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On the elimination of the sweeping interactions from theories of hydrodynamic turbulence

Eleftherios Gkioulekas∗

Department of Mathematics, University of Central Florida, Orlando, FL, United States

In this paper, we revisit the claim that the Eulerian and quasi-Lagrangian same time correlation
tensors are equal. This statement allows us to transform the results of an MSR quasi-Lagrangian
statistical theory of hydrodynamic turbulence back to the Eulerian representation. We define a hi-
erarchy of homogeneity symmetries between incremental homogeneity and global homogeneity. It
is shown that both the elimination of the sweeping interactions and the derivation of the 4/5-law
require a homogeneity assumption stronger than incremental homogeneity but weaker than global
homogeneity. The quasi-Lagrangian transformation, on the other hand, requires an even stronger
homogeneity assumption which is many-time rather than one-time but still weaker than many-time
global homogeneity. We argue that it is possible to relax this stronger assumption and still preserve
the conclusions derived from theoretical work based on the quasi-Lagrangian transformation.

PACS numbers: 47.27.Ak, 47.27.Gs, 47.27.Jv
Keywords: Turbulence, local homogeneity, quasi-Lagrangian, sweeping interactions

I. INTRODUCTION

A remarkable feature of hydrodynamic turbulence in three dimensions is that it exhibits universal self-
similarity properties at small length scales independently of the forcing mechanism that operates at larger
length scales. The self-similar nature of turbulence was noticed by Richardson [93] who suggested that large
vortices will generate increasingly smaller vortices until they become hydrodynamically stable and then get
dissipated by viscosity. Kolmogorov [53, 54] conjectured that for length scalesr between the forcing scale
`0 and the dissipation scaleη , the structure functionsSn(x, re) will be independent of̀0 andη , and, as was
pointed out by Batchelor [4], this conjecture implies thatSn(x, re) satisfy the following power laws:

Sn(x, re) = 〈{[u(x+ re, t)−u(x, t)] ·e}n〉= Cn(εr)n/3. (1)

Heree is a unit vector, andε equals the rate of energy injection into the fluid, the energy flux in the cascade
of energy from large scales to small scales, and the rate of energy dissipation at small scales. The constant
Cn was believed to be universal, but in fact it is not (except forn = 3) and it is dependent on the forcing
spectrum. From the above, the energy spectrumE(k) for `−1

0 � k� η−1 can be shown to satisfy

E(k) = Cε
2/3k−5/3. (2)

This prediction was confirmed for the first time in 1962 [35, 45], and today, with modern computers, it is
routinely reproduced in numerical simulations. It has since come to light [31, 100] that there exist departures
from Kolmogorov scaling laws for the higher order structure functions (known as intermittency corrections),
and Kolmogorov (with Oboukhov) [55, 90] was in fact the first to propose revisions of his original theory.
The correct expression forSn(r) has the form

Sn(r) = Cn(εr)n/3(r/`0)ζn−n/3, (3)

whereζn are scaling exponents to be determined. The challenge here has been to develop theoretical under-
standing that can account for this energy cascade with a logical argument that begins from the underlying
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governing Navier-Stokes equations. It is not only a matter of calculating the scaling exponentsζn. The
robustness of the scaling of the energy spectrum needs to be explained, and the universality of the scaling
exponents themselves is in fact still an open question.

The energy cascade from large scales to small scales is driven by the nonlinear term of the Navier-Stokes
equations, and it is often explained as an effect of the vortex stretching and tilting caused by that term.
However, the same term is also responsible for a sweeping interaction whereby a vortex is swept altogether
from one location to another with minimal distortion. Implicit in the idea of an energy cascade is the
assumption that these sweeping interactions have a negligible effect on the structure functions in the inertial
range. It has therefore been necessary to use theoretical schemes that “eliminate” sweeping [78]. The goal
of this paper is to call attention to the fact that these schemes do notprove that sweeping is negligible;
they only introduce the assumption that it is so. Recent doubts [32] concerning the consistency of the
local homogeneity framework are directly linked with this problem of rigorously eliminating the sweeping
interactions, and also with the problem of formulating a reasonable definition of local homogeneity. We
will also make a conjecture, and explore its plausibility, which, if shown to be true, would establish the
assumption that the sweeping interactions are negligible in the inertial range on a firmer ground.

It should be noted that a strictly rigorous mathematical theory based exclusively on the Navier-Stokes
equations is a very difficult task. For this reason, it is necessary to tolerate unproven assumptions as hy-
potheses, as long as such assumptions can be reasonably supported by physical arguments, or by experiment.
It is within a specific framework of reasonable assumptions, which will be defined in a moment, that we
claim that sweeping elimination procedures still do not prove that sweeping interactions are negligible.

The argument of this paper, summarily, is the following. First, we show that the elimination of the
sweeping interactions as well as the derivation of the 4/5-law requires a homogeneity assumption stronger
than the assumption of incremental homogeneity, as envisioned by Frisch [31]. Second, we show that
using the quasi-Lagrangian formulation of Belinicher and L’vov to eliminate the sweeping interactions
requires an even stronger homogeneity assumption which involves many-time correlations instead of one-
time correlations. We conclude with a discussion of the implications of this argument on the utility of
the quasi-Lagrangian formulation. Specifically, we will show that despite this apparent shortcoming of
the quasi-Lagrangian formulation, the theoretical work based on it can still be used as a foundation for a
physically useful theory, along the lines of the Frisch framework, provided that certain considerations are
taken into account. Furthermore, incremental homogeneityis in fact a consistent framework, provided that
the sweeping interactions can be eliminated in a more rigorous manner.

The paper is organized as follows. In section 2, we review the theoretical developments that gave rise to
the issue of the sweeping interactions, and discuss the assumptions underlying most efforts to understand
the energy cascade from a theoretical point of view. The 4/5-law is discussed in section 3 and the quasi-
Lagrangian formulation in section 4. The implications of our argument for the theories that use the quasi-
Lagrangian formulation as a foundation are discussed in section 5, and the paper is concluded in section 6.
Appendix A reviews how the quasi-Lagrangian formulation eliminates the sweeping interactions. Appendix
B presents a more complete account of the calculation of a functional determinant originally given by L’vov
and Procaccia [72]. In appendix C we evaluate the contribution of the sweeping interactions in closed form
for the case of passive random gaussian delta-time-decorrelated sweeping.

II. THEORETICAL BACKGROUND

We begin with reviewing the development of the ideas that form the theoretical foundation of certain re-
cent attempts to understand the universal behavior of turbulence. The problem of the sweeping interactions
and its resolution is an essential part of this theoretical foundation. Then we discuss the set of assumptions
that are widely accepted on physical grounds. Because the argument of this paper requires simultaneous
consideration of a wide range of interdependent topical areas, this overview will help by providing the
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reader the broader context against which the argument and its implications on the theoretical foundations of
turbulence will be discussed later in our paper. This overview represents strictly my personal philosophical
point of view. A more comprehensive and unbiased review of theoretical three-dimensional turbulence is
already available in the literature [31, 78, 87, 99].

A. Theoretical approaches to turbulence

The foundation on which recent successful theoretical work was accomplished on the problem of the
direct energy cascade rests on the following essential ideas: The first critical idea is the framework of
globally homogeneous and isotropic turbulence introduced by Taylor [51, 94, 102, 103] and popularized
by Batchelor [5]. Within that framework there have been numerous attempts to model turbulence using
closure models [63]. The second critical idea, due to Kraichnan, is his discovery that such models are not
realizable because they predict negative values for the energy spectrum [56]. Kraichnan counterproposed
a different closure model [57, 58], the direct interaction approximation (DIA), with the unique feature that
it makes use of response functions. Disagreement with experimental predictions prompted Kraichnan to
call attention to the problem of sweeping interactions [59], and to revise his earlier model. The new model
[60], the Lagrangian history direct interaction approximation (LHDIA), was one of the first models to make
predictions in agreement with experiment [61]. A review of Kraichnan’s work was given by Leslie [63]. It
is fair to say that LHDIA was the first successful theory of three-dimensional turbulence. Unfortunately, it
was not clear how to generalize LHDIA, which was a first order approximation, to higher orders, and as a
result, further development of this theoretical program was not possible for many years.

Parallel to these efforts, there have also been attempts to construct exact mathematical theories of turbu-
lence based on functional calculus. The first such formulation was given by Hopf [49], and an equivalent
reformulation in terms of path integrals by Rosen [95, 96]. Novikov [89] modified the Hopf formalism
to include a gaussian delta correlated stochastic forcing, intended to model the hydrodynamic instability
responsible for turbulence. An interesting application of this formalism is the more rigorous and power-
ful reformulations of the original dimensional analysis arguments used by Kolmogorov [83, 97]. Its main
disadvantage is that it restricts the statistical description to one-time velocity correlations. A generalization
to include many-time velocity correlations was given by Lewis and Kraichnan [64]; however even that is
inadequate because it does not include response functions.

The essential idea of the definitive approach was introduced by Wyld [106]. The main result is that
Feynman diagrams can be used to generalize DIA to higher orders, and that DIA itself is essentially a one-
loop line-renormalized diagrammatic theory. A generalization of this scheme to a wider range of dynamical
systems was given by Martin, Siggia, and Rose [81], although, as they themselves explained, without a suf-
ficiently rigorous justification. Phythian [91] used Feynman path integrals to reformulate the MSR theory,
and showed that it can be justified for dynamical systems that are local in time and first-order in time. An
assumption implicit in this argument is that the dynamical system has a unique solution for all time. This
claim has not been proven for the Navier-Stokes equations in three dimensions, however global regularity,
as a matter of fact, can be proved rigorously [52, 65] if the diffusion term in the Navier-Stokes equations
is replaced with a hyperdiffusion term likeν∇4uα . A pedagogical introduction to MSR theory was given
recently by L’vov and Procaccia [71] and Eyink [25], and a careful review of the mathematical foundations
of the theory itself is given in the paper by Andersen [2] (also see references therein).

Unfortunately, the MSR formalism could not be applied to generalize Kraichnan’s more successful LH-
DIA theory because the Navier-Stokes equations in the Lagrangian representation are not local in time.
Eventually, a way was discovered around this difficulty, thus breaking the deadlock that has been plagueing
theory for decades. It involves combining the MSR formalism with renormalization schemes that eliminate
the sweeping interactions. The first such scheme was introduced by Yakhot [107], and another by Belinicher
and L’vov [6, 68]. Combined with the MSR formalism, one has a rather solid foundation for further theo-
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retical work. It is these schemes, and the nature of the assumptions that they implicitly introduce, that will
concern us in this paper.

Since 1995, there have been some very remarkable developments in this direction: L’vov and Procaccia
have used the quasi-lagrangian renormalization scheme [6, 68] to formulate a diagrammatic theory [72–74]
that generalized Kraichnan’s DIA to all orders. It was shown that as long as the theory is truncated to finite
order, it predicts agreement with Kolmogorov’s theory and the absence of intermittency corrections [72]. It
was also shown that if the theory is not truncated, there is a critical divergence thatdoeslead to intermittency
corrections [73]. L’vov and Procacciaet al also formulated a nonperturbative theory [70, 75–77] based on
the fusion rules which are predicted by the underlying diagrammatic theory. This theory has been used
to derive a nonperturbative method [7, 8, 79] and a perturbative method [80] for calculating the scaling
exponentsζn. The perturbative method [80] has been used successfully to calculateζn for all n accessible
to experimental measurement, but it requires that the deviation ofζ2 from the Kolmogorov prediction 2/3,
which is the small parameter, be already known. This ability of the L’vov-Procaccia theory to predict the
existence of intermittency is a significant accomplishment. A partial review of these developments was
given in [78]. The non-perturbative theory has also led to a clearer understanding of local isotropy [3, 9].

It is worth mentioning that there exists an entirely different theoretical approach to the problem based
on renormalization group methods. A detailed review is given in [31, 82, 98] and some relevant criticism
in Refs. [24, 62]. There are two interesting points of convergence between renormalization group methods
and the theories reviewed previously. First, Eyink [22, 23] employed the renormalization group method to
derive the fusion rules under certain assumptions both for shell models of turbulence and for hydrodynamic
turbulence itself. The fusion rules are a crucial element in both the perturbative and the non-perturbative
theories of L’vov and Procaccia. Second, Giles [36] used the renormalization group method to calculate
the scaling exponentsζn, without relying on any experimental input, contrary to the paper [80]. In this
calculation, the sweeping interactions were eliminated using the scheme by Yakhot [107]. A comparative
study of the two approaches would help further progress.

