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IntelliBeeHive: An Automated Honey Bee, Pollen,
and Varroa Destructor Monitoring System

Christian I. Narcia-Macias, Joselito Guardado, Jocell Rodriguez, Joanne Rampersad-Ammons, Erik Enriquez,
and Dong-Chul Kim

Abstract—Utilizing computer vision and the latest technolog-
ical advancements, in this study, we developed a honey bee
monitoring system that aims to enhance our understanding
of Colony Collapse Disorder, honey bee behavior, population
decline, and overall hive health. The system is positioned at
the hive entrance providing real-time data, enabling beekeepers
to closely monitor the hive’s activity and health through an
account-based website. Using machine learning, our monitor-
ing system can accurately track honey bees, monitor pollen-
gathering activity, and detect Varroa mites, all without causing
any disruption to the honey bees. Moreover, we have ensured
that the development of this monitoring system utilizes cost-
effective technology, making it accessible to apiaries of various
scales, including hobbyists, commercial beekeeping businesses,
and researchers. The inference models used to detect honey bees,
pollen, and mites are based on the YOLOv7-tiny architecture
trained with our own data. The F1-score for honey bee model
recognition is 0.95 and the precision and recall value is 0.981.
For our pollen and mite object detection model F1-score is
0.95 and the precision and recall value is 0.821 for pollen and
0.996 for ”mite”. The overall performance of our IntelliBeeHive
system demonstrates its effectiveness in monitoring the honey
bee’s activity, achieving an accuracy of 96.28% in tracking and
our pollen model achieved a F1-score of 0.831.

Index Terms—Computer vision, Object tracking, Honey bee,
Embedded system

I. INTRODUCTION

HONEY bees (Apis mellifera) are small insects that play
a crucial role in maintaining the balance of ecosystems.

They serve as important pollinators, contributing to the pol-
lination of crops worth an estimated 15 billion dollars in the
United States alone [1]. In today’s rapidly advancing techno-
logical world, innovative solutions can potentially aid honey
bees in overcoming challenges such as parasites and other
factors that contribute to the decline of bee colonies. Honey
bees are renowned for their role as pollinators, facilitating
the reproduction of flowers and fruits through the collection
of pollen, which eventually leads to the creation of delicious
honey.

Vaorra mites, which are not native to the United States and
were introduced from Asia, contribute to the decline of honey
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bee populations [2]. Varroa mites survive by feeding on the
body fat cells of honey bees and extracting essential nutrients
from their bodies [3], [4] as well as transmitting viruses that
cause deadly diseases to honey bees [5]. The presence of
these ectoparasites can devastate a honey bee colony, and
even a colony with minimal signs of infestation has a high
likelihood (around 90-95 percent) of collapsing [6]. This poses
significant challenges for beekeepers who invest their time and
resources in maintaining honey bee colonies, as a single mite
can jeopardize their hives.

Throughout the years of beekeeping, there have been meth-
ods developed to control over infestation of varroa mites.
Today, many beekeepers have kept traditional methods of
checking monthly such as sugar rolls, alcohol washes, or using
sticky boards to monitor the bees for mites [7], [8]. All of these
methods have their pros and cons depending on preference
but they are all time-consuming and require manual labor and
some approaches are destructive, meaning that the sample used
for detecting the infestation levels will not be reintroduced
back to the hive [8]. Therefore, a faster and more effective
alternative is essential for monitoring infestation levels for
such a time-sensitive issue in order to allow beekeepers to
give the proper treatment only when needed to help maintain
the bee hive population.

Foraging is another important indicator of the beehives’
overall health and is important for beekeepers to monitor.
Beekeepers use different methods to monitor the honey bee’s
foraging activity, one example would be using a pollen trap
method that utilizes a mesh screen that has big enough holes
for the honey bee to go through but small enough to scrap off
pollen from the honey bees’ legs [9]. This method removes
the pollen from the bees’ legs for the beekeeper to analyze
the amount of pollen that is being brought into the hive from
when they forage. Removing pollen from the honey bees’ legs
is not as efficient as it does not collect enough pollen in the
mesh screens, which have an efficiency of 3-43 percent in
trapping the incoming pollen, making it ineffective [9]. This
measuring method is inaccurate and removes the nourishment
from the honey bees, as they feed on pollen and nectar, which
can take a toll on their brood development [9], [10].

II. RELATED WORKS

There are numerous techniques that implement approaches
to monitor honey bees’ health. A computer vision system to
monitor the infestation level of varroa destructor in a honeybee
colony paper deployed a Monitoring Unit with a computer
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system to record honey bees entering their bee hives using a
multi-spectral camera and red, blue, and infrared LED lights
to collect footage. They then use computer vision to detect
varroa destructors and determine the infestation level of the
beehive [11]. The objective of this study is to propose an
alternative method for assessing the infestation level without
harming honey bees, which is commonly done in traditional
sampling methods as mentioned previously [7], [8].

A real-time imaging system for multiple honey bee tracking
and activity monitoring purpose is to monitor honey bee
behavior research emphasizes monitoring the activity of honey
bees in-and-out activity of the beehive in order to assess
honey bee colonies’ behavior and the hives overall health when
exposed to different concentrations of Imidacloprid pesticides
[12]. Their system consists of 2 microcomputers, a Jetson
TX2 using background subtraction for object segmentation
and honey bee tracking and a Raspberry Pi 3 for environment
monitoring using sensors.

The Automated monitoring and analyses of honey bee pollen
foraging behavior using a deep learning-based imaging system
study, aims to provide a better and more efficient alternative to
analyze the foraging done by honey bees [13]. This monitoring
system also consists of the same two microcomputers but this
time for object detection, they used YOLOv3’s real-time object
detection. Their method proved to be a more effective and
reliable tool compared to the conventional pollen trap method
previously mentioned.

Pollen Bearing Honey Bee Detection in Hive Entrance
Video Recorded by Remote Embedded System for Pollination
Monitoring developed a non-invasive monitoring system to
detect pollen-bearing honey bees. The main focus of this paper
was to use their own method to classify pollen-bearing honey
bees on an embedded system. Their proposed algorithm wasn’t
far behind from state-of-the-art classification models but was
computationally efficient to be implemented in embedded
systems [14].

