We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,700 182,000 19oM

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

:
Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



Chapter

On the Selection of Power
Transformation Parameters in
Regression Analysis

Haithem Taha Mohammed Ali and Azad Adil Shareef

Abstract

In multiple linear regression, there are several classical methods used to estimate
the parameters of power transformation models that are used to transform the
response variable. Traditionally, these parameters can be estimated using either Max-
imum Likelihood Estimation or Bayesian methods in conjunction with the other
model parameters. In this chapter, attention has been paid to four indicators of the
efficiency and reliability of the regressive modeling, and study the possibility of
considering them as decision rules through which the optimal power parameter can be
chosen. The indicators are the coefficient of determination and p-value of the general
linear F-test statistic. Also, the p-value of Shapiro-Wilk test (SWT) statistic for the
residual’s normality of the estimated linear regression of the transformed response
vector and the estimated nonlinear regression of the original response vector resulting
from the back transform of the power Transformation model. Real data were used and
a computational algorithm was proposed to estimate the optimal power parameter.
The authors concluded that the multiplicity of indicators does not lead to obtaining an
optimal single value for the power parameter, but this multiplicity may be useful in
fortifying the decision-making ability.

Keywords: Box-Cox transformation, multiple linear regression, Shapiro-Wilk test,
general linear F-test statistic, Maximum likelihood estimation

1. Introduction

It is known that when some conditions of the statistical analysis are not met in the
linear regression inputs, this means that the outputs of the statistical inference will be
unreliable. The most important two conditions that must be fulfilled in the estimated
linear regression model are the normality of residuals and constancy of its variances
and it is the most violating condition as well [1]. Also, the unfulfilled of these condi-
tions means that the estimated response mean function has no straight line shapes in
its relationships with the explanatory variables. In this regard as well the lack of
conditions becomes evident in complicated nonlinear models when the residuals in
the original model are additive [2]. Therefore, the data transformation tools to linear-
ity “Especially those that belong to the power transformation (PT) family” have been
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used to greatly enhance the utility of statistical modeling and obtain a better fit as a
general goal. That is, the main goal of data transformation is to prepare it to be
compatible with the requirements of statistical inference tools [3]. In short, the
confirming conditions for the best estimate of linear regression model are (i) the
transformed response should be normally distributed with constant variance for
each value of the predictor variables [4] or (ii) have more closing on a better fit to
normality [5].

A large body of literature provides various suggestions and developments about
the uses of PT for continuous variables in regression models, whether for the depen-
dent variable, independent variables, or both. In this regard, two main research
directions can be distinguished; the first is concerned with various proposals and
strategies for developing the mathematical functions of PT models to address more
complexities in data patterns. “For example, see [6-11]”. While the second direction,
which will be focused on in this chapter was concerned with the selecting methods of
optimal power parameters in different PT families and datasets, “For example, see
[8, 12-18]”. There are many methods used to estimate the power parameters in
Multiple Linear Regression (MLR). Traditionally, these parameters can be estimated
using either Maximum Likelihood Estimation (MLE) or Bayesian methods in con-
junction with the other model parameters [13]. It is also known that MLE is very
sensitive to outliers [8]. Therefore, in addition to the traditional estimation methods,
there are some other proposed methods based on the indicators of statistical modeling
efficiency. These indicators were used as decision rules to choose the optimal value of
the PT parameter [14, 15]. In general, multiplicity of criteria used for a particular
dataset does not lead to a single value or at least a closed feasible region for a power
parameter. Also, the values of the power parameters differ according to the transfor-
mation models.

Outside of the traditional methods, Bartlett’s method was to choose a transforma-
tion based on the minimizing some measure of the heterogeneity of variance [16].
Tukey, 1949 [17] used the efficiency indicators of ANOVA such as minimization of
the F-test value for non-additivity, minimization of the F ratio for interaction
versus error, and maximization of the F ratio for treatments versus error [18].
Anscombe, 1961 and Anscombe and Tukey 1963 indicated how a certain function
of the residuals can be providing us with a certain insight into the PT model [19].
While some other authors went on to propose algorithms for power parameter
selection using the goodness of fit tests of the normality transformed data [12, 20] and
coefficient of determination of the estimated linear regression of transformed
response [15, 21, 22].

