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CONSTRAINED QUANTIZATION FOR THE CANTOR DISTRIBUTION WITH A
FAMILY OF CONSTRAINTS

1MEGHA PANDEY AND 2MRINAL K. ROYCHOWDHURY

Abstract. In this paper, for a given family of constraints and the classical Cantor distribution we
determine the optimal sets of n-points, nth constrained quantization errors for all positive integers n.
We also calculate the constrained quantization dimension and the constrained quantization coefficient,
and see that the constrained quantization dimension D(P ) exists as a finite positive number, but the
D(P )-dimensional constrained quantization coefficient does not exist.

1. Introduction

Constrained quantization for a Borel probability measure refers to the idea of estimating a given prob-
ability by a discrete probability with a finite number of supporting points lying on a specific set. The spe-
cific set is known as the constraint of the constrained quantization. A quantization without a constraint
is known as an unconstrained quantization, which traditionally in the literature is known as quantization.
Constrained quantization has recently been introduced by Pandey and Roychowdhury (see [PR1, PR2]).
Recently, they have also introduced the conditional quantization in both constrained and unconstrained
quantization (see [PR4]). For some follow up papers in the direction of constrained quantization, one can
see [PR3, BCDRV]). With the introduction of constrained quantization, quantization now has two classi-
fications: constrained quantization and unconstrained quantization. For unconstrained quantization and
its applications one can see [DFG, DR, GG, GL, GL1, GL2, GL3, GN, KNZ, P, P1, R1, R2, R3, Z1, Z2].
Constrained quantization has much more interdisciplinary applications in the areas such as information
theory, machine learning and data compression, signal processing and national security.

Let P be a Borel probability measure on Rk equipped with a metric d induced by a norm ∥ · ∥ on Rk,
and r ∈ (0,∞). Let {Sj : j ∈ N} be a family of closed subsets of Rk such that S1 is nonempty. The
distortion error for P , of order r, with respect to a set α ⊂ Rk, denoted by Vr(P ;α), is defined as

Vr(P ;α) =

∫
min
a∈α

d(x, a)rdP (x).

Then, for n ∈ N, the nth constrained quantization error for P , of order r, with respect to the family of
constraints {Sj : j ∈ N} is defined as

Vn,r := Vn,r(P ) = inf
{
Vr(P ;α) : α ⊆

n⋃
j=1

Sj, 1 ≤ card(α) ≤ n
}
, (1)

where card(A) represents the cardinality of the set A. The sets Sj are the constraints in the con-
strained quantization error. For the probability measure P , we make the standard assumption that∫
d(x, 0)rdP (x) < ∞. This ensures that there is a set α ⊆

n⋃
j=1

Sj for which the infimum in (1) exists

(see [PR1]). A set α ⊆
n⋃

j=1

Sj for which the infimum in (1) exists and does not contain more than n

elements is called an optimal set of n-points for P . The elements of an optimal set are called optimal
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2 M. Pandey and M.K. Roychowdhury

elements. The two numbers Dr(P ) and Dr(P ), defined by Dr(P ) := lim inf
n→∞

r logn
− log(Vn,r(P )−V∞,r(P ))

, and

Dr(P ) := lim sup
n→∞

r logn
− log(Vn,r(P )−V∞,r(P ))

,
(2)

where
V∞,r(P ) := lim

n→∞
Vn,r(P ),

are called the lower and the upper constrained quantization dimensions of the probability measure P
of order r, respectively. If Dr(P ) = Dr(P ), the common value is called the constrained quantization
dimension of P of order r and is denoted by Dr(P ). The constrained quantization dimension measures
the speed at which the specified measure of the constrained quantization error converges as n tends to
infinity. For any κ > 0, the two numbers

lim inf
n

n
r
κ (Vn,r(P )− V∞,r(P )) and lim sup

n
n

r
κ (Vn,r(P )− V∞,r(P ))

are, respectively, called the κ-dimensional lower and upper constrained quantization coefficients for P .
If the κ-dimensional lower and upper constrained quantization coefficients for P exist and are equal,
then we call it the κ-dimensional constrained quantization coefficient for P .