B. The hypotheses that underlie MSR theory

In all the theoretical work that has been reviewed above, it is assumed that the Navier-Stokes equations
have a unique solution, that there exists hydrodynamic instability leading to turbulence, and that this insta-
bility can be modeled with stochastic forcing acting at large scales. These assumptions are introduced im-
plicitly simply by employing the MSR formalism. Although they are widely accepted on physical grounds,
there has also been substantial effort to deal with them rigorously.

An overview of the mathematical results on the existence and uniqueness of solutions to the Navier-
Stokes equations is given in ref. [20, 34] and references therein. Briefly, in two dimensions the existence
and uniqueness of strong solutions has been shown rigorously. In three dimensions it has been shown that
weak solutions exist, but not that they are unique. It has also been shown that if strong solutions exist, they
will have to be unique, but it has not been shown that such strong solutions do in fact exist. The underlying
physical issue is whether the velocity field will develop singularities by vortex stretching as it is evolved by
the Navier-Stokes equations.

It is fortunate that this issue does not arise in numerical simulations because the finiteness of the resolu-
tion prevents singularities from developing. As long as the smallest resolved length scale is smaller by order
of magnitudes than the Kolmogorov microscale, the finite resolution approximation of the Navier-Stokes
equations models hydrodynamic turbulence quite adequately. Furthermore, the energy cascade, which is
very robust, will not allow any of the Fourier modes to blow out, since all the incoming energy will be
transferred to the dissipation range, where it will be disposed of efficiently, given adequate numerical res-
olution. Another benefit of the finite resolution model is that the path integrals of the corresponding MSR
theory are mathematically rigorous.



5

It should be noted that the Navier-Stokes equations themselves arenot obviouslymorerealistic than the
finite resolution model because a “finite resolution”is imposed on fluid dynamics by Nature at the point
where the existence of discrete molecules is important. Thus, if one introduces the assumption that the finite
resolution approximation of the Navier-Stokes equations is a satisfactory physical model all by itself, then
one may disregard the mathematical issues associated with the existence, uniqueness, and regularity of the
solutions of the Navier-Stokes equations. This is not an unreasonable assumptionin the inertial rangeof
three-dimensional turbulence. We are on less solid ground with respect to the robustness of the cascades
of two-dimensional turbulence, but the underlying mathematical issues do not arise in two dimensions. We
do not wish to underestimate the importance of the mathematical issues of existence and uniqueness that
remain open for 3D Navier-Stokes; we merely want to highlight the implicit assumption that one makes
when one sidesteps these issues, as is done by every theory published to date.

Another very important issue which is “hidden under the rug” is proving the existence of turbulence
itself as a consequence of the Navier-Stokes equations. Unfortunately, the theoretical framework prescribed
by the MSR theory cannot account, even in principle, for the existence of the hydrodynamic instability
that causes turbulence. In the MSR framework, it is implicitly assumed that the effect of hydrodynamic
instability can bemodeledby a stochastic forcing term. The assumption can be justified if one demonstrates
that the resulting stochastic behavior of the velocity field in the inertial range is invariant with respect to
large-scale perturbations to the statistics of the forcing term.

There is in fact an extension of MSR theory in terms of a supersymmetric path integral that includes
two additional fermionic ghost fields [1, 42, 44]. The surprising result is that correlations involving these
additional fields are related to the Lyapunov exponents [43] that quantify hydrodynamic instability. It is
therefore possible, in principle, to obtain statistical predictions from this framework with a deterministic
forcing as input [105]. Whether this is in fact a practical approach remains to be seen.

The assumptions described so far are needed to bring in the machinery of the MSR formalism. In order to
employ the formalism to explain the universality of the direct energy cascade and calculate the intermittency
corrections, it is necessary to hypothesize a mathematical description of the energy cascade and use that to
narrow down the specific solution which is self-consistent. Frisch [30, 31] proposed a set of hypothesis
consisting of assumptions of statistical symmetry (such as homogeneity, isotropy, self-similarity) and the
additional assumption of anomalous dissipation, as an appropriate refinement of Kolmogorov’s theory. The
nature of the theoretical argument is to show that there is only a unique solution that can be admitted that
satisfies the hypothesized statistical symmetries. A critical review of the assumed statistical symmetries,
and local vs. incremental homogeneity in particular, is part of what concerns us in this paper.

To summarize, we accept the following assumptions on physical or experimental grounds: first, there
exists a unique solution to the Navier-Stokes equations that develops hydrodynamic instability for large
Reynolds numbers; second, in the limit of fully developed turbulence, incremental homogeneity and incre-
mental isotropy (as defined by Frisch [30, 31], and see section III B) are reinstated statistically, even if only
asymptotically, for the velocity field; third, we accept the hypothesis that there exists an anomalous energy
sink at small scales. These assumptions are a reasonable starting point for analytical theories of turbulence
in three dimensions.

III. HOMOGENEITY AND SWEEPING INTERACTIONS

The background on homogeneity is as follows: Taylor, Batchelor, Kraichnan, and others, have been
willing to tolerate the assumption that turbulence is globally homogeneous and isotropic. However, it was
suggested by Kolmogorov himself [54] that a far more realistic approach is to assume local homogeneity
and local isotropy. Both frameworks have been reviewed by Monin and Yaglom [85]. Kolmogorov also
emphasized the importance of studying stationary turbulence, corresponding to the forced-dissipative case,
instead of the free decaying case.
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In recent work, Frisch [30, 31] proposed that Kolmogorov’s second paper [53] leads to a reformulation of
his theory along three assumptions: first, the assumption of local homogeneity and local isotropy (defined
differently than by Kolmogorov, see section III B); second, an assumption of self-similarity; third, the
assumption of an anomalous energy sink. Using the first and third assumption, according to Frisch, one
derives the 4/5 law from which we obtainζ3 = 1. From the second assumption we haveζn = nh. Combined,
we obtain the predictionζn = n/3. The assumption of self-similarity, used by Frisch, axiomatically excludes
intermittency corrections to the scaling exponentsζn. Consequently, the theoretical efforts to calculate the
scaling exponents from “first principles” essentially aim to weaken this assumption while tolerating the
other two assumptions.

Some faith in the assumption of an anomalous energy sink, in particular, is based on recent evidence
from numerical simulations [50] and theoretical evidence from the fusion rules [75, 76]. The assumption of
local isotropy can be understood from the principle of linear superposition of the isotropic and anisotropic
sectors of the symmetry groupSO(3) [3, 9]. Finally, the assumption of self-similarity can be understood via
Z(h) covariance of the statistical theory [7, 8, 79]. This leaves then the assumption of local homogeneity.

A. Hierarchical definitions of homogeneity

Let uα(x, t) be the Eulerian velocity field, and introduce the Eulerian velocity differenceswα :

wα(x,x′, t) = uα(x, t)−uα(x′, t). (4)

The Eulerian generalized structure function is defined as the ensemble average of the product of such ve-
locity differences

Fα1α2···αn
n ({x,x′}n, t) =

〈[
n

∏
k=1

wαk(xk,x′k, t)

]〉
, (5)

where{x,x′}n is shorthand for a list ofn position vectors.
Originally, Frisch [30, 31] wrote his definitions of local homogeneity, local isotropy, and local stationar-

ity using an “equivalence in law” relation. It should be noted that one should distinguish betweenmany-time
equivalence, that extends to many-time correlations, andone-time equivalencethat applies only to one-time
correlations. The clearest way to bring out this distinction is by defining the equivalence relation in terms
of characteristic functionals defined as

Zx,x′
w [p, t] =

〈
exp

(
i
∫

dx
∫

dx′ wα(x,x′, t)pα(x,x′))
)〉

(6)

Zx,x′,t
w [p] =

〈
exp

(
i
∫

dx
∫

dx′
∫

dt wα(x,x′, t)pα(x,x′, t))
)〉

. (7)

The structure functions can be evaluated from the characteristic functional by variational differentiation and
settingp = 0. For example,

Fα1α2···αn
n ({x,x′}n, t) =

[
n

∏
k=1

1
i

δ

δ pαk(xk,x′k)

]
Zx,x′

w [p, t]
∣∣∣
p=0

. (8)

The difference betweenZx,x′
w [p] andZx,x′,t

w [p], is thatZx,x′
w [p] contains information only about one-time cor-

relations, whereasZx,x′,t
w [p] contains information about many-time correlations as well. This is exploited to

distinguish between many-time equivalence and one-time equivalence.
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Definition 1 Consider two stochastic fields vα(x,x′, t) and wα(x,x′, t). The “equivalence in law” relations
are defined as

vα(x,x′, t)
x,x′∼ wα(x,x′, t)⇐⇒ Zx,x′

v [p, t] = Zx,x′
w [p, t] ∀p analytic (9)

vα(x,x′, t)
x,x′,t∼ wα(x,x′, t)⇐⇒ Zx,x′,t

v [p] = Zx,x′,t
w [p] ∀p analytic. (10)

Here,
x,x′∼ represents one-time equivalence, and

x,x′,t∼ represents many-time equivalence. Thus, we can distin-
guish between one-time global homogeneityu ∈H and many-time global homogeneityu ∈H∗:

u ∈H⇐⇒ uα(x, t) x∼ uα(x+y, t), ∀y ∈ Rd (11)

u ∈H∗⇐⇒ uα(x, t)
x,t∼ uα(x+y, t), ∀y ∈ Rd. (12)

A detailed review of previous definitions oflocal homogeneity has been given by Hill [47]. To discuss
local homogeneity more carefully, we introduce the following definitions:

Definition 2 The velocity fieldu, as a stochastic field, is a member of the homogeneity classHm(A) where
A⊆ Rd a region inRd, if and only if the ensemble average defined as

Fm,n ≡

〈[
m

∏
l=1

uαl (xl , t)

][
n

∏
k=1

wβk
(yk,y′k, t)

]〉
, (13)

is invariant with respect to a space shift of its argumentsxl ,yk,y′k for all n > 0 in the domainA, i.e.(
m

∑
l=1

∂αl ,xl +
n

∑
k=1

(∂βk,yk
+∂βk,y′k)

)
Fm,n = 0, ∀xl ,yk,y′k ∈A (14)

Definition 3 The velocity fieldu is a member of the homogeneity classH∗
m(A) whereA ⊆ Rd a region in

Rd, if and only if the ensemble average defined as

F∗
m,n ≡

〈[
m

∏
l=1

uα(xl , tl )

][
n

∏
k=1

wβk
(yk,y′k, t)

]〉
, (15)

is invariant with respect to a space shift of its argumentsxl ,yk,y′k for all n > 0 in the domainA, i.e.(
m

∑
l=1

∂αl ,xl +
n

∑
k=1

(∂βk,yk
+∂βk,y′k)

)
F∗

m,n = 0, ∀xl ,yk,y′k ∈A (16)

We also writeHm≡Hm(Rd) andH∗
m≡H∗

m(Rd). The distinction betweenHm(A) andH∗
m(A) is that the

former requires translational invariance on the one-time correlation tensorFm,n, whereas the latter requires
translational invariance on the many-time correlation tensorF∗

m,n, both over the domainA.
We also define the following transfinite homogeneity classes:

Hω(A) =
⋂
k∈N

Hk(A) and H∗
ω(A) =

⋂
k∈N

H∗
k(A). (17)

In these homogeneity classes the ensemble average of any product of velocities multiplied with any product
of velocity differences will be invariant under spatial shifting. Note that even this homogeneity class is
weaker thanglobal homogeneity. We will also distinguish betweenone-time global homogeneityu∈H and
many-time global homogeneityu ∈H∗, which are defined as

u ∈H⇐⇒ uα(x, t) x∼ uα(x+y, t), ∀y ∈ Rd (18)

u ∈H∗⇐⇒ uα(x, t)
x,t∼ uα(x+y, t), ∀y ∈ Rd. (19)
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Remark 1 An immediate consequence of these definitions is that the homogeneity classes are hierarchically
ordered, according to the following relations

H ⊆Hω(A)⊆Hk(A), ∀k∈ N, (20)

H∗ ⊆H∗
ω(A)⊆H∗

k(A), ∀k∈ N, (21)

Ha(A)⊆Hb(A)∧H∗
a(A)⊆H∗

b(A), ∀a,b∈ N : a > b, (22)

H∗
a(A)⊆Ha(A), ∀a∈ N. (23)

B. Remarks on Kolmogorov’s and Frisch’s definition of local homogeneity

The term “local homogeneity” is usually identified with the definition that was given by Kolmogorov
[54]. However, in his reformulation of the Kolmogorov 1941 theory, Frisch [30, 31] identified local ho-
mogeneity, local isotropy, and local stationarity with incremental homogeneity, incremental isotropy, and
incremental stationarity. The definitions that he gave read:

Locally stationary: wα(x,x′, t)
x,x′∼ wα(x,x′, t +∆t) ,∀∆t ∈ R.

