
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

182,000 195M

TOP 1%154

6,700

1

Chapter

New Content Addressable Memory
Architecture for Multi-Core
Applications
Allam Abumwais and Mahmoud Obaid

Abstract

The future of massively parallel computation appears promising due to the
emergence of multi- and many-core computers. However, major progress is still
needed in terms of the shared memory multi- and many-core systems, specifically
in the shared cache memory architecture and interconnection network. When
multiple cores try to access the same shared module in the shared cache memory,
issues arise. Cache replacement methods and developments in cache architecture
have been explored as solutions to this. This chapter introduces the Near-Far Access
Replacement Algorithm (NFRA), a new hardware-based replacement technique, as
well as a novel dedicated pipeline cache memory design for multi-core processors,
known as dual-port content addressable memory (DPCAM). The experiments show
that the access latency for write/read operations of a DPCAM is lower than that of a
set-associative (SA) cache memory, with the latency of a write operation staying the
same regardless of the size of the DPCAM. It is estimated that the power usage will
be 7% greater than a SA cache memory of the same size.

Keywords: multi-core processor, shared cache, cache architecture, dual port CAM,
replacement algorithm

1. Introduction

The purpose of the special purpose shared memory architecture discussed in
this chapter is to allow multiple cores of a multi-core processor to access a cache
memory simultaneously, thus decreasing access latency compared to set-associative
(SA) caches. This proposed architecture is based on CAM and a new replacement
algorithm. In Section 1, the introduction of shared memory types in computer design
is discussed, and Section 2 covers the architectures of the DPCAM and the Near-Far
Access NFRA. Section 3 provides functional and timing simulation results, power
estimation analysis, and an FPGA implementation of the DPCAM.

Multi-core ICs package multiple processors into a single device. Many-core
systems, an evolution of multi-core technology, provide intense parallel process-
ing capabilities for a large number of cores. In order for many-core systems to
work, shared memory must be used to communicate between the cores. However,

Computer Memory and Data Storage

2

this shared memory can become problematic if multiple cores attempt to access it
simultaneously. To address this issue, there have been various studies conducted in
the literature that aims to reduce latency and power usage when accessing shared
memory. Two potential methods for this are improving cache replacement algorithms
and optimizing cache architecture.

Many multi-core systems utilize Associative Memory (AM) cache as a way to
share memory [1, 2]. The architecture of enhanced caching seeks to facilitate parallel
searching and faster retrieval [3]. In contrast, replacement algorithms are employed
to aid the cache controller in deciding which data to eliminate in order to make space
for new data [4, 5]. Moreover, an effective replacement algorithm can reduce the
latency of cache access. Content addressable memory (CAM) is a type of AM that
accesses memory locations by comparing tags (parts of the content) rather than
calculating the address and has certain properties that make it suitable for use as a
shared memory [3, 6, 7]. The use of CAM memory in shared memory for multi-core
systems is interesting, as demonstrated by other relevant articles that have recently
been published by the authors [8, 9].

1.1 Types of shared cache memory

In contrast to traditional memory architectures, such as Static Random Access
Memory (SRAM) and Dynamic RAM (DRAM), which use unique addresses to
retrieve and store data, content-operated memory (COM) uses a different approach.
COM allows stored data to be accessed based on part of its content, instead of an
address [1]. COM is used in a variety of digital computer applications, from branch
prediction techniques to very-high-speed parallel systems, to perform two primary
memory-related operations: writing (storing data) and reading (accessing the correct
corresponding data) when the address is not known [3]. The major application of
COMs is packet switching routing and classification on network systems [10]. It is
anticipated that COM memory will be used in upcoming applications for non-CMOS
next-generation electronic devices [3]. COM memory architectures can be divided
into two main categories: AM and CAM. Both of these types of memory perform the
same functions, but they do so in different ways.

AM memory is further divided into three categories: direct-mapped (DM),
set associative (SA), and fully associative (FA). Each of these memory types has
different restrictions on where data can be written, as well as different replacement
algorithms that are used. DM memory only allows for one location for a particular
data item. FA memory allows for data to be mapped to any location. SA memory
allows for a set of possible locations for data to be stored. In the following subsec-
tions, a brief overview of each of these three main types of cache memory will be
provided.

