
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

182,000 195M

TOP 1%154

6,700



1

Chapter

Perspective Chapter: Current 
Situation of Insecticide Residues 
in Food Commodities and Possible 
Strategies for Management of 
Residues
Banka Kanda Kishore Reddy, Addanki Maneesha,  

Chinna Babu Naik, Malleswari Sadhineni, Tejaswi Yelleti  

and G. Raja Reddy

Abstract

Pesticides have evolved into a crucial instrument in agriculture’s evolution as a 
plant protection agent for increasing food output. Moreover, pesticides contribute 
significantly by preventing a number of terrible diseases. However, both occupational 
and environmental pesticide exposure can lead to a number of health issues in people. 
It has been noted that pesticide exposures are becoming more and more associated 
with immune system suppression, hormone disruption, lowered intellect, abnormali-
ties in reproduction, and cancer. Because of the great demand for farm produce and 
their lack of awareness of the hazardous consequences of pesticide residues in food, 
some farmers do not wait long enough for the residues to wash off after spraying 
before harvesting. As a result, residues in food products have appeared as a result 
of increased pesticide use in agriculture. Some of the primary tactics for reducing 
human exposure to pesticides are pesticide safety, regulation of pesticide usage, 
appropriate application technology, and integrated pest management.

Keywords: pesticide, pesticide residues, environmental pesticide exposure, pesticide 
safety, integrated pest management

1. Introduction

The usage of pesticides is common to ensure high agricultural yields. They are 
employed in the production of agricultural products as well as their post-harvest 
handling. The growing usage of chemical pesticides, however, has had a negative 
impact on human health as well as contaminated the environment. It has long been of 
great concern that food products may contain pesticide residues. When these products 
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are eaten fresh, the issue becomes even more serious. Pesticides have been linked to 
a variety of risks to human health, from immediate effects like headaches and nau-
sea to long-term ones like cancer, reproductive damage, and endocrine disruption. 
Pesticides applied during the fruit growth period can dissipate faster because of the 
growth dilution effect [1]. However, when applied after fruit growth, they are likely 
to be carried over to the harvested produce and processed products. Processing is con-
sidered as effective tool which implies transformation of fresh commodity into value-
added product and ultimately affect the nature and magnitude of residues and during 
processing pesticide residues may increase or decrease in the transformed product [2]. 
Processing Factor (PF) is used to assess the risk associated with the consumption of 
pesticide residues, particularly for processed food products [3].

For pest management and the eradication of disease vectors, developing nations 
(like China) frequently utilize insecticides (including organophosphorous and 
pyrethroid) and fungicides (including triazoles and chloronitriles). Pesticide poison-
ings are far more common in poorer nations than in developed ones as a result of poor 
pesticide handling procedures, farmers’ use of more harmful pesticides, and insuf-
ficient monitoring and oversight of these chemicals. Because of a lack of funding and 
the absence of strict regulations, pesticide residue control initiatives are frequently 
ineffective in poor nations.

1.1 Insecticide residues found in various food commodities

Insecticide residues discovered in various food commodities were tabulated in 
Table 1.

1.2 Management strategies to reduce pesticide residues

1.2.1 Effect of processing on the level of pesticide residues in various fruits and vegetables

Consumers have little control over pesticide residues that are left in food products 
in various proportions after harvesting and which are damaging to human health. 
Hence, pesticide residues present a significant challenge to the international trade in 
food products. Since pesticide-treated food crops always retain varying amounts of 
these chemicals, finding non-toxic methods for decontaminating food are essential. The 
molecular composition, product mix, and environmental conditions all have an impact 

Name of the commodity Insecticides found Reference

Tomatoes Oragno chlorines & Organo phosphates [4]

Citrus Chlorpyrifos, Deltamethrin and Spirotetramat [5]

Tomato Ketchup Cypermethrin [6]

Wheat Deltamethrin
Permethrin
Malathion

[7]

Rice Diazinon & Chlorpyrifos [8]

Apple Abamectin, Diazinon & Chlorpyrifos [9]

Sugar beet Chlorpyrifos [10]

Table 1. 
List of insecticides found in various food commodities.
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on the levels of pesticides in various food items. Washing is the most popular technique 
of processing, and it is an important first step in both home and industrial preparation. 
As a result, it is critical to consider techniques that may successfully assist in reducing 
residue content at the individual level in order to limit dietary pesticide exposure.

The effects of commonly used household processes such as washing by tap water, 
saltwater, lukewarm water, lemon water, tamarind water and ozone water are dis-
cussed below.

Tap water washing for 2 minutes eliminated 30–50% of phosalone residues and 
65.3% of chlorpyrifos residues [11, 12], whereas tap water washing for 10 minutes 
removed 53.4, 53.3% dimethoate residues in grapes [13, 14]. Awasthi [15] found that 
washing mangoes with tap water removed 66–68% of the dimethoate and fenitrothion. 
Washing guava with tap water reduced dimethoate residues by 42.5–45.9% [16].