This paper deals with r = 2 and k = 2, and the metric on R2 as the Euclidean metric induced by
the Euclidean norm ∥ · ∥. Thus, instead of writing Vr(P ;α) and Vn,r := Vn,r(P ) we will write them as
V (P ;α) and Vn := Vn(P ). Let us take the family {Sj : j ∈ N} of constraints, that occurs in (1) as
follows:

Sj = {(x, y) : −1

j
≤ x ≤ 1 and y = x+

1

j
} (3)

for all j ∈ N. Let T1, T2 : R → R be two contractive similarity mappings such that T1(x) = 1
3
x

and T2(x) = 1
3
x + 2

3
. Then, there exists a unique Borel probability measure P on R such that P =

1
2
P ◦ T−1

1 + 1
2
P ◦ T−1

2 , where P ◦ T−1
i denotes the image measure of P with respect to Si for i = 1, 2

(see [H]). If k ∈ N, and σ := σ1σ2 · · ·σk ∈ {1, 2}k, then we call σ a word of length k over the alphabet
I := {1, 2}, and denote it by |σ| := k. By I∗, we denote the set of all words including the empty word
∅. Notice that the empty word has length zero. For any word σ := σ1σ2 · · ·σk ∈ I∗, we write

Tσ := Tσ1 ◦ · · · ◦ Tσk
and Jσ := Tσ([0, 1]).

Then, the set C :=
⋂

k∈N
⋃

σ∈{1,2}k Jσ is known as the Cantor set generated by the two mappings T1 and
T2, and equals the support of the probability measure P , where P can be written as

P =
∑

σ∈{1,2}k

1

2k
P ◦ T−1

σ .

For this probability measure P , Graf and Luschgy determined the optimal sets of n-means and the nth
quantization errors for all n ∈ N (see [GL2]). They also showed that the unconstrained quantization
dimension of the measure P exists and equals log 2

log 3
, which is the Hausdorff dimension of the Cantor set

C, and the unconstrained quantization coefficient does not exist. In fact, in [GL2], they showed that
the lower and the upper quantization coefficients exist as finite positive numbers.

Notice that a Borel probability measure P on R can also be considered as a Borel probability measure
on R2 as P (R2 \ R) = 0. In this paper, with respect to the family of constraints {Sj : j ∈ N} for the
Cantor distribution P we determine the optimal sets of n-points and the nth constrained quantization
errors for all positive integers n. We further show that the constrained quantization dimension of
the Cantor distribution P exists and equals two. Moreover, the value of the constrained quantization
coefficient comes as infinity. From the work in this paper, we see that the constrained quantization
dimension and the constrained quantization coefficient for the classical Cantor distribution depend on
the family of constraints.
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2. Preliminaries

In this section, we give some basic notations and definitions which we have used throughout this paper.
As defined in the previous section, let I := {1, 2} be an alphabet. For any two words σ := σ1σ2 · · ·σk

and τ := τ1τ2 · · · τℓ in I∗, by στ := σ1 · · ·σkτ1 · · · τℓ, we mean the word obtained from the concatenation
of the two words σ and τ . For σ, τ ∈ I∗, σ is called an extension of τ if σ = τx for some word x ∈ I∗. The
mappings Ti : R → R, 1 ≤ i ≤ 2, such that T1(x) =

1
3
x and T2x = 1

3
x+ 2

3
are the generating maps of the

Cantor set C, which is the support of the probability measure P on R given by P = 1
2
P ◦T−1

1 + 1
2
P ◦T−1

2 .

For σ := σ1σ2 · · ·σk ∈ Ik, write Jσ = Tσ[0, 1], where Tσ := Tσ1 ◦Tσ2 ◦ · · · ◦Tσk
is a composition mapping.

Notice that J := J∅ = T∅[0, 1] = [0, 1]. Then, for any k ∈ N, as mentioned before, we have

C =
⋂
k∈N

⋃
σ∈Ik

Jσ and P =
∑
σ∈Ik

1

2k
P ◦ T−1

σ .

The elements of the set {Jσ : σ ∈ Ik} are the 2k intervals in the kth level in the construction of the
Cantor set C, and are known as the basic intervals at the kth level. The intervals Jσ1, Jσ2, into which
Jσ is split up at the (k + 1)th level are called the children of Jσ.