1.1.1 Fully associative memory

The FA cache memory design stores the address and data in the same cache
location, and compares the incoming address with all addresses stored within each
location. As shown in Figure 1, this type of caching architecture is associated with
high performance in comparison with its size; however, its design complexity is
a major drawback. To counteract this, Random, First in First out (FIFO), and the
Least Recently Used (LRU) algorithms are employed to determine where data
should be stored [2].

3

New Content Addressable Memory Architecture for Multi-Core Applications
DOI: http://dx.doi.org/10.5772/intechopen.112060

FA caches are rarely utilized in multi-core processors due to their lower cache hit
rate. Whenever a new memory is referenced to the same cache location, the cache line
is replaced, leading to an increased miss rate [1, 2].

1.1.2 Direct mapped memory

In this type of system, the main memory is divided into blocks, and the cache is
divided into a set of lines. This means that each cache line can hold one block of the
main memory. Rather than storing the full address in the address field, only a part
of the address bits is stored alongside the data field [1, 2] shown in Figure 2. Direct
mapped caching has the benefit of being both simple and cost-effective to implement;

Figure 1.
FA architecture.

Figure 2.
Direct mapped cache memory.

Computer Memory and Data Storage

4

however, if access to different locations with the same index is attempted, its perfor-
mance will suffer.

1.1.3 Set-associative memory

Set-associative (SA) caching is a hybrid between full associativity and direct map-
ping. It splits the cache into a set of lines, allowing one block of main memory to be
stored in n potential sets. Compared to a FA cache, it is less complex and can provide
better performance since multiple addresses can be stored under the same index.
However, its cost increases as the set size grows, as well as its access latency since it
has to compare each address in all sets after its index is generated. Despite this, many
commercial multi-core systems still use SA caches due to their improved performance
[1, 2]. Figure 3 represents the SA cache memory.

In both FA mapping and SA mapping, there are multiple options for where data
can be stored, so replacement algorithms must be used to decide which location
should be chosen.

1.1.4 Content-addressable memory

CAM is a type of memory whose locations can be accessed by comparing tags that
are parts of the contents, rather than supplying their addresses. In some ways, CAM
is similar to direct memory (DM) in its form; both allow for the instant retrieval of
an output based on the input. However, both DM and CAM use different methods
to facilitate the parallel search and quick storage [2, 3]. DM prevents the storage of
particular data in just one location; conversely, CAM has no bounds on where data can
be stored. Similarly, CAM and FA are comparable in that they both have no con-
straint on where data can be saved. Additionally, they both use analogous update and
replacement strategies such as random, FIFO, and LRU to replace data when memory
is full or the data becomes no longer useful. These algorithms will select a line that is
unlikely to be needed in the near future, from all the lines stored in memory [5].

Figure 3.
SA cache memory.

5

New Content Addressable Memory Architecture for Multi-Core Applications
DOI: http://dx.doi.org/10.5772/intechopen.112060

Transactional memory (TM) is a new, emerging type of memory associated with
CAM. It is not much different from CAM, but it is used to allow data sharing between
processors in a distributed system. TM is used as autonomous storage memory with
various hardware components [11, 12].

CAM memory is used for a variety of applications, including image processing,
signal processing, pattern recognition, switching network techniques, and paral-
lel processing systems. Unlike traditional SRAM, CAM memory searches through
the content of data rather than its address, allowing for parallel and simultaneous
search. This makes it a powerful tool that can quickly search through memory
contents [3, 13–15].

A unique tag is assigned to each data in a CAM. To read the data, a read signal
and the tag are applied to all locations at the same time, and then, the applied tag is
compared with all of the previously stored tags. If a match is found, the data in the
matched location is selected, output on the data bus, and read by the core. Figure 4
displays the architecture of a CAM with a single port. It was not previously possible
to make CAMs as a standalone memory in any system because a large number of
pins were required; however, with the advances in semiconductor technology and
FPGAs, researchers are now able to implement CAMs in FPGAs [7, 16]. These types of
memory improve the search rate and reduce the processing latency and sometimes the
power consumption.

