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Abstract

Due to climate aridization, the need to increase the resilience of plant productivity 
lo water stress becomes urgent. Abscisic acid and cytokinins have opposing biologi-
cal roles during water deficit and post-drought recovery, but both these regulators 
can be utilized to maintain plant productivity under water stress. Downregulation 
of abscisic acid biosynthesis and signaling can aid in the maintenance of photosyn-
thesis, growth, and productivity in plants, although increasing the susceptibility to 
severe stress. Cytokinin upregulation can maintain photosynthesis and productivity 
during water stress and aid recovery processes, whereas downregulation can lead to 
increased root growth, thus improving plant water balance, nutrient absorption, and 
hence productivity in water-limited conditions. The use of modern genome editing 
methods makes it possible to specifically modify genes involved in the implementa-
tion of complex traits in plants, such as resistance to stress factors. This review will 
examine the main areas of work on genome editing of gene families involved in plant 
responses to water deficiency using CRISPR/Cas technologies. Our current work on 
editing the ABF gene family, encoding transcription factors for ABA (AREB1/ABF2, 
AREB2/ABF4, and ABF3), as well as the CKX gene family (CKX1 and CKX4), encod-
ing cytokinin oxidase/dehydrogenases, will be presented.

Keywords: stress factors, plant drought resistance, molecular methods, plant genome 
modification, genome editing, abscisic acid, cytokinin signaling

1. Introduction

Drought is the most important abiotic factor challenging plant survival, per-
formance, and productivity on the planet. The rapidly increasing risk of coupled 
negative effects of water deficit and heat stress implies that we need to adapt the 
physiology of major crop plants to a hotter and drier future. Generally, the adaptation 
of annual crop plant to water stress can be confined to two capabilities:
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• to survive water stress without major irreversible effects on plant performance

• to quickly and fully recover after restoration of water supply, thus decreasing the 
cumulative drought impact on plant performance

It is clear that these capabilities depend on different or even conflicting plant 
traits. Survival during water deficiency depends mainly on the ability to prevent 
the irreversible desiccation of plant tissues and maintain the hydraulic integrity of a 
plant [1]. Plants need to minimize water losses, whereas photosynthesis and growth 
can be drastically diminished during this period without the major threat for plant 
survival during drought. In contrast, recovery occurs when water is plenty again and 
depends on the ability to recover photosynthesis, growth, and resource allocation to 
productive organs. Therefore, it is likely that opposing regulatory mechanisms would 
be required to make plants more tolerant to water stress per se and to make them abler 
to recover form water stress [2]. A clear example of such opposing pair of regulatory 
mechanisms are abscisic acid (ABA) and cytokinins (CKs). This chapter is devoted 
to the effects of these regulatory molecules on plant performance during water 
stress and recovery, on their regulatory modes, and on the usage of genome editing 
technologies to change plant ABA and CK balance to increase drought tolerance and 
post-drought recovery.

2. Abscisic acid

The response to water deficit is the major biological function of abscisic acid, and 
ABA can be considered as a versatile hormone that regulates plant water status in an 
integrated fashion. Abscisic acid increases water acquisition by affecting root growth 
and plant osmotic balance, affects water transport from the root surface to leaf tissues 
through regulation of aquaporin genes, and regulates water spending through the 
regulation of stomatal conductance, possibly influencing cuticular conductance. In 
case of stress severe enough to exert a substantial degree of dehydration in plant cells, 
ABA regulates the biosynthesis of stress-protective compounds such as dehydrins [3], 
but such intensive stress is likely of minor importance for agricultural plants [4]. The 
major biological functions of ABA during water stress are considered below.

