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Change Context
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Abstract

Climate change represents a serious issue that negatively impacts the animals’ 
performance. Sheep production from Mediterranean region is mainly characterized 
by extensive farming system that during summer are exposed to high temperature. 
The explored new technologies to monitoring animal welfare and environment could 
mitigate the impact of climate change supporting the sustainability of animal produc-
tion and ensuring food security. The present chapter will summarize the more recent 
advanced technologies based on passive sensors, wearable sensors, and the combina-
tion of different technologies with the latest machine learning protocol tested for 
sheep farming aimed at monitoring animal welfare. A focus on the precision tech-
nologies solution to detect heat stress will be presented.

Keywords: precision sheep farming, extensive farming, animal welfare, productivity, 
climate change, deep learning

1. Introduction

Weather of the last years is affected by extremes climate events, characterized by 
period of heatwaves, droughts, and severe precipitation which are responsible for 
climate change [1]. The Mediterranean region is estimated to become a Hot-Spot, as 
one of the most responsive regions to climate change [2]. This projection is confirmed 
also by the IPCC [1] report which describes the prediction on how much intense 
will be the climate change, relatively to the increasing of temperature or intensity 
of precipitation (and relating period of drought), and heat weather. Therefore, the 
development process of future pasture-based systems will be influenced mainly by 
the growing of this weather instability; thus, it will affect the livestock production 
sustainability all over the globe [1, 3, 4]. From Mediterranean-dedicated climate-
change studies, it is remarked that in the twenty-first century the Mediterranean 
climate would become increasingly warmer, drier, and tending, less windy [5]. 
Therefore, considering the actual condition of the global climate change, it could 
be crucial to deepen the consequence of environmental changes on the animals’ 
physiology as well as the adaptive mechanisms orchestrated by animals to counteract 
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the climate change [6]. The aim of this chapter is to summarize the major developed 
advanced technologies based on passive sensors, wearable sensors, and the combina-
tion of different technologies with the latest machine learning protocol tested to help 
farmers in the monitoring grazing sheep herd in the contest of climate change.

In livestock the exposition to heat stress occurs when the environmental tempera-
ture surpasses the high critical temperature, which is depended to the breed, age, and 
physiological state; in particular, in sheep it can vary from 25 to 31°C [7, 8]. Moreover, 
longer drought periods increase dramatically the resources management issues as well 
as water and feed supply. In general, climate change can affect animal agriculture 
through a modification of (1) access to feed and grain and their related price; (2) 
availability of pasture or forage and their quality; (3) animal health, growth, and 
reproduction; and (4) spreading of livestock diseases [9]. Especially in livestock 
production, the heat stress has direct and indirect effects. The first one is due to the 
increase of environmental temperatures and the frequency/intensity of heat waves 
[10] which determine in sheep hyperthermia, characterized by an increasing of 
breathing and respiration rate, and body temperature, a reduction of feed intake, 
and an overall alteration of metabolism of water, protein and energy metabolism, 
mineral balance, enzymatic reactions, and hormonal secretion [11]. The direct effects 
have a proportional magnitude in relation to the intensity and duration of heat stress 
[10]. Animals do not capable of restoring from heat stress condition are more prone 
to display health issue supported by immune depression condition that can cause 
in extreme condition the animals’ death [12]. The indirect effects of heat stress are 
related to the reduction in quantity and quality of feedstuffs, and in the water avail-
ability, the alteration of the immune responses of the animals, and the diffusion of 
new vector borne diseases [10]. The mechanism of adaptation to climate change of 
sheep are expressed by the maintenance of hereditary functional potentiality with 
activation of compensatory and adaptive mechanisms which consist in the activation 
of behavior aimed at supporting the excess of body heat dissipation, and therefore, 
to tolerate the increase of heat and drought wheatear [13, 14]. On the contrary, when 
animals are not able to activate a compensatory mechanism to heat load, they express 
a physiological response that determine a condition of hyperthermia preceded by an 
alteration of cellular homeostasis and a failed homeorhetic adaptive response [15, 16].

A good indicator of the degree of stress caused by weather conditions is conven-
tionally accepted to be represented by the temperature-humidity index (THI) which 
combines the ambient temperature (T), and relative humidity (RH). Several formulas 
have been proposed in order to determine the THI, that one of Kelly and Bond [17] 
combines the maximum temperature (expressed in °C) and the average of relative 
humidity (%). In lactating ewes, a THI higher than 80 and a prolonged exposure to 
maximum air temperature over 30°C causes heat stress exposition by decreasing milk 
production and quality [7, 18] and their reproductive performance [19]. Moreover, 
moving from THI of 60–65 to 72–75 induces a significant reduction of sheep perfor-
mance by 20% [20].