The chapter was divided into four sections. The second section included a short
review of the PT models. Third section included the application and the computa-
tional algorithm. While the fourth section included the conclusions.

2. Power transformation: Short review

Finney, 1947 [23] assumed the following simple family of PT to transform both
sides of the Dose-Response regression Y = 5(x, f) + ¢,
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to form a monotonic simple linear regression E(y(y)) = n(w(x), f)) for the
nonlinear relationship of the positive response Y given the positive dose X. 1; and X,
are the power parameters that can be estimated from the data.

Tukey, in 1957, developed another simple family of PT to accommodate negative

y’s by assuming [24],

Jo+a) a#£0
W@)_{ln(y-l-a) A=0 2

where the value of a can be chosen such that (y + a) > 0. In general, it is assumed
that for each A, q;(y) is a monotonic function of y over the admissible range [13].

Considering the common family of Box-Cox transformation (BCT) [13], it is
possible to propose the following generalized approach,

(y+a) —b
)= Tgmpray
gm(y+a)ln (y+a) 1=0

(3)

where a and b are constant quantities and a is chosen so that (y +a) > 0. gm(y + a)
represents the geometric mean of the shifted response (y + a). Eq. (3) of BCT family
hold for (y +a)> 0 and for y > — a. A number of PT models have been derived from
this family; the following PT is equivalent to the simple version of Finney transfor-
mation Eq. (1) whena = 0,b =1landgm(y +a) =1,

y' -1
w(y){ i 470 )
Iny A=0

As for the following PT, it is an extended form of Eq. (4) whena # 0,b =1and
gm(y +a) = 1 and equivalent to Tukey transformation according to Eq. (2) since the
analysis of variance is unchanged by a linear transformation [24],

(y+a) -1
w(y){—/l 470 5)
In (y+a) A=0

While as fora = 0, b = 1 can get a PT model equivalent to Eq. (4),

Yy -1
v = iy 7 ©)

m)}iny =0
finally, as for a # 1, b = 1, can get the following PT model,
(y+a) —1

v = Tgmy+ap T 70
(gm(y +a)}n (y+a) A=0
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The main three properties of the PT family are: the first, is the continuity at A go to
zero, consider the BCT according to (Eq. 4), by the use of L’Hospital’s Rule, it can be
shown that, ﬁiWé (y* —1)/4 = Iny. The second property is the concavity of the trans-

formation function y(y) that leads to obtaining a non-linear regression model for the
original data after performing a back transformation of the transformed data model.
While the third property is flexibility, as the transformation by power is suitable for
dealing with a lot of data structures, and is also suitable for achieving a number of
goals.

In BCT family models, if the transformation parameter was negative, the order of
the variable would be reversed. That is, when Y is increasing, y(y) is decreasing for
4<0. So, Tukey, 1977 proposed the following model to maintain the order of the
transformed variable [24],

y* A>0

w(y) = Iny A=0 (8)

—(") <0

BCT, according to Eq. (4) and Eq. (6), is applicable and restricted to positive data.
So, Yeo and Johnson, 2000 [25] generalized BCT to include negative and positive
values in datasets. They used a smoothness condition to combine the transformations
for positive and negative observations, obtaining a one-parameter transformation
family. For Y €R, Yeo-Jonson Transformation (YJT) is given by,

( (6+1 =1) /12 #0andy=0
Ln(y+1)A=0andy>0

w(y) — 9)

v —(@y+nkﬁ—gﬂz—mz%2mmy<o

Ln(—y+1)A=2andy<0

Three properties of YJT namely [26]; (i) For Y >0, then ¥(y) >0, and for Y <0,
then ¥(y) <0. (ii) ¥(y) is continuous at 1 — 0 and 4 — 2. (iii) ¥(y) is convex with
A>1, and concave with 1< 1.

In MLR, for all previous PT families, the optimal power parameter 1* = 1 confirm
the linearity of the regression relationship and no transformation is required, A* <1
refers to the fact that the regression relationship of the original data is not linear due to
the skew of the response distribution towards the right and vice versa for A* >1 [8].

