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Abstract: The COVID-19 pandemic caused by severe acute
respiratory syndrome coronavirus 2 has been an immense
threat to global public health and has also had a negative
socioeconomic impact worldwide. However, although the
pandemic is now under control, it has demonstrated that
society is unprepared to use analysis methods that are
applicable to various types of viruses nor apply new thera-
pies to prevent infections, considering the extensive time
needed for vaccine development. The use of nanomaterial-
based diagnostics and therapeutics can provide essential
strategies for both virus detection and treatment. Gold nano-
particles (AuNPs) are the nanomaterials most commonly
used to enhance virus detection because of their bioconju-
gation, high plasmon resonance, and excellent electrical,
optical, and catalytic properties. The present review outlines
the recent advances reported in the literature regarding
using AuNPs for their antiviral activities with respiratory
viruses, analysis techniques such as AuNP-assisted poly-
merase chain reaction, biosensors (electrochemical, piezo-
electric, and optical), lateral flow analysis, nucleic acid
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assays, and gene and vaccine therapy. Finally, as a potential
antiviral treatment, this review provides in vitro and in vivo
toxicity results of AuNPs for respiratory viruses, as well as
those related to their toxicity in humans, to evaluate their
use as a future antiviral treatment.

Keywords: gold nanoparticles, detection techniques, coro-
navirus SARS-CoV-2, COVID-19, toxicity, in vivo, in vitro

Abbreviations

ALP alkaline phosphatase

ALT alanine transaminase

AST aspartate transaminase

AuNPs  gold nanoparticle

AuNRs  gold nanorods

AuNSs  gold nanospheres

CALNN pentapeptide: cysteine—alanine-leucine-aspara-
gine—asparagine

CREA creatinine

CTAB cetyltrimethylammonium bromide

HCT hematocrit

MEEE  2-(2-(2-mercaptoethoxy)ethoxy)ethanol

MES 2-mercaptoethanesulfonic acid

N/R not reported

PAH polyallylamine hydrochloride

PEG polyethylene glycol

PEI2 polyethyleneimine

PSS polystyrene sulphate

RBC red blood cells

TMAT  N,N,N-trimethylammonium ethanethiol

WBC white blood cells

1 Introduction

The severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) that causes COVID-19 was first detected in
December 2019 in Wuhan, China [1]. SARS-CoV-2 belongs
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to the Coronaviridae family, Betacoronavirus genus, and
Sarbecovirus subgenus. According to the World Health
Organization, from the start of the pandemic till June
2023, the virus has spread globally, causing 6.9 million
deaths and 689 million infections (57% in men and 43%
in women) [2]. Its spread has steadily normalized despite
having a massive impact on health systems and econo-
mies [3]. Although vaccines have been developed to lessen
symptoms, the virus has not been eradicated. The persis-
tence of the coronavirus teaches us an important lesson:
society is unprepared to stop a virus’s rapid and vast
spread [4,5]. In addition, a number of side effects and
diseases have been reported by people with COVID-19.
Although most infected individuals recover completely
within a short period of time, some may experience lingering
symptoms. COVID-19 can cause inflammation, damage to
organs such as the heart and lungs, and neurological, cuta-
neous, or psychological problems that can have major long-
term consequences [6].

SARS-CoV-2 has a spherical polyhedral shape mea-
suring between 80 and 120 nm, and its genome consists
of a single strand of ribonucleic acid (RNA). Regarding its
protein structure, one of its essential proteins is the spike
(S) glycoprotein, which binds to the specific receptor of its
host with its characteristic crown-like shape. In humans, this
receptor is angiotensin-converting enzyme 2 (ACE2), which
is found in the respiratory, circulatory, and digestive sys-
tems [7,8]. The viral infection process begins when the S1
subunit of the S protein recognizes the ACE2 receptor. The S2
subunit then cleaves deep inside the cell, activating the
transmembrane protease serine 2 and initiating the fusion
mechanism. All of the virus’s genetic material is deposited
inside the cell, where it is quickly trapped, leading to the
viral transcription process, and the new polyproteins and
proteases move from the endoplasmic reticulum to the Golgi
apparatus. New copies are then assembled and executed,
which reinitiates the viral replication process [9].

Omicron, the fifth variant of SARS-CoV-2, is character-
ized by more than 30 mutations in the S protein, unlike its
predecessor delta, which had approximately 10. Recent
studies in murine models found that omicron efficiently
replicates in upper airway mucosal cells, unlike its prede-
cessor variants, which showed greater affinity for lung cells,
specifically type II pneumocytes. This variant is far more
contagious; however, its fatality rate is lower, especially in
patients who have received at least two doses of the vaccine
[10], although the vaccine’s effectiveness on omicron is still
being assessed. Thus, there is still no effective treatment avail-
able to prevent its spread. Once an organism is infected, drugs
capable of limiting viral replication can be administered,
facilitating a much faster recovery [11].
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As the need to prevent virus spread and treat those
infected has grown with the COVID-19 pandemic, nanotech-
nology has emerged as an alternative strategy [12]. Nano-
particles (NPs), which range in size from 1 to 100 nm, have
been developed as innovative tools with diverse applica-
tions. In the biomedical field, NPs have been used as anti-
viral and antimicrobial agents and in biosensing, drug
delivery, and imaging, among others [13-15]. NPs’ unique
properties, such as small size, adjustable surface load, and
large surface-to-volume ratio, facilitate bioavailability and
control of release time, encapsulation of various types of
drugs, and increased solubility. Different NPs’ potential use
as antiviral candidates for respiratory diseases has already
been demonstrated [16], and NP-based materials have been
recognized as promising tools for stimulating or suppres-
sing immune responses. In addition, NPs can be loaded
with a variety of specific antigens, rendering them a highly
promising alternative when compared to conventional vac-
cinology methods [17-19]. In addition to preserving the
native antigen structure, NPs also improve antigen delivery
and presentation to antigen-presenting cells. The main
advantage of nanocarriers of vaccines is their nano-size:
NPs can be administered via oral or nasal routes and
subcutaneous or intramuscular injections, targeting cen-
tral locations such as lymph nodes and penetrating mucosal
and epithelial barriers [20-22].