A recent systematic review has emerged that the management strategies applied to 
restore the heat stress exposition are not effective on animal welfare and heat status 
when animals (cows, sheep, and goats) are exposed to severe heat stress [21]. In 
particular, in condition of heat stress exposition the management strategies occurred 
to reduce the animal performances as low as 16%. In this context the application of 
new technologies from precision livestock farming (PLF) could potentially offer other 
opportunities for the future development of strategies and improving animal welfare 
and productivity.
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According to the definition of precision livestock farming (PLF) formulated by 
Berckmans [22] the objective of the PLF is the management of welfare, health status, 
reproductive and productive performances, and environmental impacts of single 
animal by using a real-time and continuous monitoring. Based on this definition the 
farmers can be alerted with a warning about an animal(s) health status that needs a 
specific attention. Several devises are used to monitor animals among which there are 
the camera and microphone which need images and sound analyses in real-time, and 
other sensors which can be mounted around or on the animals [22]. Specifically, the 
PLF solutions are overall based on a technological aggregation named Information 
and Communication Technologies (ICT) composed by sensors, information systems, 
decision-making algorithms, and human machine interfaces, which could provide 
important services to farmers by helping them in the decision-making process 
through an improvement of everyday tasks and herd management [23].

While on one hand the dairy cow sector offers to farmers a variety of management 
tools which contribute actively to increase the competitiveness of their product in 
the market [24], on the other, small ruminants, in particular those at pasture, are less 
likely to benefit from such systems. The lack of available devices is linked to the diffi-
cult of monitoring an extensive pasture environment in comparison to a closed barn, 
regarding to the infrastructures and communication options [25]. Animal welfare is 
a key factor in determining the consumers choice and the farmers profitability [26]. 
As reviewed by Krueger et al. [27], the implementation of sensor-based technologies 
will help to shift the management and welfare assessment from the farm-level manual 
assessment versus an automated or semi-automated continuous monitoring of 
individual animal [28]. Overall, the PLF systems could represent an important chance 
to sustain the livestock farms, also those of small ruminants in extensive farming, in 
terms of profit and sustainability [29, 30].

2. Methodology

According to the aim of this chapter, Google scholar (https://scholar.google.com) 
and Scopus (https://www.scopus.com) databases were used to conduct bibliographic 
research by the following main keywords “precision livestock farming” AND “exten-
sive farming” AND “climate change” OR “heat stress”. The articles selection was 
done including all document types among which articles, reviews, book chapters, 
and conference paper only in English, without year refinement. Information on 
latest technologies were grouped in a table to summarize data collected and gives and 
overview on the searched topic.

3. Major developed technologies

3.1 Animals identification and location

Currently the only technology mandatory for all sheep and goat farmers under 
EU legislation (Official Journal of the European Union, 9.1.2004) is the Electronic 
identification (EID) system, and represents an important opportunity for introduc-
tion of PLF system into extensive management systems. One of the most common 
technologies used to identify animals is the Radio Frequency Identification (RFID) 
[29]. The RFID technologies can be grouped into ear tags, boluses, and injectable 
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glass tags; moreover, from a technological point of view, are divided in two categories; 
the low frequency (LF, 125–134.2 kHz,) and the high frequency (HF, 13.56 MHz). In 
particular, the LF 134.2 kHz, being regulated by ISO 11784 and 11,785 international 
standard, it is considered the international frequency for animal identification [31]. 
The information of the tag is transmitted to the tag reader by radiofrequency from the 
tag on animals to the tag reader, which needs a power source [32]. The RFID technol-
ogy can store data which can be used in several decision-making process [33]. Indeed, 
throughout the feed- animal-food chain, the RFID technology offers to farmers a way 
to guarantee the traceability, and the ability to better manage individual production 
and feeding of each animal [23]. RFID is a cost-effective way to track and monitor 
animals and in combination with other PLF systems, such as the weighting scale or 
automatic drafter (AD), can provide information for growth performance, milk yield, 
reproductive efficiency, and medical treatments [33, 34]. Among the EID method 
based on RFID technology, the ear tags are considered the cheapest one, however, the 
ear application increases its possibility of loss, especially in outdoor paddocks. This 
disadvantage is surpassed by using ceramic boluses which are capsules, considered to 
be a safe choice for ruminant identification, incorporating a radio frequency tran-
sponder, they are retained in one of the first two stomachs of the ruminants [35, 36]. 
In lambs the retention rate of the bolus administrated after weaning period at the fifth 
week is of 100% [37]. Finally, the injectable glass tags or transponders can be intro-
duced after birth [38] in different locations in relation to the animal species [39–41]. 
The injectable glass tags being subcutaneously inserted under the skin [42], have a 
possible migration and difficulty of removal in meat-producing sheep and goats in 
abattoir that should be considered [43, 44]. However, in field conditions it is demon-
strated that the use of modern glass and silicone enclosed injectable EIDs shows poor 
migration patterns [45]. Apart from its limited use, a specific advantage of injectable 
EID is the possibility to its use as a sensor for physiological parameters and not only as 
passive information storage.