Locally homogeneous: wα(x,x′, t)
x,x′∼ wα(x+y,x′+y, t) ,∀y ∈ Rd.

Locally isotropic: wα(x,x′, t)
x,x′∼ wα(x0 +A(x−x0),x0 +A(x′−x0), t) ,∀A∈ SO(d).

Using our notation, the condition of incremental homogeneity can be written asu ∈ H0(A). It should be
stressed that Frisch postulated that these symmetries are validasymptoticallyfor space shifts and time shifts
up to a relevant order of magnitude and proposed them as reasonable hypotheses to be used as the basis for
a modern reformulation of Kolmogorov’s 1941 theory [30, 31].

To motivate his hypotheses, Frisch argues that homogeneity, isotropy, and time invariance are satisfied
by the Navier-Stokes equations and they are violated only by the boundary conditions or any other rel-
evant means of generating turbulence. However, he suggests that for high Reynolds numbers, when the
turbulent motion is governed by a strange attractor, the symmetries of the governing equation are restored
asymptotically for small scales. Velocity differences are used to localize the symmetry to small scales.

The paradox inherent in this argument is that we cannot write governing equations for the velocity
differences, exclusively in terms of velocity differences. A nonlinear term involving the velocity field,
representing the sweeping interactions, is inevitable. As we shall argue below, the stronger homogeneity
assumptionu ∈ H1(A) is required to drop this term. Furthermore, we will argue thatu ∈ H1(A) is also
required to derive the 4/5-law, which is the first step in Frisch’s argument. Similar concerns were raised
recently by Frisch [32] who questioned the self-consistency of local homogeneity, both in the sense of
incremental homogeneity and in the sense of Kolmogorov.

As for Kolmogorov, in his first paper [54], he defined local homogeneity in a very interesting way.
Instead of using the Eulerian velocity differenceswα(x,x′, t), he used the following quantity:

Y(x0, t0|x, t) = x−x0− (t− t0)u(x0, t0) (24)

wKol(x0, t0|x, t) = u(Y(x0, t0|x, t), t)−u(x0, t0). (25)

Here,Y represents the approximate displacement of a fluid particle that is being used as a frame of reference.
Because of its dependence on the velocity field, it is itself a stochastic variable. Kolmogorov employed the
probability density function ofwKol in his definitions. Furthermore, he included the requirement of local
stationarity in his definition of local homogeneity. As will become apparent in section 4, Kolmogorov’s
representation of velocity differences is in fact a precursor of the quasi-Lagrangian representation, and
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we shall call it theKolmogorov quasi-Lagrangian representation. Although Kolmogorov does not discuss
explicitly the problem of sweeping interactions, it is interesting that he foresaw to this extent the need for
an non-Eulerian representation of the velocity field.

Another curious feature of the Kolmogorov definition is that it appears to use a conditional ensemble
average conditioned on the statementu(x0, t0) = v instead of the usual unconditional ensemble average,
and includes independence with respect tov as part of his definition of local homogeneity. Equivalently,
one may use a conditional average conditioned on the location of the fluid particleY(x0, t0|x, t) = y and as-
sume independence with respect toy. The equivalence depends on using Kolmogorov’s quasi-Lagrangian
transformation, and is not applicable if one replaces it with the Belinicher-L’vov quasi-Lagrangian transfor-
mation.

For the caset = t0 it is easy to see that the Kolmogorov definition is as strong asu ∈ H0. However,
more generally, the velocity differences used by Kolmogorov are evaluated at two different timest and
t0. For this reason, I find it very unlikely that Kolmogorov’s definition can be shown to be as strong as
u ∈ H1. On the other hand, the use of the conditional ensemble average and the assumption that that
average is independent ofv probably strengthens the definition in unforeseen ways and may have some
interesting consequences. In section 4.4 we show that a modified version of the Kolmogorov definition of
local homogeneity is equivalent or stronger thanH1, thus providing the assumptions needed to prove the
4/5-law and eliminate the sweeping interactions.

A detailed discussion and criticism of Kolmogorov’s definition of local homogeneity is given by Frisch
[32]. In the same paper, contrary to his prior work [30, 31], Frisch distinguishes the term local homogeneity
from incremental homogeneity, and assigns Kolmogorov’s definition as the definition of local homogeneity.
We have seen that the definition of local homogeneity by Kolmogorov includes an assumption of incre-
mental stationarity and also an assumption of a type of random Galilean invariance (i.e. independence with
respect tov). Incremental stationarity can be true even when incremental homogeneity is not true. Further-
more, as I shall argue in section 5 of this paper, we should intend to derive random Galilean invariance from
the theory instead of assuming it. Consequently, the original definitions [30, 31] of Frisch have the practical
advantage of conveniently separating these assumptions from each other, and the conceptual advantage of
not assuming too much.

C. Balance equations and sweeping

The clearest way to analyze the effect of the sweeping interactions on the theory of hydrodynamic
turbulence is by employing the balance equations of the Eulerian generalized structure functions. These
balance equations were introduced by L’vov and Procaccia [76] in a landmark paper, and they are derived
as follows.

The Navier-Stokes equations, where the pressure term has been eliminated, read

∂uα

∂ t
+Pαβ ∂γ(uβ uγ) = ν∇2uα +Pαβ fβ , (26)

wherePαβ is the projection operator defined as

Pαβ = δαβ −∂α∂β ∇−2, (27)

and∂α represents spatial differentiation with respect toxα . Repeated indices imply summation of compo-
nents. The balance equations are obtained by differentiating the definition ofFn with respect to timet and
substituting the Navier-Stokes equations. This leads to exact equations of the form

∂Fn

∂ t
+Dn = νJn +Qn, (28)
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whereDn represents the contributions from the nonlinear term,Jn the contributions of the dissipation term,
andQn the contribution from the forcing term. To write the terms concisely, we use the following abbrevi-
ations to represent aggregates of arguments:

X = (x,x′)
{X}n = {X1,X2, . . . ,Xn}
{Xα}k

n = {X1, . . . ,Xk−1,Xk+1, . . . ,Xn}.
(29)

The terms themselves read as follows. The forcing contribution is given by

Qα1α2···αn
n ({X}n, t) =

n

∑
k=1

〈[
n

∏
l=1,l 6=k

wαl (xl ,x′l , t)

]
Pαkβ ( fβ (xk, t)− fβ (x′k, t))

〉
. (30)

The dissipation term is given by

Jα1α2···αn
n ({X}n, t) = DnFα1α2···αn

n ({X}n, t) =
n

∑
k=1

(∇2
xk

+∇2
x′k)F

α1α2···αn
n ({X}n, t), (31)

where∇2
xk

differentiates with respect toxk, and similarly∇2
x′k

differentiates with respect tox′k.
The remarkable result, shown in [76], is that the termDn that represents the contribution of the nonlinear

term can be rewritten asDn = OnFn+1+ In whereOn is a linear integrodifferential operator with general form

OnFn+1 =
n

∑
k=1

OnkFn+1 (32)

OnkFn+1 =
∫

O(Xk,Y1,Y2) Fn+1({X}k
n, ,Y1,Y2, t) dY1dY2, (33)

andIn is given by

Iα1α2···αn
n ({X}n, t) =

n

∑
k=1

(∂β ,xk
+∂β ,x′k)

〈
Uβ ({X}n, t)

[
n

∏
l=1

wαl (X l , t)

]〉
, (34)

whereUβ ({X}n, t) is defined as

Uα({X}n, t) =
1
2n

n

∑
k=1

(
uα(xk, t)+uα(x′k, t)

)
. (35)

The first term,OnFn+1, includes the effect of pressure and part of the advection term, and the detailed form
of the operatorOn has been given in Ref [37]. The second term,In, represents exclusively the effect of the
sweeping interactions.

This decomposition makes rigorous the notion that the nonlinear interactions in the Navier-Stokes equa-
tions consist of local interactions that are responsible for the energy cascade and sweeping interactions
which would disrupt the energy cascade if they contaminated the inertial range. It also exposes the condi-
tions under which the sweeping interactions can be neglected. We learn that if the ensemble average of the
velocity product that appears in the definition ofIn is invariant under a spatial shift, then the derivatives of
that ensemble average will add up to zero. And here lies the heart of the problem. The assumptionu ∈H0

by itself is not sufficient to setIn = 0. Global homogeneityu∈H is sufficient, but it is a stronger assumption
than what is required.

Remark 2 The condition of incremental homogeneity, is written asu∈H0(A). The homogeneity condition
needed to eliminate the sweeping interactions over the domainA is u ∈H1(A).
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It should be noted that the local termOnFn+1 and the dissipation termJn preserve the incremental homo-
geneity conditionu∈H0(A). The two terms in the balance equations that can potentially violate incremen-
tal homogeneity, are the sweeping termIn and the forcing termQn. Asymptotic incremental homogeneity
cannot be disrupted in the inertial range by the forcing termif the forcing spectrum is confined to large
scales. The uncontrolled quantity is the sweeping termIn. Recently, Frisch [32] questioned the consistency
of local homogeneity, in the sense of Kolmogorov, and incremental homogeneity as a framework for study-
ing hydrodynamic turbulence. We see that incremental homogeneity can be a consistent framework on the
condition that the sweeping termIn is dominant only at large scales with its influence forgotten as the energy
cascades to smaller scales. If that is the case, then none of the other terms in the balance equations violate
incremental homogeneity. This is discussed in further detail in section 5.

D. Remarks on the4/5-law proof

In his second paper, Kolmogorov [53] employed an argument that is distinct from dimensional analysis
to explain the claim thatζn = n/3. He derived the 4/5-law from which he obtainedζ3 = 1, and used a scaling
assumption to obtainζ2 = 2/3. Frisch’s [30, 31] contribution was his observation that the scaling argument
can be extended to account for all the scaling exponentsζn. With this extension, Kolmogorov’s second paper
[53] is then an equivalent reformulation of the dimensional analysis argument of his first paper [54]. The
superiority of the extended argument is that at least one of the scaling exponents is established rigorously.
One also bypasses the universality criticism, appearently attributed to Landau, of the original similarity
hypothesis of Kolmogorov. In his book, Frisch [31] gave a more detailed account of his argument, but he
didn’t derive the 4/5-law on the basis of incremental homogeneity and incremental isotropy as prescribed by
his framework; he used instead global homogeneity and global isotropy. The same holds for the alternative
proof by Rasmussen [92]. An old proof by Monin [84] and Monin and Yaglom [85] claimed to prove the
4/5-law on the basis of local homogeneity and local isotropy, but it was criticized by Lindborg [66]. The
criticism was addressed by Hill [46] who gave a corrected proof.

In particular, the criticism of Lindborg [66] was that it was not proved that the correlations involving
the pressure field gradient and the velocity field can be eliminated on the basis of local isotropy from the
equation that governs the time derivative of the second order structure function tensor. Hill [46] resolved
this objection by supplying the needed proof. The principle behind the proof is reflected, in a wider sense,
by the mathematical form of the general sweeping termIn where there is only a local differential operator.
The elimination of the nonlocal integral operator fromIn represents the elimination of any contributions
by the pressure gradient term toIn that would break incremental homogeneity. The pressure gradientdoes
contribute to the termOnFn+1 a non-local integrodifferential operator. However, becauseOnFn+1 can be
expressed exclusively in terms of the velocity differences, it preserves incremental homogeneity.