The main idea of the use of PT models in data processing is based on the assump-
tion that the transformed response variable in MLR follows a normal distribution. As a
result, the original response follows an unknown and somewhat complex Probability
Density Function (PDF) in the exponential family. In the sense that the response
transformation changes the shape of data and its original unit of measure [27]. Thus,
the optimal power parameter and other model parameters are estimated for the
transformed data by the common estimation methods. In the end, the back-
transformation will represent the fitted nonlinear regression model of the original
data. Mathematically, for the univariate Y > 0, based on the main assumption;

Y" = y(y) ~ N(u, 6%), the PDF of the univariate Y > 0 is given by

Fy@sdpy6%) =fyo (w®); 4, u,6%) J(Y, ), where, J (Y, 1) = |dy(y)/dy| is the Jacobian
factor to transform (Y, ..., Y,) — (w(Y1,4), ..,w (Y, 4)).
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Consider the MLR model Y'¥ = Xp + ¢, where Y} = y/(y) represents the (nx1)
column vector of transformed values of response variable vector Y. X is the
nx(p + 1)) known information matrix. f is the (p + 1)x1 unknown parameters vector
and ¢ is the (nx1) column vector of residuals and distributed according to the normal
distribution with mean equal to (nx1) zero vector and identity variances matrix equal
to ¢°I,. Also, based on the main assumption; y (y) ~ N(Xp, ¢°I,,), the joint PDF of
response variable vector Y, is given by the following likelihood function,

(v® _xp\ T (yW _
R e

(10)

Where J(Y, 1) = H:’Zl)dyy) /dy;|. Applying the method of MLE for Eq. (10) and

solving dLn L/df = 0 and dLn L/dc* = 0, we get the following estimates for each
value of 4,

g (2) = (X"x)"'xTyW (11)
2(2) = (1/n) (YW)TH (YW> (12)

Where H =1 — X(X"X) X7 Substituting the estimates # (1) and 62(4) in the
logarithm of likelihood function Eq. (10) gives what might be called the Box-Cox
objective function after ignoring the constant term,

L(4,y) = —(n/2) log 6*(2) + log J(Y,4) (13)

Note that the likelihood for a given A is inversely proportional to the sum of the
squared residuals SS,.(1) of the regressiony (y) on X. The likelihood function is
maximized when SS,.(4) value is minimized. The value of the power parameter 4 is
optimal when L (/1, y) is at its maximum.

3. An application and computational algorithm

We consider a real economic dataset that includes a set of five explanatory vari-
ables affecting the Current Account of the Republic of Iraq in the period 2004-2020
(Table 1). The dataset has been obtained from Iraqi Central Bank and is also available
at https://cbiraq.org/. R program was used to analyze the data.

Evident from (Figure 1) that there are three outliers among the values of the
response variable, which are the values y,,y,, and y,,. Also, regarding BCT and the
conditions for its implementation, the response positively constraint is not fulfilled
due to the presence of some negative values. Therefore, the estimating of MLR for
these data would be risky, and the diagnostic and inference tools might give mislead-
ing results. So, there is a certain and definite need to conduct some mathematical
preparations to shift the data to another space.
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Years  Current Deficit/Surplus in GDP at Oil Other Public
Account Y  general budget X;  Current Prices Revenues Revenues Expenditures
X, X3 X4 X5

2004  —5,796,516 865,248 53,235,358 28639.1 4343.6 32117.5
2005 5,048,118 14,127,715 73,533,598 33627.2 6875.7 26375.1
2006 18,521,580 10,248,866 95,587,954 41076.2 7987.1 38076.8
2007 33,161,857 15,568,219 111,455,813 44646.1 9953.4 39031.2
2008 42,020,417 20,848,807 157,026,061 70,124 10128.1 59403.3
2009 —493,311 2,642,328 130,642,187 43309.2 11900.1 52,567

2010 1,453,244 44,022 162,064,566 59,794 10384.2 70134.2
2011 29,228,742 30,049,726 217,327,107 98090.2 10717.2 78757.6
2012 378,788,640 14,677,649 254,225,490 109772.1 10045.1 105139.5
2013 430,082,730 —5,360,605 273,587,529 112894.3 945.7 119127.5
2014 224,949,984 —8,086,894 266,420,384 97072.4 8537.4 113473.5
2015 —4,377,124 —39,277,264 199,715,699 51312.6 15157.6 70397.5
2016 46,126,504 —12,658,167 203,869,832 44,267 10142.2 67067.4
2017 93,634,588 1,932,057 225,995,179 65071.9 12350.2 75490.1
2018  —11,244,618 —12,514,516 226,455,132 95619.8 10,950 80873.1
2019 27,714,354 —4,156,528 276,157,867 99216.3 8350.6 111723.5
2020 1,582,698 —12,882,754 219,768,798 54448.5 8751.1 76082.4

Table 1.