With respect to a finite set α ⊂ R2, by the Voronoi region of an element a ∈ α, it is meant the set of
all elements in R2 which are nearest to a among all the elements in α, and is denoted by M(a|α). For
any two elements (a, b) and (c, d) in R2, we write

ρ((a, b), (c, d)) := (a− c)2 + (b− d)2,

which gives the squared Euclidean distance between the two elements (a, b) and (c, d). Let p and q
be two elements that belong to an optimal set of n-points for some positive integer n, and let e be
an element on the boundary of the Voronoi regions of the elements p and q. Since the boundary of
the Voronoi regions of any two elements is the perpendicular bisector of the line segment joining the
elements, we have

ρ(p, e)− ρ(q, e) = 0.

We call such an equation a canonical equation. Notice that any element x ∈ R can be identified as an
element (x, 0) ∈ R2. Thus,

ρ : R× R2 → [0,∞) such that ρ(x, (a, b)) = (x− a)2 + b2, (4)

where x ∈ R and (a, b) ∈ R2, defines a nonnegative real-valued function on R × R2. Let π : R2 → R
such that π(a, b) = a for any (a, b) ∈ R2 denote the project mapping. For a random variable X with
distribution P , let E(X) represent the expected value, and V := V (X) represent the variance of X.

The following lemmas are well-known (see [GL2]).

Lemma 2.1. Let f : R → R+ be Borel measurable and k ∈ N. Then∫
fdP =

∑
σ∈{1,2}k

pσ

∫
f ◦ SσdP.

Lemma 2.2. Let X be a random variable with probability distribution P. Then, E(X) = 1
2
and V :=

V (X) = E∥X − 1
2
∥2 = E(X − 1

2
)2 = 1

8
. Moreover, for any x0 ∈ R, we have∫

(x− x0)
2dP (x) = V (X) + (x− 1

2
)2.

Remark 2.3. For words β, γ, · · · , δ in I∗, by a(β, γ, · · · , δ) we mean the conditional expectation of the
random vector X given Jβ ∪ Jγ ∪ · · · ∪ Jδ, i.e.,

a(β, γ, · · · , δ) = E(X : X ∈ Jβ ∪ Jγ ∪ · · · ∪ Jδ) =
1

P (Jβ ∪ · · · ∪ Jδ)

∫
Jβ∪···∪Jδ

x dP.

Recall Lemma 2.1. For each σ ∈ I∗, since Tσ is a similarity mapping, we have

a(σ) = E(X : X ∈ Jσ) =
1

P (Jσ)

∫
Jσ

x dP =

∫
Jσ

xd(P ◦ T−1
σ ) =

∫
Tσ(x) dP
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= E(Tσ(X)) = Tσ(E(X)) = Tσ(
1

2
).

In this paper, we investigate the constrained quantization for the family of constraints given by

Sj = {(x, y) : −1

j
≤ x ≤ 1 and y = x+

1

j
} for all j ∈ N, (5)

i.e., the constraints Sj are the line segments joining the points (−1
j
, 0) and (1, 1+ 1

j
) which are parallel to

the line y = x. The perpendicular on a constraint Sj passing through a point (x, x+ 1
j
) ∈ Sj intersects

the real line at the point 2x+ 1
j
if −1

j
≤ x ≤ 1; and it intersects J if 0 ≤ 2x+ 1

j
≤ 1, i.e., if

− 1

2j
≤ x ≤ 1

2
− 1

2j
. (6)

Thus, for all j ∈ N, there exists a one-one correspondence between the elements (x, x + 1
j
) on Sj and

the elements 2x + 1
j
on the real line if −1

j
≤ x ≤ 1. Thus, for all j ∈ N, there exist bijective mappings

Uj such that

Uj(x, x+
1

j
) = 2x+

1

j
and U−1

j (x) =
(1
2
(x− 1

j
),
1

2
(x− 1

j
) +

1

j

)
, (7)

where −1
j
≤ x ≤ 1.

The following lemma plays an important role in the paper.

Lemma 2.4. Let αn ⊆
n
∪
j=1

Sj be an optimal set of n-points for P such that

αn := {(aj, bj) : 1 ≤ j ≤ n},
where a1 < a2 < a3 < · · · < an and π be the projection mapping. Then, (aj, bj) = U−1

n (E(X : X ∈
π(M((aj, bj)|αn)))), where M((aj, bj)|αn) are the Voronoi regions of the elements (aj, bj) with respect to
the set αn for 1 ≤ j ≤ n.