Nevertheless, the proof by Monin and Yaglom [85], as far as our intentions are concerned, has an addi-
tional shortcoming, which has also been noticed independently by Frisch [32]: it concerns the elimination of
the terms associated with the sweeping interactions. If we refer to the part of the discussion leading to equa-
tion (22.14) of Monin and Yaglom [85], we learn thatthey are using the Belinicher-L’vov quasi-Lagrangian
transformation to eliminate the sweeping interaction term! This can be made more clear if the reader com-
pares the argument involving the two unnumbered equations that precede equation (22.14) of Monin and
Yaglom [85] with section 4 and appendix A. The intention of this argument, according to Monin and Ya-
glom [85], is to “... transform the Navier-Stokes equations so that they contain only the velocity differences
and their derivatives”. This is precisely what the quasi-Lagrangian formulation does. As we shall argue in
the next section of this paper, applying the inverse transformation back to the Eulerian representation uses
an assumption of homogeneity stronger than incremental homogeneity, but this timeu ∈H∗

ω .
As far as the theory of the scaling exponents is concerned, it is only necessary to knowζ3. An elegant

way to calculateζ3 is from the solvability condition of the homogeneous equationO2F3 = 0 [3, 75]. The
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idea here is to use the conservation of energy to show that

O2F3(x1,x′1,x2,x′2) =
1
2

d[S3(r12)−S3(r12′)]
dr1

+
1
2

d[S3(r1′2′)−S3(r1′2)]
dr1′

= A[rζ3−1
12 − rζ3−1

12′ + rζ3−1
1′2′ − rζ3−1

1′2 ].
(36)

wherer12 = ‖x1−x2‖, etc. It follows that the equationO2F3 = 0 will be satisfied for any configuration of
velocity differences if and only ifζ3 = 1. The homogeneous equation can be obtained from the balance
equations in the limit of infinite Reynolds number. For the case of finite Reynolds number, there is a
homogeneous and particular solution to the generalized structure functions that are linearly superimposed
[38, 40]. Then the calculation ofζ3 is relevant only for the homogeneous solution. Aside from this issue, this
argument too requires that we setI2 = 0. DroppingI2 cannot be justified under incremental homogeneity, in
the sense ofu ∈H0, and it requires the conditionu ∈H1(A). We arrive then to the following conclusion.

Remark 3 The homogeneity condition needed to establishζ3 = 1 over the domainA is u ∈H1(A).

It should be noted that even though Hill [46] has claimed to show the 4/5-law on the basis of local
homogeneity and local isotropy, his definition of local homogeneity is mathematically stronger than the
definition u ∈ H0(A) used in the Frisch framework, and it is in fact very similar tou ∈ H1(A) (also see
section 4.1 of [48]). Consequently, while his proof correctly follows from his stated assumptions, it cannot
be used from within the Frisch framework of hypotheses to prove the 4/5-law without invoking additional
assumptions.

It is possible to derive a rigorous version of the 4/5-law that does not require assumptions of homogene-
ity, isotropy, stationarity, and not even an ensemble average [21, 26, 104]. This is done by rephrasing the
statement to be proven. Specifically, it has been shown that

lim
∆t→0

lim
r→0

lim
ν→0

∫ t+∆t

t
dτ

∫
SO(3)

dΩ(A)
4π

∫
B

dx
V(B)

S3(x, rAe)
r

=−4
5

εB, (37)

for almost every (Lebesgue) pointt in time, wheree is a unit vector,B⊆ T3 is a local region in a periodic
boundary domainT3 (topologically equivalent to a torus) with volumeV(B), andεB is the local dissipation
rate over the regionB given by

εB ≡ lim
ν→0

1
V(B)

∫
dxε(x, t), (38)

whereε(x, t) = (1/2)ν
〈
sαβ (x, t)sαβ (x, t)

〉
is the dissipation rate density at(x, t) andsαβ ≡ ∂αuβ + ∂β uα

is the local strain tensor. A similar result was obtained earlier by Nie and Tanveer [88].
It should be noted that this result does not contradict our previous remark. Although the need to make

assumptions appears to have been eliminated, this is done so at the price of proving a statement that is
mathematically weaker. In the original formulation of the 4/5-law, aside from an ensemble average, all the
integrals are absent. These integrals represent an interesting way of obviating the symmetry assumptions
needed to prove the 4/5-law in its original formulation.

Recently, there has been considerable interest in extending the 4/5-law to account for deviations from the
theoretical prediction caused by the violation of incremental isotropy [12–15, 67]. From the viewpoint of the
experimentalist these extensions make it possible to confirm the validity of the 4/5-law against experimental
data. From the viewpoint of the theorist, deviations from incremental isotropy can be accounted for with
theSO(3) group decomposition method [3, 9].
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IV. THE QUASI-LAGRANGIAN FORMULATION

The essence of the quasi-Lagrangian formulation (also called theBelinicher-L’vov transformation) is
to look at turbulence using a fluid particle as a non-inertial frame of reference. The representation is La-
grangian because we involve fluid particles, but it is not completely Lagrangian because the fluid particle
trajectory is only used to define a new frame of reference, and we continue to look at the velocity field in
an Eulerian manner. It is understood, of course, that the only interesting statistics are those involving points
within a sphere centered on the moving fluid particle with radius on the order of the integral length scale`0.

Let uα(x, t) be the Eulerian velocity field, and letρα(x0, t0|t) be the position of the unique fluid particle
initiated at(x0, t0) at time t relative to its initial position at timet0. The transformation is done in two
steps. First, we introducevα(x0, t0|x, t) as the Eulerian velocity with respect to the original inertial frame of
reference with a space shift that follows the fluid particle:

ρα(x0, t0|t) =
∫ t

t0
dτ uα(x0 +ρ(x0, t0|τ),τ)

vα(x0, t0|x, t) = uα(x+ρ(x0, t0|t), t).
(39)

Then, to complete the transformation we must subtract the velocity of the fluid particle uniformly, so that
the particle itself will appear to be motionless:

wα(x0, t0|x, t) = vα(x0, t0|x, t)− ∂

∂ t
ρα(x0, t0|t) = vα(x0, t0|x, t)−vα(x0, t0|x0, t)

= uα(x+ρ(x0, t0|t), t)−uα(x0 +ρ(x0, t0|t), t).
(40)

We definewα(x0, t0|x, t) as the quasi-Lagrangian velocity field, and introduce the quasi-Lagrangian velocity
differenceWα(x0, t0|x,x′, t) given by

Wα(x0, t0|x,x′, t)≡ wα(x0, t0|x, t)−wα(x0, t0|x′, t) = vα(x0, t0|x, t)−vα(x0, t0|x′, t). (41)

Differentiating with respect to time, and substituting the Navier-Stokes equations, gives an equation of the
form

∂Wα

∂ t
+VαβγWβWγ = ν(∇2

x +∇2
x′)Wα +Fα , (42)

whereFα(x0, t0|x,x′, t) is the quasi-lagrangian forcing, andVαβγ is a bilinear integrodifferential operator of
the form

VαβγWβWγ ≡
∫∫

dXβ dXγ Vαβγ(x0|Xα ,Xβ ,Xγ)Wβ (Xβ )Wγ(Xγ), (43)

with V(x0|Xα ,Xβ ,Xγ) the corresponding kernel (see appendix A for more details). The remarkable feature
of this equation is that all the terms, and most especially the nonlinear term, are written in terms of velocity
differences. Fundamentally, this is the reason why the quasi-Lagrangian transformation eliminates the
sweeping interactions and renormalizes the MSR diagrammatic theory.

The key issue is whether it is possible to switch back to the Eulerian representation without reintroducing
the sweeping interactions. In a short appendix to their paper, L’vov and Procaccia [72] showed thatin
stationary turbulence the ensemble average of the same time quasi-Lagrangian velocity differences is equal
to the ensemble average of the corresponding Eulerian velocity differences.The same appendix is also
found in a previous unpublished paper [69]. The proof requires stationarity of the Eulerian velocity field, and
incompressibility. A homogeneity condition is also used, which is described as “translational invariance”.

In this section, we would like to carefully re-examine this proof, the assumptions needed to make it
work, and the relationship between this result and other claims that one might reasonably make about the
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quasi-Lagrangian velocity differences. Part of our motivation is the crucial importance of this result; the
entire L’vov-Procaccia theory [7, 8, 70, 72–74, 79, 80] stands or falls on the validity of this argument. As
we have discussed previously in section 2, the L’vov-Procaccia theory and the Giles theory [36] are the
only two theories that can explain mathematically the reason why the inertial range of three-dimensional
turbulence has intermittency corrections. Our main interest is to show that the proof requires that we assume
u ∈H∗

ω , which is a stronger condition than what is actually needed to eliminate the sweeping interactions
or to prove the 4/5-law (u ∈H1(A)). Preliminaries are given in section 4.1 and section 4.2, and the proof
itself is discussed in section 4.3.

A. Characterizations of the claim

Let Fn(x0, t0|{x,x′}n, t) be the generalized structure function in the quasi-Lagrangian representation,
defined as

Fn(x0, t0|{x,x′}n, t) =

〈[
n

∏
k=1

Wαk(x0, t0|xk,x′k, t)

]〉
. (44)

The claim of L’vov and Procaccia [72] was that it can be shown that

Fn(x0, t0|{x,x′}n, t) = Fn({x,x′}n, t),∀n∈ N∗ (45)

which can be rewritten equivalently as

Wα(x0, t0|x,x′, t)
x,x′∼ wα(x,x′, t). (46)

As a first step, consider the following easy-to-prove propositions which give equivalent characterizations of
the claim (46):

Proposition 1 The claim(46) holds if and only if the quasi-Langrangian velocity is incrementally station-
ary with respect to t0:

Wα(x0, t0 +∆t|x,x′, t)
x,x′∼ Wα(x0, t0|x,x′, t), ∀∆t ∈ R−{0} (47)

Proof: (⇒): Assume that the claim (46) holds. Then, it follows that

Wα(x0, t0 +∆t|x,x′, t)
x,x′∼ wα(x,x′, t)

x,x′∼ Wα(x0, t0|x,x′, t). (48)

(⇐): Now assume that the quasi-Lagrangian velocity field is incrementally stationary with respect tot0.
Using the evaluation limt0→t ρα(x0, t0|t) = 0, it follows that

Wα(x0, t0|x,x′, t)
x,x′∼ lim

t0→t
Wα(x0, t0|x,x′, t)

x,x′∼ lim
t0→t

wα({x,x′}+ρ(x0, t0|t), t) (49)

x,x′∼ wα(x,x′, t), (50)

Proposition 2 Assume incremental stationarity on the Eulerian velocity field:

wα(x,x′, t)
x,x′∼ wα(x,x′, t +∆t), ∀∆t ∈ R. (51)

Then, the claim(46) holds if and only if the quasi-Langrangian velocity is incrementally stationary with
respect to t:

Wα(x0, t0|x,x′, t) x∼Wα(x0, t0|x,x′, t +∆t), ∀∆t ∈ R−{0} (52)
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Proof: (⇒): Assume that the claim (46) holds. Then,

Wα(x0, t0|x,x′, t +∆t),
x,x′∼ wα(x,x′, t +∆t)

x,x′∼ wα(x,x′, t)
x,x′∼ Wα(x0, t0|x,x′, t).

(⇐): Now assume that the quasi-Lagrangian velocity field is incrementally stationary with respect tot0.
Using the evaluation limt0→t ρα(x0, t0|t) = 0, it follows that,

Wα(x0, t0|x,x′, t)
x,x′∼ lim

t→t0
Wα(x0, t0|x,x′, t)

x,x′∼ lim
t→t0

wα({x,x′}+ρ(x0, t0|t), t)

= wα(x,x′, t0)
x,x′∼ wα(x,x′, t).

The implication of these propositions is that the relationship between the Eulerian and the quasi-
Lagrangian formulations can be established as an immediate consequence of stationarity of the quasi-
Lagrangian velocity field with respect tot0. As Lebedev and L’vov [69] noted, the variablet0 does not
appear anywhere in the quasi-Lagrangian Navier-Stokes equations (42), consequentlythe formof the gov-
erning equations allows stationary solutions with respect tot0. However, to assert that the quasi-Lagrangian
velocity field is stationary, it is necessary to assume that the quasi-Lagrangian forcing field is also station-
ary. Since the definition of the quasi-Lagrangian forcing field entangles the Eulerian forcing fieldfα with
the trajectory fieldρα , and since the trajectory field itself is not time invariant (due to the initial condition
ρα(x0, t0|t0) = 0), we cannot make this assumption without justification. This was the reason, cited by
Lebedev and L’vov [69], for the rigorous proof which is the topic of this section. Proposition 2 shows that
assuming stationarity in the quasi-Lagrangian representation is sufficient to prove the claim (46), and thus
this assumption implicitly introduces in the Eulerian frame the conditions needed to prove the claim.

B. MSR theory for Lagrangian trajectories

The governing equation forρα is

∂ρα(x0, t0|t)
∂ t

= uα(x0 +ρ(x0, t0|t), t), (53)

with initial condition ρα(x0, t0|t0) = 0. Deriving the stationarity condition (47) requires an MSR theory
where the velocity fielduα can be thought of as the forcing field with known statistical properties, and the
Lagrangian trajectories fieldρα as the governed field whose properties we wish to deduce. Unfortunately
we may not apply the standard MSR theory because the equation itself does not assume the standard form
Nα [ρ] = uα with uα independent ofρ and furthermore the initial condition is set at a finite timet0 and not
at t0 →−∞. We need to develop the statistical theory from scratch, and for that purpose the path integral
formulation is most expedient.