The SA cache is the most popular architecture type used as shared memory in
multi-core systems [1, 3]. It still suffers from many problems such as increasing
access latency and contention if more than one core tries to access the same shared
memory simultaneously. These problems are solved using the proposed DPCAM
architecture.

Figure 4.
CAM architecture.

Computer Memory and Data Storage

6

2. Proposed DPCAM

As demonstrated in Figure 5, a Dual-Port Content Addressable Memory
(DPCAM) can be used with a separate, pipelined shared cache. A Tag Field, Data
Field, control unit (CU), comparator (CMP), Tag Field, Data Field, and two ports
(Ds31-Ds0 for writing and Dd31–Dd0 for reading) are all included in the cache.
The core sends Data source [Ds31–Ds0] and Tag source [Ts15–Ts0] to be written to the
chosen cache line during the Store Back (SB) stage. The cached data is read to the
destination data bus [Dd31–Dd0] during the Operand Fetch (OF) step, while the core
simultaneously sends the Tag destination [Td15–Td0] for comparison with each cache
line. Both ports have the ability to operate simultaneously.

The Data Field and the Tag Field are the two components that make up a cache
line (L). The common data is kept in the Data Field, and each Data Field’s specific tag
(data and version number) is kept in the Tag Field. Depending on the sort of archi-
tecture the CAM is used in, the length of each field can be altered. A 24-bit tag, for
instance, can hold up to 16 Mega versions of shared material. For reading operations,
a 2 × 1 CMP is included that compares the tags from the OF stage [Td15-Td0] to those
kept [Ts15–Ts0] in the cache lines.

The CU of the DPCAM design is a crucial component that is responsible for both
managing the writing process and executing the replacement algorithm. Its goal is to
generate an active signal in a cyclic pattern for each cache line. The control circuit is
used to select which position to write the data to, as illustrated in Figure 6. The loca-
tions are chosen in order and are rewritten if needed to update their contents. This is
accomplished by employing a collection of D Flip Flops (D-FF), each of which points

Figure 5.
DPCAM design.

7

New Content Addressable Memory Architecture for Multi-Core Applications
DOI: http://dx.doi.org/10.5772/intechopen.112060

to an associated DPCAM location. The first writing operation will be done on line
L0 when the system is initially powered on, with the pointer indicating the first line,
LE0. After writing to the current line, the pointer will shift to the next line and so on
until the n − 1th line (Ln − 1) is reached.

The Write (WR) signal is transmitted by the CU from the first port (write
port) in DPCAM, which is responsible for the writing operation. The stage buffer
(SB) unit supplies the source data [Ds31–Ds0], the source tag [Ts15–Ts0], and an
active low WR signal. The control circuit will then switch the LE to LE1 in order
to write to line 1 whenever the WR signal reaches its negative edge (marking the
end of the writing procedure). The output (OF) unit of the reading core will
send an active high read (RD) signal and the tag destination (Td15–Td0) to all
Tag Fields during the reading operation. The applied data’s tag is compared to
the tags kept in the memory lines. If a match is found, the CMP of each memory
line will output an output enable (OE) signal. The data kept in the Data Field is
then output via this signal to the destination data bus [Dd31–Dd0] for the reading

Figure 6.
Control unit.

Computer Memory and Data Storage

8

core’s OF unit to read. If the same memory address is requested for both reading
and writing, the CU will give priority to the writing process and signal a WAIT
to the reading operation. Both read and write ports can operate simultaneously if
separate memory locations are requested for reading and writing, which lowers
the cache access latency. While the SB unit of the writing core delivers the data
[Ds31–Ds0] and the tag [Ts15–Ts0] to the precise position designated by the CU, the
OF unit of the reading core concurrently transmits the destination tag [Td15–Td0]
and the RD signal to all tag fields. This makes it possible to read the stored data
from the target data bus [Dd31-Dd0].