Proof. Let αn := {(aj, bj) : 1 ≤ j ≤ n}, as given in the statement of the lemma, be an optimal set of

n-points. Take any (aq, bq) ∈ αn. Since αn ⊆
n
∪
j=1

Sj, we can assume that (aq, bq) ∈ St for some 1 ≤ t ≤ n.

Since the Voronoi region of (aq, bq), i.e., M((aq, bq)|αn) has positive probability, M((aq, bq)|αn) contains
some basic intervals from J that generates the Cantor set C. Let Jσ(j) , where 1 ≤ j ≤ k for some
positive integer k, be all the basic intervals that are contained in M((aq, bq)|αn). Now, the distortion
error contributed by (aq, bq) in its Voronoi region M((aq, bq)|αn) is given by∫

π(M((aq ,bq)|αn))

ρ(x, (aq, bq)) dP

=
k∑

j=1

1

2ℓ(σ(j))

∫
J
σ(j)

ρ(x, (aq, bq)) d(P ◦ T−1
σ(j))

=
k∑

j=1

1

2ℓ(σ(j))

1

9ℓ(σ(j))
V +

k∑
j=1

1

2ℓ(σ(j))
ρ(Tσ(j)(

1

2
), (aq, aq +

1

t
))

=
k∑

j=1

1

2ℓ(σ(j))

1

9ℓ(σ(j))
V +

k∑
j=1

1

2ℓ(σ(j))

(
(Tσ(j)(

1

2
)− aq)

2 + (aq +
1

t
)2
)

=
k∑

j=1

1

2ℓ(σ(j))

1

9ℓ(σ(j))
V +

k∑
j=1

1

2ℓ(σ(j))

(
2a2q − 2aq(Tσ(j)(

1

2
)− 1

t
) + (Tσ(j)(

1

2
))2 +

1

t2

)

=
k∑

j=1

1

2ℓ(σ(j))

1

9ℓ(σ(j))
V +

k∑
j=1

1

2ℓ(σ(j))

1

2

((
2aq − (Tσ(j)(

1

2
)− 1

t
)
)2

+
(
Tσ(j)(

1

2
) +

1

t

)2)
.
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Notice that the above expression is minimum if both the expressions
k∑

j=1

1

2ℓ(σ(j))

1

2

(
2aq − (Tσ(j)(

1

2
)− 1

t
)
)2

and
k∑

j=1

1

2ℓ(σ(j))

1

2

(
Tσ(j)(

1

2
) +

1

t

)2

are minimum. Since 1 ≤ t ≤ n, both the expressions are minimum if t = n. Once t = n, the first
expression can further be minimized if

k∑
j=1

1

2ℓ(σ(j))

(
(2aq +

1

n
)− Tσ(j)(

1

2
)
)
= 0

yielding

2aq +
1

n
=

∑k
j=1

1

2ℓ(σ
(j))

Tσ(j)(12)∑k
j=1

1

2ℓ(σ
(j))

.

Thus, we have

aq =
1

2

(∑k
j=1

1

2ℓ(σ
(j))

Tσ(j)(12)∑k
j=1

1

2ℓ(σ
(j))

− 1

n

)
and bq =

1

2

(∑k
j=1

1

2ℓ(σ
(j))

Tσ(j)(12)∑k
j=1

1

2ℓ(σ
(j))

− 1

n

)
+

1

n

implying

(aq, bq) = U−1
n

(∑k
j=1

1

2ℓ(σ
(j))

Tσ(j)(12)∑k
j=1

1

2ℓ(σ
(j))

)
= U−1

n (π(E(X : X ∈ M((aq, bq)|αn)))).

Since (aq, bq) ∈ αn is chosen arbitrarily, the proof of the lemma is complete. □

Remark 2.5. By (6) and (7), and Lemma 2.4, we can conclude that all the elements in an optimal set
of n-points must lie on Sn between the two elements U−1

n (0) and U−1
n (1), i.e., between the two elements

(− 1
2n
, 1
2n
) and (n−1

2n
, n+1

2n
). If this fact is not true, then the constrained quantization error can be strictly

reduced by moving the elements in the optimal set between the elements (− 1
2n
, 1
2n
) and (n−1

2n
, n+1

2n
) on

Sn, in other words, the x-coordinates of all the elements in an optimal set of n-points must lie between
the two numbers − 1

2n
and n−1

2n
.