The current account and some explanatory variables of Republic of Iraq for the period 2004—2020
“Million IQD”,
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Figure 1.

Box plot of response variable values.

So, the following MLR model was chosen, which addresses the presence of nega-
tive values in the data and might have some robustness to get past the implications of
having outliers,

ZW =Up +¢ (14)
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YA represents the (17x1) column vector of transformed values of Simple Index

Numbers (SIN) of the original response variable vector Y.Z @) is defined according to
the following simplified version of BCT family,

28 —1

Inz A1=0

(15)

And the ith-value in the Z's vector is defined to the following SIN with considering
the first year as a base year,

:y_;l:a“ (100) (16)
1

Zi
a is a constant to shift the location of the response vector to positive space where it
is chosen to ensure the BCT’s constraint (Y + a) > 0. U is the (17x5) known informa-
tion matrix of the SIN considering the first year as a base year of the explanatory
variables, where,

X(i
uy = % (100) (17)
X1k

and uy, = 100% For k = 2, 3, 4,5. While the SIN for the first explanatory variable
is defined as,

X(i+11 T b

Ul =
l X1 + by

(100) (18)

where %17 = 100% and by, is a constant to shift the location of the explanatory
variables to positive values where it is chosen so that (X +a) > 0. § is the (6x1)
unknown parameters vector and € is the (17x1) column vector of residuals and
distributed according to the normal distribution with mean equal to (17x1) zero
vector and identity variances matrix equal to ¢°I,,.

Finally, the nonlinear multiple regression model for the original data regression Z
given X is derived from the following back-transform of BCT,

1/1
(x zZW 4 1) M#0
7 — (19)

exp (Z(’l)> A=0

Thus, we can have obtained the estimated multiple nonlinear regression model for
the original data regression from the estimated MLR of transformed data,

(xUB+1)m M£0

exp (Uﬁ) 2=0

7= (20)

A number of modeling efficiency indicators are included in our search algorithm to
obtain optimal power parameter 1*. The first is the traditional MLE. The second,
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third, and fourth are the coefficient of determination (CoD), p-value of SWT statistic
for the residual’s normality, and p-value of the general linear F-test statistic of the
estimated linear regression of the transformed response vector. The fifth is the p-value
of SWT statistic for the residual’s normality of the estimated nonlinear regression of
the original response vector resulting from the back-transform of BCT. The proposed
computational algorithm is as follows:

Step 1: Transform the original response vector Y to SIN’s vector Z according to
Eq. (16) of vector elements and the original information matrix X to SIN’s matrix U
according to Eq. (17) of matrix elements.

Step 2: Choose a set of candidate values for the power parameter. For example, fix
re A, where A = {-2,-1.9, ..., 0, ...,1.9,2}. A can be expanded to an acceptable
range from which we can obtain a convex curve for MLE, and the same applies to
CoD. Also, obtaining a minimum value of the p-value of general linear F-test statistic
within A can be an indicator of acceptance of the candidate range.

Step 3: Transform the SIN’s vector Z to y(Z) using the simple version of the BCT
family according to Eq. (15) by the first candidate A* in A.

Step 4: Estimate the parameters § (\*) and 6?(A* ) of MLR of Z given X
according to Eq. (14) using Eq. (11) and Eq. (12).

Step 5: Estimate log-likelihood function L(A*,%) according to Eq. (13). Calculate
CoD, a p-value of SWT statistics to test the residual vector normality, and p-value of
the general linear F-test statistic.

Step 6: Estimate the multiple nonlinear regression model for the original data
regression using Eq. (20).

Step 7: Calculate the p-value of SWT of the residual vector normality of the
estimated multiple nonlinear regression model of the original data.

