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Chapter

New Content Addressable Memory 
Architecture for Multi-Core 
Applications
Allam Abumwais and Mahmoud Obaid

Abstract

The future of massively parallel computation appears promising due to the 
emergence of multi- and many-core computers. However, major progress is still 
needed in terms of the shared memory multi- and many-core systems, specifically 
in the shared cache memory architecture and interconnection network. When 
multiple cores try to access the same shared module in the shared cache memory, 
issues arise. Cache replacement methods and developments in cache architecture 
have been explored as solutions to this. This chapter introduces the Near-Far Access 
Replacement Algorithm (NFRA), a new hardware-based replacement technique, as 
well as a novel dedicated pipeline cache memory design for multi-core processors, 
known as dual-port content addressable memory (DPCAM). The experiments show 
that the access latency for write/read operations of a DPCAM is lower than that of a 
set-associative (SA) cache memory, with the latency of a write operation staying the 
same regardless of the size of the DPCAM. It is estimated that the power usage will 
be 7% greater than a SA cache memory of the same size.

Keywords: multi-core processor, shared cache, cache architecture, dual port CAM, 
replacement algorithm

1. Introduction

The purpose of the special purpose shared memory architecture discussed in 
this chapter is to allow multiple cores of a multi-core processor to access a cache 
memory simultaneously, thus decreasing access latency compared to set-associative 
(SA) caches. This proposed architecture is based on CAM and a new replacement 
algorithm. In Section 1, the introduction of shared memory types in computer design 
is discussed, and Section 2 covers the architectures of the DPCAM and the Near-Far 
Access NFRA. Section 3 provides functional and timing simulation results, power 
estimation analysis, and an FPGA implementation of the DPCAM.

Multi-core ICs package multiple processors into a single device. Many-core 
systems, an evolution of multi-core technology, provide intense parallel process-
ing capabilities for a large number of cores. In order for many-core systems to 
work, shared memory must be used to communicate between the cores. However, 
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this shared memory can become problematic if multiple cores attempt to access it 
simultaneously. To address this issue, there have been various studies conducted in 
the literature that aims to reduce latency and power usage when accessing shared 
memory. Two potential methods for this are improving cache replacement algorithms 
and optimizing cache architecture.

Many multi-core systems utilize Associative Memory (AM) cache as a way to 
share memory [1, 2]. The architecture of enhanced caching seeks to facilitate parallel 
searching and faster retrieval [3]. In contrast, replacement algorithms are employed 
to aid the cache controller in deciding which data to eliminate in order to make space 
for new data [4, 5]. Moreover, an effective replacement algorithm can reduce the 
latency of cache access. Content addressable memory (CAM) is a type of AM that 
accesses memory locations by comparing tags (parts of the content) rather than 
calculating the address and has certain properties that make it suitable for use as a 
shared memory [3, 6, 7]. The use of CAM memory in shared memory for multi-core 
systems is interesting, as demonstrated by other relevant articles that have recently 
been published by the authors [8, 9].

1.1 Types of shared cache memory

In contrast to traditional memory architectures, such as Static Random Access 
Memory (SRAM) and Dynamic RAM (DRAM), which use unique addresses to 
retrieve and store data, content-operated memory (COM) uses a different approach. 
COM allows stored data to be accessed based on part of its content, instead of an 
address [1]. COM is used in a variety of digital computer applications, from branch 
prediction techniques to very-high-speed parallel systems, to perform two primary 
memory-related operations: writing (storing data) and reading (accessing the correct 
corresponding data) when the address is not known [3]. The major application of 
COMs is packet switching routing and classification on network systems [10]. It is 
anticipated that COM memory will be used in upcoming applications for non-CMOS 
next-generation electronic devices [3]. COM memory architectures can be divided 
into two main categories: AM and CAM. Both of these types of memory perform the 
same functions, but they do so in different ways.