2.1 Abscisic acid and plant water spending

The most-studied biological effect of ABA is stomatal closure, which enables 
plants to greatly diminish water losses, thus making a major contribution to the 
maintenance of plant water status during drought [5]. The paramount importance of 
ABA for stomatal regulation is clearly illustrated by ABA-deficient mutants, which are 
extremely sensitive to increasing vapor pressure deficit even under well-watered con-
ditions [6]. In more ancient plant lineages, ABA biosynthesis is rather slow, likely due 
to a reliance on non-specific enzymes during ABA biosynthesis, and therefore, ABA 
accumulation can occur only if water stress is rather prolonged [7–9]. For example, 
in [10], ABA increment in drying leaf tissues in several coniferous species occurred 
only after 2-h of dehydration. In contrast, angiosperms can induce ABA biosynthesis 
rapidly within few tens of minutes through the activation of NCED gene expression 
in ABA-producing tissues [7]. ABA catabolism genes are often upregulated simultane-
ously with ABA biosynthesis genes, but the expression of the former is lower than 
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the latter, resulting in net ABA accumulation under inductive conditions [11]. ABA 
accumulation in dehydrating cells occurs due to the decreasing of cell volume, rather 
than of turgor or water potential [12]. After water stress relief, the activity of ABA 
biosynthesis genes stayed elevated in guard cells, thus achieving drought memory 
effects favorable in case of subsequent droughts [13]. ABA controls memory processes 
through signaling pathway SnRK2/ABF/ABRE [14]. ABA biosynthesis in roots also 
occurs under water stress, but leaf is likely a major site of ABA biosynthesis [15, 
16]. There are conflicting evidences whether leaf ABA biosynthesis occurs mainly 
in vascular buds and guard cells or in mesophyll tissues, with solid evidences in 
favor of mesophyll as the main site of ABA biosynthesis [7, 10, 15]. Additionally, in 
angiosperms, rapid ABA-induced stomatal closure occurs within seconds to minutes, 
thus indicating the presence of ABA-dependent non-transcriptional mechanisms 
in stomatal closure [17]. Abscisic acid is among the key mechanisms underlying the 
difference between isohydric (R-type) and anisohydric (P-type) strategies under 
drought stress, as isohydric plants achieve high leaf ABA levels during stress, whereas 
anisohydric plants respond to stress with an initial peak and subsequent decline of 
ABA content [5, 18, 19]. In ferns or lycophytes, the stomatal closure is independent of 
ABA [5], thus indicating that stomatal regulation by ABA is a relatively late evolution-
ary achievement.

Besides regulation of stomatal conductance, ABA probably plays a role in the 
regulation of residual cuticular conductance. This type of conductance, although 
quantitatively minor in well-watered plants, becomes the major determinant of plant 
survival during prolonged water deficiency, when water absorption by the plant root 
system reaches zero, and the ability to preserve the water already present in tissues 
becomes crucial [1]. Cuticle is often viewed as a rather stable structure hard to be 
modified, but in fact, recent assimilates can be incorporated rapidly in the cuticle 
[20], indicating that cuticle can be probably abler to modifications than it is thought 
currently. Plant minimum leaf conductance can decrease under drought stress from 
−4 to −70%, with a decrease of 30–40% being typical [21]. It is known that ABA can 
change the chemical composition of cuticle, but whether it aids in decreasing minimal 
conductance is unknown and requires further clarification [21].

2.2 Abscisic acid and regulation of water acquisition and transport

ABA effect on root growth is biphasic, with mild ABA increase stimulating root 
growth through ethylene-dependent mechanisms, whereas higher ABA concentra-
tions inhibit growth through auxin signaling pathway [22, 23]. The ABA-dependent 
increase in main root elongation concomitantly with the inhibition of lateral root 
formation aids plants in reaching deep water-containing soil horizons with minimal 
carbon expenditure on root growth, and the biological effects of ABA and drought 
on root growth are similar [24]. However, in [25], ABA increased lateral root number 
and length at mild water deficit, likely also suppressing primary root growth to a 
certain extent. Not only the biological effects of ABA but also the source of ABA in 
root remain somewhat controversial. Mild drought leads to local ABA accumulation 
in roots [26]. Earlier, root tip was thought to be the main source of ABA biosynthesis 
during water stress, but now, it is clear that leaf-derived ABA plays a major role in 
shaping root growth [27], whereas ABA biosynthesis in roots can be limited by carot-
enoid substrate limitation under water stress [10]. ABA effects on root growth take 
place via interacting network with cytokinins, ethylene, and auxin [23]. Synthesis of 
ABA in roots of transgenic poplar increased root growth and drought tolerance [28]. 
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ABA is involved in the stimulation of reversible suberization of root endodermis, 
which is required to regulate the apoplastic movement of water [17]. The decrease in 
root hydraulic conductance, in turn, leads to stomatal closure and water economy, 
aiding in adaptation to water deficiency [29]. The decrease in ABA accumulation in 
root tissues during water stress can be also observed, probably due to increased ABA 
translocation to the above-ground plant part [30]. In addition to root growth, ABA 
can also positively affect osmotic adjustment, thus increasing plant water absorbing 
capacity [31].