The IntelliBeeHive project aims to develop a cost-effective
monitoring system using Machine Learning to track honey
bees in order to monitor their activity, foraging activity, and
varroa mites detection without disturbing the honey bees. This
monitoring system is placed at the entrance of the beehive
and allows beekeepers to keep track of the beehive’s overall
activity through an account-based website. For our object
detection software, we will be using YOLOv7. YOLOv7 is an
object detection model introduced in July 2022 that surpasses
all previously known object detection models in speed and
accuracy [15]. YOLOv7 achieved the highest accuracy at 56.8
percent AP at 30FPS or higher depending on the GPU [15].

III. HARDWARE

Our monitoring system is implemented on an NVIDIA
Jetson Nano Developer Kit. We chose the NVIDIA Jetson
Nano taking several factors into consideration including its
affordability ($99 USD at the time of implementation before
the global chip shortage) and performance in computer vi-
sion applications compared to other Jetson modules available
[16][17] and the Raspberry Pi. Although the Raspberry Pi is

more affordable, it does not have the capability to provide live
tracking data.

The initial design was divided into segments, allowing us
to 3D print each section individually. This modular approach
facilitated the printing process and provided flexibility to
replace specific components if necessary. The container was
computer-aid designed (CAD) using Blender, then 3D printed
using PLA Filament with three main sections: the Top Box,
the Camera Room, and the Mesh Frame. The Top Box has a
3D-printed camera tray to secure a Raspberry Pi Camera, air
vents to help cool down the Jetson Nano, and we had to make
sure to make it rainproof to protect our electronics, such as the
PoE Adapter and the Jetson Nano. The camera room is just
an empty box with a window made out of sanded acrylic to
reduce glare and allow sunlight to improve inferring accuracy.
Our camera distance from the honey bee passage for our PLA
container was set at 155 mm high with a viewing area of 150
mm by 80 mm giving us the view shown in Figure 1.

To ensure the effectiveness of our inference algorithm, we
devised a method to prevent honey bees from approaching the
camera and restricting their movement to prevent overlapping.
Our approach involves creating a mesh using a fishing line,
as illustrated in Figure 1. The use of a fishing line offers
several advantages over alternatives such as acrylic. It provides
a clearer view of the honey bees without the issue of glare
that would occur had we used glass or acrylic. Additionally,
using other clear solids would not be viable in the long run,
as they would accumulate wax residue and trash over time
compromising our tracking algorithm.

The reason we had to change our 3D printing approach
was due to heat and pressure. Over time, we noticed warping
with our container in 2 significant locations. One location is
where we secured our container to the hive using a bungee
cord, the container started to bend inward which in the long
run will affect our footage. The second location is the mesh
frame, due to the tension caused by the fishing line and the
hot temperature in Texas reaching 100 ◦F (37.7 ◦C) during the
summer, the mesh frame started to warp inwards loosening the
fishing line as shown in Figure 1 and in return, honey bees
are able to break into the camera room compromising our
tracking.

Fig. 1: Camera view of fishing line mesh frame warping.

Therefore, we changed our design to laser-cut our container
out of wood. While the overall appearance of the container
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is similar, adjustments in the approach of our CAD design
process were made to accommodate the laser-cutting process.
In order to laser cut, our 3D model needs to be separated into
2D sections to convert our model into an SVG file format.
Using wood gave us a stronger foundation and cut our time
to make a container significantly. Previously, the creation of
a container took between 4 to 5 days to 3D print, whereas
the adoption of laser cutting reduced the time to manufacture
to approximately 4 hours followed by an additional day for
assembly. The figures below provide an overview of the
enclosure and the mesh frame computer-aided design model
before converting to SVG.

(a) Wooden container CAD assembled overview

(b) Mesh section CAD design overview

Fig. 2: CAD enclosure design

Our viewing area for the wooden container was also reduced
to allow our camera to get closer to the honey bees improving
our pollen and mite detection accuracy. Our new viewing area
is reduced to 110 mm by 65 mm and our camera height is
lowered to 120 mm giving us a significantly better view of
the honey bees as shown in Figure 4.

(a) Fully assembled monitoring container

(b) Fully assembled Mesh Frame

Fig. 3: Wooden enclosure

Fig. 4: Wooden enclosure camera view.

Our container incorporates two cable exits. The upper cable
exit is specifically designated for our Power over Ethernet
(PoE) cable, which both powers the Jetson Nano and provides
Internet connectivity. The lower cable exit is dedicated to the
BME680 sensor, which runs from the top section through the
camera room and out into the honey bee hive. In order to
achieve a water-tight seal and protect our electronics we use
the cable lids we designed shown in Figure 5.

For monitoring the honey bee hive’s humidity and tempera-
ture, we employ a BME680 sensor. Considering this sensor
is not specifically intended for outdoor environments, we
designed and developed a case with air vents to ensure we
don’t compromise our readings as shown in Figure 6. To 3D
print the container we used PLA filament due to its non-
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toxic nature. To connect our sensor to the Jetson Nano we
soldered flexible silicone 30 gauge copper wires to the sensor
and ran them through our container to the Jetson Nano’s 40-
pin expansion header. We placed the sensor halfway inside the
bee hive through the entrance of the bee hive.

Fig. 5: Side View of the container with cable lids attached.

Fig. 6: BME680 Sensor Case

Fig. 7: BME680 Sensor

To capture footage of the honey bee’s in the enclosure, we
used the Raspberry Pi Camera V2.1 connected to the Jetson
Nano via Raspberry Pi ribbon cable. To hold the camera in
place we laser cut a frame from wood and secured it in place
in the Top Box as shown in Figure 8.

Fig. 8: Raspberry Pi Camera V2.1 in monitoring system.

