48.48

Lgau1 1.041 0.957 0.782 2.88 3.84 3.76 8.34 21.98 14.99

Lgau2 1.003 0.995 0.718 2.99 4.18 3.98 12.44 32.85 21.67

Lgau3 0.965 1.032 0.655 3.11 4.58 4.21 16.87 45.63 28.77

Lgau4 0.827 1.144 0.456 3.63 6.58 5.15 36.37 109.19 57.59

Lgi 1.104 0.884 0.902 2.72 3.33 3.40 2.16 5.75 4.11

B5 1.067 0.926 0.835 2.81 3.59 3.60 5.70 14.24 10.27

Prt 0.978 1.021 0.658 3.07 4.56 4.13 15.32 44.97 26.44

*This row gives the generally accepted values of bias correction factors.
**δE2, % denotes the relative deviation of E2 from its standard value 2.66. Similar – δE5,% and δD4, %.

Table 2. 
Results for x-mR chart.
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more than a twofold increase in corresponding probabilities. It was recommended 
in [39] that for all cases when one encountered “markedly non-normal” data, he/she 
should use the algorithm to construct the ShCC proposed in [39] and the corrected 
values of the chart’s constants given there.

6. What happens when the mean shift is transient?

This issue was studied in a paper published in 2021 [42]. We investigated the 
impact of transient shifts on the operational characteristics of ShCCs. Traditionally, 
all guides and standards tell the readers about the efficiency of the X-bar chart to 
detect the shift of the process mean. This efficiency notably surpasses the efficiency 
of x-chart, and the superiority grows when the sample size n increases. However, this 
is true but only for the so-called sustained shift. When the shift becomes transient, 
the situation may change radically, which most practitioners simply do not know 
because this issue is rarely discussed in the literature. In [42], we discussed an elemen-
tary model shown in Figure 3.

In order to compare the efficiency of different types of ShCCs one needs to calcu-
late the so-called power function (PF) for each type of chart. In Ref. [42] there was 

d2 d3 d4 A2 D4 δA2,%** δD4, %

Gau* 1.128

1.128

0.852

0.8525

0.953

0.954

1.881

1.880

3.266

3.268

0.03 −0.06

n = 2

Exp 1.000 0.998 0.692 2.121 3.994 12.84 22.22

Wei1 0.921 1.074 0.560 2.303 4.498 22.51 37.65

Wei3 0.865 1.120 0.475 2.452 4.884 30.45 49.46

Lgau1 1.149 0.995 0.904 1.846 3.598 −1.80 10.10

Lgau2 1.005 0.994 0.718 2.111 3.967 12.27 21.39

Lgau3 0.956 1.041 0.642 2.219 4.267 18.03 30.56

Lgau4 0.818 1.155 0.447 2.593 5.236 37.94 60.22

Prt 0.978 1.027 0,657 2.169 4.150 15.37 27.00

n = 3

Gau* 1.690

1.693

0.890

0.8884

1.584

1.588

1.025

1.023

2.578

2.575

0.18 0.12

Exp 1.504 1.115 1.233 1.152 3.226 12.65 25.26

Wei1 1.385 1.229 1.036 1.251 3.662 22.25 42.22

Wei3 1.298 1.301 0.899 1.334 4.007 30.44 55.61

Lgau1 1.557 1.062 1.327 1.112 3.046 8.74 18.30

Lgau2 1.503 1.125 1.231 1.152 3.246 12.65 26.04

Lgau3 1.434 1.191 1.120 1.208 3.492 18.07 35.60

Lgau4 1.215 1.365 0.807 1.429 4.381 39.70 70.14

Prt 1.463 1.159 1.164 1.184 3.377 15.73 31.13

*This row gives the generally accepted values of bias correction factors.

Table 3. 
Results for X -R chart.
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Figure 3. 
(a) – sustained shift, and (b) – transient shift, n – sample size, here n = 3 The number of subgroups lying entirely 
inside the step we denoted as m. Here m = 1.

considered the case when the transient shift starts between subgroups and ends after 
m-shifted subgroups within the (m + 1)th. In other words, we assumed that the X-bar 
chart with subgroups of size n was being built and an assignable cause of variation 
emerged between subgroups and lasted so that it covered m subgroups totally and r 
points within the last (m + 1)th. In this case, it was obtained for the average of shifted 
subgroups:

 
( ) ( ) ( )

( ) ( )
µ σ µ σ µ σµ σ

+ + + + −  = = + +
+ + +

0 0 0

0
1 1 1

nm k r k n r m rk
X k

n m m n m
  (7)

Clearly, the bias of the average will be approaching the sustained value when 
→∞m , and the impact of the transient shift will be maximal for m = 0. In this case 

the average is equal to

 
( ) ( )µ σ µ σµ

+ + −  = = +0 0

0

r k n r rk
X

n n
  (8)

Obviously, the shift of the average will be decreasing and therefore the probability 
of detecting it will be decreasing as well. The value of SD is assumed to be constant (at 
least at the first approximation) and equal to σ / n . Thus, one can obtain:
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1 3
kr

PF
n

 
= −Φ − 

    (9)

Using of traditional assumptions of data normality and of being i.i.d. (identically 
independently distributed) was implied. The results of calculations on the base of (9) 
for different values of n and r are shown in Figure 3 of [42]. One example of those 
pictures is given in Figure 4.