Step 8: Repeat all the steps from 3 to 7 for all values of A€ A.

The tables below show the results of applying the computational algorithm.
Table 2 shows the optimal values of A against each indicator in its optimal state.
Table 3 shows the estimates of power parameters according to the five indicators for
allA ={-3,-29, ..,0, ..,2.9,3}.

Based on the results of p-values of general linear F-test statistic for all L€ A in
(Table 3), we conclude that the full estimated models “whether for the non-Linear
multiple regression models when A~ # 1 or MLR in which A" = 1” are appropriate for
the data. It is also clear that the residuals are close to normality shape for transformed
data models except in the case Ln Z based on the indicator of the p-value of SWT of
residuals normality (Table 2).

Indicators Value Optimal A

MLE —22.7 0

CoD 0.69 -0.5

p-value of SWT of Residuals Normality 0.99 3

-Transformed data

p-value of SWT of Residuals Normality 0.89 2

-Back Transformed data

p-value of F-test statistics 0.01 -0.5
Table 2.

The optimal values of \ against each indicator in its optimal state.
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A MLE CoD p-value of SWT of Residuals p-value of F-test
Normality statistics
Transformed  Back Transformed
data data
1 —39.8 0.63 0.94 0.84 0.03
(3.0, -1.2) (-161.6,—61.5) 0.68 (0.62, 0.67) 0.00 (0.01, 0.02)
(-1.1,-0.5) (-58.5, —30.2) 0.69 (0.72, 0.84) 0.00 0.01
(-0.4,-0.3) (—28.4,-25.6) 0.68 (0.58, 0.70) 0.00 (0.01, 0.02)
—-0.2 —24.5 0.67 0.24 0.00 0.02
-0.1 —231 0.66 0.10 0.00 0.02
(0,0.1) (—22.8,-22.7) 0.65 (0.04, 0.05) 0.00 (0.02, 0.03)
(0.2, 0.5) (—28.0, —23.1) 0.64 (0.11, 0.76) (0.01, 0.11) 0.03
(0.6,1.7) (—63.1, -29.2) 0.63 (0.71, 0.96) (0.20, 0.89) 0.03
(1.8, 2.3) (—84.9, —65.2) 0.62 (0.68, 0.85) (0.79, 0.89) (0.03, 0.04
(2.4, 3.0) (—110.3, -87.2) 0.61 (0.89, 0.99) (0.46, 0.75) 0.04
Table 3.

Estimates of the power parameter according to the five indicators for all L€ A.
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Figure 2.

For all € A (a) The Log-likelihood curve (b) The CoD estimates (c) p-values of general linear F-test statistic.

As for the MLE, the highest point corresponds to the value of the parameter when
it is close to zero, (Figure 2(a)). That is, the optimal transformation is Lz y. On the
other hand, according to the p-value of SWT of residuals normality, it is quite clear
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that the residuals are abnormal. Therefore, it can be said that the results of general
linear F-test statistics are not reliable.

As we mentioned in the article, the value of the optimal A varies according to the
different methods and indicators of estimation. Confirmation of that, the results of the
optimal case for two of the five indicators led to obtaining identical values for the

optimal power parameter at A = —0.5 which are CoD (Figure 2(b)) and the p-value of
general linear F-test statistic (Figure 2(c)).

4, Conclusions

The use of power transformation models to transform the response variable in
regression relationships is, in fact, a way to create a nonlinear model for the data when
the requirements of linear regression analysis are not met. In the sense that the
statistical modeling operations of the transformed data are more like an intermediate
station, the statistical analysis does not succeed unless the operations in this station are
accurate and meet the requirements of the model construction. Therefore, there are
many indicators of the success of statistical analysis, depending on the multiplicity of
its reliability conditions. In this regard and when using PT models there are many
methods for selecting the optimal power parameters. Two common directions can be
identified: the first is the use of well-known estimation methods such as the method of
MLE. The second is the use of some efficiency criteria in regression modeling as a
decision rule for estimating the power parameter. We conclude that the multiplicity of
criteria for selecting the power parameter does not mean that it can lead to a single
value. However, the multiplicity of decision rules can contribute to providing features
for optimal solutions and support the decision to choose the optimal power parameter.
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