To provide internet access and power to our Jetson Nano,
we utilize a Power over Ethernet (PoE) switch. A PoE switch
provides both power and internet access all through a Cat6
cable running from the PoE switch placed indoors to our
PoE adapter inside our container. The PoE Adapter splits the
ethernet and power into two channels in order to connect our
Jetson Nano. We chose this approach instead of others, such
as solar panels, battery packs, or wifi, because it allows us
to reduce cable clutter while providing a long-lasting solution
with a reliable source of internet and power to our Jetson
Nano. Figure 9 is an image of the Top Box fully assembled
with our Jetson Nano, BME680 sensor cables, Raspberry Pi
camera, and PoE adapter all connected.

Fig. 9: Image of container Top Box section fully assembled.
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Lastly, we add a wooden plywood sheet to the bottom of
the container. This addition provides a landing place for the
honey bees, gives our object detection a neutral background,
and helps stand our container. The wooden plywood can be
seen in Figure 3a.

IV. SOFTWARE

A. Secure Shell Protocol

In order to enable remote updates for our Jetson Nano de-
vice, we implemented Secure Shell Protocol (SSH) tunneling.
To ensure accessibility from different networks, we utilized a
virtual machines hosted on the Google Cloud platform. This
configuration enables us to establish an SSH tunnel from our
local computer to the Google Cloud VM, and perform reverse
SSH from the Jetson Nano to the Google Cloud.

B. Honey bee Detection

In this study, YOLOv7 Tiny object detection model was
used to identify honey bees in order to track their activity.
YOLOv7 proved to be the fastest and most accurate real-
time object detection model during the implementation of our
study[15]. Due to our computational limitations using a Jetson
Nano, we implemented YOLOv7 Tiny version of YOLOv7 to
achieve a higher frame rate[15].

To train our model, approximately 50 5-minute videos at
10 frames per second at 1280 x 720 every 10 minutes over
the span of 4 days (to account for different lighting) were
obtained from our own honey bee hive using the containers
we developed. Images every 3 seconds (30 frames) were then
extracted from the videos to allow the honey bees to move
and give us variety in our training data.

The process of annotating honey bee images for our
YOLOv7-Tiny model involved the use of the LabelImg[18]
tool. For our labeling, we purposely annotated only honey bees
whose majority of their body is shown in order to improve our
detection algorithm due to partial honey bee detection being
irrelevant to our tracking and also avoiding flickering if honey
bees are on the edge of the frame. Annotations were saved
in the YOLO format with the only class being “Honey bee”,
resulting in a total of 1235 annotated images. Approximately
9,700 honey bees were annotated in total. The detection model
is trained with an NVIDIA GeForce RTX 3070 GPU. The
training image is resized to 416 x 416 pixels input for our
YOLOv7-Tiny model with a batch size of 8 for 100 epochs.

Our goal is to have a live status update from every hive with
a 5-minute delay. In order to achieve such a goal we must
optimize our model as much as possible. Given our resource
constraints to make our approach cost-effective, our YOLOv7-
Tiny model takes approximately 56 ms for every frame for
inferring on the Jetson Nano. Since we have a 5-minute video
at 10 frames per second totaling 3000 frames, this means that
it would take about 2 minutes 48 seconds for inferring only. To
achieve faster inferring, we convert our model into a TensorRT
engine[19]. Before converting our model to TensorRT our
model has to be converted into ONNX [20] by exporting our
model with the script provided by YOLOv7 repository [21].

Open Neural Network Exchange (ONNX) is an open stan-
dard format that serves as a common representation for ma-
chine learning models. It offers a standardized set of operators
and a shared file format, allowing AI developers to utilize
models seamlessly across various frameworks, tools, runtimes,
and compilers. The key benefit of ONNX is its ability to
promote interoperability between different frameworks, en-
abling easier integration and facilitating access to hardware
optimizations. By adopting ONNX, developers can leverage
the advantages of different frameworks and streamline the
deployment of machine learning models[20]. Once our model
is in ONNX format, the Tensorrt engine is then created
using TensorRT-For-YOLO-Series repository[22] on the Jetson
Nano. With our TensorRT engine, inferring time was cut by
almost half, taking approximately 27 ms per frame. Our total
inference time is cut down to about 1 minute and 21 seconds
per video.

For our pollen and mite detection, we train a second
YOLOv7-Tiny using 2 classes, “Pollen” and “Mite”. To collect
pollen training data, we filtered through the videos collected
with our container searching for honey bees with pollen. We
then extracted the honey bee images for training data from the
videos using our YOLOv7-Tiny honey bee detection model.
Once we had a collection of approximately 1,000 honey bee
images with pollen, we used the Labelimg [18] tool for
annotation. For mite training data, due to limited time and
availability of varroa mites, we used mite placeholders to train
our mite detection. We acknowledge that our approach may
not perfectly replicate realistic scenarios. However, to simulate
the presence of varroa mites on the honey bees, we utilized
opaque red beads with a diameter of 1.5 mm as temporary
placeholders. While these beads may not accurately mimic
the characteristics of actual varroa mites, they served as a
substitute to analyze the capabilities of our monitoring system.
To collect training data we glued beads onto dead honey bees
and extracted data, approximately 700 images of honey bees
with ”mites”. The detection model was also with a NVIDIA
GeForce RTX 3070 GPU with the same training parameters
except for our input size. For this model our training images
were resized to 64 x 64 pixels. Once our YOLOv7-Tiny model
was trained, we converted our model into ONNX and then into
a Tensorrt engine as we did with our previous model.

C. Tracking Algorithm
Our tracking algorithm is based on honey bees currently

visible. Once the honey bee goes out of sight, it will be counted
as a new honey bee if reintroduced. The honey bee’s position is
based on the midpoint derived from the detection box extracted
from our YOLOv7 tiny model. To track the honey bees we
store the current position of each be and compare the previous
frame with the current frame to determine if the honey bee
moved and in which direction.

Our primary objective is to give as close of a live feed as
possible with minimal delay. To achieve this, our monitoring
system captures a 5-minute video of the honey bees’ activity
and processes the video afterward with our tracking system.
While the initial video is being processed, the system con-
currently records the subsequent 5-minute video. By adopting
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this approach, we ensure a near real-time observation of the
honey bees’ behavior without any significant interruptions.