The proposed architecture features a new, small DPCAM in place of the cache
controller, which collects data from lower-level memory and increases access latency.
Close-access data is stored in the main DPCAM module, as indicated in Figure 7, and
far-access data is stored in the new module. As far-access data is used less often than
near-access data, the far-access module is generally smaller. To illustrate, a four-core
processor with a 64 KiB shared DPCAM can store 2 K operands, each composed of
eight bytes of data plus a tag, before the data must be rebuilt.

The NFRA algorithm is implemented at the hardware level to reduce cache access
latency. This technique involves writing a CU and pointer to position Lx, followed by
instructions that write their operands to Lx + 1 to Ln − 1. After reaching the last posi-
tion, the pointer returns to LE0 and overwrites the previous data and tags. Compared
to a complex algorithm in the cache controller, this method is used for both near-
access and far-access modules and has lower costs and access overhead. Moreover, it
facilitates the storing, loading, and retrieving of near-access and far-access data/tags
from various DPCAM modules [1]. According to the migration principle, the far-
access module can be activated as needed and then switched to an inactive mode to
conserve power when not in use [17, 18].

Figure 7.
Near-access, far-access DPCAM modules.

9

New Content Addressable Memory Architecture for Multi-Core Applications
DOI: http://dx.doi.org/10.5772/intechopen.112060

3. Implementation of the DPCAM and performance analysis

Quartus Prime 19.1 was utilized in the development, testing, and validation of
DPCAM using Intel’s FPGA Cyclone V family with 28 nm technology. ModelSim,
Intel’s design and simulation software, was employed to construct and examine
DPCAM as a single memory [19]. In order to determine if DPCAM could replace the
shared cache in the memory hierarchy of a multi-core CPU, two cores were utilized
to measure the latency of read and write operations. Block schematics and Verilog
Hardware Description Language (VHDL) files were implemented to develop the
device, while Model Sim and Vector Wav File (VWF) were used for functional and
timing simulation verification and debugging. The Power Analyzer Tool was also
employed to evaluate the DPCAM’s static and dynamic power consumption, and
a tests-bench was created to simulate and analyze the latency of its reading and
writing operations. To compare the performance of DPCAM, the SA cache, the most
popular architecture type used as shared memory in multi-core computers, was
employed [1, 2].

3.1 Functional assessments

The test-bench program was used to simulate the operations of the DPCAM and
evaluate its latency and power usage. Firstly, it reset the CU and then created random
16-bit tags and 32-bit data to carry out write operations. Read/write signals were
generated until the end of the simulation time and the output for the read opera-
tions was generated by comparing the 16-bit tags with the stored tags. It was used
to compare the SA cache with the LRU replacement mechanism, and DPCAM with
NFRA. The usage of the test-bench program is depicted in Figure 8. Through numer-
ous simulations, it was demonstrated that the DPCAM’s reading, writing, simultane-
ous read-write, CU, and replacement algorithms all operated as intended. Figure 9
displays a 10 ns clock period of multiple clock cycles for reading and writing opera-
tions to the 64 KiB DPCAM. The CU was set to the first location in the first interval
(0–10 ns) with the written data (out). The processor loaded the relevant tag (tagd)
of the written data (outI) and used the RD signal to read the data from the desired
out DPCAM location during the second interval (10–20 ns) using the WR signal.
As soon as the RD signal went high, the processor output busses (outE) released
the stored information. During interval 4 (30–40 ns), multiple DPCAM locations
underwent read and write operations, with a write operation taking priority over
the read operation. As a result, new data with a tag of [0]13 was written to the target
location, while data previously written with a tag of [0]12 was accurately read. In
interval 5 (40–50 ns), both read and write operations were performed on the same
spot simultaneously.

3.2 Latency assessments

The performance of the DPCAM with regard to timing evaluation was evaluated
using the Intel Quartus Prime Timing Analyzer. For each component of the design,
this tool reports on all necessary data times, data arrival times, and clock arrival times
using industry-standard constraint and analysis methodologies (Intel, 2021). The
access latency for read and write operations in the DPCAM structure was measured
using the Timing Analyzer, and real signal arrivals were compared to the design
restrictions.