Other fruit crops viz., mangoes where 66% dimethoate residues were removed by 
tap water washing [15], 45.9% in guava [16]. Washing with salt water (2%) solution 
for 10 min was recorded as an effective decontaminant in removal of acephate, chlor-
pyrifos, quinalphos, bifenthrin residues (51.80–72.80%), acephate (72.74%), chlorpy-
rifos (67.52%) and quinalphos (65.0%), respectively in grapes [17–20], imidacloprid 
(61.89%) in field bean [21, 22], tetraniliprole (61.49%) in tomato [23] and NaCl (5%) 
removed 90% of quinalphos and profenofos in chili [24].

Pesticide residues combine with sodium chloride solution, a powerful electrolyte 
solution, which lowers their concentration and offers an appealing source for pesti-
cide residue removal. When dipped in the solution, neonicotinoids with high water 
solubility were easily separated from the fruits in salt media. Vijayasree et al. [25] 
discovered that tamarind water (2%) and salt chloride (2%) solutions eliminated 
85.56 and 100% of the emamectin benzoate in cowpea pods, respectively. Buprofezin 
residues in oranges were reduced by 36.50 and 27.51%, respectively, after washing 
with tap water and salt chloride solution (2%) [26].

Citric acid, the active component of lemon water, was mostly responsible for 
the residue elimination. The findings supported research in which a 52.2% reduc-
tion in dimethoate in tomato [16] was noted. Dimethoate and quinalphos were both 
eliminated by washing in lemon water (1%) for 10 minutes, along with 45% of the 
pesticide acetamiprid from tomatoes [27, 28].

The removal of residues by tamarind water solution is due to its acidic nature 
which is contributed by furan derivatives and carboxylic acids [29]. Studies where 
tamarind water (2%) washing resulted in a 69.1% reduction of chlorpyriphos in 
tomatoes, 58.8 and 80.4% reduction of dimethoate and quinalphos in grapes, 58.8% 
of dimethoate in grapes [14, 16, 27].

It is evident that the ozone concentration administered, the physical character-
istics of the food matrix, and the residual ozone present in the medium all affect 
how effective ozone intervention for pesticide degradation is. The parameters that 
affect the clearance rate include the application environment (pH, temperature, and 
humidity), the application method (aqueous vs. gaseous), the ozone concentration, 
the rate of formation, and the geometry-size of pesticide residue [30]. Dipping apples 
in ozonated water of 0.25 ppm resulted in reducing the levels of azinophos-methyl 
on the surface of apples to 75% [31]. Ikeura et al., [32] studied the effect of ozone 
water (2.0 mg L-1) for 10 min on the level of fenitrothion residues in strawberries and 
removal rate were concluded as 25%. Removal of chlorpyrifos in lychee fruits with 
aqueous ozone water concentrations of 2.2, 2.4, 3.2 and 3.4 mg L-1 for 10, 20, 30 and 
60 min resulted in 0, 25.8, 29.7 and 67.4% reductions, respectively. Similarly, fumiga-
tion of O3 at 80, 160, 200 and 240 mg L-1 for 10, 20, 30 and 60 min resulted in 10, 18, 
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30, 45% reductions, respectively [33]. Treating the citrus fruits with ozonated water 
(10 mg L-1) for 5 min reduced the chlorpyrifos by 94.2% [34]. Washing of strawber-
ries in ozonated water (1 mg L-1) for 5 min resulted in removal of chlorpyrifos by 
71.5% [35]. Washing of tomatoes in ozonized water for 30 seconds removed chlorpy-
rifos by 86% [36].

To ensure that customers are not exposed to any health hazards, monitoring pes-
ticide residues ingested through food is necessary. Few foods are consumed without 
processing, including washing, peeling, drying and pasteurization. During harvest, 
the residues left on the fruits can be carried into processed foods, such as juice, 
squash, jams, jelly, and raisins [37]. It is well established that food processing affects 
residual pesticide concentrations. Therefore, when fruits are processed, it is pre-
dicted that the residues will decay due to exposure to various processing procedures. 
Consequently, it is critical to include processing factors when assessing pesticide 
residues in processed foods.

Camara et al., [38] conducted various food processing procedures viz., cutting, 
washing and drying in lettuce to monitor the behavior of imidacloprid and they 
concluded that PF was 0.53 for imidacloprid which indicates reduction of residue con-
tent than in fresh lettuce due to food processing. Pasteurization resulted in the loss of 
60.42–100% imidacloprid residues in tomato juice and paste [39, 40]. Pasteurization 
was found to reduce imidacloprid residues (32.45%) in strawberry juice preparation 
[40]. Imidacloprid residue reduction (82.66% and 66.55%) in sugared pulp and paste 
of winter jujube [41], 50.64 and 84.41% removal of imidacloprid residues during 
strawberry syrup and jam preparation, respectively [40]. Hot air over drying reduced 
imidacloprid residues by 70% in pomegranate, 36.73% in zucchini processing, 53% 
in lettuce [38, 42, 43], respectively. Processing of apples were concentrated to 0.162, 
1.039, 0.102, 0.049 from 0.061, 0.372, 0.047 and 0.02 mg/kg of quinalphos, chlorpy-
rifos, cypermethrin and deltamethrin respectively in apple juice than in unprocessed 
apples [44]. Commercial processing of tomato fruits into tomato juice (under hot 
break) reduced 100% of imidacloprid residues [28]. Cypermethrin residues were 
concentrated in seedless variety of grapes to 0.46 ppm when compared to residues in 
fresh grapes (0.40 ppm), a study conducted by [2]. Producing apple juice from freshly 
harvested apples resulted in reduction of chlorpyrifos and methomyl residues by 100 
and 78.1%, respectively [45].