Besides their identification, it could be crucial for extensive sheep management to 
modify the animal distribution within large and fenced areas. An innovative method 
used is represented by the Virtual fencing (VF), which replaces the physical barriers 
to draw boundaries with the electronic one. In particular, the animals crossing over is 
avoided by using a visible and/or audible cues system in combination with an electric 
stimulus [46]. Animals can understand the limits of their area after a training period 
to the acoustic cue in which if they ignore it, receive an electric shock when touching 
the electronic boundaries (Figure 1) [47, 48].

The main scope of this system is the possibility to move the animals based on 
the pasture availability [48]. However, there are several disadvantages that limit 
VF application on a commercial point of view; firstly, due to its high cost, which is 
estimated in UK to be about 200,000 £ for the application to the herd of about 100 
animals [46]. Secondly, sheep farms are not characterized by infrastructures with 
advanced technology [49]; including the network coverage and IT-related skills and 
understanding [50]. The last disadvantage is linked to the difficulty in developing a 
sufficient learning protocol to the acoustic cue and the important ethical issue due to 
welfare concerns caused by the electric shocks [46, 51–53].

Moreover, the flock size could influence the success of training to the acoustic 
cue due to individual training curve for each animal, thus, it cannot be economically 
feasible for large flocks [54, 55]. However, VF cannot completely replace traditional 
fencing and a combined use will be always needed increasing the overall cost [46, 48]. 
Specifically, the adoption of VF in the Mediterranean sheep farming, characterized 
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by grazing area of medium size (150–300 ha average), is not suitable; therefore, it is 
more recommendable the monitoring of animals by traditional methods (daytime 
shepherding, wire fences, or electrical fence) [49]. Based on previous assumption and 
the fact that the VF cannot completely replace all fences, because a hermetic exclusion 
of animal is impossible without the physical barrier [56], other devises have been 
tested to monitor the location of animals in pasture based on camera or video. A com-
bination of time-lapse cameras, machine learning, and image registration represents a 
suitable method to a relatively low cost [57].

This specific technology applies a state of the art convolutional neural network, 
named You Only Look Once (Yolo) [58] to detect any object in the images and to 
prevent the constant change in background. Subsequently, all the detected objects are 
filtered in order to select only the studied animals (Figure 2). Obviously, the efficacy 
and the precision of this technique can be increased in relation to the size of the 
animal, the locations of the cameras, and the set-up of the pasture [57].

In Riego Del Castillo et al. [59] a camera-based system is tested to automatically 
detect predators in pasture-based livestock farming and distinguish them from other 
species, such as dog. After adopting algorithms for the objects detection by using 
from sv1 to v5 versions of YOLO in combination with the Single-Shot MultiBox 
Detector (SSD), the YOLOv5 archives prove to be the most accurate for the require-
ments of pasture-based systems, achieving a mean average precision of 99.49%. This 
system could be accounted for an additional tool for the protection of the herd [59]. 

Figure 1. 
a) Nofence collar photo used for testing new virtual fencing system on sheep; b) the arena used in experiment as 
surrounded by physical fences (black lines) and the sheep was attracted over the virtual border (dotted line) as 
indicated by the arrow [47].

Figure 2. 
Workflow of goat monitoring using animal tracking in combination with neural network and time-lapse cameras. 
Such an example in (a) are reported the image with yellow boxes around the objects as received by the neural 
network Yolo. Then, in (b) is represented the false positive correction (in green) by using a non-max suppression 
algorithm which merges the overlapping and operates the image classification. In (c) is presented a schematic 
representation of the monitored pasture with the estimated coordinates of the detected goats (red points) [57].