Abscisic acid participates in regulation of the plant aquaporin system [32]. ABA 
positively affects root hydraulics [25] and is involved in jasmonate-mediated increase 
of root hydraulic conductivity [33]. However, not only promoting but also inhibiting 
effects of ABA on root hydraulic conductivity are observed [26]. Also, ABA can play 
a role in increasing the water-transporting ability of mycorrhizal fungi [26]. ABA is 
among the key regulators of expression of aquaporin genes [26]. In Zea mays, ABA 
increases both gene expression and protein content of different PIP aquaporins, 
although the results can vary between studies [34]. Also, ABA participates in the 
regulation of aquaporin activity through phosphorylation [32]. Although ABA is 
generally viewed as hormone inhibiting the above-ground growth, the positive ABA 
influence on plant hydraulic conductance through the regulation of aquaporin system 
can translate into positive effect on leaf extension growth, thus making the total ABA 
effect on growth less straightforward [34]. ABA-induced decrease of leaf hydraulic 
conductivity can participate in the regulation of stomatal closure [35].

The role of ABA in the regulation of axial water transport through xylem is less 
well studied, compared to cell-to-cell transport through aquaporins. ABA is well-
known to regulate the blockage of plasmodesmata in dormant cambium, making it 
unresponsive to activating environmental signals, and is involved in the termination 
of wood differentiation [36]. Exogenous ABA treatment often leads to reduced stem 
growth through inhibition of cambial activity, whereas occasional reports of second-
ary growth stimulation by ABA treatment likely stem from specific experimental 
approach rather than from ABA effects per se [37]. In cambial and xylem tissues of 
Eucommia ulmoides trees, the seasonal dynamics of ABA and IAA was the opposite, 
and ABA negatively influenced cambium reactivation by IAA [38]. ABA treatment 
decreases the hydraulic diameter of vessels, which negatively affects xylem hydraulic 
conductance [39]. Therefore, ABA likely plays a negative role in the formation of 
water-transporting tissues during plant secondary growth.

2.3 Trade-offs of ABA effects on plant performance

The above-described integrative positive effects of ABA on plant drought toler-
ance are linked with several important trade-offs. Although ABA biosynthesis is 
down-regulated quite rapidly during post-stress period, the major increment of 
ABA in leaves can sustain for prolonged period after drought release [5]. This limits 
a plant’s ability to rapidly restore gas exchange and photosynthesis and underlies, at 
least partially, the hysteresis between stomatal conductance and other leaf hydraulic 
characteristics post-drought [40], although these limitations can be also unrelated 
to ABA accumulation. However, it should be noted that sustained ABA accumula-
tion may aid the recovery processes by facilitation of embolism repair by decreasing 
stomatal conductance and water loss, which favors embolism refilling processes 
[41, 42]. Also, memory effects due to ABA increase during the first stress encoun-
ter can increase the tolerance to subsequent stresses and yield [43]. The negative 
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influence of ABA on leaf growth can be mainly due to the inhibition of assimilation 
resulting in source limitation of growth [10]. However, direct negative ABA effects 
on growth processes through ABF transcription factors is also well-known [44]. 
The ABA-induced increase of biosynthesis of osmolytes and protective compounds 
would distract these resources from growth and reproduction. Also, allocation of 
belowground growth to the deeper root system would probably lead to deterioration 
of mineral nutrition, since the deeper soil layers are deprived with mineral nutrients 
compared to upper layers [45].