Different NPs have already been used to improve the
immunization efficacy of coronavirus vaccines; among them,
polymeric, inorganic, self-assembled protein, and lipid NPs
have intrinsic antigenic properties and can be loaded with
coronavirus antigens [23]. NPs have also been used to stimu-
late cellular immunity through the targeting of dendritic cells
[24,25]. In addition, as coronaviruses need to access cells
during the infection process to replicate, some studies have
examined NPs’ ability to avoid transduction by impeding virus
binding to cell surface receptors. Thus, designing NPs with the
proper size and surface charge to interact with viruses or
virus receptors on host cells is essential to stopping infections
[26,27]. In addition, metallic NPs have been shown to limit
viral replication via a cell-virus blocking mechanism. A
number of Ag-, Zn-, carbon-, silica-, and Au-based NPs have
shown considerable antiviral activity against the herpes sim-
plex virus (HSV), influenza A, human immunodeficiency
virus (HIV), human parainfluenza 3, and zika virus, among
others. Further, a nanomaterial made of graphene has been
able to detect coronavirus; mimicking a biosensor, its gra-
phene coating with a monoclonal antibody makes it sensitive
enough to detect 1 fgmL™ of SARS-CoV-2 with no previous
treatment. Likewise, magnetite NPs coated with carboxyl
polymers (pcMNPs) act as ORFlab and R gene sensors in
reverse transcription-polymerase chain reaction (RT-PCR)-
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linked sensing, meaning pcMNPs may be a better option for
quick diagnosis [28].

One of the most widely researched nanomaterials is
gold nanoparticles (AuNPs). In fact, the evidence of col-
loidal gold usage in China dates back to 2500 BC, and
more recently, Koch discovered gold cyanide’s bacterio-
static antibiotic activity against the tubercle bacillus, which
was first used in tuberculosis therapy in 1920 [29]. AuNPs,
like the other noble metals, possess unique electrical, catalytic,
and optical properties. AuNPs demonstrate an optical phe-
nomenon known as surface plasmon resonance (SPR), an
oscillation of electrons, at the specific wavelength of 510 nim;
accordingly, AuNPs are recognized for their phototherapeutic
capabilities. Because AuNPs are activated and produce
vibrations in the presence of laser light, they are extre-
mely beneficial in the targeted therapy of tumor cells. As
a result, considerable efforts have been made in recent years
regarding the development and application of AuNPs for the
early detection, diagnosis, and treatment of cancer [30].

Due to their redox and electrical properties, AuNPs can
act as sensors in electrochemical analysis or catalytic
activity. Further, AuNPs have been used to improve the
detection sensitivity of some bioanalytical techniques in
viral detection [31], and they can conjugate with biomole-
cules such as peptides, proteins, nucleic acids, and antibo-
dies [32].

AuNPs can also be used in the preparation of nanos-
tructured particles for the transport and selective vec-
toring of drugs and therapeutic macromolecules, as well

Gold nanoparticle-based strategies against SARS-CoV-2: A review = 3

as in gene therapy (vehicleization of plasmids, DNA, RNA,
and so on). Also interesting is the application of AuNPs in
the construction of intelligent transporter systems that
allow the release of the associated medicinal drug to be
controlled in terms of location and time through the acti-
vation of either an internal or external biological sti-
mulus [33].

Because of their antiviral and antibacterial properties
and selective toxicity toward microbes, AuNPs have a wide
range of biological uses. They have shown significant anti-
viral activity when functionalized with 1-decanesulfonic
acid or 1-octanethiol against HSV, human papillomavirus
(HPV), and respiratory syncytial virus (RSV) [34]. Further,
several studies have shown that AuNPs have an antiviral
effect specifically against respiratory virus types such as
influenza A (HIN1 and H3N2), RSV, and rift valley fever
(RVF) [35].

Considering the challenge that SARS-CoV-2 has repre-
sented for global public health and the importance of
investigating it thoroughly, this review aims to provide
an overview of the recent advances in the use of AuNPs
as practical diagnostic and treatment tools for SARS-CoV-2
that can be used to mitigate the spread of COVID-19 and
similar viral pandemics in the future. Antiviral activity
against respiratory viruses; different methods of detection
including PCR, biosensors (electrochemical, piezoelectric,
and optical), lateral flow analysis (LFA), and nucleic acid
assays; vaccine development; gene therapy; and toxicity of
AuNPs are discussed (Figure 1).
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Figure 1: AuNPs against SARS-CoV-2: in vitro and in vivo studies, AuNP-assisted PCR, biosensors, lateral flow analysis, and gene therapy.
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2 Antiviral activity of AUNPs on
respiratory viruses

AuNPs’ antiviral activity against viruses that cause respira-
tory diseases like SARS-CoV-2 is well known, and previous
studies have particularly focused on certain viruses. Table 1
presents a summary of types of viruses for which AuNPs
have been used. Regarding the selected in vitro studies
that tested AuNPs’ efficacy against SARS-CoV-2, some
focused on the S protein and measured signal change
via the SPR of the NPs (Figure 2). According to the crystal-
line structure analysis, the coronavirus has several key
disulfide bonds, namely, Cys336—Cys361, Cys379—Cys432,
and Cys391-Cys525. In particular, Cys480-Cys488 is a
key in the junction between the virus crest and the N-
terminal helix of ACE2 [36]. AuNPs, because of their che-
mical affinity with sulfur, could be coupled to the virus
and thus stop viral replication [37].

