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Abstract

Glaucoma is a chronic, progressive eye disease that causes irreversible damage to
the optic nerve head. Visual field loss, the functional change seen in glaucoma corre-
lates well with structural loss in the neurosensory part of the eye involving the retinal
ganglion cell layer (GCL) and retinal nerve fibre layer (RNFL). Early assessment and
prevention of disease progression safeguard against visual field loss. Structural loss is
evaluated via progressive stereoscopic optic disc photography and optical coherence
tomography (OCT), which measures the GCL and RNFL thickness. Meanwhile,
defects in visual fields indicate a functional loss. Ophthalmologists most correlate both
the structural and functional data to interpret a patient’s likelihood of glaucomatous
damage and progression. In this chapter, we have elucidated means to correlate
structural loss with functional loss in glaucoma patients from a neophyte’s perspective
and highlighted the finer nuances of these parameters in detail. This understanding of
various terminologies related to structural and functional vision loss, along with the
correlative interpretation of the structural and functional tests in a glaucoma patient,
form the fulcrum of this chapter.

Keywords: Glaucoma, Structure-Function Correlation, Three-Dimensional, POAG,
Optical Coherence Tomography, Visual Fields, Scanning Laser Ophthalmoscope,
BMO-MRW
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1. Introduction

Glaucoma is the upheaval in the structural and functional integrity of the optic
nerve, whose progression can be arrested with judicious control of the intraocular
pressure [1]. It includes a group of disorders characterised by chronic and progressive
optic neuropathies. They exhibit characteristic morphological features at the optic
nerve head and retinal nerve fibre layer which are associated with progressive loss of
retinal ganglion cells leading to characteristic visual field defects [2]. Glaucoma is
identified to be the leading cause of irreversible blindness on a global scale. The global
prevalence among those aged 40 years and above has been estimated to be about 76
million in 2020. It is expected to keep rising to over 118 million affected patients by
the year 2040. The disease shows a preference pattern for males, in comparison to
females. People of African ancestry and people living in urban areas were more likely
to be diagnosed with the disease than their counterparts of European ancestry and
people living in rural areas [3]. The most common subtype among this group is
primary open-angle glaucoma (POAG) [4]. POAG is distinctly regarded as a multi-
factorial optic neuropathy. The typical pathology involved is the acquired atrophy of
the optic nerve and loss of retinal ganglion cells in the background of open anterior
chamber angles, giving rise to specific visual field disturbances [5–8]. The level of
structural alteration, correlated with functional perception, is used to assess the
severity of POAG among patients. Structural alterations encompass changes involv-
ing, but not limited to, neuro-retinal rim thinning and retinal nerve fibre layer loss
(RNFL). Functional alteration in POAG can indicate a change in the visual function,
most commonly, a visual field loss [9]. Measurements of these structural and func-
tional components show a wide range of variation between patients and between
repeated measurements on the same patient, making this a considerable challenge to
assess the true extent of glaucomatous damage [9]. In day-to-day practice, in glau-
coma clinics, this is overcome by using the structural domain to support the diagnosis,
made using the functional domain and vice versa.

The Structural and functional integrals of glaucoma show a progressive decline as
the disease progresses [10]. This decline shares a common pathophysiological path-
way, which includes the death of the retinal ganglion cells and their axons, thereby
alluding to the possibility of a defined relationship between these two integrals.
Hence, establishing this relationship between structural and functional pathology of
glaucoma, and their clinical measurements, gain weight in the practice of glaucoma
management [11].

2. Importance of the structure: Function relationship in glaucoma

Delving into both the structural and functional progression of glaucoma, particu-
larly in cases of POAG, while ascertaining the natural history of the disease to grade its
severity is vital. These factors dictate and influence the course of treatment, as well as
the visual prognosis of said patients.