Computer Memory and Data Storage

10

To determine the delay of read and write operations, a 64 KiB near and distant
DPCAM module timing simulation was performed using Intel’s Cyclone V FPGA,
as shown in Figure 10. After running the simulator 100 times, it was found that
the average delay time for writing on DPCAM was 0.9529 ± 0.03393 ns. The WR
signal was then turned off. The average latency for a read operation was found to be
1.1782 ± 0.08830 ns when the tag ([0]10) in the second interval was compared with

Figure 8.
Test-bench program.

Figure 9.
Functional assessments.

11

New Content Addressable Memory Architecture for Multi-Core Applications
DOI: http://dx.doi.org/10.5772/intechopen.112060

the tags in all places with the RD signal. The fourth and fifth intervals were used to
assess the latency of simultaneous read and write operations, and the average delay
time was calculated to be the time between initiating a request for data and the actual
data transfer for a single operation and the time between two requests for simultane-
ous write and read operations.

• ()= +max
SDL WR RD
l l l SDL is referred to simultaneous access RD/WR operations

to the different memory lines

• = +
SSL CL RD
l t l SSL is referred to simultaneous access RD/WR operations to the

same memory lines

Where lWR is a latency of a write operation, lRD is a latency of a read operation and
tCL is the cycle time.

Hundred simulations in two separate modes with write and read operations to
unique or similar memory locations were run. The write and read latency for the latter
mode were 0.98280.0412 ns and 1.2226 ± 0.09446 ns, respectively, with an overall
latency of lSSL = 11.2226 ± 0.09138 ns according to the T-test and 95% confidence
interval. The average write latency was 1.9434 ± 0.0382 ns, and the average read
latency was 2.15840.1056 ns, according to tests with a 64 KiB four-way SA cache.
Unfortunately, due to SA cache limitations, simultaneous read and write operations
could not be tested. The tested DPCAM has a lower read latency than the tested SA
cache; this is because DPCAM compares the incoming tag directly with the stored tag,
whereas SA caches must use an index to access the location with a tag to compare to,
which increases the latency. Generally, a cache memory based on AM has a latency
of around 2 ns for 64 KiB [20], 1.66 ns for AM with 1KiB, and 1.69 ns for 4-way set
associative with 2 KiB, which is used in cache controllers [21]. However, the write
latency for a cache memory based on AM typically exceeds 2 ns for 64KiB [20].

Using FPGA technology, a comparison of the write latency between a typical four-
way set associative cache and a DPCAM design was made for equivalent-sized caches.
Because the CU points directly to the memory location and does not need to generate
the address of the following write site as is necessary for the AM cache memory, simu-
lations have shown that DPCAM has a low and consistent write latency for variable
memory sizes. As seen in Figure 11 and Table 1, the write latency difference between
DPCAM and the SA cache widens as memory capacity grows.

Figure 10.
Latency assessments.

Computer Memory and Data Storage

12

In order to assess the latency of write and read operations, the NFRA replace-
ment method used by DPCAM and the LRU algorithm employed by the set asso-
ciative cache memory were compared. The results showed that the set associative
cache had an average latency of 0.9529 ± 0.03393 ns for a write operation and
1.1782 ± 0.08830 ns for a read operation, whereas the DPCAM recorded a lower access
latency for a size of 64 KiB, with a latency of 1.9434 ± 0.0382 ns for a write operation
and 2.1584 ± 0.1056 ns for a read operation.

3.2.1 Descriptive statistics

About 100 times were spent running the simulator with various test-bench values,
documenting the latency for write and read operations as well as for simultaneous read
and write operations into distinct memory locations and the same memory location. In
order to determine the minimum, maximum, mean, and standard error for DPCAM
and SA architecture, data analysis was done using SPSS and T-test tools. Table 2
displays descriptive data for write latency in DPCAM, Table 3 describes descriptive
statistics for read latency, Table 4 describes descriptive statistics for simultaneous read
and write operations into distinct memory locations, and Table 5 describes descriptive
statistics for simultaneous read and write operations into the same memory regions.
Similar descriptive statistics for write and read latency in set associative are shown in
Tables 6 and 7. The write and read operations between DPCAM and SA memory were

Size DPCAM Cache Size DPCAM Cache

16 K 0.90 1.02 256 K 0.95 3.60

32 K 0.90 1.95 512 K 0.99 3.77

64 K 0.91 1.94 1 M 1.09 4.76

Table 1.
Write operation access latency (ns).