Further, various studies have shown that COVID-19 can
be treated using peptide inhibitors like heptad repeat 1
(HR1), which has been shown to inhibit HR1/HR2-mediated
sheath merging between host cells and the Middle East
respiratory syndrome coronavirus [38]. In one study, the
peptide FluPep demonstrated excellent antiviral activity
and efficiently inhibited influenza A viruses when functio-
nalized with AuNPs [39]. In another study on the viral pro-
liferation of influenza A using Madin-Darby canine kidney
cells, the virus was effectively inhibited when viral hemag-
glutinin protein was targeted with AuNPs functionalized

_ AuNPs L3

Figure 2: AuNPs mechanism against coronavirus SARS-CoV-2.
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with sialic-acid-terminated glycerol dendrons, which was
visually observed under electron microscopy imaging [40].
Many studies have also reported that AuNPs can signifi-
cantly inhibit the proliferation of viruses by targeting the
viral outer envelope [41]. In other studies with RSV [32] and
RVF [42], viral inhibition of over 60% was observed [42], and
in in vivo studies, an adequate immune response has been
induced [43].

3 AuNP-assisted polymerase chain
reaction

The RT-PCR technique amplifies a segment of the genetic
material of interest and produces multiple copies. Thus, the
PCR allows for the generation of millions of copies, or some-
times a single copy, of a particular nucleic sequence from
an initial small sample. The PCR technique can be used as
a molecular test to determine whether a virus’s genetic
material is present in the samples taken. In the case of
severe and critical COVID-19 cases, the PCR test is highly
accurate, sensitive, and specific [44]. However, more
effective PCR results can be achieved by shortening the
reaction time, increasing amplification efficiencies, and
varying heating/cooling rates. For the latter, NPs can be
used, as they have an essential role in heat transfer.
Further, despite its many advantages, the PCR method
may cause false-positive results owing to the long

SARS-CoV-2

ACE2
receptor T

TMPRSS2
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diagnostic time required and limited specificity; however,
advancements in traditional methods, some of which
have involved NPs, have reduced these false positives,
and significantly decreased diagnostic time [45-47].

AuNPs are the most common NPs used in diagnosing
viruses [31,48-50]. For example, AuNPs have been used to
detect COVID-19 in a colorimetric PCR. In this hybrid
method, AuNPs amplify the PCR to increase sensitivity,
provide good visuals, and allow for in situ detection at a
low cost thanks to properties including ionic force, pH,
protein conformation, size, and shape [51]. Table 2 presents
a summary of studies on AuNP-based PCR virus detection.
Some of the studies that compared different PCR systems
and found positive results for AuNPs showed that NPs did
indeed significantly improve PCR results by at least 104%.
Other studies also showed that AuNPs potentiated PCR
products and could improve the test’s specificity [52,53].
It was further found that AuNPs did not increase PCR spe-
cificity but instead suppressed the amplification of longer
products while promoting the amplification of shorter pro-
ducts regardless of specificity [54]. After observing the sur-
face interaction of AuNPs with PCR components, Lou and
Zhang [55] found that interactions modulated the enzyme’s
binding with the template and primers during the reaction
and thus lowered the melting temperature of the matching
primers. Hamdy et al. [56] used an AuNP-assisted PCR test
to detect foot and mouth disease virus (FMDV); they noted
that NPs functionalized with FMDV-specific oligonucleo-
tides increased the sensitivity and specificity of the typical
PCR assay 10-fold. In terms of SARS-CoV-2, RT-PCRs were
utilized to extract and partially purify RNA from saliva
using the Boom (from Qiagen) approach and the sugar
chain-immobilized AuNPs method. When compared to the
standard Qiagen approach, the AuNPs method had a direct
relationship with symptoms of mild or moderate COVID-19
in patients [57].

Some colorimetric methods in which AuNPs and glob-
ular nucleic acids act as binders have also been explored.
In cases where the PCR technique cannot be applied on a
large scale owing to insufficient resources and infrastruc-
ture, AuNPs can be used to visualize PCR products. This
method prevents the single-component formation of sphe-
rical nucleic acids during the amplification process. Thus,
positive and negative viral samples produce red and purple
colors in the post-PCR colorimetric test [45,58,59]. It has also
been found that larger-sized AuNPs can cause complete PCR
inhibition at a lower particle concentration than smaller-
sized AuNPs [45,60]. However, because the extent of AUNPS’
effect on PCR efficiency is not clear, it is key that AuNPs
studies be reviewed in detail and carried out using the cor-
rect dimensions.

Table 2: Gold nanoparticle-based PCR detections of viruses

Ref.