The natural history of POAG includes progressive loss of the neuro-retinal rim
width on the structural front coupled with progressive loss of the visual field on the
functional front [12]. In a subset of patients, it was found that blindness was an
imminent problem, whose risk depended on the severity of the disease at initial
presentation [13].
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However, in the grading of the severity, clinical dilemmas arise when there are
discrepancies between the structural and functional presentation of the disease in the
same patient. For instance, some patients who show end-stage glaucomatous optic
atrophy do not show an equivalent representative severity of visual field loss. On the
other end of the spectrum, patients with visual field loss characteristic of severe
glaucoma do not show comparable structural defects [14, 15]. Such differences pose a
diagnostic predicament to a glaucoma clinician on whether to base or judge the
likelihood of the disease and severity on one component over the other, or a
combination of both.

3. Evolution of fundus photography

The first historical fundus photograph dates back to 1886, published by Jackman
and Webster [15]. However, the major limitation of this technique was a prominent
corneal reflex, resulting in poor image clarity. By 1898, Thorner designed the first
reflex-free ophthalmoscope based on a simple principle of viewing the transmitted
and reflected beams through either half of a dilated pupil [16]. In the following year,
Friedrich Dimmer further developed a relatively more complex ophthalmoscope in
partnership with Zeiss Jena. Though a significant leap forward, this ophthalmoscope
was large, hefty, and significantly more expensive [17, 18]. By 1925, the Zeiss-
Nordensen retinal camera, which used a carbon arc lamp for imaging, was commer-
cially made available. The Zeiss Littmann ophthalmoscope, invented in 1955 with an
improved optical design and electronic flash illumination, ushered in a new era of
fundus photography.

3.1 Scanning laser ophthalmoscope

The inception of the first scanner laser ophthalmoscope opened a third door
in fundus photography. Designed by Webb, Hughes and Pomerantzeff, it
required substantially less light than conventional ophthalmoscopes or fundus
cameras. A laser beam of <100 μW provided a flying spot on the subject’s retina,
allowing an inversion of the usual division of the pupil; only the central half-
millimetre is required for illumination, while the remaining area is used for light
collection. No optical image of the retina is formed, but a photomultiplier tube in
a pupillary conjugate plane provides video signals to a TV monitor, displaying an
image.

The natural evolution of this scanning laser ophthalmoscope has undergone many
iterations since. The field of view has expanded to wide-field and ultrawide-field
imaging, which encompass nearly 200° of the retina (Figure 1). Confocal imaging,
using blue, red, red-free and infrared spectrum imaging, help visualise the retinal
architecture more clearly (Figures 2 and 3). Autofluorescence enables the assessment
of the retinal pigment epithelial (RPE) layer integrity (Figure 3). Non-mydriatic
cameras allow fundus and stereoscopic disc imaging in angle closure suspects
(Figure 4) [19]. Red-free filtering enhances the visualisation of retinal vasculature.
Blue images provide an improved view of the retinal nerve fibre layer (RNFL). The
red channel allows it to penetrate the deeper layers of the choroid. Infrared light
provides detailed information corresponding to the choroid.
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4. Evolution of optical coherence tomography

Optical coherence tomography (OCT) was considered to enhance the low-
coherence interferometry used initially for axial length measurements [19]. The initial
systems were limited to scanning speeds of 400 axial scans (A-scans) because of a
physical constraint: a moving reference mirror. Changing the position of the reference

Figure 1.
Fundus photograph showing wide-field and ultrawide-field images of the same patient.

Figure 2.
Fundus photograph showing colour, red filter, blue filter & green filter images of the same patient.
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mirror enabled backscattered tissue intensity levels from varying retinal and choroidal
depths to be interpreted. The two main advancements incorporated into recent com-
mercial systems are better axial resolution and increased scanning speeds [20–23]. The
axial resolution was improved from 10 μ to 2 μ by incorporating broad-band light
sources into the OCT systems [22]. Image acquisition speed has also been considerably
improved through enhanced detection of backscattering signals without the need for

Figure 3.
Fundus photograph showing single field colour, infrared and autofluorescence image of the same patient.