Figure 11.
Write access latency (ns).

13

New Content Addressable Memory Architecture for Multi-Core Applications
DOI: http://dx.doi.org/10.5772/intechopen.112060

compared using the T-test, and it was discovered that DPCAM had lower write and
read latencies than those of SA memory with a 95% confidence interval.

3.3 Estimation of a power dissipation

Power management is essential to achieving better size, performance, and afford-
ability while maintaining a high power density as chip technology continues to get
smaller. The Quartus simulator’s Power Analyzer Tool estimates power dissipation
with an accuracy of 10% to make sure components use the right amount of power and
enhance the design [22]. Based on the waveform file generated by Model Sim while

N Minimum Maximum Mean Std.

Statistic Statistic Statistic Statistic Std. Error Statistic

Read DPCAM 100

100

1 1.35 1.1782 0.00883 0.0883

Table 3.
Descriptive statistics for read latency in DPCAM.

N Minimum Maximum Mean Std.

Statistic Statistic Statistic Statistic Std. error Statistic

Write

DPCAM

100

100

0.89 1.10 0.9529 0.00339 0.03393

Table 2.
Descriptive statistics for write latency in DPCAM.

N Minimum Maximum Mean Std.

Statistic Statistic Statistic Statistic Std. Error Statistic

Write/

read

same

location

DPCAM

100

100

0.91 1.10 0.9828 0.00412 0.0412

Table 5.
Descriptive statistics for simultaneous access latency Rd/Wr operations in the same DPCAM location.

N Minimum Maximum Mean Std.

Statistic Statistic Statistic Statistic Std. error Statistic

Write/

read

different

location

DPCAM

100

100

1 1.40 1.2262 0.00945 0.0945

Table 4.
Descriptive statistics for simultaneous access latency Rd/Wr operations in the same DPCAM location.

Computer Memory and Data Storage

14

simulating the script with the DPCAM design at the gate level, the Power Analyzer
Tool was used to assess static, dynamic, I/O, and overall power consumption.

This section compares and evaluates the power dissipation of DPCAM and four-
way SA caches with various memory capacities. The DPCAM dissipates electricity
through near-far access modules. Static power, which is the leakage power of the
functional unit on the FPGA excluding the I/O port, is the thermal energy used on
the chip. Dynamic power is the amount of energy used when a unit is in use or when
a signal is changing. The pins, which power components on and off-chip and have an
impact on dynamic power, produce I/O power [22].

In Figure 12, the static, dynamic, and I/O power dissipation of DPCAMs and SA
caches can be compared. From Figure 12a, it is evident that DPCAMs have a higher
static power dissipation than SA caches. This is because increasing the size of the
DPCAMs leads to the complexity of the hardware created by the CU and internal
wires covering a larger surface, resulting in an increased static power dissipation.
Tables 8 and 9 further provide a comparison of the static, dynamic, I/O, and total
power dissipation of DPCAMs and SA caches, respectively, for different sizes.
Figure 12b compares the dynamic power dissipation of DPCAM and SA. It can
be observed that when the size is less than 512 K, the dynamic power of DPCAM
is similar to that of SA. However, after 256 K, it increases significantly due to

N Minimum Maximum Mean Std.

Statistic Statistic Statistic Statistic Std. error Statistic

Read SA 100

100

1.95 2.35 2.1584 0.01056 0.1056

Table 7.
Descriptive statistics for read latency in SA.

N Minimum Maximum Mean Std.

Statistic Statistic Statistic Statistic Std. error Statistic

Write SA 100

100

1.88 2.10 1.9434 0.00382 0.0382

Table 6.
Descriptive statistics for write latency in SA.

Figure 12.
Power dissipation with variation in memory size: (a) Compared the static power dissipation between DPCAM
and SA. (b) Compared dynamic power dissipation. (c) It is compared I/O power dissipation.