Detection platform Time (min)

Detection range

Detection limit

Assay

Biomolecule

AuNPs shape AuNPs size (nm)

Target

Group/Virus

—

—

—

—_

—

R

125

105-1 fg-mL™ Microtitre plate

10 fg-mL™

IPCR
IPCR
PCR
PCR

DNA

30

Spherical

NC Protein

Bunyaviridae hantaan virus (HTNV)

Retroviridae HIV

>125
ND
ND
ND

Microtiter plate

10,000-1 pg'mL™"

102-10*
ND

1pg:mL™”
10°

Antibody/DNA

DNA
DNA

Spherical

p24 antigen

ND

Microtiter plate

Spherical
ND
ND

Herpes virus-1 (EHV-1)

Blood-Based PCR
Microtitre plate

ND

13.2
15

JEV genome

F-protein

Japanese encephalitis virus (JEV)

Respiratory syncytial virus

ND

DNA/antibody ~NPA-IPCR 4.1 PFU-mL™"
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Hence, AuNPs show promise for obtaining a more
accurate DNA synthesis curve and improved reaction effi-
ciency during real-time PCR analysis. The studies reviewed
herein suggest that AuNPs will be very useful for future
studies’ advancement of PCR techniques.

4 AuNP-based biosensors

Given their simple production pathway, high plasmon
resonance, excellent electrical/optical/catalytic properties,
biocompatibility, and ability to simply detect antibodies,
antigens, DNA, and RNA with 89-100% sensitivity, AuNPs
are the most widely used metal NPs in biosensing applica-
tions for virus infections [61]. In general, AuNPs have
mainly been used in second-generation biosensors because
of their high surface-to-volume ratios, which improves the
interaction between analyte and sensor. AuNP-based bio-
sensors are classified into three main categories — electro-
chemical, piezoelectric, and optical biosensors (Table 3) —
which are discussed in the following sections.

4.1 AuNP-based electrochemical biosensors

Electrochemical biosensors are frequently created using
AuNPs, as they possess excellent catalytic properties, con-
ductivity, and biocompatibility; they thus enhance electron
transfer between redox centers of proteins, amplify electrode
surfaces, and act as catalysts to increase electrochemical reac-
tions. AuNPs also support electrochemical biosensing as
they are highly biocompatible with easy protein function-
ality, and they improve transfer efficiency and surface-to-
volume ratio [62]. The electrodes formed by AuNPs possess
intrinsic metallic characteristics, resulting in excellent elec-
trochemical behavior where free electrons migrate from the
valence band to the conduction band. Nevertheless, it is
essential to both biologically and chemically adjust NP sur-
faces when used with human specimens because of their
high salt concentration. In the case of COVID-19, electroche-
mical biosensors, some of which have used AuNPs, have
been successfully utilized to detect SARS-CoV-2.

4.2 AuNP-based piezoelectric biosensors

Research has found that analytical sensitivity can be improved
by coupling the quartz crystal microbalance sensing process

Gold nanoparticle-based strategies against SARS-COV-2: A review == 7

with AuNPs, as a high surface-to-volume ratio can amplify a
mass charge on the crystals. Further, in many piezoelectric
biosensors, AuNPs can enhance sensitivity and amplify sig-
nals; AuNPs facilitate rapid, sensitive detection by serving as
an antibody carrier and mass enhancer in many sandwich-
type immunosensors. In addition, piezoelectric biosensors pos-
sess a high potential to detect viruses from mechanical vibra-
tion or frequency changes by directly using output voltage.
Piezoelectric biosensors have detected coronaviruses, HIV,
and the viruses that cause hepatitis B, HPV, Ebola, vaccinia,
influenza A, and dengue [63]. Interactions between DNA and
the NP’s surface (through electrons from bases, phosphate
groups, or electrostatic forces) can influence both DNA’s con-
formation and its electrical properties. Nanosensor materials
containing AuNPs may aid in the creation of photonic equip-
ment or biosensors for DNA detection in viruses such as SARS-
CoV-2 [64].

4.3 AuNP-based optical biosensors

Colorimetric biosensors detect the presence of target bio-
markers by causing the solution’s color to change [65]. The
AuNP-based colorimetric method for detecting nucleic acid
was introduced by Mirkin using a DNA probe [66]. In this
method, 30-nm nonaggregated AuNPs, in addition to func-
tionalized magnet beads, are used for 60 min with a detection
limit of 50 fmol'mL™" to identify oligonucleotide sequences
[67], which are detectable by color change via UV spectro-
scopy (Figure 3).

AuNPs are frequently used in optical bicassays because
of their enhanced detection characteristics, including con-
trolled fabrication, excellent visual performance, good bio-
compatibility, and particular catalytic activity. The central
part of optical biosensors measures changes in photon or
light output, and there are two types of detection methods:
(1) indirect optical biosensors, in which a label (e.g., chro-
mophore or fluorophore) detects a binding event and ampli-
fies the associated signal, and (2) direct optical biosensors,
which function the same as SPR biosensors by detecting the
change in the refractive index at the analyte-sensor inter-
face [68].

AuNPs can be used in multiple optical sensing methods;
one example is with the SPR that results from the interaction
between conduction electrons in a metal and the electro-
magnetic wave. The primary function of SPR is to study
and characterize the physicochemical changes of thin films
on the metal surface [69]. Optical transducers have also
been focused on by studies of Au nanostructures because
of their plasmonic properties that produce interparticle
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Figure 3: Schematic representation of a colorimetric assay based on antisense oligonucleotide-capped with AuNPs.

distance and plasmonic coupling. In addition, optical biosen-
sors have been developed for accurate and rapid identifica-
tion and detection of target biomolecules.