To record our 5-minute video we use GStreamer recording
at 1280 by 720p at 10 frames per second and save our video
in 640 by 420p. Downscaling the images is essential to speed
up our system’s throughput, particularly due to the processing
limitations of the Jetson Nano. By downsizing the image,
we can significantly enhance the extraction and processing
time, resulting in a more efficient workflow. For instance,
our processing time for images with a resolution of 1280
by 720p typically takes around 7 minutes and 20 seconds.
However, by downscaling, we can reduce this processing time
to approximately 3 minutes, excluding the time required for
pollen and mite inference. Deepstream can be used to speed
up our throughput problem but at the time of implementation,
Deepstream isn’t available for Jetpack 4.6 which is the last
available Jetpack for Jetson Nanos [23].

Our tracking algorithm uses the output of every frame
processed through the honey bee inference TensorRT engine.
The output given by our model is based on the upper left and
lower right corners of a rectangle of each honey bee inference
from the current frame. To determine the midpoint of each
honey bee on the video feed we use the following equation:

X = (((maxX −minX)/2) +minX)

Y = (((maxY −minY )/2) +minY )

The maxX and minY are our coordinates of the lower right
vertex of the rectangle and minX and maxY are our upper left
vertex.

To track each honey bee, on initial detection of each honey
bee we create a new profile. Each honey bee profile includes
Id, last seen location, status, and bee size. To determine
whether a honey bee has been detected previously or not when
tracking, we use the location of all honey bees detected on
frame n-1 and compare them to the output of the current frame
n. To consider a honey bee the same bee, we give the new
midpoint a tolerance of 50 pixels offset in any direction from
the previous location favoring proximity to other honey bees
that might be close enough to fall within that range. Any honey
bee that does not fall under any currently existing profile is
then treated as a new honey bee. Honey bees that don’t have
a new midpoint in the current frame are then dropped from
the list of active honey bees.

A honey bee can have any of the 4 statuses, “Arriving”,
“Leaving”, “New”, and “Deck” depending on their movement.
Initially, upon the first detection of the honey bee, they are
assigned the status of “New”, meaning that it’s the first time
it sees the honey bee or that the honey bee has not crossed any
triggers. To track honey bee movement, we have two triggers
that change the status of the honey bee. The resolution of the
video is set at 640 by 420 pixels meaning the height y of the
video is from 0-420 pixels. We then divided the height into
three even sections of 140 pixels wide, setting our “Arriving”
trigger at 140 pixels, and our “Leaving” trigger at 280 pixels.
If the midpoint of the honey bee at n-1 is greater than 140
and n less than or equal to 140, the status of the honey bee
changes to “Arriving” meaning that the honey bee is headed

to the inside of the beehive, but if the midpoint changes from
n-1 is less than or equal to 140 and n greater than 140 the
status changes to “Deck” meaning they are in the middle of
the container.

The ”Leaving” trigger is determined based on its crossing
at the Y-coordinate value of 280. This trigger will result in
the honey bee status being changed to either ”Leaving” or
”Deck,” depending on whether the midpoint is less than 280
at frame n-1 and greater than or equal to 280 at frame n, or if
the midpoint is greater than 280 at frame n-1 and less than or
equal to 280 at frame n, respectively. Figure 10 is a diagram
demonstrating how the status of the tracking algorithm works.

Fig. 10: Triggers diagram status breakdown for honey bee
tracking.

The honey bee size is extracted once per honey bee profile.
The honey bee size is based on the longest side of the rectangle
output given by our model. Our camera covers a work area of
110 mm by 65 mm. To get the size of the honey bee we the
following formulas:

1.(maxX −minX)/(framesizeX/containerSizeX)

2.(maxY −minY )/(framesizeY/containerSizeY )

Formula 1 is used if the longer side of the rectangle is
along the X-axis or formula 2 for the Y-axis. We divide the
frame size by the container size for the respective axis to get
the ratio and determine the size of each bee. The objective
of determining the size of each honey bee is to investigate
the ratio between a drone and a worker honey bee. However,
due to variations in the inference rectangle’s size, which can
change depending on whether a honey bee is fully visible or
not fully present due to it being on the edge of the frame, we
only extract the honey bee size when it crosses a ”Leaving” or
”Arriving” trigger. This approach ensures that we capture the
complete size of the honey bee. It is important to note that this
method may not be optimal since the size is solely determined
by the longest side of the inference rectangle. Consequently,
if the honey bee is at an angle when its size is captured, the
accuracy and reliability of our data may be affected.

The purpose of considering the honey bee size is to deter-
mine if using the size alone is enough to show the difference
between worker and drone bees. The graph below shows the
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(a) Worker honey bee image
extracted from a video frame

(b) Drone honey bee image ex-
tracted from a video frame

Fig. 12: Drone and Worker Bee Comparison

size output of our model from a 5-minute video and then
manually annotated drone and worker honey bees.

Fig. 11: Honey bee drone versus worker bees size analysis.

The images below are outputs extracted from two profiles
of two different types of honey bees inferred from a 5-minute
video.

To identify the presence of pollen or mites on a honey bee,
we follow a specific procedure. For each honey bee profile, we
save an image of the honey bee into a designated folder when
it passes any of the triggers. This ensures that we capture a
complete view of the honey bee for analysis. Once the honey
bee TensorRT engine model has completed processing the
video, we proceed to load the pollen and mite TensorRT engine
model and process all the images extracted by the honey bee
TensorRT engine.

V. WEBSITE

The IntelliBeeHive has a web application designed to store
and present data gathered from honey bee hive monitoring
systems, catering to apiarists or beekeepers. Our web page can
be found at https://bee.utrgv.edu/. The monitoring system col-
lects hive data, which is then transmitted to the IntelliBeeHive
web server via an API. The web server, a remote computer
accessible through the internet, receives and stores the data in
its database [24]. An API serves as the interface that enables
communication between programs on separate machines [25].
Once the hive data is stored, it is presented to the user in an
organized and user-friendly manner through their web browser
whether it’d be on a personal computer or mobile device. This
chapter will discuss the functionality of the IntelliBeeHive

web application, breaking it down into two main components:
the frontend and the backend. The frontend is what the user
experiences and interacts with on their personal device, while
the backend is what happens on the web server, such as data
collection and storage.