Lemma 2.6. We have 1 + 5 + 13 + 17 + 37 + 41 + 49 + 53 + · · · up to 2k-terms = 6k, and 12 + 52 +
132 + 172 + 372 + 412 + 492 + 532 + · · · up to 2k-terms = 2k−1(9k3− 1).

Proof. For k ∈ N ∪ {0} let us define sets C0 = 1 and Ck = Ck−1 ∪ (Ck−1 + (3k−14)). Then, notice that
Ck = {1, 5, 13, 17, . . . up to 2k-terms}. Let us next define the moment function for the required sum as
follows

Mm(k) =
∑
x∈Ck

xm.

Then, for m = 0, we get

M0(k) =
∑
x∈Ck

x0 = 2k.

For m = 1, we have

M1(k) =
∑
x∈Ck

x =
∑

x∈Ck−1

(x+ (x+ 3k−14))

=
∑

x∈Ck−1

x+
∑

x∈Ck−1

x+
∑

x∈Ck−1

3k−14

=2M1(k − 1) + 2k−13k−14

=22M1(k − 2) + 2k−13k−24 + 2k−13k−14

...
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=2kM1(0) + 2k−14 + 2k−13 · 4 + 2k−1324 + · · ·+ 2k−13k−24 + 2k−13k−14

=2k · 1 + 2k−14(1 + 3 + 32 + · · ·+ 3k−1)

=2k + 2k+1

(
3k − 1

2

)
= 6k.

For m = 2, we have

M2(k) =
∑
x∈Ck

x2 =
∑

x∈Ck−1

(x2 + (x+ 3k−14)2)

=
∑

x∈Ck−1

x2 +
∑

x∈Ck−1

(x2 + 2x · 3k−14 + 9k−116)

=2
∑

x∈Ck−1

x2 + 3k−18
∑

x∈Ck−1

x+
∑

x∈Ck−1

9k−116

=2M2(k − 1) + 3k−18M1(k − 1) + 2k−19k−116

=2M2(k − 1) + 3k−16k−18 + 18k−116

=2M2(k − 1) + 18k−124

=22M2(k − 2) + 2 · 18k−224 + 18k−124

=23M2(k − 3) + 2218k−324 + 18k−124

...

=2kM2(0) + 2k−124 + 2k−218 · 24 + · · ·+ 2218k−324 + 18k−124

=2k · 1 + 2k−124(1 + 9 + 92 + · · ·+ 9k−1)

=2k + 2k−124

(
9k − 1

8

)
= 2k−1(9k3− 1).

Therefore, 1+5+13+17+37+41+49+53+ · · · up to 2k-terms = 6k, and 12+52+132+172+372+
412 + 492 + 532 + · · · up to 2k-terms = 2k−1(3 · 9k − 1). Thus, the proof of the lemma is complete. □

Definition 2.7. For n ∈ N with n ≥ 2, let ℓ(n) be the unique natural number with 2ℓ(n) ≤ n < 2ℓ(n)+1.
Let Un be the mappings given by (7). For I ⊂ {1, 2}ℓ(n) with card(I) = n− 2ℓ(n) let αn(I) ⊆ Sn be the
set such that

αn(I) = {U−1
n (a(σ)) : σ ∈ {1, 2}ℓ(n) \ I} ∪ {U−1

n (a(σ1)) : σ ∈ I} ∪ {U−1
n (a(σ2)) : σ ∈ I}.

Proposition 2.8. Let αn(I) be the set given in Definition 2.7. Then, the number of such sets is
2ℓ(n)

Cn−2ℓ(n), and the corresponding distortion error is given by

V (P ;αn(I)) =

∫
min

a∈αn(I)
ρ(x, a) dP =

1

18ℓ(n)
V
(
2ℓ(n)+1 − n+

1

9
(n− 2ℓ(n))

)
+ A,

where V is the variance as given by Lemma 2.2, and

A =
∑

σ∈{1,2}ℓ(n)\I

1

2ℓ(n)
ρ(a(σ), U−1

n (a(σ))) +
∑
σ∈I

1

2ℓ(n)+1

(
ρ(a(σ1), U−1

n (a(σ1))) + ρ(a(σ2), U−1
n (a(σ2)))

)
.