AM memory is further divided into three categories: direct-mapped (DM), 
set associative (SA), and fully associative (FA). Each of these memory types has 
different restrictions on where data can be written, as well as different replacement 
algorithms that are used. DM memory only allows for one location for a particular 
data item. FA memory allows for data to be mapped to any location. SA memory 
allows for a set of possible locations for data to be stored. In the following subsec-
tions, a brief overview of each of these three main types of cache memory will be 
provided.

1.1.1 Fully associative memory

The FA cache memory design stores the address and data in the same cache 
location, and compares the incoming address with all addresses stored within each 
location. As shown in Figure 1, this type of caching architecture is associated with 
high performance in comparison with its size; however, its design complexity is 
a major drawback. To counteract this, Random, First in First out (FIFO), and the 
Least Recently Used (LRU) algorithms are employed to determine where data 
should be stored [2].
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FA caches are rarely utilized in multi-core processors due to their lower cache hit 
rate. Whenever a new memory is referenced to the same cache location, the cache line 
is replaced, leading to an increased miss rate [1, 2].

1.1.2 Direct mapped memory

In this type of system, the main memory is divided into blocks, and the cache is 
divided into a set of lines. This means that each cache line can hold one block of the 
main memory. Rather than storing the full address in the address field, only a part 
of the address bits is stored alongside the data field [1, 2] shown in Figure 2. Direct 
mapped caching has the benefit of being both simple and cost-effective to implement; 

Figure 1. 
FA architecture.

Figure 2. 
Direct mapped cache memory.
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however, if access to different locations with the same index is attempted, its perfor-
mance will suffer.

1.1.3 Set-associative memory

Set-associative (SA) caching is a hybrid between full associativity and direct map-
ping. It splits the cache into a set of lines, allowing one block of main memory to be 
stored in n potential sets. Compared to a FA cache, it is less complex and can provide 
better performance since multiple addresses can be stored under the same index. 
However, its cost increases as the set size grows, as well as its access latency since it 
has to compare each address in all sets after its index is generated. Despite this, many 
commercial multi-core systems still use SA caches due to their improved performance 
[1, 2]. Figure 3 represents the SA cache memory.

In both FA mapping and SA mapping, there are multiple options for where data 
can be stored, so replacement algorithms must be used to decide which location 
should be chosen.

1.1.4 Content-addressable memory

CAM is a type of memory whose locations can be accessed by comparing tags that 
are parts of the contents, rather than supplying their addresses. In some ways, CAM 
is similar to direct memory (DM) in its form; both allow for the instant retrieval of 
an output based on the input. However, both DM and CAM use different methods 
to facilitate the parallel search and quick storage [2, 3]. DM prevents the storage of 
particular data in just one location; conversely, CAM has no bounds on where data can 
be stored. Similarly, CAM and FA are comparable in that they both have no con-
straint on where data can be saved. Additionally, they both use analogous update and 
replacement strategies such as random, FIFO, and LRU to replace data when memory 
is full or the data becomes no longer useful. These algorithms will select a line that is 
unlikely to be needed in the near future, from all the lines stored in memory [5].

Figure 3. 
SA cache memory.
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Transactional memory (TM) is a new, emerging type of memory associated with 
CAM. It is not much different from CAM, but it is used to allow data sharing between 
processors in a distributed system. TM is used as autonomous storage memory with 
various hardware components [11, 12].

CAM memory is used for a variety of applications, including image processing, 
signal processing, pattern recognition, switching network techniques, and paral-
lel processing systems. Unlike traditional SRAM, CAM memory searches through 
the content of data rather than its address, allowing for parallel and simultaneous 
search. This makes it a powerful tool that can quickly search through memory 
contents [3, 13–15].

A unique tag is assigned to each data in a CAM. To read the data, a read signal 
and the tag are applied to all locations at the same time, and then, the applied tag is 
compared with all of the previously stored tags. If a match is found, the data in the 
matched location is selected, output on the data bus, and read by the core. Figure 4 
displays the architecture of a CAM with a single port. It was not previously possible 
to make CAMs as a standalone memory in any system because a large number of 
pins were required; however, with the advances in semiconductor technology and 
FPGAs, researchers are now able to implement CAMs in FPGAs [7, 16]. These types of 
memory improve the search rate and reduce the processing latency and sometimes the 
power consumption.