Note that every value oft0 corresponds to a distinct initial value problem. We may therefore treat, for
the purposes of the statistical theory, the fieldρα as a function only ofx0, t and lett0 to be taken at a fixed
value. We can also go a step further and note that for every value ofx0 the governing equation is an ordinary
differential equation. It follows that in constructing an MSR theory forρα we have two options: We may
construct a statistical theory for therestricted problemin which x0 is also fixed and the fieldρα is taken
as a function of onlyt, or a theory for thefull problemin which onlyt0 remains fixed andρα is taken as a
function ofx0 andt. In the restricted case we cannot calculate correlations between fieldsρα with different
values ofx0. In the full case, we can. For our needs, the restricted statistical theory will be sufficient.

Introduce an operatorQx0[ρ] via the kernel

Qx0
αβ

[ρ](t,y,τ)≡ δαβ δ (t− τ)δ (y−x0−ρ(t)), (54)
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such that

Qx0[ρ]uα ≡
∫

Rd
dy
∫ +∞

−∞
dτ Qx0

αβ
[ρ](t,y,τ)uβ (y,τ) = uα(x0 +ρ(t), t). (55)

We also introduce a functionalLx0,t0[u] that constructsρα from the velocity field. This operation is of course
admissible in both the restricted and the full theory.

Sinceρ = Lx0,t0[u] is equivalent tȯρα = Qx0[ρ]uα , it follows that there exists a functionalJ[u] such that
δ [ρ̇α −Qx0[ρ]uα ] = J[u]δ [ρ−Lx0,t0[u]] which can be evaluated by integrating both sides overρ:

J[u] =
∫

P(t0)
Dρ δ [ρ̇α −Qx0[ρ]uα ]. (56)

The integral is a Feynman path integral [28] (a pedagogical introduction is given in Ref. [101]). Here,
P(t0) is the domain of integration and it is defined as the set of allρα(t) that satisfy the initial condition
ρα(t0) = 0. We also defineP as the set of all possible paths. Suppose we would like to evaluate the ensemble
average〈M[u,ρ]〉 whereM is some arbitrary functional ofρα anduα . We treat the velocity fielduα as a
forcing field with known statistics. We assume then that we know how to evaluate the ensemble average of
any expression in terms of the velocity field. We have:

〈M[u,ρ]〉= 〈M[u,Lx0,t0[u]]〉=
〈∫

P(t0)
Dρ M[u,ρ]δ [ρ−Lx0,t0[u]]

〉
=
∫

P(t0)
Dρ 〈M[u,ρ]δ [ρ−Lx0,t0[u]]〉

=
∫

P(t0)
Dρ 〈M[u,ρ]J−1[u]δ [ρ̇α −Qx0[ρ]uα ]〉

=
∫

P(t0)
Dρ

〈
M[u,ρ]J−1[u]

∫
P

Dβ exp(iβα(ρ̇α −Qx0[ρ]uα))
〉

=
∫

P(t0)
Dρ

∫
P

Dβ exp(iβα ρ̇α)〈M[u,ρ]J−1[u]exp(−iβαQx0[ρ]uα)〉.

Here, we have used the convention that repeated Greek indices imply integrating temporal coordinates
throughout their domain in addition to summation of vector components. For example, the expression
βα ρ̇α is an implicit abbreviation for

βα ρ̇α =
∫ +∞

−∞
dt βα(t)ρ̇α(t). (57)

We also use the formal representation for the delta functional

δ [u] =
∫

P
Dβ exp(iβαuα), (58)

which is valid in the sense of generalized functional distributions.
If the velocity field is incompressible, it can be shown thatJ[u] = 1. A detailed proof of this result is

given in appendix B. Then, the stochastic theory simplifies to:

〈M[u,ρ]〉=
∫∫

P(t0)×P
DρDβ exp(iβα ρ̇α)〈M[u,ρ]exp(−iβαQx0[ρ]uα)〉. (59)

This statement is a concise expression of the statistical theory for Lagrangian trajectories.
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C. Transform back to Eulerian representation

We now use the statistical theory to derive the relationship between the quasi-Lagrangian correlation
and the Eulerian correlation. The proof given here follows the one given by L’vov and Procaccia [72], but
it is presented in more detail to show the underlying assumptions. The proof makes an essential use of Eq.
(59) derived above.

The argument is essentially based on the following identity:

ρα(r0, t0 +∆t|t) = ρα(r0, t0|t)−ρα(r0, t0|t0 +∆t). (60)

To see why this is true, note that the expression on the right-hand side satisfies the governing equation for
the t0 + ∆t problem, and it also satisfies its initial condition. Therefore, by uniqueness, the right-hand side
has to be equal to the left-hand side.

To facilitate with calculations, we defineMx0[β ,ρ] as

Mx0[β ,ρ] = 〈M[u,ρ]exp(−iβαQx0[ρ]uα)〉 (61)

=
〈

M[u,ρ]exp

(
−i
∫

dt βα(t)uα(x0 +ρ(t), t)
)〉

, (62)

and we also use the notationM(x0, t0) for the ensemble average〈M[u,ρ]〉 evaluated under a given choice
of x0 andt0. Consequently, we may write

M(x0, t0) =
∫∫

P(t0)×P
DρDβ exp(iβα ρ̇α)Mx0[β ,ρ] (63)

=
∫∫

P(t0)×P
DρDβ exp

(
i
∫

dt βα(t)
∂ρα(t)

∂ t

)
Mx0[β ,ρ]. (64)

The key statement to be proven is the following proposition, that shows the connection between station-
arity in the quasi-Lagrangian representation and homogeneity in the Eulerian representation.

Proposition 3 If the velocity field u is incompressible, then

∀β ∈ P : ∀x ∈ Rd : Mx0[β ,ρ +x] = Mx0[β ,ρ] =⇒∀∆t ∈ R : M(x0, t0 +∆t) = M(x0, t0) (65)

Proof:
To facilitate our argument, introduce a new fieldλα defined as equal to the right hand side of (60).

λα(r0, t0|t) = ρα(r0, t0 +∆t|t) (66)

= ρα(r0, t0|t)−ρα(r0, t0|t0 +∆t) = Bαβ ρβ . (67)

The connection betweenλα andρα is linear, in the sense that we can construct an appropriate kernelBαβ

made of delta functions that transforms one field into the other. The functional determinant ofB is equal to
1, so a change in variables under the path integral does not introduce an additional factor, namelyDλ = Dρ.
This is usually true with simple transformations, such as space shifting and rotations, because they merely
reshuffle the order in which we integrate over all possible histories. In this case, we need to take into account
that the permissible histories are constrained by the initial conditionλα(r0, t0|t0+∆t) = 0 which is different
from the initial condition of the fieldρα . It follows that, while there is no need to introduce a functional
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determinant, the domain of integration has to change fromP(t0) to P(t0 +∆t) . Finally, it is easy to see that
∂λα/∂ t = ∂ρα/∂ t and the hypothesis implies thatMx0[β ,ρ] = Mx0[β ,λ ]. We may then write:

M(x0, t0) =
∫∫

P(t0)×P
DρDβ exp

(
i
∫

dt βα(t)
∂ρα(t)

∂ t

)
Mx0[β ,ρ] (68)

=
∫∫

P(t0+∆t)×P
DλDβ exp

(
i
∫

dt βα(t)
∂λα(t)

∂ t

)
Mx0[β ,λ ] (69)

= M(x0, t0 +∆t) ∀∆t ∈ R. (70)

Proposition 4 If uα is incompressible, then

u ∈H∗
ω =⇒∀∆t ∈ R : Wα(x0, t0 +∆t|x,x′, t)

x,x′∼ Wα(x0, t0|x,x′, t). (71)

Proof: Let n∈ N∗ be given, and define the functionalM[u,ρ] as

M[u,ρ] =
n

∏
k=1

Wαk(x0, t0|xk,x′k, t) (72)

=
n

∏
k=1

[uαk(xk +ρ(x0, t0|t), t)−uαk(x
′
k +ρ(x0, t0|t), t)]. (73)

Consequently, the functionalMx0[β ,ρ] reads

Mx0[β ,ρ] =
〈

M[u,ρ]exp

(
−i
∫

dt βα(t)uα(x0 +ρ(t), t)
)〉

(74)

=
+∞

∑
m=0

(−i)m

m!

∫
· · ·
∫

dt1 · · ·dtm βα1(t1) · · ·βαm(tm)

×

〈[
n

∏
l=1

Wβl
(x0, t0|xl ,x′l , t)

][
m

∏
k=1

uαk(x0 +ρ(tk), tk)

]〉
. (75)

From the assumptionu ∈ H∗
ω we see that the ensemble average in the equation above is invariant with

respect to a uniform spatial shift. It follows thatMx0[β ,ρ +x] = Mx0[β ,ρ],∀x ∈Rd , and using proposition
3, this implies thatM(x0, t0 +∆t) = M(x0, t0), ∀∆t ∈ R. Consequently, we have

Fn(x0, t0|{X}n, t) = M(x0, t0) = M(x0, t0 +∆t) (76)

= Fn(x0, t0 +∆t|{X}n, t), ∀n∈ N∗. (77)

The claim (46) follows by combining proposition 4 with proposition 1. It should be noted that once
the relationship between quasi-Lagrangian correlation functions and Eulerian correlation functions is es-
tablished, it can be easily extended to response functions as well without making any further assump-
tions. Starting from the stationarity condition (51), we deduce from the quasi-Lagrangian formulation of
the Navier-Stokes equations that the quasi-Lagrangian forcing field is also stationary. Then, we may use
an MSR theory on the quasi-Lagrangian Navier-Stokes equations to obtain stationarity on the response
functions. From there, the relationship between the quasi-Lagrangian response functions and the Eulerian
response functions can be easily established.
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D. A derivation via conditional local homogeneity

The artifact introduced by the quasi-Lagrangian formulation is that the turbulent velocity field is being
perceived from the viewpoint of an arbitrary fluid particle whose own motion is also stochastic. Conse-
quently, to relate the quasi-Lagrangian correlation tensorFn(x0, t0|{X}n, t) with the Eulerian correlation
tensorFn({X}n, t) a certain sense of homogeneity is required to ensure that the velocity field is being per-
ceived by the fluid particle in the same way regardless of the actual position of the particle. Our analysis
of the proof, given previously, has shown that the homogeneity condition used by the proof is stronger than
the conditionu ∈H1 required to eliminate the sweeping interactions. What is particularly interesting about
the stronger conditionu ∈ H∗

ω is that it requires translational invariance from a group of themany-time
correlation tensorsF∗

m,n.
Let us now consider an alternative approach. Introduce the conditional correlation tensor defined as

Fn(x0, t0,y|{X}n, t) =

〈
n

∏
k=1

Wαk(x0, t0|xk,x′k, t)

∣∣∣∣∣ρ(x0, t0|t) = y

〉
(78)

=

〈
n

∏
k=1

wαk(xk +y,x′k +y, t)

∣∣∣∣∣ρ(x0, t0|t) = y

〉
. (79)

This definition is identical to the definition of the quasi-Lagrangian correlation tensorFn(x0, t0|{X}n, t), ex-
cept that the ensemble average is replaced with the conditional average predicated on the fluid particle being
located at positiony at a given timet. Let p(x0, t0|x, t) be the probability that a fluid particle originating
at (x0, t0) will be located atx at timet. It follows that the Eulerian correlation tensorFn({X}n, t) and the
quasi-Lagrangian tensorFn(x0, t0|{X}n, t) are given by

Fn({X}n, t) =
∫

dy Fn(x0, t0,y|{X}n−y, t)p(x0, t0|y, t) (80)

Fn(x0, t0|{X}n, t) =
∫

dy Fn(x0, t0,y|{X}n, t)p(x0, t0|y, t). (81)

It is trivial to see that ifFn(x0, t0,y|{X}n, t) is invariant with respect to{X}n 7→ {X}n + ∆x (conditional
local homogeneity), then the Eulerian correlator and the quasi-Lagrangian correlator will be equal.