Further, numerous limitations of laborious conven-
tional methods can be overcome by employing NPs. For
example, practical and sensitive detection assays have
been developed using advanced NP-based detection strate-
gies to quickly confirm respiratory virus infection [70,71].

Functionalized AuNPs with single-stranded DNA have
also been used to detect the human p53 gene, including its
12 point mutation. AuNPs also possess distinctive SPR prop-
erties with high molar coefficients that show color change
and size dependency. The aggregation of AuNPs with an
SPR of 20 nm results in a color shift from red to blue in a
colorimetric assay at 520 nm [72]. In the labeled type of
colorimetric method, DNA ligands attach directly to AuNPs
via chemical linkages before detection. AuNPs with mod-
ified ligands have higher hydration-based interparticle
repulsions and are more stable at high ionic strength
than simple AuNPs [73]. The ideal AuNPs aggregation can
be achieved using cross-linking and noncross-linking. AuNPs
aggregation via the cross-linked method is performed by
inducing the controlled assembly of ligand-functionalized
AuNPs, which forms a hydrogen bond that overrides the
interparticle repulsive force. Chandrawati and Stevens [74]
showed that AuNPs with peptide conjugate can be used to
observe the concentration of factor XIII during blood clot-
ting. Further, a one-step method for the rapid detection of
MDM2, p14, and p53 (oncoproteins) was developed by Retout
et al. [75]; the peptide-modified AuNPs form a ternary com-
plex with MDM2, resulting in a color change from red to
blue. Some recent research has also reported DNA’s effect
on the diffusion of Au particles, which helps control the
morphology of AuNPs. For example, Soh et al. presented a
combined diagnostic method using DNA aptamers and colori-
metric techniques through physical adsorption [76], while
Alafeef et al. developed an AuNP-based RNA extraction-free

nano-amplified colorimetric test for point-of-care detection of
COVID-19 [77]. This method uses a unique dual-prong strategy
that integrates plasmonic sensing with nucleic acid amplifica-
tion to detect SARS-CoV-2 with 98.4-100% sensitivity and spe-
cificity in a concentration of 10 copies per pL. This colorimetric
test can be visualized as a quantitative response in a handheld
point-of-care device.

A recent colorimetric study employing AuNPs to iden-
tify SARS-CoV-2 used molecular beacon oligonucleotides.
The flanking nucleotides stabilized the oligonucleotide
structure and enabled the selective identification of target
sequences in the viral genome in 2.5 h with the naked eye,
with an amplification of >10°-10* viral RNA copies per
uL [78].

5 AuNP-based lateral flow assays
for COVID-19 detection

The NP-based LFA is an easy-to-use, rapid, sensitive, and
robust method to detect COVID-19 (Table 4) [79]. In an
LFA, an analyte first reacts with labeled antibodies and
moves further through the membrane by capillary force
to the test and control zones and binds to captured anti-
bodies [80].

AuNPs are extensively used in LFAs because of their
bioconjugation, optically tunable, and plasmonic proper-
ties. AuNPs function as labels in LFAs and visualize results
as red-colored lines. To increase LFA sensitivity, AuNPs
have been decorated with silica nanorods [81]. To detect
COVID-19, Khlebtsov and Khlebtsov [82] demonstrated an
LFA incorporating visual color detection that used AuNPs
in low concentrations (between 6.5 x 107 and 1.4 x 10°
NPs'mm ) in a nitrocellulose membrane with a pore size
of 10 uM. Serebrennikova et al. [83] reported an LFA that
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was five times as sensitive using hierarchical AuNPs in
place of spherical AuNPs, while Zhang et al. [84] reported
a limit of detection that was 100 times lower than normal
using tipped flower-shaped AuNPs. Huang et al. [85] found
that AuNP-LFA strips were more sensitive, specific, and
stable in testing for COVID-19 in both positive and negative
samples; further, the entire testing process required only
15 min compared to the various hours needed for PCR results,
and only a minimum concentration of 10-20 uL was required.
However, AuNP-LFA performance in COVID-19 testing
depended on AuNPs’ protein coating concentration and
the block effects of the nitrocellulose membrane. Tests
were performed with different concentrations (i.e., 0.3, 0.6,
1.0,1.2 mg-mL'l) of SARS-CoV-2 AuNPs coated on the test; for
positive tests, the brightest intensity of the test line corre-
sponded to 1.2 mg-mL'l. In another study, Cavalera et al. [86]
developed a multitarget LF strip that could detect complete
antibodies (IgG, IgM, and IgA) and the nucleocapsid protein
of SARS-CoV-2. LF strips with AuNPs achieved 94.6% sensi-
tivity and 100% specificity regarding the identification of
IgA, which is produced earlier and at more detectable levels
than IgG after SARS-CoV-2 infection. Thus, AuNP-based LF
strips are more sensitive and provide results within min-
utes, making detection of COVID-19 faster and easier at
point-of-care testing.

6 AuNP-based nucleic acid assays

The World Health Organization recommends the nucleic
acid-based assay for COVID-19 testing as it is very specific
and sensitive. This test depends on hybridization between
probes and target, resulting in stable paring. This assay can
also incorporate AuNPs: In the AuNPs-based nucleic acid
assay, NPs are created using bifunctional ligands that bind
as moieties on the particle’s surface [87]. Nucleic acid
assays using AuNPs can be divided into different categories
based on the approach used for detection, as follows: (1)
the AuNP-based sol-particle immunoassay, (2) the cross-
linking approach using functionalized AuNPs, and (3) the
noncross-linking approach [88].