Figure 4
(a) Image showing the stereoscopic image of the right eye optic disc obtained through the fundus machine. (b)
Image showing the observers’ view of the stereoscopic image after wearing the 3D glasses.
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movement of the reference mirror. Frequency information is acquired with either a
broad-bandwidth light source, a charge-coupled device camera, and a spectrometer or
by sweeping a narrow-bandwidth source through a broad range of frequencies with a
photodetector [22–28]. Spectral-domain OCT (SD-OCT) uses broadband light
sources while the swept source uses a narrow bandwidth through a broad range of
frequencies.

Since its inception, OCT has seen numerous advances both in image acquisition
capabilities as well as image recognition abilities. Adaptive optics OCT (AO-OCT) was
introduced by Miller et al. in 2003 to improve transverse resolution [29]. Adaptive
optics mainly compensate for monochromatic aberrations using wavefront sensing
and deformable mirrors [30]. Ultrahigh (axial)-resolution AO-OCT was introduced in
2004, improving transverse resolution to 5 to 10 μm in the retina [31]. Polarisation-
sensitive OCT detects polarisation changes in polarised light to detect lesions at the
level of retinal pigment epithelium layer [32]. RNFL birefringence was measured in
humans by Cense et al. and Yamanari et al. who found that, unlike RNFL thickness,
birefringence does not change as a function of increasing radius from the ONH
[33–35]. This is likely to play a role in better OCT image acquisition, going forward.
Intraoperative OCT incorporates a 1310 nm imaging system coupled to an operating
microsystem [36].

5. Evolution of visual fields

During the 5th century BC, Hippocrates observed and described hemianopia.
Ptolemy attributed the visual field to be circular. Ulmus first published the first
illustration of visual fields in 1602. Marriott described the blind spot for the first time
with its relation to the optic disc [37–39]. Thomas Young labelled the extent of the
visual field as 50° superiorly, 70° inferiorly, 60° nasally, and 90° temporally [37–39].
Non-seeing areas in the visual field were reported by Boerhaave in 1708, while Beer
described the shape and location of scotomas in 1817. However, quantitative visual
fields were only obtained in 1856, by Von Graefe.

Jannik Bjerrum introduced campimetry with the help of a tangent screen
and, along with his assistant Henning Ronne, used different target sizes to
generate multiple isopters to characterise the shape and three-dimensional
characteristics of the visual field sensitivity map. In this regard, the most significant
contribution was the invention of the Ganzfeld bowl perimetry by Goldmann in 1945,
which provided a uniform dark background superimposed with a moving optical
projection system [37–39]. Tubingher perimetry was invented by Elfried Aulhorn and
Heinrich Harms, which essentially was a static perimeter capable of making temporal
and spatial summations throughout the visual field. The problem with bowl perimetry
was the development of artefacts related to masks and increased risks of infection. In
the cases of Humphrey visual field progression cannot be overlooked. In 1974, Franz
Frankhauser and co-workers developed the first automated perimeter, the Octopus
[40–47].

Built-in automated tools to describe and analyse progression in the Octopus
perimeter, provide the greatest advantages today (Figure 5). These include:

Global trend analysis: consists of four indices. They are mean defect, square root
loss of variance, local defect and diffuse defect.

Cluster trend analysis: mainly evaluates the ganglion cell loss along the retinal nerve
fibre layer and papillomacular bundle.
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Polar trend analysis: aids in detecting the precise location of structural defects
corresponding to the functional loss that has occurred (Figure 6).

5.1 Short-wavelength automated perimetry (SWAP)

The colour perimeter was introduced by Hart et al., which used iso-luminant blue and
yellow light, and was later termed short-wavelength automated perimetry (SWAP). It

Figure 5.
(a) Visual field report of a normal patient showing the global trend analysis (red box), cluster trend analysis
(green box) and polar trend analysis (blue box). (b) Visual field report of a glaucoma patient showing the global
trend analysis (red box), cluster trend analysis (green box) and polar trend analysis (blue box).