Sheep Farming – Sustainability From Traditional to Precision Production

6

Another feasible solution for the monitoring of small ruminants in pasture-based sys-
tems is represented by the unmanned aerial vehicles (UAVs) or drones [60–63]. UAVs 
system, useful to determine a live feed behavior and then the livestock monitoring, is 
constituted by cameras, LiDAR, multi-spectral, and obstacle avoidance sensors [64]. 
The hardware of UAV can be classified into two groups: the fixed-wing which requires 
flight planning and control using GPS digital map navigation, and the multi-rotor 
aerial vehicles equipped with a gateway for collecting data, on which can be mounted 
many sensors, having an enhanced speed and loading capacity, and time of flight 
[65]. In this condition, it could be given to farmers an automated animal counting, 
however, the use of GPS device [66] is quite expensive. For this reason, it has been 
developed an automated method for animal counting and detection using quadcopter 
system based on multiple convolutional neural network (CNN) and Region-based 
convolutional neural network (R-CNN) [67] on which it is possible to train the 
datasets of sheep detection by the captured aerial images (Figure 3) [62, 63].

Moreover, an additional network named Mask R-CNN algorithm (Figure 4) [60], 
which performs not only on object detection and classification but also a segmenta-
tion, by associating specific image pixels to the detected object. This system could be 

Figure 4. 
a) MAVIC PRO drone, and b) architecture of the mask R-CNN network for livestock classification and 
counting [60].

Figure 3. 
a) Trained image of sheep at pasture and b) architecture of R-CNN network used for detecting and counting sheep 
with a convolutional neural network [63].
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useful for future applications including estimation of animal pose and direction of 
travel to monitor abnormal behaviors [60].

Notably, as regards UAV technology useful for sheep location and monitoring, it 
should be considered that sheep are frightened by drones flying above. Only, the use 
of a small and quiet drones maintained a minimum altitude can be the best solution 
because they cannot be detected by the animal [30]; however, their secure application 
requires further research. In addition, the use of in intelligent aerial robotics includes 
many challenges among which computational demand and system capabilities, online 
learning, expedited learning time, and many others [68]. Moreover, it is important 
that operators need an advanced level of skill to fly drones in compliance with federal 
aviation regulations for UAV operations.

3.2 Wearable sensors

According to the physical relationship to the animals, the PLF sensors are 
 commonly categorized as wearable and non-wearable [69, 70]. On animal sensors 
are applied directly on the individual animal and can provide information on ani-
mal’s physiological conditions in real time or via data loggers downloading in key 
passages [22]. It is relevant for farm management the translation of data collected 
from sensors (movement, body position, temperature, etc.) into physiologic status 
such as ovulation or lameness [22]. In case of grazing sheep farming these sensors 
give useful information related to the grazing and resting behaviors of the flock [71]. 
In this sense, the wearable sensors are experimented only in controlled conditions in 
small scale or experimental farms [72]. Currently, the accelerometers, especially the 
tri-axial type, and GPS systems are the two main types of technology being tested in 
this field. The accelerometers, recording movement in a three-dimensional pattern 
in terms of the direction and speed of the sensor, give several information which are 
used to register movement patterns linked to animal behaviors and welfare assess-
ment [73], also confirmed by field trials, such as resting, grazing, ruminating, mov-
ing, grazing, running/playing, lameness, mating score measurement [72, 74–79]. The 
Figure 5 shows the illustration of devise used to detect sexual behavior as reported in 
Mozo et al. [76].

These systems can be positioned on the foot, neck, and or head of the sheep. Data 
recorded are firstly evaluated by the software, and then are provided to the farmer to 
assist him in the decision-making process [75]. The accelerometers technology can be 
considered robust and mature; however, the interpretation and validation of data is 
still under study [80]. Indeed, many challenges have to be faced that limit their appli-
cation at widespread level, among which the main are the collection and management 
of big data as well as the correct energy to supply at the systems [81]. Therefore, the 
newest researchers are trying to shift the research ready prototype into commercial 
production [72, 82].