Reddy et al., [46] studied processing effect on pesticide residues in grapes where 
Processing factor was calculated and was in the range of 0.01 to 0.35, 0.04 to 0.39 and 
0.03 to 0.40 for juice, squash and raisin, respectively. In this study, imidacloprid was 
removed (59.75–67.94%) from grapes while, washing with water. Washing reduced 
chlorpyrifos residues (21%) in apple processing [47]. It is inferred that there is a 
strong correlation between water solubility (600 mg L-1) and removal of imidaclo-
prid [48]. Crushing/homogenization does not impact residues, but it speeds up pro-
cesses like hydrolysis, which releases isolated enzymes and acids from the cuticle layer 
more quickly, reducing residues in the juice. Partitioning characteristics of insecticide 
between pulp and juice are responsible for the low residual levels in juice and squash.

Clarification of juice may eliminate residues retained in the suspended particles. A 
negligible number of systemic insecticides might be absorbed by pulp or fruits [48]. 
Studies reported 93.26–97.85% removal of imidacloprid residues during processing 
of apples into juice [47]. Pesticide residues were significantly reduced during juice 
processing also reported [44, 45]. Pasteurization was found to reduce 60.42–100% 
of imidacloprid in tomato juice and paste [28] and imidacloprid residues (32.45%) 
in strawberry juice preparation [40]. During squash preparation, addition of sugar 
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syrup to the juice reduced residues in 94.32% in present study as water was added 
in sugar syrup resulted in dilution of residues. Hendawi et al., [40] reported imida-
cloprid residue reduction during strawberry syrup (50.64%) and jam preparation 
(84.41%) and 66.55 and 82.66% reduction in sugared pulp and paste of winter jujube, 
respectively [41]. Because of evaporation and degradation, the drying process may 
have significantly reduced residual levels [49]. With regard to imidacloprid residues, 
70.00% reduction in pomegranate by hot oven air drying [42], 53.00% in lettuce [38] 
and 36.73% reduction in zucchini processing [43], were reported.

In raisin preparation, residues of phosalone (68.04%) and ethion (69.55%) were 
removed [50]. The processing factor achieved for hexythiazox and bifenazate were 
0.36 and 0.15 in grapes for raisin [51]. It is concluded that pesticides with low Kow 
may be removed through volatilization after drying and this is correlated with studied 
chemical imidacloprid where the Kow is low (0.57). Catherine et al., [52] reported 
that water solubility of a pesticide is an important factor during the juicing opera-
tion and pesticides with the highest water solubility were present in relatively higher 
amounts in the juiced carrots, tomatoes and strawberries [53]. Moreover, dimethoate 
is xylem mobile due to its low log Kow value of 0.7 and phloem mobile due to its pKa 
of 2. This is probably why washing and peeling are less effective at removing dimeth-
oate than other organophosphates such as chlorpyrifos and parathion and thereby 
ending up in the filtered juice. Concentration of dimethoate quinalphos, chlorpyrifos, 
cypermethrin, deltamethrin were found in apple [44], chlorpyrifos in apple juice 
[47], in wine [54].

Pesticides residue levels were reduced during processing of food commodities 
but those pesticides (dimethoate, azoxystrobin, pyrimethanil) were not having a 
preferential partition between liquid and solid phase may be concentrated in the 
final processed product [55]. The poor transfer/presence of lower residues in filtered 
juice might be due to low water solubility (0.024 g/L) and high octanol co-efficient 
(Kow = 5.0) reported for emamectin benzoate, fenpropathrin and propargite in tea 
brewing [56, 57]. Lower residues of emamectin benzoate in grape and its processed 
products is might be due to high octanol co-efficient (Kow = 5.0) makes immobile in 
plant tissues. Our results are in line with studies where post-harvest processing and 
decoction of Chinese medicinal plant mugua resulted in 99.94% reduction of ema-
mectin benzoate [58] PF of 0.06 in Chinese peony [59]. The processing of grapes into 
juice, squash and raisin resulted in reducing the residues as well as processing factor 
less than for imidacloprid, emamectin benzoate and dimethoate [46].

2. Conclusions

To reduce residue prevalence in food commodities, the governing bodies should 
undertake pesticide policy awareness campaigns and impose mandatory training 
to the grape farmers on pesticide usage, the consequences of excessive/improper 
pesticide use on the environment and the consumers.
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Appendices and nomenclature

PF  Processing Factor
%  Per cent
min  Minutes
PH  Potential of Hydrogen
ppm  parts per million
g/L  grams per liter
mg L−1  milligram per liter
mg/Kg  milligram per kilogram
Kow  Water Partition Coefficient
pKa  Acid dissociation Constant
O3  Ozone
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