Figure 6.
Polar trend analysis (structural) correlated with the inferotemporal notching (functional) in the optic disc.
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incorporates a bright yellow background to desensitise the red and green wavelengths,
thus utilizing the shorter blue wavelength as a stimulus (Figure 7) [48–52].

5.2 Flicker perimetry

Flicker perimetry is based on an intermittent flashing stimulus superimposed on a
uniform background [48]. Three types of tests based on flicker perimetry aim to
detect the highest rate of flicker at higher contrast, the amplitude of contrast to detect
flicker, and luminance pedestal flicker. The greatest advantage of flicker perimetry is
that it is unaffected by blur.

5.3 Frequency doubling threshold (FDT) perimetry

Frequency doubling perimetry incorporates a sinusoidal grating under low spatial
frequency that undergoes high temporal frequency counter-flicker, thus providing
double the number of light and darker bars - a frequency-doubling effect. This form of
perimetry is resistant to variations occurring in the environment.

5.4 Motion perimetry

Motion perimetry is based on motion sensitivity, which is a very primitive visual
function and is resistant to change in many different stimuli.

Motion perimetry is based on [48, 53].

• Determining the minimum amount of movement needed for the detection of
change in position - displacement perimetry

• Evaluating the amount of motion coherence needed to detect a direction of
motion from within a group of randomly moving dots - motion coherence
perimetry

Figure 7.
(a) Image showing the patient performing the SITA SWAP perimetry. (b) Image demonstrating the yellow
background with blue stimulus (red arrow) and (c) zoomed view of the same with blue stimulus (red arrow).
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• Determining the direction of motion

• Assessing the velocity needed for motion detection

• Measuring the size of a number of moving dots needed to localise the direction of
motion

5.5 High-pass resolution perimetry

High-pass resolution perimetry employs light and dark concentric rings, from
which low spatial frequency components have been removed to emphasize the lighter
and darker edges. The main aim of high-pass resolution perimetry is to elevate the
detection threshold so that the detection and identification thresholds coincide
simultaneously [54].

5.6 Rarebit perimetry

Very small stimuli are displayed on a video display, where 0, 1, or 2 suprathreshold
stimuli are presented at different local visual field regions. The number of dots the
patient was able to appreciate was then noted [55, 56].

6. The amalgamation of the three musketeers - the Spectralis, the Octopus
and the EIDON

While examining the posterior pole, primarily for structural evaluation, we observe
the scleral rim to determine the margin of the optic disc. However, in reality, the margins
are defined by Bruch’s membrane opening (BMO), which is an OCT interpretation. The
Bruch’s membrane opening-minimum rim width (BMO-MRW) (Figure 8) is a superior
parameter for assessing the progression of glaucomatous damage, significantly
outperforming Bruch’s membrane opening horizontal rim width (BMO-HRW) [57].

Additionally, the position of the fovea may vary as a result of torsional movements
of the patient’s eye, potentially leading to erroneous results [58–62]. The Spectralis

Figure 8.
(a) Image showing the Bruch’s membrane—minimum rim width analysis in Spectralis OCT of a normal
patient. (b) Image showing the Bruch’s membrane—minimum rim width (reduced) analysis in Spectralis OCT of
a glaucoma patient.
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OCT incorporates an anatomical positioning system technique for precise marking of
the fovea Bruch’s membrane opening axis (FoBMO) (Figure 9). This process includes
marking the centre of the fovea and BMO-MRW, formation of the FoBMO axis, and
analyzing parameters related to it. This approach effectively eliminates errors resulting
from torsional eye movements.