The SA cache is the most popular architecture type used as shared memory in 
multi-core systems [1, 3]. It still suffers from many problems such as increasing 
access latency and contention if more than one core tries to access the same shared 
memory simultaneously. These problems are solved using the proposed DPCAM 
architecture.

Figure 4. 
CAM architecture.
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2. Proposed DPCAM

As demonstrated in Figure 5, a Dual-Port Content Addressable Memory 
(DPCAM) can be used with a separate, pipelined shared cache. A Tag Field, Data 
Field, control unit (CU), comparator (CMP), Tag Field, Data Field, and two ports 
(Ds31-Ds0 for writing and Dd31–Dd0 for reading) are all included in the cache.  
The core sends Data source [Ds31–Ds0] and Tag source [Ts15–Ts0] to be written to the 
chosen cache line during the Store Back (SB) stage. The cached data is read to the 
destination data bus [Dd31–Dd0] during the Operand Fetch (OF) step, while the core 
simultaneously sends the Tag destination [Td15–Td0] for comparison with each cache 
line. Both ports have the ability to operate simultaneously.

The Data Field and the Tag Field are the two components that make up a cache 
line (L). The common data is kept in the Data Field, and each Data Field’s specific tag 
(data and version number) is kept in the Tag Field. Depending on the sort of archi-
tecture the CAM is used in, the length of each field can be altered. A 24-bit tag, for 
instance, can hold up to 16 Mega versions of shared material. For reading operations, 
a 2 × 1 CMP is included that compares the tags from the OF stage [Td15-Td0] to those 
kept [Ts15–Ts0] in the cache lines.

The CU of the DPCAM design is a crucial component that is responsible for both 
managing the writing process and executing the replacement algorithm. Its goal is to 
generate an active signal in a cyclic pattern for each cache line. The control circuit is 
used to select which position to write the data to, as illustrated in Figure 6. The loca-
tions are chosen in order and are rewritten if needed to update their contents. This is 
accomplished by employing a collection of D Flip Flops (D-FF), each of which points 

Figure 5. 
DPCAM design.
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to an associated DPCAM location. The first writing operation will be done on line 
L0 when the system is initially powered on, with the pointer indicating the first line, 
LE0. After writing to the current line, the pointer will shift to the next line and so on 
until the n − 1th line (Ln − 1) is reached.

The Write (WR) signal is transmitted by the CU from the first port (write 
port) in DPCAM, which is responsible for the writing operation. The stage buffer 
(SB) unit supplies the source data [Ds31–Ds0], the source tag [Ts15–Ts0], and an 
active low WR signal. The control circuit will then switch the LE to LE1 in order 
to write to line 1 whenever the WR signal reaches its negative edge (marking the 
end of the writing procedure). The output (OF) unit of the reading core will 
send an active high read (RD) signal and the tag destination (Td15–Td0) to all 
Tag Fields during the reading operation. The applied data’s tag is compared to 
the tags kept in the memory lines. If a match is found, the CMP of each memory 
line will output an output enable (OE) signal. The data kept in the Data Field is 
then output via this signal to the destination data bus [Dd31–Dd0] for the reading 

Figure 6. 
Control unit.



Computer Memory and Data Storage

8

core’s OF unit to read. If the same memory address is requested for both reading 
and writing, the CU will give priority to the writing process and signal a WAIT 
to the reading operation. Both read and write ports can operate simultaneously if 
separate memory locations are requested for reading and writing, which lowers 
the cache access latency. While the SB unit of the writing core delivers the data 
[Ds31–Ds0] and the tag [Ts15–Ts0] to the precise position designated by the CU, the 
OF unit of the reading core concurrently transmits the destination tag [Td15–Td0] 
and the RD signal to all tag fields. This makes it possible to read the stored data 
from the target data bus [Dd31-Dd0].