Now let us consider the implications from a Kolmogorov-like definition of local homogeneity where we
assume thatFn(x0, t0,y|{X}n, t) is independent ofy without assuming invariance with respect to{X}n 7→
{X}n +∆x. Then we have

Fn(x0, t0|{X}n, t) =
∫

dy Fn(x0, t0,y|{X}n, t)p(x0, t0|y, t) (82)

= Fn(x0, t0,y|{X}n, t)
∫

dy p(x0, t0|y, t) (83)

= Fn(x0, t0,y|{X}n, t), (84)

and

Fn({X}n, t) =
∫

dy Fn(x0, t0,y|{X}n−y, t)p(x0, t0|y, t) (85)

=
∫

dy Fn(x0, t0|{X}n−y, t)p(x0, t0|y, t). (86)

To establish equality between the Eulerian correlation tensorFn({X}n, t) and the quasi-Lagrangian tensor
Fn(x0, t0|{X}n, t), we also needFn(x0, t0|{X}n, t) to be invariant with respect to{X}n 7→ {X}n + ∆x. Un-
fortunately, this can only be established if we also assume an ergodic-like hypothesis thatp(x0, t0|x, t) is
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independent ofx. It is reasonable to expect this hypothesis to hold fort � t0. Then, it follows that

Fn(x0, t0|{X}n +∆x, t) =
∫

dy Fn(x0, t0,y|{X}n +∆x, t)p(x0, t0|y, t) (87)

=
∫

dy Fn(x0, t0,y+∆x|{X}n +∆x, t)p(x0, t0|y+∆x, t) (88)

=
∫

dy Fn(x0, t0,y|{X}n, t)p(x0, t0|y, t) = Fn(x0, t0|{X}n, t). (89)

This result, combined with Eq. (86) and (84), implies that

Fn(x0, t0|{X}n, t) = Fn({X}n, t), (90)

which in turn, combined with Eq. (89) also gives theu ∈H0 condition:

Fn({X}n +∆x, t) = Fn({X}n, t), ∀∆x ∈ Rd. (91)

It appears that the ergodic assumption onp(x0, t0|x, t) is necessary to derive Eqs. (89), (90), and (91). The
assumption of invariance ofFn(x0, t0,y|{X}n, t) with respect toy is not sufficient.

As we have mentioned previously, in his first paper, Kolmogorov [54] also defined local homogeneity
using a conditional ensemble average conditioned on the fluid velocity at the reference point. Because of
the approximate nature of the quasi-Lagrangian transformation used by Kolmogorov (which is not identical
to the quasi-Lagrangian transformation of Belinicher and L’vov), his definition can be rephrased in terms of
a conditional average on thelocationof the fluid particle. We have shown that if one uses the Belinicher-
L’vov quasi-Lagrangian transformation instead of the Kolmogorov quasi-Lagrangian transformation, and
changes the conditional ensemble average from using thevelocityof the reference fluid particle to using
the location of the reference fluid particle, then this modified definition of local homogeneity combined
with a reasonable ergodic-like hypothesisdoeseliminate the sweeping interactions. We may conjecture that
Kolmogorov had the elimination of sweeping in mind when he formulated his definition, but there is no
such explicit indication in his papers.

V. HOW THE ELIMINATION OF THE SWEEPING INTERACTIONS SHOULD BE JUSTIFIED

We have seen that when using the quasi-Lagrangian transformation we end up making the homogeneity
assumptionu ∈H∗

ω which is much stronger than the assumption of incremental homogeneityu ∈H0(A)
of the Frisch framework of hypotheses, otherwise we cannot return back to the Eulerian representation.
Furthermore, this homogeneity assumption is introduced implicitly just by assuming stationarity in the
quasi-Lagrangian representation, even if we don’t wish to go back to the Eulerian representation (see
proposition 2). The question that we would like to consider now is whether the utility of the theoretical
work [7, 8, 70, 72–74, 79, 80] that relies on the transformation itself is diminished. We would like to claim
that this is not the case, and define a line of investigation that can clarify this further. From an experimental
standpoint, the very existence of a robust energy cascade indicates that the sweeping effect is confined to the
large scales, and therefore it can be neglected with impunity. The main question that needs to be addressed
is: How should one justifytheoreticallythe elimination of the sweeping interactions?

A. Elimination of the sweeping interactions

It is widely accepted that the behavior of the structure functions in the inertial range does not depend on
the statistical properties of forcing, as long as the spectrum of the forcing term is confined to large length
scales. In a sense, as the energy cascades toward smaller length scales, the characteristic features of the
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forcing term are “forgotten”. One may conjecture that the sweeping interactions behave in a similar way
as a large-scale forcing term whose effect is forgotten in the inertial range. We may base this conjecture
on the fact that even though the required homogeneity symmetryu ∈ H1(A) may not hold exactly, it can
be expected to hold asymptotically at small scales. Consequently, even though we cannot setIn({X}n) = 0
exactly, we might expect this term to become rapidly small when the average separationR between the
points{X}n goes to zero. But does it vanish rapidly enough? A rigorous argument would have to estimate
how fastIn, as a function ofR, is approaching zero in the small-scale limitR/`0 → 0, and then calculate the
scaling exponent∆n associated with the ratio

In(R{X}n)
(OnkFn+1)(R{X}n)

∼
(

R
`0

)∆n

, (92)

whereR is the scaling parameter and`0 the forcing scale. Then, provided that one starts with the assumption
u ∈ H0, proving ∆n > 0 is also a proof thatu ∈ H1(A) which is sufficient to eliminate the sweeping
interactions. Letλn be the scaling exponent ofIn(R{X}n). If we assume that the generalized structure
functionsFn(R{X}n) satisfy the fusion rules [75, 76], then the scaling exponent ofOnkFn+1(R{X}n) is
ζn+1−1 and it follows that∆n = λn− (ζn+1−1). The challenge, then, is to calculate the scaling exponents
λn which are not likely to be universal.

It is easy to see that this argument cannot be extended to the inverse energy cascade of two-dimensional
turbulence. In that case, the forcing term operates at large wavenumbers. Given that we can reasonably
assume that the inverse energy cascade is local, we expect that the forcing term is forgotten in the inertial
range. The problem is that the energy is now going towards small wavenumbers. As we have noted,In
essentially measures how much homogeneity is violated at a given length scaleR. At large length scales,
the flow will begin to sense the violation of homogeneity caused by the boundary conditions which will in
turn make the sweeping termIn larger in magnitude. If it becomes comparable to the termsOnkFn+1, it will
probably disrupt the inverse energy cascade.

Numerical simulations have shown that it is possible to obtain an inverse energy cascade under certain
conditions [10], but it can also be disrupted under other conditions [11, 16–18]. Physically, this disruption
arises from the spontaneous generation of long-lived coherent vortices that carry a significant amount of
enstrophy. An explanation of this effect was given by Boffettaet al [10], in terms of the “bottleneck”
effect [27]. The general idea is that the behavior of the energy spectrum in the inertial range is modified
at wavenumbers near the dissipation range because some of the triad interactions at these length scales
are disrupted by the dissipation term, thus making the transfer of energy less efficient. It is reasonable to
anticipate the same effect in a high-resolution simulation of the inverse energy cascade, where the cascade
has manifested successfully, without being arrested by coherent structures. However, we would like to
suggest that the deviations observed by Danilov and Gurarie [16–18] and Borue [11] are more likely to be
caused by a similar effect where the triad interactions are disruptedby the sweeping term In rather than the
dissipation termDnFn at large scales.

The coherent structures that appear in two-dimensional turbulence can be conceptualized as concentrated
small blobs of very high vorticity that raise a two-dimensional “hurricane” in the velocity field around them.
Thus, from an intuitive standpoint, it is reasonable to expect that their presence in the flow should amplify
the sweeping effect. From a theoretical perspective, one can say thatIn excites a “particular” solution of the
statistical theory for the correlatorsFn which combines linearly [39, 41] with the “homogeneous” solution
of the homogeneous theoryOnFn+1 = 0 that corresponds to the inverse energy cascade. It follows then that
to obtain an inverse energy cascade in the forced-dissipative setting, one requires a dissipation term at large
scales which will not only dispose of the incoming energy, but will also damp out the sweeping termIn
over the entire range of length scales where it is comparable toOnkFn+1. It also follows that there should
be a conspicuous discrepancy between the energy spectrum in the quasi-Lagrangian representation and the
energy spectrum in the Eulerian representation, when the coherent structures provide the dominant contri-
bution to the Eulerian energy spectrum. It is well-known that in the Eulerian representation the coherent
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structures contribute a dominantk−3 term [11]. On the other hand, in the quasi-Lagrangian representation,
one should recover thek−5/3 contribution from the underlying inverse energy cascade. It has already been
established that the underlyingk−5/3 spectrum can be recovered if the coherent structures are artificially re-
moved, either by a wavelet technique [29], or more crudely [11, 17]. If our conjecture holds, then it should
be possible to obtain the same effect simply by transforming into the quasi-Lagrangian representation.

We have referenced the inverse energy cascade of two-dimensional turbulence as an example where it
is not safe to “eliminate” the sweeping interactions. The criticism of the quasi-Lagrangian formulation by
Mou and Weichman [86] is essentially that it has not been demonstrated that it is “safe”, in the same sense,
to eliminate the sweeping interactions in the downscale energy cascade of three-dimensional turbulence.

B. Alternatives to Lagrangian transformations

It is possible to use the theoretical workbasedon the quasi-Lagrangian transformation in a way that
requires only the assumptionu ∈H1(A) instead ofu ∈H∗

ω . This can be done via the following line of ar-
gument: The quasi-Lagrangian formulation modifies the Navier-Stokes equations by redefining the material
derivative (see appendix A). The modified equation remains mathematically equivalent to the Navier-Stokes
equation because the velocity field is reinterpreted from an Eulerian field into a quasi-Lagrangian field. It
is precisely this reinterpretation which necessitates the stronger assumptionu ∈H∗

ω to enable a return back
to the Eulerian representation. On the other hand, if we accept the hypothesis that the sweeping interactions
can be absorbed into the statistical forcing term,we can modify the equation of motion in precisely the same
way without changing the interpretation of the velocity field. From there, one can derive the same balance
equations (28) except that one will haveIn = 0, and consequently the only assumption that is being made
implicitly is just u∈H1(A). One may then proceed from this Eulerian modified Navier-Stokes equation and
develop the L’vov-Procaccia theory [7, 8, 70, 72–74, 79, 80] with impunity, since the modified governing
equation would have the same mathematical form as the quasi-Lagrangian Navier-Stokes equation.

In geometrical language, the difference between the quasi-Lagrangian transformation and what I propose
is the following: In the quasi-Lagrangian transformation we perceive the flow from the point of view of
a single fluid particle. The claim to be established is that the one-time statistical properties of velocity
differences should remain invariant when switching between the inertial frame of reference and the non-
inertial frame of reference defined by the fluid particle. My suggestion is to consider a transformation
where for a given point in space and time(x, t) we perceive the flow from the point of view of whatever
fluid particle just happens to be there at(x0, t). This leads to the Navier-Stokes equations for the Eulerian
velocity differenceswα(x,x′, t). Then, the homogeneity assumptionu ∈ H1 is sufficient to establish the
claim that the one-time statistical properties of velocity differenceswα(x,x′, t) will remain invariant under a
transformation from the inertial frame of reference to a non-inertial frame of reference defined by the fluid
particle at(x0, t). This claim is in fact mathematically equivalent to the conditionIn = 0 which follows from
u ∈H1.

In connection with this argument, it is interesting to note that the idea of just modifying the Navier-
Stokes equation was considered by Kraichnan [59] in 1964, who suggested a more crude modification. This
modification brute-forces locality in Fourier space by discarding triad interactions across a wide wavenum-
ber interval and retaining only the local triad interactions. From the same paper we learn that Kraichnan
suspected that there was a relationship between the quasi-Lagrangian transformation of Kolmogorov and
the general idea of modifying the Navier-Stokes equation in such a way but noted that bringing that out
rigorously is difficult. In my view the quasi-Lagrangian transformation of Belinicher and L’vov, which
is different from the Lagrangian transformation used by Kraichnan in his theories, is the key to finding
possibly the best way to modify the Navier-Stokes equations in the way that Kraichnan and Kolmogorov
intended.

An alternative argument that was proposed by Yakhot [107] and used by Giles [36] to calculate a per-
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turbation expansion for the scaling exponentsζn eliminates the sweeping interactions by modifying the
statistical theory itself. This is different from the quasi-Lagrangian formulation and my proposal where the
change is made on the governing equation andthenpropagated into the statistical theory. Again, to justify
why one can modify the statistical theory requires the assumptionu ∈H1(A) or an argument justifying the
hypothesis that the sweeping interactions can be modeled as large-scale stochastic forcing, which brings us
back to the challenge of showing that∆n > 0.