BMO MRW components:

• Black line: Measured BMO MRW

• Grey curve: Baseline values

• Horizontal axis: Position along optic disc circumference in degrees

Confocal scanning laser ophthalmoscope uses three display options:

• BMO points and section images

• BMO display points

• OCT section image

The functional correlation of the BMO-MRW is compared with the polar analysis
of the OCTOPUS perimeter.

6.1 Polar trend analysis

Polar trend analysis assesses the point-wise trend analysis of the sensitivity loss in
decibels, instead of a slope method to determine the rate of change. Sensitivity loss for
the first visual field is represented as blue, while the last field is depicted as yellow.
These two points are based on the trend lines, not the individual visual fields on that
day. The two sensitivity lines are then plotted on a polar grid and are connected by a

Figure 9.
(a) Fovea Bruch’s membrane opening axis (FoBMO) measured using the anatomical positioning system. (b)
Fundus image of the same showing the fovea.
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straight line corresponding to the position of nerve fibre bundles of the test location. If
there is a worsening in sensitivity between the first and last points, then it is
represented as a red bar. Improvement is depicted as a green bar. The grey band in the
centre indicates the normal range for these bars.

• Location of the bar indicates a corresponding structural area

• Length of the bar denotes the amount of sensitivity loss in dB

• Longer bars denote the greater magnitude of the effect

• Colour of the bar is red – loss of sensitivity

• Colour of the bar is green – a gain of sensitivity

6.2 Cluster trend analysis

In Cluster trend analysis, visual field locations corresponding to the same RNFL
bundle are grouped in 10 visual field clusters and used to calculate the respective
average Cluster Mean Defect.

• Highly likely normal clusters (P > 5%) are marked with a “+” symbol, and are
likely abnormal

• Cluster Mean defects are displayed in normal font (P < 5%) or bold font
(P < 1%).

• The Corrected Cluster Analysis representation is similar, but eliminates diffuse
visual field loss and solely considers local loss.

RNFL thickness measured clinically by fundus examination and true colour
confocal fundus imaging (EIDON) is correlated with RNFL analysis of
Spectralis OCT, which is then functionally correlated with cluster analysis of
the Octopus perimeter (Figure 10). Similarly, the papillomacular bundle

Figure 10.
OCT RNFL reports of a normal and glaucoma patient respectively with RNFL thickness (red box), GCL thickness
(green box), BMO-MRW and RNFL thickness comparative analysis map (blue box).
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examined clinically will be correlated with the macular ganglion cell inner plexiform
layer analysis of Spectralis OCT (Figure 10).

7. Conclusion

It is important to do a structure-function correlation to continuously monitor
glaucoma progression. The structure-function correlation of optic disc analysis
involves stereoscopic optic disc photography, polar analysis and BMO-MRW
determination (Figure 11); RNFL analysis involves OCT-RNFL and 24-2 visual
field analysis (Figure 12); GCL analysis involves OCT (GCL, Inner Plexiform
Layer and facultative mRNFL), 24-2 and 10-2 visual field analysis (Figure 13) [63].
Each aspect of the disease can be monitored with a 3-D approach in imaging and
analysis.

Figure 11.
Image showing (a) inferior notching (black arrow) in the optic disc. (b) Corresponding inferior defect in the polar
analysis map (black arrow). (c) Bruch’s membrane—minimum rim width analysis in Spectralis OCT showing
inferior defect.

Figure 12.
(a) Fundus photograph showing inferior RNFL wedge defect (black arrow). (b) RNFL thickness map showing
inferotemporal thinning. (c) Visual field evaluation (greyscale, cluster analysis and corrected probabilities)
showing superior visual field defect (black arrows).
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Figure 13.
(a) GCL thickness map showing inferior thinning of the ganglion cell layer (red arrow). (b) Visual field 24-2
evaluation (greyscale, cluster analysis and corrected probabilities) showing the corresponding visual field defect in
the central 10 degrees of field (red circles). (c) Corresponding functional damage easily detected in visual field 10-
2 (greyscale and corrected probabilities) evaluation (green arrows).
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