The proposed architecture features a new, small DPCAM in place of the cache 
controller, which collects data from lower-level memory and increases access latency. 
Close-access data is stored in the main DPCAM module, as indicated in Figure 7, and 
far-access data is stored in the new module. As far-access data is used less often than 
near-access data, the far-access module is generally smaller. To illustrate, a four-core 
processor with a 64 KiB shared DPCAM can store 2 K operands, each composed of 
eight bytes of data plus a tag, before the data must be rebuilt.

The NFRA algorithm is implemented at the hardware level to reduce cache access 
latency. This technique involves writing a CU and pointer to position Lx, followed by 
instructions that write their operands to Lx + 1 to Ln − 1. After reaching the last posi-
tion, the pointer returns to LE0 and overwrites the previous data and tags. Compared 
to a complex algorithm in the cache controller, this method is used for both near-
access and far-access modules and has lower costs and access overhead. Moreover, it 
facilitates the storing, loading, and retrieving of near-access and far-access data/tags 
from various DPCAM modules [1]. According to the migration principle, the far-
access module can be activated as needed and then switched to an inactive mode to 
conserve power when not in use [17, 18].

Figure 7. 
Near-access, far-access DPCAM modules.
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3. Implementation of the DPCAM and performance analysis

Quartus Prime 19.1 was utilized in the development, testing, and validation of 
DPCAM using Intel’s FPGA Cyclone V family with 28 nm technology. ModelSim, 
Intel’s design and simulation software, was employed to construct and examine 
DPCAM as a single memory [19]. In order to determine if DPCAM could replace the 
shared cache in the memory hierarchy of a multi-core CPU, two cores were utilized 
to measure the latency of read and write operations. Block schematics and Verilog 
Hardware Description Language (VHDL) files were implemented to develop the 
device, while Model Sim and Vector Wav File (VWF) were used for functional and 
timing simulation verification and debugging. The Power Analyzer Tool was also 
employed to evaluate the DPCAM’s static and dynamic power consumption, and 
a tests-bench was created to simulate and analyze the latency of its reading and 
writing operations. To compare the performance of DPCAM, the SA cache, the most 
popular architecture type used as shared memory in multi-core computers, was 
employed [1, 2].

3.1 Functional assessments

The test-bench program was used to simulate the operations of the DPCAM and 
evaluate its latency and power usage. Firstly, it reset the CU and then created random 
16-bit tags and 32-bit data to carry out write operations. Read/write signals were 
generated until the end of the simulation time and the output for the read opera-
tions was generated by comparing the 16-bit tags with the stored tags. It was used 
to compare the SA cache with the LRU replacement mechanism, and DPCAM with 
NFRA. The usage of the test-bench program is depicted in Figure 8. Through numer-
ous simulations, it was demonstrated that the DPCAM’s reading, writing, simultane-
ous read-write, CU, and replacement algorithms all operated as intended. Figure 9 
displays a 10 ns clock period of multiple clock cycles for reading and writing opera-
tions to the 64 KiB DPCAM. The CU was set to the first location in the first interval 
(0–10 ns) with the written data (out). The processor loaded the relevant tag (tagd) 
of the written data (outI) and used the RD signal to read the data from the desired 
out DPCAM location during the second interval (10–20 ns) using the WR signal. 
As soon as the RD signal went high, the processor output busses (outE) released 
the stored information. During interval 4 (30–40 ns), multiple DPCAM locations 
underwent read and write operations, with a write operation taking priority over 
the read operation. As a result, new data with a tag of [0]13 was written to the target 
location, while data previously written with a tag of [0]12 was accurately read. In 
interval 5 (40–50 ns), both read and write operations were performed on the same 
spot simultaneously.

3.2 Latency assessments

The performance of the DPCAM with regard to timing evaluation was evaluated 
using the Intel Quartus Prime Timing Analyzer. For each component of the design, 
this tool reports on all necessary data times, data arrival times, and clock arrival times 
using industry-standard constraint and analysis methodologies (Intel, 2021). The 
access latency for read and write operations in the DPCAM structure was measured 
using the Timing Analyzer, and real signal arrivals were compared to the design 
restrictions.
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To determine the delay of read and write operations, a 64 KiB near and distant 
DPCAM module timing simulation was performed using Intel’s Cyclone V FPGA, 
as shown in Figure 10. After running the simulator 100 times, it was found that 
the average delay time for writing on DPCAM was 0.9529 ± 0.03393 ns. The WR 
signal was then turned off. The average latency for a read operation was found to be 
1.1782 ± 0.08830 ns when the tag ([0]10) in the second interval was compared with 

Figure 8. 
Test-bench program.