The second technology mainly studied for grazing animals is the GPS systems 
which provide data on animal movement, spatial distribution in pasture, feeding 
behavior, and reproductive management in extensive sheep systems [71, 83–87]. 
However, the high cost of application impacts its regular use in small ruminants’ 
farms [46]. GPS are active devices that work in the ultrahigh frequencies (UHF) band 
(from 860 to 960 MHz) with a big energy demand to satisfy their long reading dis-
tances. The PLF systems based on GPS have mostly internet and mobile Apps such as 
Google maps. Indeed, other PLF solutions are based on collars equipped with sensors 
among which GPS that can transmit data via wireless [88].
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These collars allow the acquisition and transmission of data regarding animal 
localization (with an accuracy of 5–20 m) and behavior. In Umstätter et al. [46] is 
proposed a collar equipped with an automatic system based on pitch and roll tilt 
sensors suitable for the classification of behavior, which could be applied in extensive 
livestock production [89].

GPS devices can be used in combination with accelerometers and temperature sen-
sors with the aim of informing and sending alarms on the activity and its relationship 
with the animal (lost device, dead animal, predator attack). Temperature values used 
in combination with GPS are only indicative showing a large variation based on the 
animal’s features (e.g. long or short fleece, type of wool) and ambient conditions. The 
combination of GPS and tri-axis accelerometer can be a reliable method to classify 
livestock activity in pastures [90]. Moreover, the accelerometer is characterized by 
low energy requirements, and its application coupled with GPS can prolong the GPS 
battery lifespan leaving the active recording activity of GPS when the accelerometer 
detects a movement at a certain speed [88]. In addition, a GPS system equipped with 
a thermistor located below the vulva provide data on urination frequency, liquid and 
nitrogen emissions, and their spatial distribution patterns in relation to the ambient 
temperature changes (Figure 6) [91].

However, the application of these technologies meets some difficulties regarding 
the feasibility of these measurements in the decision-making process. In this contest 
the main issues are represented by the energy supply and battery duration, the lack of 
wireless data transmission and the accuracy and interpretation of data [80].

3.3 Technologies for heat stress data collection and analysis

The implementation of effective amelioration strategies to climate change 
 especially related to heat stress exposition requires a deep understanding of its impacts 
at physiological and behavioral level on extensively grazed sheep. The measure of core 
temperature which reflects the temperature of the main internal organs such as the 
heart, brain, and viscera [92] is a reliable indicator of heat stress in livestock [93]. Even 

Figure 5. 
Device for detecting of sexual behavior composed by a) accelerometer; b) microSD memory card; c) batteries; d) 
protective case; e) compartment for the accelerometer [76].
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though the measure of core temperature can be directly associated with health [94], 
reproductive success [19], and overall productivity [95], the manual thermometry 
applied for the measure of rectal temperature (RT) [93] is not applicable when the 
continuous assessment of body temperature of free-range animals or in extensive 
grazing system is required [96]. Indeed, the RT measurement is affected by a number 
of limitation due to the need to handle and restrain the animal which is time consum-
ing and labour-intensive, and the consequent intense stress to animal increased the 
metabolic heat production associated with the flight response that affects its reliability 
[97, 98]. This limitation could be covered by the introduction of indwelling thermal 
sensors such as rectal probes able to remotely measure temperature changes without 
removing animals from production and grazing [99]. However, also this technology 
has some instability, and the possibility of expulsion and the fecal temperature during 
defecation that limit its accurate data collection in sheep [96, 100]. Another common 
location for measuring core temperature is the vagina, in particular indwelling vaginal 
temperature (VT) sensors demonstrate a high correlation with RT measurements [101, 
102]. Its effectiveness in measuring body temperature is demonstrated in ewe-lambs 
under grazing conditions [103]. As for RT, also for the VT devices it should be taken 
into consideration that changes in uterine and vaginal blood flows during the differ-
ent stages of reproduction [104]. Indeed, in sheep, the changes in vaginal blood flow 
can modify the VT during gestation [105]. Moreover, also VT has several limitations, 
including the need of an appropriate design to prevent the loose of devices or fell out, 
and an advancement of technology with the integration of a full-automated data stor-
age system. In order to overcome all of these issues, other types of devices have been 
developed to monitor the body temperature, such as surgically implanted devices, 
infrared devices, and endo-ruminal boluses equipped with temperature sensors. The 
subcutaneously implanted devices provide a reliable measurements of body tempera-
ture and heart rate, two important indicators that can be used for the early detection 
of diseases and stress, in domestic sheep freely ranged on in unfenced mountain 
pastures [106]. Indeed, when data collected are transmitted online, a real-time moni-
toring of body temperature during grazing can be possible.