15

New Content Addressable Memory Architecture for Multi-Core Applications
DOI: http://dx.doi.org/10.5772/intechopen.112060

Figure 13.
Total power dissipation with variation in size.

Power in milliwatts (mW)

Size Static Dynamic I/O Total

16 K 32.214 1.13 11 44.344

32 K 64.33 2.14 11.21 77.68

64 K 107.57 2.99 11.10 121.66

256 K 349.5 7.98 11.88 369.28

512 K 796.2 22.90 12.07 831.17

1 M 1411.10 39.26 13.21 1463.57

Table 8.
DPCAM power dissipation.

Power in (mW)

Size Static Dynamic I/O Total

16 K 28.9166 1.12 10.1 40.1366

32 K 57.33 1.62 10.1 69.05

64 K 99.41 2.79 10.6 112.8

256 K 334.750 5.48 11 351.23

512 K 696.261 10.021 11.025 771.307

1 M 1325.310 19.28 11.737 1356.326

Table 9.
SA memory power dissipation.

Computer Memory and Data Storage

16

Author details

Allam Abumwais* and Mahmoud Obaid
Computer Systems Engineering, Arab American University, Jenin, Palestine

*Address all correspondence to: allam.abumwais@aaup.edu

numerous active locations being accessed during read operations. Figure 12c‘s com-
parison of I/O power dissipation reveals that the DPCAM’s I/O power is comparable
to the SA with varied sizes, since the off-chip pins remain constant regardless of the
internal memory capacity. Figure 13 indicates that the total power used by DPCAM
is only marginally higher than that of the SA cache, at around 7%. This small
increase in power dissipation can be managed through power-saving techniques,
such as those found in refs. [17, 18, 23–25], thus not prohibiting the adoption of
DPCAM in multi-core systems.

4. Conclusion

A design of a special purpose-shared memory architecture based on CAM and
a replacement algorithm has been presented in this chapter. This architecture was
designed to enable multi-core processors to access the cache memory with lower
latency than the traditional SA cache. It should be stressed that while all of the previ-
ous replacement algorithms do not make use of cache hardware architecture, they
increase non-computational times for updating the location and introduce new access
overhead. In order to lower the cost overhead and complexity of the cache controller,
Near-Far Access Replacement Algorithm (NFRA) is also suggested and implemented
as a hardware component inside the DPCAM module.

Testing the design on a Cyclone V Intel FPGA showed that the DPCAM could
replace the shared cache in the memory hierarchy of a multi-core processor. The
DPCAM had an average latency of 1.2 ± 0.09138 ns for reading operations and
0.9679 ± 0.0642 for writing operations, which is better than other types of shared
memory. Furthermore, the access latency for a write operation was almost the
same regardless of the memory size. Although the DPCAM consumes more power
than the SA memory, some power-saving techniques can be used to reduce this
amount.

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

New Content Addressable Memory Architecture for Multi-Core Applications
DOI: http://dx.doi.org/10.5772/intechopen.112060

17

References

[1] Patterson DA, Hennessy JL. Computer
Organization and Design The Hardware
Software Interface. 2nd ed. United States:
Morgan kaufmann; 2020

[2] Stallings W. Computer organization
and architecture. In: Wu H-K, Lee SW-Y,
Chang H-Y, J, editors. Designing For
Performance. 9th ed. United States:
Pearson Education; 2013

[3] Karam R, Puri R, Ghosh S,
Bhunia S. Emerging trends in design
and applications of memory-based
computing and content-addressable
memories. Proceedings of
the IEEE. 2015;103(8):1311-1330

[4] Olanrewaju RF, et al. A study on
performance evaluation of conventional
cache replacement algorithms: a review.
In: 2016 Fourth International Conference
on Parallel, Distributed and Grid
Computing (PDGC). IEEE; 2016

[5] Priya BK, Kumar S, Begum BS,
Ramasubramanian N. Cache lifetime
enhancement technique using
hybrid cache-replacement-policy.
Microelectronics Reliability. 2019;97:1-15

[6] Abumwais A, Ayyad A. The MPCAM
based multi-core processor architecture:
A contention free architecture.
WSEAS Transactions on Electronics.
2018;9:105-111

[7] Irfan M, Cheung RC, Ullah Z. High-
throughput re-configurable content-
addressable memory on FPGAs. In:
Proceedings of the 2019 International
Conference on Information Technology
and Computer Communications. 2019

[8] Abumwais A, Amirjanov A, Uyar1 K,
Eleyat M. Dual-port content addressable
memory for cache memory applications.