Figure 9. 
Functional assessments.
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the tags in all places with the RD signal. The fourth and fifth intervals were used to 
assess the latency of simultaneous read and write operations, and the average delay 
time was calculated to be the time between initiating a request for data and the actual 
data transfer for a single operation and the time between two requests for simultane-
ous write and read operations.

• ( )= +max
SDL WR RD
l l l  SDL is referred to simultaneous access RD/WR operations 

to the different memory lines

• = +
SSL CL RD
l t l  SSL is referred to simultaneous access RD/WR operations to the 

same memory lines

Where lWR is a latency of a write operation, lRD is a latency of a read operation and 
tCL is the cycle time.

Hundred simulations in two separate modes with write and read operations to 
unique or similar memory locations were run. The write and read latency for the latter 
mode were 0.98280.0412 ns and 1.2226 ± 0.09446 ns, respectively, with an overall 
latency of lSSL = 11.2226 ± 0.09138 ns according to the T-test and 95% confidence 
interval. The average write latency was 1.9434 ± 0.0382 ns, and the average read 
latency was 2.15840.1056 ns, according to tests with a 64 KiB four-way SA cache. 
Unfortunately, due to SA cache limitations, simultaneous read and write operations 
could not be tested. The tested DPCAM has a lower read latency than the tested SA 
cache; this is because DPCAM compares the incoming tag directly with the stored tag, 
whereas SA caches must use an index to access the location with a tag to compare to, 
which increases the latency. Generally, a cache memory based on AM has a latency 
of around 2 ns for 64 KiB [20], 1.66 ns for AM with 1KiB, and 1.69 ns for 4-way set 
associative with 2 KiB, which is used in cache controllers [21]. However, the write 
latency for a cache memory based on AM typically exceeds 2 ns for 64KiB [20].

Using FPGA technology, a comparison of the write latency between a typical four-
way set associative cache and a DPCAM design was made for equivalent-sized caches. 
Because the CU points directly to the memory location and does not need to generate 
the address of the following write site as is necessary for the AM cache memory, simu-
lations have shown that DPCAM has a low and consistent write latency for variable 
memory sizes. As seen in Figure 11 and Table 1, the write latency difference between 
DPCAM and the SA cache widens as memory capacity grows.

Figure 10. 
Latency assessments.
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In order to assess the latency of write and read operations, the NFRA replace-
ment method used by DPCAM and the LRU algorithm employed by the set asso-
ciative cache memory were compared. The results showed that the set associative 
cache had an average latency of 0.9529 ± 0.03393 ns for a write operation and 
1.1782 ± 0.08830 ns for a read operation, whereas the DPCAM recorded a lower access 
latency for a size of 64 KiB, with a latency of 1.9434 ± 0.0382 ns for a write operation 
and 2.1584 ± 0.1056 ns for a read operation.

3.2.1 Descriptive statistics

About 100 times were spent running the simulator with various test-bench values, 
documenting the latency for write and read operations as well as for simultaneous read 
and write operations into distinct memory locations and the same memory location. In 
order to determine the minimum, maximum, mean, and standard error for DPCAM 
and SA architecture, data analysis was done using SPSS and T-test tools. Table 2 
displays descriptive data for write latency in DPCAM, Table 3 describes descriptive 
statistics for read latency, Table 4 describes descriptive statistics for simultaneous read 
and write operations into distinct memory locations, and Table 5 describes descriptive 
statistics for simultaneous read and write operations into the same memory regions. 
Similar descriptive statistics for write and read latency in set associative are shown in 
Tables 6 and 7. The write and read operations between DPCAM and SA memory were 

Size DPCAM Cache Size DPCAM Cache

16 K 0.90 1.02 256 K 0.95 3.60

32 K 0.90 1.95 512 K 0.99 3.77

64 K 0.91 1.94 1 M 1.09 4.76

Table 1. 
Write operation access latency (ns).