Fig. 13: Shows an illustration of the IntelliBeeHive web
application functionality.

A. Frontend

The IntelliBeeHive is designed for apiarists meaning the
website is user-friendly and accessible by almost all devices
with web access including smartphones and computers.

Fig. 14: Shows IntelliBeeHive’s landing page welcoming new
and current users.

1) Layout: IntelliBeeHive’s front-end consists of 8 separate
web pages. These pages are accessed sequentially and have
specific restrictions depending on the type of user accessing
them. There are 3 user types: all users, registered users, and
admin users.

All users refer to anyone who has access to the IntelliBee-
Hive website and doesn’t require any credentials. All users
have access to the landing, log-in, and sign-up pages and to
the hive demo page. The hive demo page displays a single
hive’s live video recording, data, and statistics.

Once a user signs up and has verified their credentials they
become registered users. Registered users have access to the
hive feed page, which showcases all hives currently utilizing a
monitoring system. The hive feed page provides live and past
data in graph and table formats. Registered users can navigate
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to the comment page to leave feedback or questions regarding
the web application. They can also access the settings page to
update their credentials or delete their account.

Registered users can only become admin users if they are
granted the privilege by the webmaster. Admin users have
special privileges, including the ability to create, edit, and
delete hives. They can also view comments submitted by
registered users and delete registered user accounts. However,
admin users cannot add a monitoring system or link one to an
existing hive, as this privilege is exclusive to the webmaster.

2) Adding Users: New users can be added as registered
users by signing up through the sign-up page. To complete
the sign-up process, users are required to provide their first
and last name, email address, and an 8-character alphanumeric
password.

The sign-up page will automatically show the user a prompt
box where they can input the verification code. For security
a user has 24 minutes to input the code before it expires, if
the code expires the user will need to start over the sign-up
process [26]. Once the user inputs the verification code within
the specified time limit, their credentials are stored in the web
server and they are recognized as a registered user. The web
page then redirects the user to the hive feed page.

In case a registered user forgets their password, the web
application offers a ”Forgot Password” function where the user
can re-verify their identity with a verification code and reset
their password and regain access to their account.

3) Adding Hives: Only admin users have the privilege to
add, edit, and delete hives. To add a new hive an admin needs
to navigate to the admin page and provide the following:

1) Hive name: A unique name to identify the hive.
2) City: The city where the hive is located.
3) State: The state where the hive is located.
4) Coordinates: The geographical coordinates (latitude and

longitude) of the hive’s location.
5) Picture: An image of the hive.

Once the admin has submitted this information, a success
message will be shown displayed indicating that the has been
added to the list of hives in the hive feed page. However,
initially, the hive will be empty, and the live data displayed
will be shown as ”–”, indicating that no data is available and
its graphs and tables will be empty. This is because there is
currently no monitoring system linked to the newly added hive.
Only the webmaster has the privilege of linking the monitoring
system to the hive. Once the monitoring system is linked, the
hive data will start to populate, and the live data, graphs, and
tables will reflect the actual data collected from the hive.

4) Hive Feed: Upon logging in, registered users will be
directed to the hive feed page. This page showcases live and
past data of each hive collected by their monitoring system.
The data collected by the monitoring system is shown in
Table I. On the hive feed page, the live or most recent
data is displayed in the yellow block beneath the hive’s
image, location, and video feed, as depicted in Figure 15.
Each individual measurement is shown alongside its unit of
measurement and above its title, providing a clear visualization
of the data.

Fig. 15: Honey bee hive feed users see upon logging into the
website.

The measurements are updated every 5 minutes using
IntelliBeeHive’s API mentioned in Section V-B4, this API
facilitates communication between the web server and the
user’s personal device. However, it is important to note that the
live video feed is available only for demo purposes and not for
regular users. Regular users do not have access to a live video
feed. The focus of IntelliBeeHive is to provide comprehensive
data for analyzing the health of beehives, and the video feed
is not considered a requirement for this analysis.

TABLE I: The table shows the list measurements collected
from each hive to monitor their daily activity.

Measurement Unit of Measurement

Temperature Fahrenheit (F)
Humidity Relative Humidity (%)
CPU Temperature Celsius (C)
GPU Temperature Celsius (C)
Bees on Deck Single Unit
Bees Leaving Single Unit
Bees Arriving Single Unit
Bees Average Size Millimeters (mm)
Pollen Count Single Unit
Mite Count Single Unit

5) Graphs and Tables: Below the yellow block containing
the hive’s live measurements are a series of graphs and tables
containing the past data for each measurement in Table I.
There are a total of 10 blocks, one for each measurement,
and users can alternate between viewing the data in graph or
table format as shown in Figure 16 using the 2 buttons at the
top left corner of each block.

The past data presented in these graphs and tables encom-
passes all the data collected from the current year, starting
from January. Since hive data is uploaded every 5 minutes
to the web server, a single hive can accumulate 105,120 data
points for each measurement in one year. To alleviate the strain
on the web server caused by loading such a large amount
of data for each hive, we retrieve data collected every hour
instead of every 5 minutes, significantly reducing the data
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size from 105,120 units per measurement to 8,760 units per
measurement. This approach makes the data more manageable.

Once the data is retrieved it is rendered into table format
using HTML and CSS and into graph format using Dygraphs,
an open-source JavaScript charting library designed to handle
large data sets [27]. Open-source software refers to software
that grants users the freedom to use, modify, and distribute
the code without restrictions. How the data is retrieved will
be discussed in Section V-B.

Fig. 16: Shows 6 of 10 graphs created using Dygraphs.JS and
Bootstrap libraries.

B. Backend

IntelliBeeHive is hosted on a Linux virtual machine located
at the University of Texas Rio Grande Valley (UTRGV). The
virtual machine serves as the web server or cloud computer for
IntelliBeeHive, providing a secure and flexible environment.
The web server is responsible for hosting the web application,
as well as collecting, storing, and sending beehive data.