The intra-ruminal insertion of temperature sensors is considered a non-invasive 
alternative devise to the surgical implantation [107]. This technology collects data 
in real-time through a wireless transmission [108], offering the chance to store data 
until the animal is in proximity of the receiving antenna [100]. The technology of 
bolus is composed by a chip, antenna, battery, and temperature sensor which is orally 

Figure 6. 
a) Sheep urine sensor equipped with GPS and thermistor. The CIDR®is positioned in the vagina. The excreted 
urine enters in the perforated tube and flows over the thermistor. b) Electronics box positioned in sheep’s fleece at 
the midline over the hind legs c) GPS and electronics box fitted to a sheep [91].
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administered and naturally transported into the rumen [109]. The size of rumen 
bolus is an important issue in small ruminant studies; indeed, an ideal bolus for oral 
application has to be less than 20 × 100-mm and 70 g, with an optimal gravity (>2.5) 
which guarantees its retention in the reticulorumen [89]. Based on the ascertained 
possibility of using the rumen bolus sensors in small ruminants, it is applied in lactat-
ing dairy goats for the evaluation of eating-drinking behavior as a measure of heat 
stress exposition [110]. However, the use of bolus to evaluate the heat stress condition 
needs some adjustments due to differences in core temperatures and ruminal tem-
perature, of about 2°C [111], and to the concomitant alteration of microbiota rumen 
profile that causes differences between ruminal temperature and core temperature 
[108]. In addition, in turn the microbiota rumen profile is influenced by feed intake 
and diet composition [112]. All these conditions must be considered when the evalu-
ation of heat stress exposition is measured by rumen bolus. The development of best 
small-sized rumen boluses for small-ruminant is still ongoing [89].

One of the latest devises used in livestock useful for measuring the thermal 
status in a non-invasive way is based on thermal imaging camera. The infrared 
camera records the temperature of a certain part of animals’ body returning a 
thermo-graphic image, which depicted the radiation emitted [113]. From the image 
analysis procedure, the body temperature or the changes in blood flow is determined 
which could be connected to stressful environmental conditions [114]. This non-
invasive technology is suitable for the assessment of stress and welfare [115], and 
for the prediction of the heat stress exposition [116]. Moreover, different studies 
assess the application of infrared-thermography (IRT) to determine the thermal 
thresholds [117], and to predict the effects of heat stress on reproductive output in 
livestock [118]. Moreover, when considering the free-range grazing animals, sen-
sors and devices should be calibrated, taking into account the possible changes in 
meteorological parameters that impact both the quality of the transmission and 
the reception of infrared waves [92]. Not to least, it is important that the body 
surface to be analyzed needs to be clean, because dirty or wet coats may modify the 
emissivity [114]. With regard to sheep, the environmental heat exchange is mainly 
impacted by fleece length [119] which influence heat transfer at the surface of the 
skin [120]. Consequently, when the peripheral temperature is measured through 
IRT the presence or absence of wool should be considered because skin is a thermo-
regulatory organ. In general, in veterinary sciences the application of IRT is used to 
identify infection [121, 122], lameness in horses [123], mastitis in both sheep [124] 
and cattle [125], scrotal temperature in buffalo [126], heat tolerance [127, 128], 
thermal thresholds [129], and to predict the effects of heat stress on reproductive 
output [118]. About the use of IRT to accurately measure body temperature, dif-
ferent regions of the body can result in a different degree of correlation to RT as 
well as association with ambient temperature [130, 131]. In Joy et al. [132] the IRT 
is found a good method to predict rectal temperature. However, it is important that 
IRT must be performed in different sites due to differences in vasoconstriction/
vasodilatation activity between different parts of the body [133]. Indeed, thermal 
windows or different parts of the body show a direct connection with the autonomic 
nervous system, so infrared heat is dissipated there [134, 135]. A very recent study 
[136] found a different correlation between blood parameters and body temperature 
measured by a digital thermometer and thermography based on different parts of 
the body of sheep. Indeed, IRT is considered a non-invasive method to assess the 
stress load in sheep, especially in extensive sheep farming, founding a significant 
correlation between THI and the temperature of both abdomen and front legs, and 
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the metabolic parameters. George et al. [131] experiment, conducted on using IRT 
using different parts of body, shows that eye temperature of hair sheep strongly 
correlates with VT and RT. On the contrary, the reliability of skin locations, among 
which eye base, eye region, and udder, even if they are considered the best thermal 
window, could be affected by age and stressors, as well as gender and reproductive 
state. Indeed, the ocular IRT images are found to correlate with RT in rams but not 
ewes [42]. This limitation could be due to the fact that the ocular IRT refers to ocular 
temperature which is lower than core temperature and not able to detect short-term 
changes of temperature. On the contrary, the IRT is reliable in detecting small tem-
perature variations during different phases of the oestrous cycle in ewes using vulva 
and muzzle temperature (Figure 7) [137].