7 AuNP-based approaches in DNA
hybridization

DNA hybridization-based biosensors have enormous poten-
tial for disease diagnostics and forensic applications because

Gold nanoparticle-based strategies against SARS-CoV-2: A review = 11

of their speed, low cost, sensitivity, and suitability for point-
of-care testing. Metal NPs like AuNPs are characterized by
optical and electrical properties that are excellent for use in
biosensors to identify DNA hybridization. Further, the use
of enzyme-linked DNA probes and luminance-measuring
labels has been incorporated into recently developed diag-
nostic approaches using AuNPs, also known as chemilumi-
nescence [89]. For example, Li et al. aggregated AuNPs with
different concentrations of NaCl, which facilitates label-free
DNA hybridization detection [21]. This method does not
require DNA strand labeling or a strict stripping procedure
for AuNPs, which reduces the use of poisonous substances,
and the separate hybridization steps under optimal labora-
tory conditions can detect target DNA strands as low as 1.1
fM [90]. In another study, Li and Rothberg used unlabeled or
modified AuNPs for DNA hybridization detection between
single-strand DNA probes and target DNA, resulting in
AuNPs aggregation visible to the naked eye or with UV spec-
troscopy; it was found to be more sensitive than the labeled
DNA probe [91]. Li and Rothberg developed a new approach
for detecting target DNA in a homogenous solution based on
an AuNPs light-scattering assay; it can be considered a one-
step detection technique for DNA hybridization [92]. The
light-scattering technique is unique in that it can detect
a base change in DNA without temperature control. It is a
simple, sensitive tool for AuNPs aggregation detection in a
homogenous solution and provides a path for simpler and
more specific DNA hybridization detection using AuNPs [93].
Thus, the research demonstrates that many metal NPs have
been developed for medical applications; while all have
their benefits, AuNPs are found to be ideal for COVID-19
diagnosis.

8 AuNP-based approaches for gene
therapy

Regarding the effects of AuNPs in gene therapy, methods
utilizing antisense oligonucleotides (ASOs) and peptide
nucleic acids (PNAs) as therapeutic agents have attracted
scholarly attention. ASOs activate and modulate RNA func-
tion in cells via different mechanisms. As the coupling
between ASOs and mRNA becomes a substrate, the mRNA
cannot be transported to the cytoplasm, and protein produc-
tion is inhibited [94]. ASO treatment can be applied to target
viral RNA; it has been shown to be a successful method for
many diseases such as neurodegenerative and cardiological
diseases [95,96]. In addition, ASOs have been used in many
human subject studies to determine their clinical suitability,
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and they have shown high efficacy against viral infections
[45,97-99]. ASOs can easily be directed against the viral RNA
of interest, impairing viral expansion, including SARS-CoV-2.
Oligonucleotides bind to the targeted RNA and inhibit ASO
translation [100].

Nevertheless, PNA’s slow cellular uptake into cells is a
challenge that needs to be overcome. This slow uptake may
be because negatively charged phosphate backbones tend
to fold into complex structures due to affinity. The hydro-
phobicity state causes PNA aggregation and nonspecific
adhesions, and this folding tendency poses several limita-
tions to this technology [101]. However, nanotechnological
structures can assist PNAs at this stage: PNAs combined
with AuNPs create more biocompatible candidates with
lower toxicity and greater biodistribution, and AuNPs’ tun-
able properties and accessible synthesis are further advan-
tages. A study on antisense treatment for bovine viral
diarrhea virus, which is a surrogate model of the human
hepatitis C virus, showed that AuNPs are the most suitable
method to provide PNAs to cells, which could lead to a
potential tool for virus removal from infected cells [102].

Further, in 2020, Moitra et al. detailed a colorimetric
test based on AuNPs coated with appropriately designed
thiol-modified ASOs specific to the N-gene (nucleocapsid
phosphoprotein) of SARS-CoV-2. The test could be used to
diagnose positive COVID-19 cases from isolated RNA within
10 min. AuNPs, one of the ASO delivery systems, offer sev-
eral advantages, including being able to bind to various
types of molecules, low toxicity, and a broader absorption
spectrum than other NPs [103]. No detailed studies have
been conducted on using PNAs to disrupt the viral life cycle
of SARS-COV-2 [104].

9 AuNP-based approaches in
vaccine development

The application of nanotechnology in vaccines, known as
nanovaccinology, is a growing field that focuses on enhan-
cing the body’s immune responses. NPs have been used in
various ways, for example, to transport antibody-triggering
antigens or make them more potent. AuNPs are a popular
building block for nanovaccines because they are inert in
the body and easily absorbed by specific immune cells. They
have previously been used as carriers or enhancers in nano-
vaccine research and have also attracted medical attention
for their antimicrobial and anti-inflammatory properties
[101]. Intense research efforts resulted in the first vaccine
candidate for COVID-19, which was tested in a Phase I
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clinical trial on March 16, 2020 [105]. By May 22, 2020, 10
COVID-19 vaccines were in human clinical trials, while 114
were still in preclinical development [106]. Vaccine develop-
ment relies on the direct administration of viral protein
antigens (e.g., recombinant proteins, whole inactivated or
attenuated virus, or vectored vaccines) or RNA or DNA
that encodes viral antigens. The antigen candidate that
induces immunization is the immunogenic spike protein
(S1 subunit). As the S1 protein is essential for cellular uptake
of the virus particle, many researchers concentrate on this
protein as the primary target for a vaccine [107].