IntelliBeeHive is written in PHP, an open-source scripting
language tailored for web applications, and was developed
using a Laravel framework. A web framework provides an
application with many useful libraries specific for web devel-
opment and provides a standard structure that most web appli-
cations use. The Laravel framework is a powerful open-source
framework offering numerous libraries and components for
APIs and database handling and follows a standard structure
that is commonly used in web applications. This section will
cover IntelliBeeHive’s backend workflow, database structure,
and how data is collected and sent by the API.

1) SQL Database: The IntelliBeeHive website stores all of
its data in an SQL or relational database managed by MySQL,
an open-source SQL management system. SQL stands for
Structured Query Language and is used to create, store, update,
and retrieve data from structured tables. In an SQL table,
each row represents a data entry and each column identifies a
specific field of the entry. IntelliBeeHive’s database is made up
of 6 main tables: Users, Comments, Activity, Hives, DB Info,
and Network Info. Figure 17 illustrates the logical structure

of the tables. The Users, Comments, and Activity tables
contain all the data pertaining to the users. The Users table
contains information such as the user’s name, credentials,
and a primary key that uniquely identifies each user. The
Comments and Activity tables store user comments and web
activity respectively. These tables can be linked to a specific
user through their primary key, as shown in Figure 17. The
Hives, DB Info, and Network tables store data pertaining to
the beehives. The Hives table stores a hive’s name, location,
picture, and primary key, and the Network Info table stores
the hive’s monitoring system’s identification key. Whenever
a new monitoring system is assigned or added to a hive by
the webmaster, a new Hive Activity table is created with a
unique title, serving as a key. Each Hive Activity table stores
the measurements listed in Table I for a specific hive. Thus,
there is a separate Hive Activity table for each hive in the
system. The DB Info table stores a hive’s primary key, system
identification key, and table key to link each hive to their Hive
Data table and monitoring system.

Fig. 17: Shows IntelliBeeHive’s SQL database schema.
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2) Backend Workflow: IntelliBeeHive’s back-end workflow
is similar to its front-end workflow covered in Section V-A1,
however in this section we will discuss the underlying pro-
cesses.

When a user visits the Landing Page, they have several
options: they can view the Hive Feed Demo page, create a new
account through the Sign Up page, or log into their existing
account. If a user opens the Hive Demo page, the hive data
is fetched from the SQL database using the API. Since hive
activity data will be continuously sent to the user’s browser
from the web server every 5 minutes, the API is used to
facilitate this process. On the other hand, when a user creates
an account through the Sign Up page, their input information
is submitted to the web server without the use of the API. The
API is primarily reserved for scenarios where data needs to
be frequently sent from or received by the web server. If the
submitted information is correct, the user is assigned a token,
which serves as a verification of their access and privileges.
Subsequently, they are redirected to the Hive Feed page. If the
information is incorrect the user is sent back to the Sign Up
page.

Similarly, when a user logs into the application their creden-
tials will be queried and verified against the stored information
in the SQL database. If the credentials exist and match then
the application will determine if the user should have admin
privileges. If the user is an admin, they will be assigned a
special token that identifies them as an admin and redirects
them to the Admin Page, else they’ll be assigned a regular
token and redirected to the Hive Feed page. The Hive Feed
page similar to the Hive Feed Demo page uses the API to
fetch all hive past and current activity data.

Fig. 18: Shows a flowchart diagram of IntelliBeeHive’s back-
end workflow.

3) Adding Users, Activities, Comments and Hives: Once
a user is logged in they can add comments, update their
credentials, or manage their hives. Regular users can add
comments and update or delete their credentials, meanwhile
admin users can do the same plus add, update, and delete
hives.

We can consider each user, comment, activity, and hive as
a class with its own set of attributes mentioned in Section
V-B1. An instance of a class can be considered an object.
For example, when an action is performed, an instance of
the corresponding class is created, which can be seen as an
object. We can use a UML (Unified Modeling Language)
diagram to represent the relationship and interaction between
these classes. Figure 19 shows a UML diagram of our user,
comment, activity, and hive classes. Each box in the UML
diagram represents an object and is made up of 3 sections,
going from top to bottom: class name, list of attributes, and
list of privileges. Attributes input by the user are marked as
public (+) and must be valid, else an object is not created and
the user is sent a fail message. A regular and admin user are
objects inherited from the user class since they both have the
same attributes but differ in privileges. An admin user is an
aggregation of a regular user since it has the privileges of a
regular user in addition to its own. A regular user can create
multiple comment and activity objects that will be associated
with the user who created them by their primary key. However,
unlike comments and activity objects, when a hive object is
created there is no key associating the hive to who created it.
The only association the hive object has with the admin user
is that only admin users can create hives. When any object is
created they are stored in the SQL database. Hive, comment,
and activity objects will continue to exist without the user who
created them, thus why they are only associated with the user.

4) REST API: IntelliBeeHive’s API follows a REST (Rep-
resentational State Transfer) architecture, which adheres to
several design principles. These principles include having
a uniform interface, separating the client and server, being
stateless, and employing a layered system architecture [28]. A
uniform interface means every request made to the API should
work the same. The client and server refer to two separate
computers, one making the request and the other fulfilling the
request. In our case, the computer making the request is either
the monitoring system or the web browser, and the computer
fulfilling the request is the web server. The requests must
be stateless, meaning each request should have the necessary
information for the web server to fulfill without the need for
a second request. The life cycle of a request follows a layered
system architecture. The client layer handles sending requests
and receiving responses from the API that includes a status
code that indicates whether the request succeeded or failed.
The authentication layer verifies if the client is authorized to
access the API, for authorization the client must provide an
alpha-numeric authentication key. The endpoint layer verifies
if the client’s input data is valid and formats the request’s
output data in JSON, a lightweight data-interchange format.
The data access layer is responsible for handling the client’s
input data by checking for and removing any malicious code,
preparing the necessary database query to retrieve or store
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Fig. 19: Shows IntelliBeeHive’s UML diagram.

data, and determining the success of the query execution. The
database layer executes the query and returns the output to
the data access layer, this layer occurs in MySQL which is
covered in Section V-B1.