In summary the thermal imaging can be a fast and reliable method to screen many 
animals with little or no restraint [138] with great potentiality to be used to shift 
from conventional to an automated method [130]. However, as for other technologies 
presented here, some limitations and aspects must be taken into account when the 
IRT is used. Such as example, precise measurement of IRT demands an appropri-
ate camera positioning, with consistent image angle, and distance to the subject, a 
constant ambient temperature, UV light, and wind speed [138], as well as it can be 
considered a technology with high costs and labour intensive [100, 115]. However, it 
is not possible to predict RT from IRT imaging; therefore, a novel innovative way to 
obtain a prediction of measurements could be obtained with a combination of, as an 

Figure 7. 
Surface temperature measurenments of the following area: Around the anus (a1), in the center of the vulva (a2), 
ear (b), muzzle (c) and eye (d) by an infrared thermal camera (FLIR® series i50; FLIR systems Co. ltd., Shatin, 
Hong Kong). Warm areas appear white and cooler areas appear black [137].
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example, IRT and machine learning technique [132] which provides new opportuni-
ties to non-invasively assess the behavior [139, 140], the physiology [141, 142], and 
the production changes [143] of farm animals. This last concept must be exploited 
considering the machine and deep learning procure and computer vision algorithms 
for model prediction development with the aim of predicting the surface tempera-
tures of the body due to non-linearity of the relation between the inputs and the 
target [132]. This system is based on artificial neural networks (ANN), specifically 
designed to learn, and find patterns between the input data to predict specific outputs 
[144, 145]. The model development consists in a training procedure in which the 
algorithm processes automatically data by modifying weights and biases to obtain the 
best correlation [145].

In Jorquera-Chavez et al. [141] and Fuentes et al. [142] the implementation of 
ANN principle and IRT are used to analyze environmental-related stress responses 
in farm animals based on changes in body temperature. Recently, the deep learning 
approach found different application in animal behavior assessment, as presented 
by Kleanthous et al. [146] on deep transfer learning for activity recognition by using 
accelerometer data in sheep study, demonstrating that the convolutional neural net-
work-based transfer learning is a useful approach for data capturing, data labelling, 
and heterogeneity of sensor devices. Moreover, with the transfer learning approach 
is possible the reusability (upgrading of sensor devices) and generalization of pre-
trained models from other applications within similar domains on unseen dataset, 
especially with larger datasets providing a cost-effective solution (with regard to time 
and resources) [146]. This last concept is essential because there is no evidence that 
the signal processing and classification algorithms procedure, specifically designed 
for one type of sensor, can be re-used on data from different types of sensors. In the 
Table 1 are reported the different technologies of PLF tested in sheep field studies 
presented in this chapter.

4. Conclusion

The recent exploited PLF solutions give important information which support 
the decision process of farmers. In the context of climate change, several tools can 
be implemented to early detect heat stress exposition and to monitoring the welfare 
of animals in pasture, particularly in sheep. The technologies presented in this 
chapter include the animal identification and the wearable sensors, with a special 
focus on heat stress data collection and analysis, highlighting that all of them are 
characterized by several advantages and disadvantages especially when applied to 
sheep grazing farming system. Indeed, some devices among which ruminal bolus 
need to be correctly developed (i.e. dimension) for their better application in sheep 
studies. Moreover, most devices available for sheep are not yet validated which gives 
a less robust and precise data. To support this essential step new field studies on data 
analysis by using the latest deep learning approach used in combination with different 
sensors should be employed. The advancements in the field of computer science and 
electronics engineering, and machine intelligence are the base of monitoring effi-
ciently and automatedly the animals’ activities and welfare. The incredible opportu-
nities derived from early detection of ewe diseases, causing a limitation of antibiotics 
which improve the meat and milk quality, the improvement of overall productivity, 
can contribute to obtain more sustainable products.
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Technology Model/type/method Data Aim

Accelerome-ters AML prototype V1.0, 
AerobTec featuring an 
orthogonal three-axis 
MEMS accelerometer

Storage Identification of feeding behavior in 
free-ranged sheep [74].