Proof. If 2ℓ(n) ≤ n < 2ℓ(n)+1, then the subset I can be chosen in 2ℓ(n)
Cn−2ℓ(n) different ways, and so, the

number of such sets is given by 2ℓ(n)
Cn−2ℓ(n) , and the corresponding distortion error is obtained as

V (P ;αn(I)) =

∫
min

a∈αn(I)
ρ(x, a) dP

=
∑

σ∈{1,2}ℓ(n)\I

∫
Jσ

ρ(x, U−1
n (a(σ))) dP
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+
∑
σ∈I

(∫
Jσ1

ρ(x, U−1
n (a(σ1))) dP +

∫
Jσ2

ρ(x, U−1
n (a(σ2))) dP

)
=

∑
σ∈{1,2}ℓ(n)\I

1

2ℓ(n)

∫
ρ(Tσ(x), U

−1
n (a(σ))) dP

+
∑
σ∈I

1

2ℓ(n)+1

(∫
ρ(Tσ1(x), U

−1
n (a(σ1))) dP +

∫
ρ(Tσ2(x), U

−1
n (a(σ2)) dP

)
=

∑
σ∈{1,2}ℓ(n)\I

1

2ℓ(n)

( 1

9ℓ(n)
V + ρ(a(σ), U−1

n (a(σ)))
)

+
∑
σ∈I

1

2ℓ(n)+1

( 2

9ℓ(n)+1
V + ρ(a(σ1), U−1

n (a(σ1))) + ρ(a(σ2), U−1
n (a(σ2)))

)
=

1

18ℓ(n)
V
(
2ℓ(n)+1 − n+

1

9
(n− 2ℓ(n))

)
+ A,

where

A =
∑

σ∈{1,2}ℓ(n)\I

1

2ℓ(n)
ρ(a(σ), U−1

n (a(σ))) +
∑
σ∈I

1

2ℓ(n)+1

(
ρ(a(σ1), U−1

n (a(σ1))) + ρ(a(σ2), U−1
n (a(σ2)))

)
.

Thus, the proof of the proposition is complete. □

The following corollary is a consequence of Proposition 2.8.

Corollary 2.9. Let A be the expression given in Proposition 2.8. Then, if n is of the form n = 2ℓ(n)

for some positive integer ℓ(n) ∈ N, we have

A =
2ℓ(n) + 1

2 · 4ℓ(n)
+

3 · 9ℓ(n) − 1

16 · 9ℓ(n)
.

Proof. Let n ∈ N be such that n is of the form n = 2ℓ(n) for some positive integer ℓ(n) ∈ N. Notice that
for σ ∈ {1, 2}ℓ(n), by (4) we have

ρ(a(σ), U−1
n (a(σ))) = ρ

(
a(σ),

(1
2
(a(σ)− 1

n
),
1

2
(a(σ)− 1

n
) +

1

n

))
=

1

2
(a(σ) +

1

n
)2.

Thus, using Lemma 2.6, we have

A =
∑

σ∈{1,2}ℓ(n)

1

2ℓ(n)
1

2
(a(σ) +

1

2ℓ(n)
)2 =

∑
σ∈{1,2}ℓ(n)

1

2ℓ(n)
1

2

(
(a(σ))2 + 2a(σ) · 1

2ℓ(n)
+

1

4ℓ(n)

)
=

1

2ℓ(n)+1
· 1

(2 · 3ℓ(n))2
(
12 + 52 + 132 + 172 + 372 + 412 + 492 + 532 + · · · up to 2ℓ(n)-terms

)
+

1

4ℓ(n)
· 1

2 · 3ℓ(n)
(
1 + 5 + 13 + 17 + 37 + 41 + 49 + 53 + · · · up to 2ℓ(n)-terms

)
+

1

2
· 1

4ℓ(n)

=
1

2 · 4ℓ(n)
+

6ℓ(n)

(2 · 3ℓ(n)) 4ℓ(n)
+

2ℓ(n)−1
(
3 · 9ℓ(n) − 1

)
2ℓ(n)+1 (2 · 3ℓ(n))2

=
2ℓ(n) + 1

2 · 4ℓ(n)
+

3 · 9ℓ(n) − 1

16 · 9ℓ(n)
.