Fig. 20: Shows a flowchart diagram of IntelliBeeHive’s REST
API request workflow.

5) Collecting and Retrieving Honey Bee Data: IntelliBee-
Hive’s REST API has has the following 4 main operations:
getData, uploadData, uploadVideo, and uploadNetwork. The
UML diagram in Figure 21 depicts each operation in blocks.
Each block is made up of 3 parts, going from top to bottom:
the purpose and URL of the operation, the variable data
being sent/received, and the REST API request type. Three
of the operations are of type POST and are used only by the
monitoring system. POST requests in a REST API are used to
upload data, thus they are used exclusively by the monitoring
system to upload the hive’s environment condition, video feed
of the hive, and network information of the system. On the
other hand, GET requests in an API are used to retrieve data
and thus are used by the website’s Hive Feed and Hive Feed
Demo pages to display the hive’s latest condition and video
feed. Although the REST API and the website are hosted on
the same machine, the GET request is made from the user’s
browser located on a different machine. The reason behind
making GET requests to the API from the user’s machine is
to give the user live updates without them having to refresh
their browser. When a user opens up a page to any website
they receive a static page that won’t change unless they re-
query the web server by refreshing their browser. Our page
contains a JavaScript script that queries the web server using
the REST API to provide the user with the newest updates
every 5 minutes without them having to refresh their browser.

Fig. 21: Shows a UML diagram of IntelliBeeHive’s REST
API.
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VI. RESULTS

A. YOLOV7 Training

The graphs shown below are the results of our YOLOv7-
Tiny model’s training. The F1-score for honey bee model
recognition is 0.95 and the precision and recall value is 0.981
as shown in Figure 22a and 22b.

(a) F1 curve for honey bee object
detection model.

(b) Precision and Recall curve for
honey bee object detection model.

Fig. 22: Honey bee model training results

For our pollen and mite object detection model F1-score is
0.95 and the precision and recall value is 0.821 for pollen and
0.996 for mite as shown in Figure 23a and 23b.

(a) F1 curve for pollen and mite
object detection model.

(b) Precision and Recall curve for
pollen and mite object detection
model.

Fig. 23: Pollen and Mite model training results

The images shown below are extracted frames from video
output after it’s processed by the honey bee YOLOv7 tiny
model and our tracking algorithm. The circle around each
detection is the freedom where the honey bee can move and
still be considered the same honey bee. The blue dot represents
the honey bees’ previous mid-point and the red dot represents
the current mid-point.

The figures below are example outputs of our pollen and
mites detection model using our TensorRT engine on each
honey bee. The letter P indicates pollen was detected followed
by the confidence of the model.

(a) Honey bee Example 1 with
Pollen

(b) Honey bee Example 2 with
Pollen

(c) Honey bee Example 3 with
Pollen

(d) Honey bee Example 4 with
Pollen

(e) Honey bee Example 5 with
Pollen

(f) Honey bee Example 6 with
Pollen

Fig. 25: Pollen Detection Example Output Images

Due to our ”mite” detection model being trained with
placeholder data, we will not go in-depth into our model’s
accuracy in detecting mites.

Fig. 26: Honey bee Example 1 with Mite

B. Ground Truth Data vs Tracking Algorithm

To evaluate the accuracy of our algorithm, we conducted
an experiment using five 1-minute long videos. Each video
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(a) Honey Bee Video Frame Tracking Example 1 (b) Honey Bee Video Frame Tracking Example 2

(c) Honey Bee Video Frame Tracking Example 3 (d) Honey Bee Video Frame Tracking Example 4

Fig. 24: Honey Bee Tracking Output Example

was manually labeled tracking each honey bee’s identification,
final status, initial frame detected, and last frame seen. We
processed the videos through our algorithm to obtain the
algorithm’s output. The results for the five videos are presented
in Table II.

TABLE II: This table shows a performance comparison be-
tween our manual (M) and algorithm (A) output

Arriving Leaving Deck Total Pollen

Vid M A M A M A M A M A

1 17 17 19 19 0 0 36 36 2 1

2 36 39 32 29 3 4 71 72 1 1

3 44 42 34 33 1 4 79 79 0 0

4 33 35 22 22 0 5 55 62 0 0

5 40 40 34 42 1 7 75 79 2 1

We determine the accuracy of our algorithm by extracting
the error rate using the number of ”Arriving” and ”Leaving”
counts of honey bee’s status given by the algorithm (CAlgorithm)
compared to the manual count (CManuel) using the Equation 1
below.

Error Rate =
|CAlgorithm − CManuel|

CManuel
(1)

Once we have the Error Rate of our Algorithm we can then
extract the accuracy by using Equation 2.

Accuracy = 1− ErrorRate (2)

We calculate the average accuracy for each video and then
calculate the overall accuracy across all 5 videos to determine
the accuracy of our tracking algorithm and honey bee object
detection model.

Formula Key: Error = Error Rate, Arr = Arriving, Acc =
Accuracy

Error1 = Arr
17− 17

17
= 1.0000 Leaving

19− 19

19
= 1.0000

Acc1 = 1− Error1 = 1− 1.0000 + 1.0000

2
= 1.0000

Error2 = Arr
39− 36

36
= 0.9166 Leaving

29− 32

32
= 0.9062

Acc2 = 1− Error2 = 1− 0.9166 + 0.9062

2
= 0.9114

Error3 = Arr
42− 44

44
= 0.9545 Leaving

33− 34

34
= 0.9705

Acc3 = 1− Error3 = 1− 0.9545 + 0.9705

2
= 0.9625

Error4 = Arr
35− 33

33
= 0.9393 Leaving

22− 22

22
= 1.0000

Acc4 = 1− Error4 = 1− 0.9393 + 1.0000

2
= 0.9696
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Error5 = Arr
40− 40

40
= 1.0000 Leaving

32− 34

34
= 0.941

Acc5 = 1− Error5 = 1− 1 + 0.9411

2
= 0.9705

Avg Acc =
Acc1 + Acc2 + Acc3 + Acc4 + Acc5

5

=
1.0000 + 0.9114 + 0.9625 + 0.9696 + 0.9705

5
≈ 0.9628 (or 96.28%)

We exclude honey bees with a ”New” status from our
analysis due to the potential unreliability of their count. This
is because honey bees have the ability to stay near the entrance
and exit of the container, which can create complications
for the model in accurately determining whether an object is
indeed a honey bee or not.