Custom made 
devise based on 
Intel® Quark™ SE 
microcontroller 
C1000 attached 
to the electronic 
identification ear tag 
or to neck collar

Storage and 
processing by 
Python 3.5

Classification of grazing and 
ruminating behavior in sheep 
using various machine learning 
algorithms [75].

Tri-axial 
accelerometer 
ADXL345 (Analog 
Devices)

Storage and analysis 
by a validated 
algorithm.

Founding a method to automatically 
estimate the number of mounts and 
services performed by rams during 
field mating at pasture [76].

HOBO Pendant G 
data loggers

Storage Detection of behavioral changes 
[77]; and sheep behavior and health 
status [78].

ActiGraph GT3X 
sensors

Storage &wireless 
transmission

Prediction of lambs’birth [79].

GPS collars UNETracker, 
WildTrax, 
EarTrax-AG, atLog-B, 
Perthold Engineering

Storage Determination of sheep helter-
seeking behavior [84]; grazer 
behavior of hill sheep [85]; sheep 
circadian rhythm and feeding 
behavior [86]; reproductive 
management in extensive sheep 
systems [87].

CatLog-B, Perthold 
Engineering

Storage Determination of sheep grazing 
patterns [71].

GPS tracker collar 
with integrated pitch 
and roll tilt sensors

Storage Behavioral classification of sheep in 
extensive systems [46].

GPS collar and 
Thermistor

CIDR® (Controlled 
Intra-vaginal Drug 
Release; InterAg)

Storage Development of urine sensors and 
GPS units for the quantification 
of the number of daily urination 
events of individual animals and the 
determination of the pattern of urine 
distribution [91].

Reticulorumen 
boluses

Patents: Caja 
and Vilaseca, 
1996, European 
Community et al., 
1997.

Storage Permanent electronic identification 
of sheep, goat, and cattle [35].

Smarstock, USA Wireless data 
transmission up to 
200 m

Determination of Merino sheep 
rumen temperature [147].

Implantable 
devices

LifeChip ® 
microchips with BIO-
THERM ® sensor

Storage activated 
through handheld 
receiver

Peripheral temperatures 
measurement [120]; determination of 
sheep body temperature [148].
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Technology Model/type/method Data Aim

Infrared 
Thermography

IRT Camera Thermal image data 
collection

Determination of heat tolerance in 
lambs [128]; measure of core body 
temperature via eye temperature 
[131]; determination of vulva 
temperature to detect different 
estrous cycle [137]; determination 
of thermographic temperatures as 
good indicator of environmental 
and thermal comfort condition 
in lambs [149]; determination of 
lambs’ response in different genetic 
group to the environment [150]; 
determination of ewes’ hair coat 
temperatures under heat stress [151].

Vision-based 
system

Neural network and 
time-lapse camera 
(TLC2000)

Pre-trained 
convolutional 
neural network 
(Yolo)

Monitoring small ruminant location 
in grazing system [57].

Virtual fencing Nofence coupled with 
collar GPS-based.

Storage Learning procedure to associate a 
sound signal with an electrical shock 
in the virtual fencing system Nofence 
[47].

Garmin TT15 coupled 
with Garmin GPS 
hand-held unit 
(Garmin Alpha 100).

Storage Learning procedure to train sheep 
to a virtual fence by training collars 
capable of administering an audio 
and an electrical stimulus [53]; 
potentiality for virtual fencing to 
be used for improved grazing and 
natural resource management of 
sheep [152].

Unmanned 
Aerial Vehicles

Region-based 
Convolutional Neural 
Networks (R-CNN).

Not applicable Determination of sheep detection and 
counting [63].

Fully connected 
network (FCN) and 
deep convolutional 
neural networks 
(CNN).

Network-I, 
Network-II, 
U-Net, fine-
tuned AlexNet, 
GoogLeNet, 
VGG16, VGG19, 
and ResNet50

Determination of sheep detection and 
counting [62].

Mask R-CNN Determination of classification and 
counting of sheep and cows [60].

Adapted by [32, 65, 153].

Table 1. 
Different technologies tested in sheep field studies, including the model/type/or method, the type of data recorded, 
and the aim of experimentation.
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