Given these trade-offs, it is not surprising that constitutively increased ABA 
biosynthesis and ABA signaling results in depressed growth and productivity in 
non-stressed conditions, whereas the suppression of ABA signaling increases growth 
in the absence of abiotic stressors [46]. Crop plants are usually grown in more favor-
able conditions compared to native plants, and severe water stress is less prevalent for 
agricultural ecosystems compared to native ones [4]. Also, the maintenance of pro-
ductivity during mild water stress is obviously more important from the economical 
point of view compared to the ability to survive severe water deficiency, since in the 
latter case, the productivity would be anyway lost. Therefore, for annual crops, the 
downregulation rather than upregulation of ABA biosynthesis and/or signaling can 
be a more promising strategy to maintain productivity during mild stress, although 
making plants more susceptible to severe stresses, which are devastating for plant 
productivity no matter whether plants survive the stress period or are desiccated. 
However, it is known that the logarithmic character of dependence of carbon fixa-
tion on stomatal conductance means that plants can decrease stomatal conductance 
to a certain extent without trade-off with CO2 uptake and assimilation activity [5]. 
It can be therefore proposed that mild increase in ABA biosynthesis/signaling with 
the associated moderate decrease of stomatal conductance can result in substantially 
improved water use efficiency without compromising plant productivity, making 
such plants more effective from the economical point of view.

3.  Cytokinins and their effects on plant performance during drought  
and recovery

Generally, biosynthesis and signaling of cytokinins are negatively affected by 
drought, consistent with the view on CKs as negative regulators of drought tolerance 
[11]. However, the regulation of CK metabolism under water-stress conditions can be 
rather specific, with different IPT genes demonstrating differently directed regula-
tion under drought, whereas for CK OXIDASES/DEHYDROGENASES (CKX), more 
uniform upregulation is observed [47]. The directional changes in CK biosynthesis 
and signaling can have rather contrasting effects on plant ability to tolerate drought 
and to recover from its impact. Both CK signaling mutants and transgenic plants with 
enhanced CK signaling often demonstrate increased drought tolerance (Hai 2020). 
CKs generally exacerbate water loss by plants, thus making them more prominent 
to severe drought, whereas decreased CK levels contribute to more parsimonious 
water spending and better maintenance of plant water status during stress [48]. Also, 
CKs are positive regulators of shoot meristem activity and hence shoot growth [11, 
49], and the increased above-ground growth can be maladaptive under severe water 
deficiency. The decreased CK accumulation can be associated with higher tolerance 
of photosynthetic processes during drought [48]. CKs and ABA reciprocally down-
regulate the biosynthesis and signaling of each other, thus exerting contrasting 
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effects in plants under non-stressed conditions and under drought stress [50]. ABA 
decreases CK contents, which increase plant sensitivity to ABA, thus making plants 
abler to respond to water deficiency [50]. Cytokinins repress SnRKs as major com-
ponents of ABA signaling, thus inhibiting ABA effects on plant under non-stressed 
 conditions [50].

On the other hand, when water stress is not severe and plants are not at risk of 
desiccation, CKs can have numerous positive effects on plant drought and post-
drought performance. Both exogenous CK treatment and modulation of endogenous 
CK levels were reported to positively affect plant drought tolerance [48]. Increased 
CK biosynthesis delayed drought-induced leaf senescence in tobacco and maintained 
photosynthesis, thus decreasing yield loss [4]. Under water deficiency, CKs promote 
stomatal conductance and chlorophyll biosynthesis [47], which can be detrimental 
under severe stress but is advantageous for productivity under relatively mild water 
stress conditions. CK-mediated inhibition of stomatal closure is the conserved 
response in diverse plant species [5]. CKs promote plant antioxidant defense by 
increasing the activity of antioxidant enzymes and decreasing the activity of ROS-
generating systems such as xanthine oxidase [47]. CKs may positively affect plant 
osmotic adjustment under water deficiency [51]; in contrary, in [4], much lower 
proline accumulation in tobacco plants with increased CK biosynthesis was observed, 
likely due to their higher drought tolerance and lower degree of stress compared to 
wild-type plants. Also, CKs positively influence cambial activity and radial growth, 
thus increasing stem hydraulic conductance [37]. Generally, many of the positive CK 
effects during mild stress can be due to a delay in activation of drought response, thus 
decreasing stress impact [48]; CKs are known to suppress SnRK2 functioning and 
thus stress response [50]. It can be very promising for agricultural plants, since plant 
productivity and not plant survival is of the most interest for agriculture, thus mak-
ing CK-induced desensitization of plants to environmental stress a promising strategy 
to maintain crop productivity under relatively mild stresses, typical for agricultural 
conditions [4].