The ”Deck” difference happens due to our approach in
our algorithm. The issue arises when the algorithm relies on
identifying the nearest honey bee in each frame to track their
movement. However, if a honey bee happens to move signif-
icantly faster than usual, this approach can lead to problems.
Specifically, when the algorithm considers the closest midpoint
in the next frame as the same bee, it may result in losing track
of the current honey bee and mistakenly pairing other honey
bees with the wrong counterparts. This can lead to unpaired
honey bees being marked as new and potentially disrupting the
tracking process. Increasing the frame rate can significantly
improve this problem.

To measure the accuracy of our pollen and mite detection,
because the five 1-minute videos do not give us enough honey
bees with pollen as shown in Table II, we manually annotated
honey bee profile images only for five different 5-minute
videos shown in Table III. The pollen model results include
the counts of false positives and false negatives, as well as
the total number of honey bees detected for each video. Due
to our limitation on mite data, we aren’t able to accurately
represent the accuracy of our mite detection class.

TABLE III: This table shows the performance of our pollen
model where M is the Manually counted total of honey bees
with pollen and A is the Algorithms total count of honey bees
with pollen.

Pollen

Vid M A False Pos. False Neg. Total Bees

1 23 22 3 4 325
2 21 14 1 8 296
3 10 6 1 4 267
4 7 7 0 0 209
5 15 15 2 2 253

To determine the accuracy of our pollen detection model
we use the Precision 3 and Recall 4 formulas to then extract
our F1 scores 5.

Precision =
True Positive

True Positive + False Positive
(3)

Recall =
True Positive

True Positive + True Negatives
(4)

F1 Score =
2 ∗ (Precision ∗ Recall)

(Precision ∗ Recall)
(5)

Precision1 =
19

19 + 3
= 0.8636

Recall1 =
19

19 + 4
= 0.8261

F1 Score1 =
2 ∗ (0.8636 ∗ 0.8261)
(0.8636 + 0.8261)

= 0.8444

Precision2 =
13

13 + 1
= 0.9286

Recall2 =
13

13 + 8
= 0.6190

F1 Score2 =
2 ∗ (0.9286 ∗ 0.6190)
(0.9286 + 0.6190)

= 0.7428

Precision3 =
6

6 + 1
= 0.8571

Recall3 =
6

6 + 4
= 0.6000

F1 Score3 =
2 ∗ (0.8571 ∗ 0.6000)
(0.8571 + 0.6000)

= 0.7059

Precision4 =
7

7 + 0
= 1.0000

Recall4 =
7

7 + 0
= 1.0000

F1 Score4 =
2 ∗ (1.0000 ∗ 1.000)
(1.0000 + 1.0000)

= 1.0000

Precision5 =
13

13 + 2
= 0.8667

Recall5 =
13

13 + 2
= 0.8667

F1 Score5 =
2 ∗ (0.8667 ∗ 0.8667)
(0.8667 + 0.8667)

= 0.8667

Avg Prec =
Prec1 + Prec2 + Prec3 + Prec4 + Prec5

5

=
0.863 + 0.928 + 0.857 + 1.000 + 0.866

5
= 0.9032

Avg Rec =
Rec1 + Rec2 + Rec3 + Rec4 + Rec5

5

=
0.826 + 0.619 + 0.600 + 1.000 + 0.866

5
= 0.7823
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Avg F1 Score =
F11 + F12 + F13 + F14 + F15

5

=
0.844 + 0.7428 + 0.705 + 1.000 + 0.866

5
= 0.8319

C. Website Data Visualization

Our monitoring system uses Cron, a time-based job sched-
uler, to schedule a script for recording and processing videos
every 5 minutes and 30 seconds. The additional 30 seconds
are to give Gstreamer (our recording application) time free
the camera to start the next process. However, the scheduled
hours for running the monitoring system are limited to sunrise
(7 am) and sunset (8 pm). This constraint is imposed because
the camera system utilizes, Raspberry Pi V2.1, which lacks
night vision capabilities. Therefore, the system is scheduled to
operate only during daylight hours when sufficient visibility
is available.

The graphs below show 4 out of the 10 available on
the IntelliBeeHive web application to show different time
periods and demonstrate the changes ins activity, humidity,
CPU temperature, and hive temperature throughout the
days/weeks/months.

Fig. 27: Website graph data for honey bees leaving the hive.

Fig. 28: Website graph data for beehive humidity.

Fig. 29: Website graph data for CPU Temperature.

Fig. 30: Website graph data for beehive temperature.

VII. DISCUSSION

In this study, the IntelliBeeHive monitoring system has been
successfully designed and implemented using cost-effective
technology to ensure accessibility for apiaries of different
scales, including hobbyists, commercial businesses, and re-
searchers. Using this monitoring system, users can effectively
and efficiently monitor the well-being and behavioral patterns
of honey bee hives by analyzing the honey bees’ activity
with our YOLOv7-tiny models and tracking algorithm. The
performance of our IntelliBeeHive system has demonstrated its
effectiveness in monitoring the honey bee’s activity, achieving
an accuracy of 96.28% in tracking and our pollen model
achieved an F1 score of 0.8319.

Future work can be done to further improve and expand
our monitoring system. One significant implementation that
should be added is the inclusion of real mite data to make our
monitoring system fully functional. Additionally, a potential
improvement could be upgrading our camera to support night
vision. While night vision is not currently necessary since
honey bees are inactive at night, a night vision-capable camera
would enable our monitoring system to run continuously.

Another major step for the future would be to collaborate
with beekeepers and deploy our monitoring system in beehives
from various locations around the world. This testing will
help evaluate the system’s overall performance in diverse and
unpredictable environments, such as dealing with challenges
like extreme heat when deployed in Texas. Using the feedback
from other beekeepers we can fine-tune our design to make
our monitoring system more robust and reliable.
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