Thus, the proof of the corollary is yielded. □

In the next sections, we give the main results of the paper.
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Figure 1. Points in the optimal sets of n-points for 1 ≤ n ≤ 4.

3. Main Results

In this section, Theorem 3.4, Theorem 3.6, and Theorem 3.7 contain all the main results of the paper.

Proposition 3.1. An optimal set of one-point is {(−1
4
, 3
4
)} with constrained quantization error V1 =

5
4
.

Proof. Let α := {(a, b)} be an optimal set of one-point. Since α ⊆ S1, we have b = a + 1. Now, the
distortion error for P with respect to the set α is give by

V (P ;α) =

∫
ρ((x, 0), (a, a+ 1))dP = 2a2 + a+

11

8
,

the minimum value of which is 5
4
and it occurs when a = −1

4
. Thus, an optimal set of one-point is

{(−1
4
, 3
4
)} with constrained quantization error V1 =

5
4
, which is the proposition. □

The following proposition is known.

Proposition 3.2. (see [GL2]) For n ≥ 2, let αn(I) be the set given by Definition 2.7, and for each
j ∈ N, let Uj be the bijective mapping as defined by (7). Then, the set

Un(αn(I)) = {a(σ) : σ ∈ {1, 2}ℓ(n) \ I} ∪ {a(σ1) : σ ∈ I} ∪ {a(σ2) : σ ∈ I}
forms an optimal set of n-means for the Cantor distribution P with the nth unconstrained quantization
error

V (P ;Un(αn(I))) =
1

18ℓ(n)
V
(
2ℓ(n)+1 − n+

1

9
(n− 2ℓ(n))

)
.

Proposition 3.3. The bijective mappings Un preserves the Voronoi regions with respect to the probability
measure P , i.e., for any discrete β ⊂ R, and a ∈ β, we have

P (M(a|β)) = P (M(U−1
n (a)|U−1

n (β))).

Proof. Since β ⊂ R, for any a ∈ β, we can write M(a|β) = [c, d] for some c, d ∈ R with c < d. Notice
that the bijective mapping Un preserves the order, i.e., for any (e, e + 1

n
), (f, f + 1

n
) ∈ Sn if e < f ,

then Un(e, e +
1
n
) < Un(f, f + 1

n
). Moreover, for any (e, e + 1

n
) ∈ Sn, Un(e, e +

1
n
) represents the point

on J where the perpendicular on Sn at (e, e + 1
n
) intersects J . Hence, we can say that the boundary

of the Voronoi region M(U−1
n (a)|U−1

n (β)) intersects Sn at the points given by U−1
n (c) and U−1

n (d), i.e.,
M(U−1

n (a)|U−1
n (β)) contains the closed interval [c, d] as a subset, i.e.,

M(a|β) ⊂ M(U−1
n (a)|U−1

n (β)).

Since P (M(U−1
n (a)|U−1

n (β)) \ M(a|β)) = 0, we have P (M(a|β)) = P (M(U−1
n (a)|U−1

n (β))). Thus, the
proof of the proposition is complete. □

The following theorem gives the optimal sets of n-points for all positive integers n ≥ 2 for the Cantor
distribution P with respect to the family of constraints {Sj : j ∈ N}.
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Theorem 3.4. For n ≥ 2, let αn(I) be the set given by Definition 2.7. Then, αn(I) forms an optimal
set of n-points for P with nth constrained quantization error

Vn = V (P ;αn(I)) = V (P ;Un(αn(I))) + A.

Proof. To prove that αn(I) forms an optimal set of n-points for P , it is enough to prove the fact that
αn(I) forms an optimal set of n-points for P if and only if Un(αn(I)) forms an optimal set of n-means
for P . The fact is clearly true by Proposition 3.2 and Proposition 3.3. Hence, αn(I) forms an optimal
set of n-points for P (see Figure 1). Then, by Proposition 2.8 and Proposition 3.2, we have the nth
constrained quantization error as

Vn = V (P ;αn(I)) = V (P ;Un(αn(I))) + A.

Thus, the proof of the theorem is complete. □

We need the following proposition, which is a special case of Theorem 3.4, to prove Theorem 3.6 and
Theorem 3.7.