C. Estimating the scaling exponent∆n

The problem of calculating the scaling exponentsλn and ∆n needs to be investigated primarily with
numerical simulations and the analysis of experimental data. However, it is possible to make a speculative
theoretical calculation, if we are willing to commit the following crimes against reality: First, we assume
that the velocity fielduα(x, t) can be modeled as a random gaussian delta-correlated (in time) stochastic
field acting at large scales. Furthermore, we assume that the velocity fielduα(x, t) has an effect on the
velocity differenceswα(x,x′, t) via the sweeping interactions, but completely disregard the reverse effect
of the velocity differences on the velocity field via eddy viscosity, and the fact thatuα(x, t) andwα(x,x′, t)
are obviously constrained by the definition ofwα(x,x′, t). In other words, we assume thatwα(x,x′, t) is
advected as a passive scalar byuα(x, t) and thatuα(x, t) can be assumed to be a random gaussian delta-
correlated in time field. Note thatwα(x,x′, t) is still also forced byfα .

We have shown in Appendix C that under these assumptions the sweeping termIn({X}n, t) can be
decomposed into three contributions:

In({X}n, t) = In,(1)({X}n, t)+ In,(2)({X}n, t)+ In,(3)({X}n, t), (93)

which are given by

Iα1α2···αn
n,(1) ({X}n, t) =

〈
Uβ ({X}n, t)

〉
Hα1α2···αnβ

n ({X}n, t), (94)

Iα1α2···αn
n,(2) ({X}n, t) =

n

∑
l=1

n

∑
m=1

Fα1···αm−1αm+1···αn
n−1 ({X}m

n , t)Iαm(Xm,X l , t), (95)

Iα1α2···αn
n,(3) ({X}n, t) =

n

∑
l=1

n

∑
m=1

Bαmβ

1 (Xm,X l , t)H
α1···αm−1αm+1···αnβ

n−1 ({X}m
n ). (96)

Here,Hα1α2···αn
n , Bαβ

1 , andIα are defined as

Hα1α2···αnβ
n ({X}n, t) =

[
n

∑
k=1

(∂β ,xk
+∂β ,x′k)F

α1α2···αn
n ({X}n, t)

]
, (97)

Bαβ

1 (X,Y, t) =
〈
Uβ (Y, t)wα(X, t)

〉
−
〈
Uβ (Y, t))

〉
〈wα(X, t)〉 , (98)

Iα(X1,X2, t) =
2

∑
k=1

(∂β ,xk
+∂β ,x′k)B

αβ

1 (X1,X2, t). (99)

It is worth noting that the assumptionu ∈H0 implies thatHn({X}n, t) = 0 and thereforeIn,(1)({X}n, t) =
In,(3)({X}n, t) = 0. However, we will retain generality and keep all three terms. It should also be stressed that
we arenotassuming statistical independence between the velocity fielduα(x, t) and the velocity differences
wα(x,x′, t). On the contrary, we assume that the two are related to each other in the sense that the velocity
field uα(x, t) is forcing the velocity differenceswα(x,x′, t) via the sweeping interactions. However, the case
of total statistical independence gives exactlyIn({X}n, t) = In,(1)({X}n, t), so it is covered by our argument
bellow.
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Let λ be the scaling exponent ofBαβ

1 such that

Bαβ

1 (RX,RY, t)∼ (R/`0)λ , (100)

for scales in the inertial range. It immediately follows thatIα scales as

Iα(RX1,RX2, t)∼ (R/`0)λ (1/R)g(R). (101)

Here,g(R) is a smooth function which represents departure from local homogeneity in the senseu ∈ H1.
Without loss of generality, we associate the scaling exponentb to the functiong(R). The contribution(1/R)
arises from the derivatives. Using a similar line of argument we see thatHn scales as

Hα1α2···αn
n (R{X}n, t)∼ (R/`0)ζn(1/R) fn(R), (102)

where fn(R) is also a smooth function representing departure from incremental homogeneityu ∈H0. We
associate the scaling exponentan to the functionfn(R). The three contributions toIn({X}n, t) then scale as

In,(1)(R{X}n, t)∼ (R/`0)ζn(1/R) fn(R), (103)

In,(2)(R{X}n, t)∼ (R/`0)ζn−1(R/`0)λ (1/R)g(R), (104)

In,(3)(R{X}n, t)∼ (R/`0)λ (R/`0)ζn−1(1/R) fn−1(R), (105)

and from power counting we find that the corresponding scaling exponents are

λn,1 = ζn−1+an, λn,2 = ζn−1 +λ −1+b, andλn,3 = ζn−1 +λ −1+an−1. (106)

Using the multifractal formulation, the contribution that supports the Hölder exponenth givesζn = nh+
Z(h) , which gives the following evaluation for the scaling exponents∆n:

∆n,1(h) = (ζn−1+an)− (ζn+1−1) =−h+an, (107)

∆n,2(h) = (ζn−1 +λ −1+b)− (ζn+1−1) =−2h+λ +β , (108)

∆n,3(h) = (ζn−1 +λ −1+an−1)− (ζn+1−1) =−2h+λ +an−1. (109)

Because the functionsfn(R) andg(R) are smooth, we can Taylor-expand them aroundR= 0 and get, to
first order,an = b = 1. It is also reasonable to assume thatλ > 0 sinceBαβ

1 involves a velocity difference.
From these evaluations we find that the window for positive scaling exponents∆n is at leasth∈ (0,1/2).
Admittedly, this is a rather narrow interval, even though it is sufficient for the downscale energy cascade
of three-dimensional turbulence. However, the situation is probably a lot better than that. If we allow
negative evaluations ofR , which can be defined by reflecting the points{X}n around their center of mass,
we may expect thatR= 0 is an extremum and thereforef ′n(R) = g′(R) = 0. It is easy to show that, using
the evaluationan = b = 2, we find that the window for positive scaling exponents∆n covers the entire
rangeh∈ (0,1) of local scaling exponents. Although this is somewhat encouraging, the real challenge is to
determine what happens in reality and make a comparison of that against the speculative predictions given
above.

VI. DISCUSSION AND CONCLUSION

In the original formulation of his theory, Kolmogorov assumed local homogeneity, local isotropy, and
local stationarity in a non-Eulerian representation very similar to the quasi-Lagrangian representation of
Belinicher and L’vov. Frisch [30, 31] revised this argument by stating the same assumptions in the Eulerian
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representation. This is a decision that we agree with, because the energy spectrum and the structure func-
tions are both Eulerian rather than Lagrangian quantities. Furthermore, as we have argued in the previous
section, it is desirable to justify the elimination of the sweeping interactions theoretically, rather than hide
the problem under a stronger definition of local homogeneity. Frisch [31] has also chosen to strengthen
the assumption of self-similarity to make it possible to deduce all the scaling exponentsζn and obtain
the predictionζn = n/3. Ultimately, this assumption needs to be replaced with a weaker assumption of
self-similarity to permit intermittency corrections, and this is the approach followed in the L’vov-Procaccia
theory [7, 8, 70, 72–74, 79, 80]. Frisch himself proposed the multi-fractal hypothesis [31], which converges
with the approach of Belinicheret al. in the papers [7, 8, 79] in a very interesting way. Finally, Frisch [31]
made the very important observation that, in order to carry Kolmogorov’s argument through, it is necessary
to assume the existence of an anomalous energy sink.

In the present paper we have shown that the assumptions of the Frisch framework are still not strong
enough to prove the 4/5-law in the Eulerian representation. We have also shown that the problem of elim-
inating the sweeping interactions with a predictive argument remains open. The hypothesisu ∈ H1(A)
can rectify both problems. Even better, starting from the more reasonable hypothesisu ∈H0(A), a rigor-
ous proof that establishes∆n > 0 would be sufficient to establishu ∈ H1(A). A positive response to the
question raised recently by Frisch [32] concerning the self-consistency of incremental homogeneity in the
u∈H0(A) sense would also follow from the validity of the conjecture∆n > 0. This would be a fundamental
breakthrough finally putting to rest the problem of the sweeping interactions that has concerned the com-
munity for the last 60 years. It would essentially establish that the sweeping interactions can be modeled as
stochastic forcing acting only at large scales. Then we can simply drop from the Navier-Stokes equations
the portion of the nonlinearity associated with the sweeping interactions, and build the entire statistical the-
ory on the modified Navier-Stokes equations. We have also explained why it may not be desirable to use
the Belinicher-L’vov quasi-Lagrangian formulation to go around the problem. The reason is that using the
quasi-Lagrangian formulation requires the even stronger assumptionu ∈H∗

ω .
We would also like to emphasize that our conclusions arenot a criticism of the L’vov-Procaccia theory

basedon the quasi-Lagrangian formulation [7, 8, 70, 72–74, 79, 80]. In fact, as long as one’s intention
is to solve the problem ofglobally homogeneous turbulence, there is no issue whatsoever with respect to
the sweeping interactions and the quasi-Lagrangian transformation, provided that the assumption of global
homogeneity ismany-timerather thanone-time. On the other hand, it is desirable to move away from the
assumptions of global homogeneity and global isotropy, which cannot be physically realized, and take steps
towards building a theory based on the assumptions of asymptotic incremental homogeneityu∈H0(A) and
incremental isotropy in an Eulerian framework, as envisioned by Frisch. Our paper implies that the results
of the L’vov-Procaccia theory [7, 8, 70, 72–74, 79, 80] can be readily carried over and applied towards
this goal, provided that the hypothesis∆n > 0 is proved, and our proposal of section V B rather than the
quasi-Lagrangian transformation is employed.
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APPENDIX A: QUASI-LAGRANGIAN REPRESENTATION OF THE NAVIER-STOKES EQUATIONS

We show how the quasi-Lagrangian transformation makes it possible to write the Navier-Stokes equa-
tions in terms of velocity differences, thereby eliminating the sweeping interactions. The reader should
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compare this argument with the derivation of the 4/5-law by Monin and Yaglom [85], to see that they are
doing the same thing.

We begin by noting that the Eulerian velocity fielduα(x, t) can be reconstructed fromvα(x0, t0|x, t) as:

uα(x, t) = uα(x−ρ(x0, t0|t)+ρ(x0, t0|t), t) = vα(x0, t0|x−ρ(x0, t0|t), t). (A1)

To eliminateρ(x0, t0|t) we use

ρα(x0, t0|t) =
∫ t

t0
dτ uα(x+ρ(x0, t0|τ),τ) =

∫ t

t0
dτ vα(x0, t0|x,τ), (A2)

and therefore,uα(x, t) reads

uα(x, t) = vα

(
x0, t0|x−

∫ t

t0
dτ v(x0, t0|x,τ), t

)
. (A3)

Let Rα(x0, t0|x, t) be defined as

Rα(x0, t0|x, t) = (x)α −
∫ t

t0
dτ vα(x0, t0|x,τ) = (x)α −ρα(x0, t0|t), (A4)

such thatuα(x, t) = vα(x0, t0|R(x0, t0|x, t), t). Also, definev0
α(x0, t0|t) ≡ vα(x0, t0|x0, t) such that we may

write conciselywα = vα − v0
α . It is easy to see that∂α,xRβ = δαβ and∂Rα/∂ t = −v0

α , and we may use
these relations to show that the quasi-Lagrangian transformation preserves incompressibility, as follows:

∂α,xwα = ∂α,x(vα −v0
α) = ∂α,xvα = (∂β ,xvα)δαβ = (∂β ,xvα)(∂α,xRβ ) = ∂α,xuα = 0. (A5)

The key result is that the sweeping interactions are eliminated in the transformation of the material
derivative itself. The show this, consider an arbitrary fieldU(x, t) and its quasi-Lagrangian transformation
U(x0, t0|x, t) (where the fluid particle follows the Eulerian velocity fielduα(x, t) ). From the relation

U(x, t) = U(x0, t0|R(x0, t0|x, t), t), (A6)

we find that

∂U
∂ t

=
∂U

∂ t
+(∂α,xU)

∂Rα

∂ t
=

∂U

∂ t
+(∂α,xU)(−v0

α), (A7)

and

∂α,xU = (∂β ,xU)(∂α,xRβ ) = (∂β ,xU)δαβ = (∂α,xU), (A8)

and it follows that:

DU
Dt

=
∂U
∂ t

+uα∂α,xU =
∂U

∂ t
+wα∂α,xU. (A9)

This equation is identical to the unnumbered equation preceding equation (22.14) in Monin and Yaglom
[85]. It is easy to see that since the material derivative is written in terms of velocity differences, if it is
applied onwα(x0, t0|x, t) we shall obtain an equation written exclusively in terms of velocity differences.
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APPENDIX B: EVALUATION OF J[u]

In this appendix, we provide a detailed evaluation of the functional determinantJ[u] that we encounter
in the derivation of the MSR theory for Lagrangian trajectories. The procedure was outlined briefly in L’vov
and Procaccia [72]. However it is not as trivial as it seems. We have followed the outline and rederived the
following more complete version of the proof:

First, we discretize time in∆t intervals and introduce the following notation:

tn = t0 +n∆t

ρ
n
α = ρα(x0, t0|tn)

un
α = uα(x0 +ρ

n
α , tn)

un,m
α = uα(x0 +ρ

n
α , tm).