Figure 11. 
Write access latency (ns).
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compared using the T-test, and it was discovered that DPCAM had lower write and 
read latencies than those of SA memory with a 95% confidence interval.

3.3 Estimation of a power dissipation

Power management is essential to achieving better size, performance, and afford-
ability while maintaining a high power density as chip technology continues to get 
smaller. The Quartus simulator’s Power Analyzer Tool estimates power dissipation 
with an accuracy of 10% to make sure components use the right amount of power and 
enhance the design [22]. Based on the waveform file generated by Model Sim while 

N Minimum Maximum Mean Std.

Statistic Statistic Statistic Statistic Std. Error Statistic

Read DPCAM 100

100

1 1.35 1.1782 0.00883 0.0883

Table 3. 
Descriptive statistics for read latency in DPCAM.

N Minimum Maximum Mean Std.

Statistic Statistic Statistic Statistic Std. error Statistic

Write 

DPCAM

100

100

0.89 1.10 0.9529 0.00339 0.03393

Table 2. 
Descriptive statistics for write latency in DPCAM.

N Minimum Maximum Mean Std.

Statistic Statistic Statistic Statistic Std. Error Statistic

Write/

read 

same 

location 

DPCAM

100

100

0.91 1.10 0.9828 0.00412 0.0412

Table 5. 
Descriptive statistics for simultaneous access latency Rd/Wr operations in the same DPCAM location.

N Minimum Maximum Mean Std.

Statistic Statistic Statistic Statistic Std. error Statistic

Write/

read 

different 

location 

DPCAM

100

100

1 1.40 1.2262 0.00945 0.0945

Table 4. 
Descriptive statistics for simultaneous access latency Rd/Wr operations in the same DPCAM location.
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simulating the script with the DPCAM design at the gate level, the Power Analyzer 
Tool was used to assess static, dynamic, I/O, and overall power consumption.

This section compares and evaluates the power dissipation of DPCAM and four-
way SA caches with various memory capacities. The DPCAM dissipates electricity 
through near-far access modules. Static power, which is the leakage power of the 
functional unit on the FPGA excluding the I/O port, is the thermal energy used on 
the chip. Dynamic power is the amount of energy used when a unit is in use or when 
a signal is changing. The pins, which power components on and off-chip and have an 
impact on dynamic power, produce I/O power [22].

In Figure 12, the static, dynamic, and I/O power dissipation of DPCAMs and SA 
caches can be compared. From Figure 12a, it is evident that DPCAMs have a higher 
static power dissipation than SA caches. This is because increasing the size of the 
DPCAMs leads to the complexity of the hardware created by the CU and internal 
wires covering a larger surface, resulting in an increased static power dissipation. 
Tables 8 and 9 further provide a comparison of the static, dynamic, I/O, and total 
power dissipation of DPCAMs and SA caches, respectively, for different sizes. 
Figure 12b compares the dynamic power dissipation of DPCAM and SA. It can 
be observed that when the size is less than 512 K, the dynamic power of DPCAM 
is similar to that of SA. However, after 256 K, it increases significantly due to 

N Minimum Maximum Mean Std.

Statistic Statistic Statistic Statistic Std. error Statistic

Read SA 100

100

1.95 2.35 2.1584 0.01056 0.1056

Table 7. 
Descriptive statistics for read latency in SA.

N Minimum Maximum Mean Std.

Statistic Statistic Statistic Statistic Std. error Statistic

Write SA 100

100

1.88 2.10 1.9434 0.00382 0.0382

Table 6. 
Descriptive statistics for write latency in SA.

Figure 12. 
Power dissipation with variation in memory size: (a) Compared the static power dissipation between DPCAM 
and SA. (b) Compared dynamic power dissipation. (c) It is compared I/O power dissipation.
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Figure 13. 
Total power dissipation with variation in size.