CKs have numerous positive effects on plant post-drought recovery processes, 
making plants with upregulated CK content superior in recovery compared to 
wild-type plants. CKs in plants decreases under drought [11] while increasing promi-
nently during the recovery period, together with compensatory growth acceleration 
compared to non-stressed plants [48]. Higher CK content during the post-drought 
recovery period can elevate auxin content in leaves [48] and also in cambium [52], 
which is necessary for active post-drought growth. CKs positively affect stomatal 
opening in post-drought period [53], helping to restore photosynthesis and to mini-
mize cumulative negative drought impact on assimilation. Therefore, despite negative 
effects of CKs on tolerance to severe stress, their upregulation can be a promising way 
to increase the performance and productivity of crop plants.

However, downregulation of CKs can also have positive effects on crop perfor-
mance under water shortage. Cytokinins are negative regulators of root meristem 
activity [11, 54], suppressing both primary root elongation and root branching 
[50, 55]. Negative CK effect on primary root growth is exerted through increase in 
ethylene biosynthesis [54]. As a result, CKs decrease both drought tolerance and 
absorption of mineral nutrients [56], whereas reduction of endogenous CKs can have 
prominent positive effects on root growth, increasing the number and length of lat-
eral roots and root biomass accumulation [47]. For example, root-specific expression 
of CKX gene in Zea mays improved both root growth and mineral nutrition of plants, 
which was surprisingly achieved without trade-offs with above-ground growth [57]. 
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The fact that such prominent changes in whole-plant architecture were made possible 
by expressing a single gene is quite promising for plant improvement. Therefore, both 
decrease and increase in CK biosynthesis and signaling can be viewed as a potential 
way to increase the resilience of crop productivity to water shortage.

4. Methods for modifying plant genomes

Plant genetic traits are inherited from parents from generation to generation and 
are encoded by genetic information contained in DNA. At the same time, genetic 
information is subject to constant changes due to the presence of spontaneous or 
induced mutations, errors arising during transcription, the activity of transpos-
able elements, the processes of meiotic crossing over, and cross-fertilization. Some 
pathogenic and symbiotic bacteria, such as Agrobacterium spp. [58], can transfer 
part of their DNA into the genome of the host cell, thereby changing the functioning 
of the host cell to suit their needs. Thus, genome modification occurs constantly in a 
plant cell.

Plant breeding is the process of obtaining new varieties of plants that contain in 
their genome a set of genes that make it possible to grow plants that are suitable for 
agricultural production, processing, and consumption and at the same time have 
properties beneficial to humans and animals. Thus, plant breeding involves system-
atic selection among the entire population of plants of samples bearing target proper-
ties. It is estimated that humans have been successfully breeding plants for over ten 
thousand years [59] when seeds of plants with favorable features were saved for the 
next plantation, a practice known as domestication. The most significant advances 
in plant breeding techniques have been achieved as knowledge and understanding 
of plants and their genetic structures have accumulated. In the second half of the 
twentieth century, with an increase in the quantity and quality of food consumption, 
a revolution in plant breeding occurred, the key achievements of which were achieved 
in the creation of hybrids and transgenesis. The most important stage in plant breed-
ing was the Green Revolution, which made it possible to dramatically increase the 
productivity of agricultural crops through the development of high-yielding varieties 
of cereals, particularly dwarf wheat and rice. Norman Borlaug, Nobel Prize laureate 
and father of the Green Revolution, emphasized that the key to the success of these 
semi-dwarf varieties was their wide adaptability, short plant height, high sensitivity 
to fertilizers, and resistance to disease, which ultimately made it possible to obtain 
more yield at a lower cost [59]. Later, these requests were addressed to the emerging 
technology of transgenesis, which led to its rapid development. Transgenic crops are 
now widespread globally and are increasingly accepted as food and feed. Transgenesis 
changes the genetic information of a plant cell, resulting in a so-called genetically 
modified organism (GMO) that carries in its genome a fragment of foreign DNA that 
gives the plant new useful traits that cannot be obtained by conventional breeding 
methods. However, GMO organisms were perceived ambiguously by society, which 
led to the fact that obtaining state registration for a GMO variety in some countries is 
significantly difficult or completely impossible.