Conventional vaccines, such as inactivated, live attenu-
ated viral, or subunit vaccines, possess certain limitations; for
instance, there is a potential risk of viral virulence reversion
(live attenuated viral vaccines) or weak immune response
(inactivated viruses), as well as limited immunogenicity
(subunit vaccines). However, recent advances in biological
engineering have led to the design of nanotechnology-based
vaccines that generate enhanced antigen presentation and
strong immunogenicity [108]. NPs can assist in different
ways to boost stimulation of the immune system and pre-
cisely direct the immune response against antigens [109].

There are different ways to deliver protein, drug, or
RNA into a patient, but certain challenges, such as the
vehicle often being degraded or swiftly cleared, impede suc-
cessful delivery. NPs in the form of nanocarriers have the
potential to overcome some of these limitations. For example,
lipid-based, polymetric, or inorganic NPs could be manipu-
lated to encapsulate cargo proteins with better protein
delivery and pharmacokinetics than conventional methods
[110]. In addition, intranasal application of encapsulated anti-
gens has been found to induce a robust immune response;
however, vaccine effectiveness depended on employing a sui-
table polymer compound with the antigen [111].

The target goal for most vaccines is to stimulate the
production of the S protein [112]. For example, SARS vac-
cine research focused on S protein subunits, the receptor-
binding domain of the S1 subunit, and the S protein/gene as
the primary target sites [113,114]. Farfan-Castro et al. con-
ducted one of the few studies on the use of AuNPs in vac-
cines, using a SARS-CoV-2 peptide with SH-PEG-NH2; the
approach showed increased immunogenicity and cytokine
production in mouse models, supporting the efficacy of
nanovaccines in the battle against COVID-19 [115].

10 AuNP toxicity

Of all NPs, AuNPs have been most frequently used as vac-
cine platforms, as they are easily internalized by
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macrophages and dendritic cells, which induce their acti-
vation [116]. Their ease of conjugation to biopolymers has
allowed them to be used in cosmetic products, biological
markers, biosensors, and theranostics, such as thermal
ablation of tumors, radiation sensitizers, and real-time
imaging in vivo and in vitro [117]. The advantage of AuNPs
is that in their colloidal form, they do not accumulate in the
liver. According to reports, they also do not cause liver
dysfunction in in vivo or in vitro models [118]. Polyethylene
glycol (PEG)-coated AuNPs, on the other hand, are protected
from absorption by phagocytes and can be gradually elimi-
nated from the body or degraded within cells [118,119].

In in vivo models using rats, AuNPs ranging in size
from 5 to 100 nm were added intraperitoneally in concentra-
tions from 5 to 20 ug-kg ™, orally from 20 to 1,300 ug-kg day ™,
and intravenously from 0.9 to 90 ug per rat. The reported
effects ranged from low toxicity to oxidative damage in the
lungs, renal tubule damage, increased pro-inflammatory cyto-
kines, and lipid peroxidation in the liver [120-123]. In rabbit
models, added AuNPs ranged in size from 5 to 25nm and
concentrations from 300 to 1,000 ug’kg* and were applied
intravenously. The models were exposed from a minimum
of 12 h to a maximum of 7 days and showed excellent results
associated with mild toxicity such as inflammatory reactions
in liver, lung, and kidney tissues; morphological or histolo-
gical changes were not evident [124-126]. In an in vitro study
of pulmonary 3D models, AuNPs toxicity was found. Their
size varied from 15 to 175nm, and the dose ranged from 40
to 500 ug'mL ™. The results demonstrated that size and mate-
rial affected AuNPs’ toxicological potential [127].

Regarding the metabolization of Au and its potential
application in humans, studies carried out in patients with
rheumatoid arthritis examining the dose and course of
treatment of Au salts and articular morphology showed
low toxicity [128-130]. Freyberg et al [131] analyzed the
dose of total Au ingested and plasma and urinary volume
according to different intake schedules. They found the
salts were not stored in the synovial fluid; their excretion
was mainly hepatobiliary, approximately >70%, with sec-
ondary pathways including renal, skin, and breast tissue
during pregnancy, and plasma values remained high after
intake. It has also been shown that Au is distributed in the
liver, kidney, spleen, hematopoietic tissues, bone, skin, adi-
pose tissue, and eyes but does not reach the brain or ske-
letal muscle [132]. Biochemical analyses have shown that
Au ions induce and bind to low-molecular-weight metallo-
proteins, albumins, alpha globulins, and histones in dis-
tributed tissues, with albumins and metalloproteins being
the most abundant; in both cases, Au binds to free thiol
groups in cysteine residues [133]. Au has a low affinity for
keratogenic tissues; high levels are deposited in the dermis
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and connective tissues. Rarely, skin pathology resulting
from prolonged contact with Au has been reported. How-
ever, there are millions of cases of allergic dermatitis from
Au rings. In addition, Au can easily be removed by natural
flaking of superficial squamous cells or natural growth in
hair follicles or nail beds. Au particles have also been
deposited in the corneal stroma, lens, conjunctiva, Desce-
met’s and Bowman’s membranes, and retina.