(B1)

Each of the objectsρn
α ,un

α ,un,m
α is a field that is a function ofx0 only. Note thatρ0

α = 0. The governing
equation for the Lagrangian trajectories field is equivalent to a set of the following discretized equations:

ρn+1
α −ρn

α

∆t
= un

α . (B2)

There are, of course, many alternative discretizations to choose from. The rule is that, once we have cho-
sen a discretization, we have to stay with it. We cannot switch to another scheme in the middle of the
computations, for the sake of convenience. To evaluateJ[u] we proceed from the path integral definition:

J[u] =
∫

P(t0)
Dρ δ [ρ̇α −Qx0

αβ
[ρ]uβ ]

= lim
∆t→0

∏
n∈Z−{0}

∫
dρn

a
δ

(
ρn+1

α −ρn
α

∆t
−un

α

)

= lim
∆t→0

+∞

∏
n=1

An(∆t)
a

−1

∏
n=−∞

Bn(∆t)
a

,

(B3)

whereAn(∆t) andBn(∆t) are defined as

An(∆t) =
∫

dρ
n+1
α δ

(
ρn+1

α −ρn
α

∆t
−un

α

)
,

Bn(∆t) =
∫

dρ
n
α δ

(
ρn+1

α −ρn
α

∆t
−un

α

)
.

(B4)

Here,a is a normalization constant such that the product in (B3) converges. Obviously, if such a constant
exists, it will be unique.

TheAn integral is easy to evaluate:

An(∆t) =
∫

dρ
n+1 ∆tδ (ρn+1

α −ρ
n
α −∆tun

α) = ∆t. (B5)

To evaluateBn we need to rewrite the discretized governing equation so that it is explicit with respect toρn
α :

ρ
n+1
α −ρ

n
α = ∆tuα(x0 +ρ

n
α , tn)

= ∆tuα(x0 +ρ
n+1
α − ρ̇

n+1
α ∆t +O(∆t2), tn)

= ∆t(uα(x0 +ρ
n+1
α , tn)− ρ̇

n+1
β

∆t∂β (uα(x0 +ρ
n+1
α , tn))+O(∆t2)

= un+1,n
α ∆t− (ρn+1

β
−ρ

n
β
)∂β un+1,n

α ∆t +O(∆t2),

(B6)
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therefore

(δαβ +∂β un+1,n
α ∆t)(ρn+1

β
−ρ

n
β
) = un+1,n

α ∆t. (B7)

We proceed by employing the following change of variables:

Rn
α = (δαβ +∂β un+1,n

α ∆t)ρn
β
. (B8)

The integral differentials are transformed according to a determinant as follows:

dRn
α = det(δαβ +∂β un+1,n

α ∆t)dρ
n
β
. (B9)

We will now show that incompressibility implies that the determinant is equal to 1. For brevity, introduce

Mαβ = δαβ +∂β un+1,n
α ∆t. (B10)

In the determinant expansion, every term other thanM11M22M33 is O(∆t2) because it includes at least two
off-diagonal factors each of which contributes a factor of∆t . It follows that:

detM = M11M22M33+O(∆t2)

= (1+∆t∂1un+1,n
1 )(1+∆t∂2un+1,n

2 )(1+∆t∂3un+1,n
3 )+O(∆t2)

= 1+∆t(∂1un+1,n
1 +∂2un+1,n

2 +∂3un+1,n
3 )+O(∆t2)

= 1+O(∆t2).

(B11)

Note that in the last step we employed the incompressibility condition. It follows thatdρn = dRn . We
may now proceed and evaluate the integralBn.

Bn(∆t) =
∫

dρ
n ∆tδ [ρn+1

α −ρ
n
α −∆tun

α ]

= ∆t
∫

dρ
n

δ ((δαβ +∂β un+1,n
α ∆t)(ρn+1

β
−ρ

n
β
)−un+1,n

α ∆t)

= ∆t(1+O(∆t2))

×
∫

dRn
δ ((δαβ +∂β un+1,n

α ∆t)ρn+1
β

−Rn
α −∆tun+1,n

α )

= ∆t +O(∆t3).

(B12)

In the last step, the crucial requirement is thatρ
n+1
β

andun+1,n
α should not depend onρn

α and thereforeRn
α .

If we set the normalization constanta = ∆t, thenJ[u] evaluates as:

J[u] = lim
∆t→0

+∞

∏
n=1

An(∆t)
a

−1

∏
n=−∞

Bn(∆t)
a

= 1. (B13)

Note thatO(∆t2) contributions to the integralsAn(∆t) andBn(∆t), which we have disregarded, would vanish
anyway after taking the limit∆t → 0, so they can be safely ignored with impunity.

APPENDIX C: SWEEPING INTERACTIONS UNDER A GAUSSIAN MEAN FIELD

We exploit the following mathematical result: iffα(x1, t1) is a Gaussian stochastic field, the ensemble
averages of the form〈 fα(x1, t1)R[ f ]〉 can be evaluated for any analytic functionalR[ f ] by the following
integral

〈 fα(x1, t1)R[ f ]〉= 〈 fα(x1, t1)〉〈R[ f ]〉+
∫

dx2dt2
〈

fα(x1, t1) fβ (x2, t2)
〉

c

〈
δR[ f ]

δ fβ (x2, t2)

〉
, (C1)



29

where〈
fα(x1, t1) fβ (x2, t2)

〉
c ≡

〈
fα(x1, t1) fβ (x2, t2)

〉
−〈 fα(x1, t1)〉

〈
fβ (x2, t2)

〉
. (C2)

This a generalization of Gaussian integration by parts, a technique attributed by Frisch [31] to Novikov [89],
Donsker [19] and Furutsu [33].

We begin the proof by defining the following correlation functions:

Uαβ (x1, t1;x2, t2) =
〈
uα(x1, t1)uβ (x2, t2)

〉
−〈uα(x1, t1)〉

〈
uβ (x2, t2)

〉
, (C3)

Bα1···αnβ
n ({X}n,Y, t) =

〈
(Uβ (Y, t))

[
n

∏
l=1

wαl (X l , t)

]〉
−
〈
Uβ (Y, t))

〉
Fα1α2···αn

n ({X}n, t), (C4)

Hα1α2···αnβ
n ({X}n, t) =

[
n

∑
k=1

(∂β ,xk
+∂β ,x′k)F

α1α2···αn
n ({X}n, t)

]
, (C5)

and also the following response functions:

Rαβ (X, t1;y, t2) =
〈

δwα(X, t1)
δuβ (y, t2)

〉
, (C6)

Rα1···αnβ
n ({X}n, t,y,τ) =

〈
δ

δuβ (y,τ)

[
n

∏
l=1

wαl (X l , t)

]〉
. (C7)

Here, we disregard the fact thatuα(x, t) andwα(x,x′, t) are related by definition and assume that the only
effect of uα(x, t) on wα(x,x′, t) is via the sweeping interaction. We also assume that the velocity field
uα(x, t) is delta-correlated which implies that

Uαβ (x1, t1;x2, t2) = Uαβ (x1,x2)δ (t1− t2). (C8)

We begin by splittingIn({X}n, t) into two terms

In({X}n, t) = In,(1)({X}n, t)+ In,(2+3)({X}n, t), (C9)

with In,(1)({X}n, t) given by

Iα1α2···αn
n,(1) ({X}n, t) =

n

∑
k=1

(∂β ,xk
+∂β ,x′k)

{〈
Uβ ({X}n, t)

〉〈[ n

∏
l=1

wαl (X l , t)

]〉}
(C10)

=
〈
Uβ ({X}n, t)

〉[ n

∑
k=1

(∂β ,xk
+∂β ,x′k)F

α1α2···αn
n ({X}n, t)

]
(C11)

=
〈
Uβ ({X}n, t)

〉
Hα1α2···αnβ

n ({X}n, t). (C12)

Here we have used the incompressibility condition.

n

∑
k=1

(∂β ,xk
+∂β ,x′k)

〈
Uβ ({X}n, t)

〉
= 0. (C13)

The remaining contribution toIn({X}n, t) reads

Iα1α2···αn
n,(2+3) ({X}n, t) =

1
2n

n

∑
k=1

n

∑
l=1

(∂β ,xk
+∂β ,x′k)B

α1···αnβ
n ({X}n,X l , t). (C14)
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Using Gaussian integration by parts we may write

Bαβ

1 (X,Y, t) =
∫

dzdτ Rαγ(X, t;z,τ)[Uβγ(y, t;z,τ)+Uβγ(y
′, t;z,τ)] (C15)

=
∫

dz Rαγ(X, t;z, t)[Uβγ(y,z)+Uβγ(y
′,z)], (C16)

and

Bα1···αnβ
n ({X}n,Y, t) =

∫
dzdτ Rα1···αnγ

n ({X}n, t;z,τ)[Uβγ(y, t;z,τ)+Uβγ(y
′, t;z,τ)] (C17)

=
∫

dz Rα1···αnγ
n ({X}n, t;z, t)[Uβγ(y,z)+Uβγ(y

′,z)]. (C18)

The key step is to note that

Rα1···αnβ
n ({X}n, t,y, t) =

〈
δ

δuβ (y, t)

[
n

∏
l=1

wαl (X l , t)

]〉
(C19)

=
n

∑
k=1

〈[
n

∏
l=1,l 6=k

wαl (X l , t)

]
δwαk(Xk, t)

δuβ (y, t)

〉
(C20)

=
n

∑
k=1

Fα1···αk−1αk+1···αn
n−1 ({X}k

n)Rαkβ (Xk, t;y, t). (C21)

Here we exploit the fact, first pointed out in Ref. [74], that the variational derivative
(δwαk(Xk, t))/(δuβ (y, t)) is not correlated with the velocity differenceswαl (X l , t) because no time is be-
ing allowed for the interaction to develop a correlation. This relationship between the response functions
implies a corresponding relationship betweenBn({X}n,Y, t) andB1(Xk,Y, t):

Bα1···αnβ
n ({X}n,Y, t) =

∫
dz

[
n

∑
k=1

Fα1···αk−1αk+1···αn
n−1 ({X}k

n)Rαkβ (Xk, t;z, t)

]
[Uβγ(y,z)+Uβγ(y

′,z)] (C22)

=
n

∑
k=1

Fα1···αk−1αk+1···αn
n−1 ({X}k

n)
[∫

dz Rαkβ (Xk, t;z, t)[Uβγ(y,z)+Uβγ(y
′,z)]

]
(C23)

=
n

∑
k=1

Fα1···αk−1αk+1···αn
n−1 ({X}k

n)B
αkβ

1 (Xk,Y, t). (C24)

It immediately follows that

Iα1α2···αn
n,(2+3) ({X}n, t) =

1
2n

n

∑
k=1

n

∑
l=1

n

∑
m=1

(∂β ,xk
+∂β ,x′k)F

α1···αm−1αm+1···αn
n−1 ({X}m

n )Bαmβ

1 (Xm,X l , t), (C25)

which can be broken down to

Iα1α2···αn
n,(2) ({X}n, t) =

n

∑
l=1

n

∑
m=1

Fα1···αm−1αm+1···αn
n−1 ({X}m

n )Iαm(Xm,X l , t), (C26)

Iα1α2···αn
n,(3) ({X}n, t) =

n

∑
l=1

n

∑
m=1

Bαmβ

1 (Xm,X l , t)H
α1···αm−1αm+1···αnβ

n−1 ({X}m
n ), (C27)

with

Iα(X1,X2, t) =
2

∑
k=1

(∂β ,xk
+∂β ,x′k)B

αβ

1 (X1,X2, t). (C28)
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