As one could expect, when r is equal to n the PF coincides with the traditional one 
given in many books (see, for example, Figure 10.1 in [9]).

As soon as not all the subgroup’s points fall into the changed process, the PF starts 
to decrease, and for some value of r – in [42], we called this value boundary, rb – the 
PF becomes less than the corresponding PF for n = 1 (the PF of the chart for the 
individual values). It is quite easy to find out the value of rb for which the PF of X-bar 
chart becomes less than the PF of the chart for individuals:

 ≤
b
r n    (10)

This means that the traditional conclusion about the superiority of X-bar chart 
over an X-chart does not work, at least when the duration of the process jump is 
shorter than the time to gather a subgroup. It all depends on the amount of points 
falling into the changed part of the subgroup. This example displays that even the 
simplest ShCCs are not as easy in practice as they may seem. And even for the values 
of r > rb, the resulting values of probability to reveal the signal about the shift may be 
essentially less than what is traditionally mentioned in SPC textbooks. For example, 
for an X-bar chart with n = 10, the probability of detecting the mean’s shift of one 
sigma falls down from 0.564 when the shift is sustained to 0.078 when only five points 
are within the changed process, and five points belong to the unchanged process.

Figure 4. 
An example of PF for sample of five with different values of r.
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7. ShCCs and 2 M’s: metrology and management

In the final section of this chapter, we would like to briefly discuss two areas of 
people’s activity where ShCCs must be used most often and where they are not practi-
cally being used at all. These fields are metrology and management.

Metrology’s primary concern is variation of measurement, so it seems very logi-
cal that all metrology-responsible people have to know the basics of SPC and have 
to be able to construct and interpret ShCCs. Unfortunately, reality looks quite the 
opposite [43, 44].

Management’s primary concern is variation between people and its impact on the 
organization. Again, the knowledge of ShCCs looks like it leaves no alternative for 
managers. Once more, the dark side of reality has beaten us to it [45]. Dr. Deming 
wrote the honest truth in the foreword to [23]: “The fact is that some of the greatest 
contributions from control charts lie in areas that are only partly explored so far, such 
as applications to supervision, management, and systems of measurements, includ-
ing the standardization and use of instruments, test panels, and standard samples 
of chemicals and compounds” ([23], ii). A detailed discussion of these issues would 
require writing another chapter that would most likely be much longer than this one. 
So we decided to confine ourselves to these ultrashort comments in order to put these 
topics to the next discussion.

8. Conclusions

We live in a World full of complexity, human irrationality, variability, and, conse-
quently, unpredictability [45]. One of the main features of this world is the ubiquitous 
presence of variations. Variations differ from each other, so the question arises if one 
needs to react to them or leave them unnoticed. The ability to answer this question is 
not something innate to the human being. People should be taught, especially taking 
into account that knowledge about variability and how to cope against it emerged only 
after Shewhart’s works of 1931 and 1939 [23, 24]. The tool invented by him – control 
chart – is the only way to understand if the process is controlled/stable/predictable or 
not. Without this knowledge, there are no chances to improve any system. Ironically, 
ShCCs turned out to be very simple technically and rather difficult to use profitably. 
The reason – contextual knowledge is vital for a genuine understanding of what the 
charts are trying to tell us. ShCC is a communication tool between a system where a 
process is going and the process owner. Its construction cannot be totally algorith-
mized [46]. In other words, everybody in any organization should be taught the art of 
constructing and interpreting ShCCs. In fact, the reality looks completely different. 
We started this chapter with the quote of Hoyer, Ellis about quality professionals who 
do not know the basics of SPC4, and here we will continue citing their phrase “And 
why should they? Our review of a very large number of SPC textbooks reveals page 
after page of “cookbook” discussions of practically everything under the sun—with 
very little discussion on the foundation of SPC ([14], 63)”. Unfortunately, the basics 
of SPC is a set of rules and recipes which are essentially more narrow than wants of 
practice. We tried to widen this set in this chapter. To this end, we discussed some 
uncertainties in the interpretation of assignable causes of variation, and proposed to 

4 We are sure that engineers, managers, CEOs, teachers, physicians, etc. should be added to quality 

professionals.
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