In cases of inhalation of Au dust from mines by
humans, effects on the respiratory tract, stomach, and liver
have been reported; only 15 min of exposure was needed to
trigger a respiratory condition [134]. Further, Kusiak et al.
analyzed post-mortem samples from more than 54,000
miners in Ontario between 1955 and 1986 and found a
correlation with the occurrence of lung carcinoma [135].
Another study conducted on gold miners in Australia, the
Americas, and South Africa found an association between
stomach, liver, and respiratory tract cancer in people with
alcoholism, smoking, localized diseases, and HIV [136]. The
evidence is unclear regarding whether Au exposure is
related to the occurrence of some specific cancer types;
nevertheless, it has been confirmed that it is not mutagenic
or genotoxic [137].

AuNPs toxicity is generally associated with particle
size, surface coating [138], and shape. These specific aspects
lead to different chemical attributes, some of which cel-
lular research has shown to be toxic and others nontoxic.
In addition, research has shown that the organ distribution
of AuNPs is size dependent. For example, small AuNPs
(5-15nm) were more widely distributed among organs
than larger AuNPs (50-100 nm), with the liver and spleen
being the major targeted organs [139]. AuNPs’ cytotoxicity
in human cells has also been examined in detail, and stu-
dies have shown these NPs were nontoxic up to 250 mM,
while ionic Au had a cytotoxicity at 25 mM [140].

The toxicity and biodistribution of PEG-coated AuNPs
have also been studied. Results have indicated that AuNPs
measuring 20 nm and coated with thioctic acid (TA)-termi-
nated PEG5000 were the most stable and had the lowest
toxicity among the 20-, 40-, and 80-nm AuNPs covered with
TA-terminated PEGsqoo [141]. While the toxicity of some
AuNPs has been found to be size dependent due to their
ligand surface coating [142], in others, their large surface-
to-volume ratio provided an avenue for enhanced surface
particle activity [143].

AuNPs’ interactions with biological systems are mostly
associated with their physicochemical characteristics, which
allow them to be internalized within cells, unlike larger
particles. Greater doses of AuNPs may be more toxic than
those of larger particles, which indicates the relevance of
their size, considering their high surface-to-volume ratio, for
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their use in biomedical systems [144]. Most studies have
focused on simple AuNPs (citrate or cetyltrimethylammo-
nium bromide capped); thus, more research is needed on
the toxicity and pharmacokinetics of functionalized AuNPs
and should include accurate surface composition (e.g., recog-
nition and nonfouling molecules) since surface modifications
can change the overall effect of the AuNPs.

Finally, most in vivo studies focused on intravenous
injection as the main administration route of AuNPs. More
investigation is required to evaluate the toxicity of AuNPs
that include alternative means of AuNPs exposure, such as
inhalation, oral absorption, and dermal absorption. Table 5
presents some of the studies that evaluated AuNPs toxicity.

Allometric scaling should be used as an empirical
method for estimating the pharmacokinetic properties of
pharmacological products in humans based on preclinical
animal datasets during drug discovery and development,
particularly to determine a safe initial dose for preliminary
clinical trials.

11 Conclusions

This study reviewed the recent advances concerning AuNPs
as an effective antiviral model, different methods of SARS-
CoV-2 analysis with AuNPs, and their toxicity when used as a
therapeutic strategy. Regarding the specific antiviral activity
of AuNPs on SARS-CoV, viral replication inhibition occurs
through NPs’ binding with the SARS-CoV-2 S protein via its
disulfide bridges owing to chemical affinity with Au. The
same mechanism was reported for similar viruses such as
influenza, RSV, and RVF, which support AuNPs’ antiviral
activity on respiratory viruses. In terms of utilizing AuNPs
to detect respiratory viruses, with PCRs, the suggested size is
15-30 nm, the quantification limit for different viruses is 1
fgmL™, and for SARS-CoV-2, the amplification is >10°-10*
copies of viral RNA per uL. When using electrochemical,
piezoelectric, and colorimetric biosensors, AuNPs should
measure 30-50 nm; electrochemical biosensors have the
lowest detection limit (6.9 copies per pL) and optical biosen-
sors approximately 0.5 pg'mL™ in 30 min, while no studies
have examined piezoelectric biosensors specifically for
SARS-CoVo-2. For gene therapy approaches using isolated
RNA ASOs, SARS-CoV-2 can be diagnosed in 10 min, which
is the shortest analysis time compared to other techniques.
The literature is scarce on the use of AuNPs in vaccines; how-
ever, using the SARS-CoV-2 peptide with SH-PEG-NH2 showed
increased immunogenicity and cytokine production in mouse
models, supporting the efficacy of a nanovaccine. Finally,
the principal challenge associated with AuNPs application in

DE GRUYTER

illness diagnosis is their toxicity, namely, that it needs to be
reduced and their bioavailability improved. Studies have
shown that one advantage of using AuNPs is that they do
not accumulate in the liver in humans in their colloidal
form. In rats, AuNPs showed low toxicity, oxidative lung
damage, renal tubule damage, increased pro-inflammatory
cytokines, and lipid peroxidation in the liver. In in vivo models
using rats, AuNPs (size: 5-100 nm) were added intraperitone-
ally in concentrations from 5 to 20 pg-kg ™, orally from 20 to
1,300 pug’kg “day *, and intravenously from 0.9 to 90 ug per rat.
In rabbit models, added AuNPs ranged in size from 5 to 25 nm
and concentrations from 300 to 1,000 pg-kg ' and were applied
intravenously. In in vitro studies, size varied from 15 to 175 nm
and dose from 40 to 500 ygmL™. Studies on toxicity in
humans show AuNPs are excipient. Despite many studies on
AuNPs, more research is required that evaluates their toxicity
in terms of the various exposure routes, dose, and genetic
effect over the long term.
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