4.1 Development of the genome editing tools

With the development of genetic engineering methods and the accumulation 
of data on plant genomes, gene editing technologies began to develop—making 
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it possible to make site-specific changes in the target site of the genome. The first 
methods that appeared were zinc-finger nuclease (ZFN) and later transcription 
activator-like effector nucleases (TALEN). Both TALEN and ZFN are composed of 
repeated tandem sequences of DNA-binding domains and an attached Fok1 nuclease 
protein, such that the recombinant protein can be targeted to recognize a target DNA 
sequence and therefore create double-strand breaks (DSBs) at the target site. For each 
target site, a new TALEN or ZFN protein must be prepared to recognize the target 
DNA sequence, which required labor-intensive genetic engineering and significantly 
limited the widespread use of these gene editing technologies [60, 61]. However, there 
are examples of successful use of ZFN to manipulate genes in tobacco, Arabidopsis,  
and maize [62–64]. TALENs, which are easier to target to a specific DNA region 
because each TALEN domain recognizes one target nucleotide, as opposed to ZFN, 
where each domain recognizes a triplet of nucleotides, have been successfully used 
in horticultural crops such as soybeans, wheat, rice, tomatoes, and potatoes [65, 66]. 
However, the major drawback related to ZFNs and TALENs are their off-targeting 
effects, prolonged screening process, toxicity to the host cell, and complex genetic 
engineering procedures, limiting their applicability. The most modern method of 
genome editing is CRISPR technology; the first article on the successful application of 
this technology on plant cells was published in 2013, and the first edited plants were 
Arabidopsis thaliana and Nicotiana benthamiana [67].

Typically, CRISPR/Cas9 is a complex consisting of two components: the Cas9 endo-
nuclease protein and a single guide RNA (sgRNA) with 20-nucleotide homology to the 
target DNA region [68–70]. The Cas9 endonuclease binds to the protospacer adjacent 
motif (PAM) DNA sequence (for Cas9 the PAM site is NGG), the sgRNA complementa-
rily binds to the DNA sequence adjacent to the PAM site, and if the binding is successful, 
Cas9 carries out a DSB in the target site [68, 71]. DSBs caused by the Cas9 endonuclease 
lead to the activation of DNA repair systems, which can take two pathways, the error-
prone non-homologous end-joining (NHEJ) or homology-directed repair (HDR). 
Errors of DNA repair system result in deletions, insertions, or substitutions of DNA at 
DSB sites, which in turn disrupt gene function or cause a reading frameshift, known as 
a gene mutation or knockout [68–70]. As a result of DSB repair via the NHEJ pathway, 
insertions/deletions (indels) of several bases are usually observed during plant genome 
editing based on CRISPR/Cas9. The use of the mechanism of HDR, in turn, makes it 
possible, using editing systems, to replace individual nucleotides in the DNA sequence 
and even obtain a site-specific insertion of a gene or group of genes.