Computer, Material & Continua.
2021;70(3):4583-4597

[9] Abumwais A, Obaid M. Shared
cache based on content addressable
memory in a multi-core architecture.
CMC-Computers, Materials & Continua.
2023;74(3):4951-4963

[10] Cheriton DR. U.S. Patent No.
9,111,013. Washington, DC: U.S. Patent
and Trademark Office; 2015

[11] Nakaike T, Odaira R, Gaudet M,
Michael MM, Tomari H. Quantitative
comparison of hardware transactional
memory for Blue Gene/Q , zEnterprise
EC12, Intel Core, and POWER8. ACM
SIGARCH Computer Architecture News.
2015;43(3S):144-157

[12] Papagiannopoulou D,
Marongiu A, Moreshet T, Benini L,
Herlihy M, Bahar RI. Hardware
transactional memory exploration in
coherence-free many-core architectures.
International Journal of Parallel
Programming. 2018;46:1304-1328

[13] Bhattacharya D, Bhoj AN, Jha NK.
Design of efficient content addressable
memories in high-performance FinFET
technology. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems.
2014;23(5):963-967

[14] Imani M, et al. Digitalpim: digital-
based processing in-memory for big data
acceleration. In: Proceedings of the 2019
on Great Lakes Symposium on VLSI. 2019

[15] Martyshkin AI, Salnikov II,
Pashchenko DV, Trokoz DA. Associative
co-processor on the basis of
programmable logical integrated circuits
for special purpose computer systems. In:
2018 Global Smart Industry Conference
(GloSIC). IEEE; Nov 2018. pp. 1-5

Computer Memory and Data Storage

18

[16] Ullah I, Ullah Z, Lee JA. Ee-tcam:
An energy-efficient sram-based tcam on
fpga. Electronics. 2018;7(9):186

[17] Luo JY, Cheng HY, Lin C, Chang DW.
TAP: reducing the energy of asymmetric
hybrid last-level cache via thrashing
aware placement and migration.
IEEE Transactions on Computers.
2019;68(12):1704-1719

[18] Ofori-Attah E, Bhebhe W, Opoku
Agyeman M. Architectural techniques
for improving the power consumption
of noc-based cmps: A case study of
cache and network layer. Journal of Low
Power Electronics and Applications.
2017;7(2):14

[19] Cyclone V Device Overview.
Available from: https://www.intel.
com/content/www/us/en/docs/
programmable/683694/current/cyclone-
v-device-overview.html

[20] Cargnini LV, Torres L, Brum RM,
Senni S, Sassatelli G. Embedded memory
hierarchy exploration based on magnetic
random access memory. Journal of Low
Power Electronics and Applications.
2014;4(3):214-230

[21] Chauan P, Singh G, Singh GJ. Cache
controller for 4-way set-associative cache
memory. 2015;129(1):8887

[22] Quartus Handbook. Volume 3:
Verification. Available from: https://
www.mouser.com/pdfdocs/qts-qps-5v3.
pdf

[23] Adegbija T, Gordon-Ross A. PhLock:
A cache energy saving technique
using phase-based cache locking.
IEEE Transactions on Very Large
Scale Integration (VLSI) Systems.
2017;26(1):110-121

[24] Park J, Lee M, Kim S, Ju M,
Hong J. MH cache: A multi-retention

STT-RAM-based low-power last-level
cache for mobile hardware rendering
systems. ACM Transactions on
Architecture and Code Optimization
(TACO). 2019;16(3):1-26

[25] Rossi D et al. Exploiting aging
benefits for the design of reliable drowsy
cache memories. 2017;37(7):1345-1357