Power in milliwatts (mW)

Size Static Dynamic I/O Total

16 K 32.214 1.13 11 44.344

32 K 64.33 2.14 11.21 77.68

64 K 107.57 2.99 11.10 121.66

256 K 349.5 7.98 11.88 369.28

512 K 796.2 22.90 12.07 831.17

1 M 1411.10 39.26 13.21 1463.57

Table 8. 
DPCAM power dissipation.

Power in (mW)

Size Static Dynamic I/O Total

16 K 28.9166 1.12 10.1 40.1366

32 K 57.33 1.62 10.1 69.05

64 K 99.41 2.79 10.6 112.8

256 K 334.750 5.48 11 351.23

512 K 696.261 10.021 11.025 771.307

1 M 1325.310 19.28 11.737 1356.326

Table 9. 
SA memory power dissipation.
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numerous active locations being accessed during read operations. Figure 12c‘s com-
parison of I/O power dissipation reveals that the DPCAM’s I/O power is comparable 
to the SA with varied sizes, since the off-chip pins remain constant regardless of the 
internal memory capacity. Figure 13 indicates that the total power used by DPCAM 
is only marginally higher than that of the SA cache, at around 7%. This small 
increase in power dissipation can be managed through power-saving techniques, 
such as those found in refs. [17, 18, 23–25], thus not prohibiting the adoption of 
DPCAM in multi-core systems.

4. Conclusion

A design of a special purpose-shared memory architecture based on CAM and 
a replacement algorithm has been presented in this chapter. This architecture was 
designed to enable multi-core processors to access the cache memory with lower 
latency than the traditional SA cache. It should be stressed that while all of the previ-
ous replacement algorithms do not make use of cache hardware architecture, they 
increase non-computational times for updating the location and introduce new access 
overhead. In order to lower the cost overhead and complexity of the cache controller, 
Near-Far Access Replacement Algorithm (NFRA) is also suggested and implemented 
as a hardware component inside the DPCAM module.

Testing the design on a Cyclone V Intel FPGA showed that the DPCAM could 
replace the shared cache in the memory hierarchy of a multi-core processor. The 
DPCAM had an average latency of 1.2 ± 0.09138 ns for reading operations and 
0.9679 ± 0.0642 for writing operations, which is better than other types of shared 
memory. Furthermore, the access latency for a write operation was almost the 
same regardless of the memory size. Although the DPCAM consumes more power 
than the SA memory, some power-saving techniques can be used to reduce this 
amount.

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 



New Content Addressable Memory Architecture for Multi-Core Applications
DOI: http://dx.doi.org/10.5772/intechopen.112060

17

References

[1] Patterson DA, Hennessy JL. Computer 
Organization and Design The Hardware 
Software Interface. 2nd ed. United States: 
Morgan kaufmann; 2020

[2] Stallings W. Computer organization 
and architecture. In: Wu H-K, Lee SW-Y, 
Chang H-Y, J, editors. Designing For 
Performance. 9th ed. United States: 
Pearson Education; 2013

[3] Karam R, Puri R, Ghosh S, 
Bhunia S. Emerging trends in design 
and applications of memory-based 
computing and content-addressable 
memories. Proceedings of 
the IEEE. 2015;103(8):1311-1330

[4] Olanrewaju RF, et al. A study on 
performance evaluation of conventional 
cache replacement algorithms: a review. 
In: 2016 Fourth International Conference 
on Parallel, Distributed and Grid 
Computing (PDGC). IEEE; 2016

[5] Priya BK, Kumar S, Begum BS, 
Ramasubramanian N. Cache lifetime 
enhancement technique using 
hybrid cache-replacement-policy. 
Microelectronics Reliability. 2019;97:1-15

[6] Abumwais A, Ayyad A. The MPCAM 
based multi-core processor architecture: 
A contention free architecture. 
WSEAS Transactions on Electronics. 
2018;9:105-111

[7] Irfan M, Cheung RC, Ullah Z. High-
throughput re-configurable content-
addressable memory on FPGAs. In: 
Proceedings of the 2019 International 
Conference on Information Technology 
and Computer Communications. 2019

[8] Abumwais A, Amirjanov A, Uyar1 K, 
Eleyat M. Dual-port content addressable 
memory for cache memory applications. 