At the moment, editing technologies have become so widely developed that they 
make it possible to influence any stage of the implementation of genetic information 
in a cell—at the level of transcription, translation, post-translation, epigenetic and 
so on [72]. Over the past 10 years, a number of different CRISPR-based tools have 
been developed, allowing editing at almost any desired location in the genome. Some 
examples include DNA base editors [73], epigenetic modifiers [74, 75], prime editors 
[76, 77], and transcription regulators [78, 79]. Fusion of various additional molecules 
with partially disrupted (nickase Cas9, nCas9) or nuclease-deficient (dead Cas9, 
dCas9) Cas9 has been used as a vehicle to deliver the CRISPR fusion protein to the tar-
get genomic site. RNA-targeting Cas proteins also enable a variety of RNA manipula-
tions beyond simple RNA editing, such as RNA degradation, detection of ribonucleic 
acids and pathogens, single RNA base editing, and live imaging of RNA, which can 
be read in more detail in recently published reviews [72, 75]. Plants cope with stress 
through a range of finely tuned mechanisms, which involve both protein-coding 
genes and non-coding regions of the plant genome, along with various epigenetic 
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mechanisms realized through the control of DNA packaging. The CRISPR-based tools 
described in this section can exploit the full range of molecular mechanisms mediated 
by these genomic elements.

4.2 Editing genes associated with transport and signaling of ABA and CKs

Major thriving areas of research include gene discovery (allele mining, investigation 
of cryptic genes) and introgression of new traits to achieve the desired goal—biotic/
abiotic stress-resilient crops. Today, there is already a fairly large pool of works devoted 
to editing genes associated with the transport and signaling of ABA and CKs [75, 80]. 
Editing and transgenesis have helped to establish the functions of a number of genes 
associated with the ABA signaling pathway and their participation in the response to 
stress [81, 82]. For example, the enzymes SAPK1 and SAPK2 belonging to the SnRK2 
family are members of the ABA signaling pathway in rice. Loss-of-function mutants 
of SAPK2 generated by CRISPR/Cas9 were insensitive to ABA [81]. The SAPK2 
mutants displayed high sensitivity to dehydration and ROS, highlighting the role 
of SAPK2 in drought stress, the same as how CRISPR-edited OsERA1 mutant lines 
displayed enhanced tolerance to drought stress [83]. Another example is the work with 
histone acetyltransferase (HAT) enzyme that relaxes chromatin folding and promotes 
enhanced gene expression fused with dCas9 protein. Tools for gene activation and 
epigenetic modification combined with the CRISPR system made it possible to cre-
ate the dCas9-HAT system, which increased the expression of AREB1 and as a result 
increased the resistance of Arabidopsis plants to drought [84]. CRISPR/Cas9 was 
successfully used to create new alleles of the OST2 gene in Arabidopsis, and as a result, 
edited plant lines carrying the new alleles exhibited an enhanced response to stress 
due to changes in stomatal closure under drought stress [85]. A number of genes have 
been shown to be involved in the negative regulation of plant responses to salinity and 
other abiotic stresses. Reducing the expression level of the RR22 gene, which encodes 
a type B response regulator (ARR B) involved in CK signaling, using the CRISPR/
Cas9 system, made it possible to increase the tolerance of rice plants to soil salinity 
[86]. Additional examples of negative regulators research using editing tools include 
work in Arabidopsis and rice. Editing of the C/VIF1 gene encoding the fructosidase 
inhibitor protein 1 showed that it is a regulator of the response to ABA and is involved 
in the development of salt tolerance [87]. Editing of the RR9 and RR10 genes in rice, 
encoding proteins involved in the CK signaling pathway and associated with response 
regulators type A (ARR A), allowed to establish their function as negative regulators 
in response to salinity [88]. As recent work on AITR family genes has shown, targeting 
mutations in genes with redundant or unclear functions using CRISPR editing systems 
can help elucidate their role in plant stress biology [89, 90].