Proposition 3.5. Let n ∈ N be such that n = 2ℓ(n) for some positive integer ℓ(n). Then, the set

αn(I) = {U−1
n (a(σ)) : σ ∈ {1, 2}ℓ(n)}

forms an optimal set of 2ℓ(n)-points with constrained quantization error

V2ℓ(n)(P ) =
1

16

(
23−2ℓ(n) + 23−ℓ(n) + 9−ℓ(n) + 3

)
.

Proof. Let n = 2ℓ(n) for some positive integer ℓ(n). By Theorem 3.4, it follows that the set {U−1
n (a(σ)) :

σ ∈ {1, 2}ℓ(n)} forms an optimal set of n-points. By Proposition 3.2 and Theorem 3.4, and Corollary 2.9,
it follows that the nth constrained quantization error is

V2ℓ(n)(P ) =
V

9ℓ(n)
+

2ℓ(n) + 1

2 · 4ℓ(n)
+

3 · 9ℓ(n) − 1

16 · 9ℓ(n)
,

which yields

V2ℓ(n)(P ) =
1

16

(
23−2ℓ(n) + 23−ℓ(n) + 9−ℓ(n) + 3

)
.

Thus, the proof of the proposition is complete. □

Theorem 3.6. The constrained quantization dimension D(P ) of the probability measure P exists, and
D(P ) = 2.

Proof. For n ∈ N with n ≥ 2, let ℓ(n) be the unique natural number such that 2ℓ(n) ≤ n < 2ℓ(n)+1.
Then, V2ℓ(n)+1 ≤ Vn ≤ V2ℓ(n) . By Proposition 3.5, we see that V2ℓ(n)+1 → 3

16
and V2ℓ(n) → 3

16
as n → ∞,

and so Vn → 3
16

as n → ∞, i.e., V∞ = 3
16
. We can take n large enough so that (V2ℓ(n) − V∞) < 1. Then,

0 < − log(V2ℓ(n) − V∞) ≤ − log(Vn − V∞) ≤ − log(V2ℓ(n)+1 − V∞)

yielding
2ℓ(n) log 2

− log(V2ℓ(n)+1 − V∞)
≤ 2 log n

− log(Vn − V∞)
≤ 2(ℓ(n) + 1) log 2

− log(V2ℓ(n) − V∞)
.

Notice that

lim
n→∞

2ℓ(n) log 2

− log(V2ℓ(n)+1 − V∞)
= lim

n→∞

2ℓ(n) log 2

− log( 1
16
(22−ℓ(n) + 23−2(ℓ(n)+1) + 9−ℓ(n)−1 + 3)− 3

16
)

implying

lim
n→∞

2ℓ(n) log 2

− log(V2ℓ(n)+1 − V∞)
= 2. Similarly, lim

n→∞

2(ℓ(n) + 1) log 2

− log(V2ℓ(n) − V∞)
= 2.

Hence, limn→∞
2 logn

− log(Vn−V∞)
= 2, i.e., the constrained quantization dimension D(P ) of the probability

measure P exists and D(P ) = 2. Thus, the proof of the theorem is complete. □

Theorem 3.7. The D(P )-dimensional constrained quantization coefficient for P is infinity.
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Proof. For n ∈ N with n ≥ 2, let ℓ(n) be the unique natural number such that 2ℓ(n) ≤ n < 2ℓ(n)+1.
Then, V2(ℓ(n)+1) ≤ Vn ≤ V2ℓ(n), and V∞ = limn→∞ Vn = 3

16
. Since

lim
n→∞

n2(Vn − V∞) ≥ lim
n→∞

(2ℓ(n))2(V2ℓ(n)+1 − V∞)

= lim
n→∞

(2ℓ(n))2
( 1

16

(
22−ℓ(n) + 23−2(ℓ(n)+1) + 9−ℓ(n)−1 + 3

)
− 3

16

)
= ∞, and

lim
n→∞

n2(Vn − V∞) ≤ lim
n→∞

(2ℓ(n)+1)2(V2ℓ(n) − V∞)

= lim
n→∞

(2ℓ(n)+1)2
( 1

16

(
23−2ℓ(n) + 23−ℓ(n) + 9−ℓ(n) + 3

)
− 3

16

)
= ∞,

by squeeze theorem, we have limn→∞ n2(Vn − V∞) = ∞, which is the theorem. □
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