Computer, Material & Continua. 
2021;70(3):4583-4597

[9] Abumwais A, Obaid M. Shared 
cache based on content addressable 
memory in a multi-core architecture. 
CMC-Computers, Materials & Continua. 
2023;74(3):4951-4963

[10] Cheriton DR. U.S. Patent No. 
9,111,013. Washington, DC: U.S. Patent 
and Trademark Office; 2015

[11] Nakaike T, Odaira R, Gaudet M, 
Michael MM, Tomari H. Quantitative 
comparison of hardware transactional 
memory for Blue Gene/Q , zEnterprise 
EC12, Intel Core, and POWER8. ACM 
SIGARCH Computer Architecture News. 
2015;43(3S):144-157

[12] Papagiannopoulou D, 
Marongiu A, Moreshet T, Benini L, 
Herlihy M, Bahar RI. Hardware 
transactional memory exploration in 
coherence-free many-core architectures. 
International Journal of Parallel 
Programming. 2018;46:1304-1328

[13] Bhattacharya D, Bhoj AN, Jha NK. 
Design of efficient content addressable 
memories in high-performance FinFET 
technology. IEEE Transactions on Very 
Large Scale Integration (VLSI) Systems. 
2014;23(5):963-967

[14] Imani M, et al. Digitalpim: digital-
based processing in-memory for big data 
acceleration. In: Proceedings of the 2019 
on Great Lakes Symposium on VLSI. 2019

[15] Martyshkin AI, Salnikov II, 
Pashchenko DV, Trokoz DA. Associative 
co-processor on the basis of 
programmable logical integrated circuits 
for special purpose computer systems. In: 
2018 Global Smart Industry Conference 
(GloSIC). IEEE; Nov 2018. pp. 1-5



Computer Memory and Data Storage

18

[16] Ullah I, Ullah Z, Lee JA. Ee-tcam: 
An energy-efficient sram-based tcam on 
fpga. Electronics. 2018;7(9):186

[17] Luo JY, Cheng HY, Lin C, Chang DW. 
TAP: reducing the energy of asymmetric 
hybrid last-level cache via thrashing 
aware placement and migration. 
IEEE Transactions on Computers. 
2019;68(12):1704-1719

[18] Ofori-Attah E, Bhebhe W, Opoku 
Agyeman M. Architectural techniques 
for improving the power consumption 
of noc-based cmps: A case study of 
cache and network layer. Journal of Low 
Power Electronics and Applications. 
2017;7(2):14

[19] Cyclone V Device Overview. 
Available from: https://www.intel.
com/content/www/us/en/docs/
programmable/683694/current/cyclone-
v-device-overview.html

[20] Cargnini LV, Torres L, Brum RM, 
Senni S, Sassatelli G. Embedded memory 
hierarchy exploration based on magnetic 
random access memory. Journal of Low 
Power Electronics and Applications. 
2014;4(3):214-230

[21] Chauan P, Singh G, Singh GJ. Cache 
controller for 4-way set-associative cache 
memory. 2015;129(1):8887

[22] Quartus Handbook. Volume 3: 
Verification. Available from: https://
www.mouser.com/pdfdocs/qts-qps-5v3.
pdf

[23] Adegbija T, Gordon-Ross A. PhLock: 
A cache energy saving technique 
using phase-based cache locking. 
IEEE Transactions on Very Large 
Scale Integration (VLSI) Systems. 
2017;26(1):110-121

[24] Park J, Lee M, Kim S, Ju M, 
Hong J. MH cache: A multi-retention 

STT-RAM-based low-power last-level 
cache for mobile hardware rendering 
systems. ACM Transactions on 
Architecture and Code Optimization 
(TACO). 2019;16(3):1-26

[25] Rossi D et al. Exploiting aging 
benefits for the design of reliable drowsy 
cache memories. 2017;37(7):1345-1357