As it can be seen, various genome editing tools have been successfully used to 
study genes associated with plant stress resistance and to create stress-tolerant plants 
belonging not only to model plant species but also to plant species important for 
agriculture. The ever-expanding set of CRISPR tools allows you to make changes to 
any process occurring in a plant cell and thereby regulate the growth, development, 
and all life processes of plants, through precise and effective genetic engineering. 
Consistent changes and grouping of genes responsible for resistance to various types 
of stress, both biotic and abiotic, can help in the development of new lines for plant 
breeding. Accelerated identification of new genes, as well as the creation of gene-
edited crops that do not fall under the regulatory requirements developed for trans-
genic plants, could be a step toward the next Green Transformation.
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4.3 AREB/ABF and CKX gene families as potential targets for editing

CKX genes, which are key regulators of the level of CKs in plant cells and, 
accordingly, can influence the homeostasis of CKs in the cell, have long attracted the 
attention of researchers as providing ample opportunities for improving crops. Most 
studies investigating the function of CKX genes have been carried out using RNAi-
based silencing or overexpression of CKX genes. Overexpression of AtCKX7 in the 
model plant results in shorter primary roots [91]. Overexpressing the AtCKS2 gene 
in oilseed Brassica napus increased the root-to-shoot ratio [92]. A number of studies 
have shown that reducing the expression level of CKX genes in some cases can lead to 
increased crop yields. For example, in barley, cotton, rice, and Arabidopsis, downreg-
ulation of CKX family genes through RNAi-based silencing or various genome editing 
systems, or with the help of mutations, has resulted in increased seed number and/
or seed weight [93–96]. Also, in a number of works on editing genes of the OsCKX 
family in rice, it was shown that OsCKX genes serve as a link between CK and other 
plant hormones, in particular ABA [97, 98]. The perspectives of utilization of genome 
editing technologies to improve crop performance were discussed recently [80, 99]. 
The findings support the critical role of CKs in a variety of model plants.

There are significantly fewer studies on the AREB/ABF family. There is work to 
increase ABF2 expression using dCas9-HAT [84], but most of the research has been 
done on T-DNA-induced mutations in Arabidopsis obtained in the early 2000s [100–
102]. In Arabidopsis, three members of the AREB/ABF family that respond to water 
stress and participate in the ABA signaling pathway, ABF2, ABF4 and ABF3, are the 
master transcription factors that co-regulate ABF-dependent ABA signaling and require 
ABA for full activation [100]. At the same time, the incomplete functional redundancy 
of ABF transcription factors gives reason to expect that differential manipulations of 
ABF can be used to create plants with the desired mode of ABA signaling, for example, 
to reduce trade-offs between ABA-induced stress tolerance and productivity.

Over the past few years, experimental evidence has been obtained on changes in 
DNA regions located at some distance from the site of T-DNA integration [103, 104]. 
This prompted a reconsideration of the relevance of using such mutations to identify 
the functions of genes of interest, since the manifestation of a mutation caused by the 
insertion of foreign DNA into the region of the gene under study and causing the loss 
of its function (knockout) can be masked by other insertions in regions remote from 
the region of the target gene. The development of new genome editing tools using 
CRISPR/Cas9 makes it possible to specifically make changes only in the target gene 
and obtain new series of knockouts for genes of interest. This work firstly examines 
the possibility of editing genes of the ABF family encoding the AREB1/ABF2, AREB2/
ABF4, and ABF3 transcription factors using Arabidopsis thaliana as an example, tak-
ing into account the possible participation of other genes included in the network of 
regulation of abscisic acid biosynthesis. Secondly, the possibility of multiplex editing 
of CKX1 and CKX4 genes of Arabidopsis thaliana to establish their role in the response 
of plants to abiotic stress. Crossing the resulting mutants will make it possible to 
establish the details of the interaction between ABA and CKs.

5. Conclusion

The development and improvement of molecular biology methods by the begin-
ning of the twenty first century stimulated the creation of modern tools that make it 
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possible to modify plant genomes by targeted changes in the functioning of genes of 
interest. This opens up great opportunities for researchers to modify genes involved in 
the control of complex traits in plants, such as resistance to water deficiency. The use 
of genome editing to knockout individual genes that control plant response to various 
stress conditions, including water deficiency, will reveal the role of both regulatory 
genes encoding transcription factors for ABA biosynthesis and genes that provide 
interconnections between the signaling pathways of various phytohormones, in 
particular, the relationship between ABA and CKs.
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