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On the elimination of the sweeping interactions from theories of hydrodynamic turbulence

Eleftherios Gkioulekas

Department of Mathematics, University of Central Florida, Orlando, FL, United States

In this paper, we revisit the claim that the Eulerian and quasi-Lagrangian same time correlation
tensors are equal. This statement allows us to transform the results of an MSR quasi-Lagrangian
statistical theory of hydrodynamic turbulence back to the Eulerian representation. We define a hi-
erarchy of homogeneity symmetries between incremental homogeneity and global homogeneity. It
is shown that both the elimination of the sweeping interactions and the derivation of 3Haw
require a homogeneity assumption stronger than incremental homogeneity but weaker than global
homogeneity. The quasi-Lagrangian transformation, on the other hand, requires an even stronger
homogeneity assumption which is many-time rather than one-time but still weaker than many-time
global homogeneity. We argue that it is possible to relax this stronger assumption and still preserve
the conclusions derived from theoretical work based on the quasi-Lagrangian transformation.

PACS numbers: 47.27.Ak, 47.27.Gs, 47.27.Jv
Keywords: Turbulence, local homogeneity, quasi-Lagrangian, sweeping interactions

[. INTRODUCTION

A remarkable feature of hydrodynamic turbulence in three dimensions is that it exhibits universal self-
similarity properties at small length scales independently of the forcing mechanism that operates at larger
length scales. The self-similar nature of turbulence was noticed by Richardson [93] who suggested that large
vortices will generate increasingly smaller vortices until they become hydrodynamically stable and then get
dissipated by viscosity. Kolmogorov [53, 54] conjectured that for length scdletveen the forcing scale
{p and the dissipation scalg the structure functionS,(x,re) will be independent ofp andn, and, as was
pointed out by Batchelor [4], this conjecture implies tBg(ix, re) satisfy the following power laws:

Sh(x,re) = ({[u(x+ret) —u(x,t)]-e}") = Cy(er)V3. (1)

Hereeis a unit vector, and equals the rate of energy injection into the fluid, the energy flux in the cascade

of energy from large scales to small scales, and the rate of energy dissipation at small scales. The constant
Cn was believed to be universal, but in fact it is not (exceptrfes 3) and it is dependent on the forcing
spectrum. From the above, the energy spectifk) for 651 < k< n~1 can be shown to satisfy

E(k) = Ce?/3k5/3, (2)

This prediction was confirmed for the first time in 1962 [35, 45], and today, with modern computers, it is
routinely reproduced in numerical simulations. It has since come to light [31, 100] that there exist departures
from Kolmogorov scaling laws for the higher order structure functions (known as intermittency corrections),
and Kolmogorov (with Oboukhov) [55, 90] was in fact the first to propose revisions of his original theory.
The correct expression f&(r) has the form

Sh(r) = Ca(er)"3(r /o) "3, (3)

where(, are scaling exponents to be determined. The challenge here has been to develop theoretical under-
standing that can account for this energy cascade with a logical argument that begins from the underlying
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governing Navier-Stokes equations. It is not only a matter of calculating the scaling expgnefise
robustness of the scaling of the energy spectrum needs to be explained, and the universality of the scaling
exponents themselves is in fact still an open question.

The energy cascade from large scales to small scales is driven by the nonlinear term of the Navier-Stokes
equations, and it is often explained as an effect of the vortex stretching and tilting caused by that term.
However, the same term is also responsible for a sweeping interaction whereby a vortex is swept altogether
from one location to another with minimal distortion. Implicit in the idea of an energy cascade is the
assumption that these sweeping interactions have a negligible effect on the structure functions in the inertial
range. It has therefore been necessary to use theoretical schemes that “eliminate” sweeping [78]. The goal
of this paper is to call attention to the fact that these schemes dproet that sweeping is negligible;
they only introduce the assumption that it is so. Recent doubts [32] concerning the consistency of the
local homogeneity framework are directly linked with this problem of rigorously eliminating the sweeping
interactions, and also with the problem of formulating a reasonable definition of local homogeneity. We
will also make a conjecture, and explore its plausibility, which, if shown to be true, would establish the
assumption that the sweeping interactions are negligible in the inertial range on a firmer ground.

It should be noted that a strictly rigorous mathematical theory based exclusively on the Navier-Stokes
equations is a very difficult task. For this reason, it is necessary to tolerate unproven assumptions as hy-
potheses, as long as such assumptions can be reasonably supported by physical arguments, or by experiment.
It is within a specific framework of reasonable assumptions, which will be defined in a moment, that we
claim that sweeping elimination procedures still do not prove that sweeping interactions are negligible.

The argument of this paper, summarily, is the following. First, we show that the elimination of the
sweeping interactions as well as the derivation of tf&-kaw requires a homogeneity assumption stronger
than the assumption of incremental homogeneity, as envisioned by Frisch [31]. Second, we show that
using the quasi-Lagrangian formulation of Belinicher and L'vov to eliminate the sweeping interactions
requires an even stronger homogeneity assumption which involves many-time correlations instead of one-
time correlations. We conclude with a discussion of the implications of this argument on the utility of
the quasi-Lagrangian formulation. Specifically, we will show that despite this apparent shortcoming of
the quasi-Lagrangian formulation, the theoretical work based on it can still be used as a foundation for a
physically useful theory, along the lines of the Frisch framework, provided that certain considerations are
taken into account. Furthermore, incremental homogeleityfact a consistent framework, provided that
the sweeping interactions can be eliminated in a more rigorous manner.

The paper is organized as follows. In section 2, we review the theoretical developments that gave rise to
the issue of the sweeping interactions, and discuss the assumptions underlying most efforts to understand
the energy cascade from a theoretical point of view. THeldw is discussed in section 3 and the quasi-
Lagrangian formulation in section 4. The implications of our argument for the theories that use the quasi-
Lagrangian formulation as a foundation are discussed in section 5, and the paper is concluded in section 6.
Appendix A reviews how the quasi-Lagrangian formulation eliminates the sweeping interactions. Appendix
B presents a more complete account of the calculation of a functional determinant originally given by L'vov
and Procaccia [72]. In appendix C we evaluate the contribution of the sweeping interactions in closed form
for the case of passive random gaussian delta-time-decorrelated sweeping.

[I. THEORETICAL BACKGROUND

We begin with reviewing the development of the ideas that form the theoretical foundation of certain re-
cent attempts to understand the universal behavior of turbulence. The problem of the sweeping interactions
and its resolution is an essential part of this theoretical foundation. Then we discuss the set of assumptions
that are widely accepted on physical grounds. Because the argument of this paper requires simultaneous
consideration of a wide range of interdependent topical areas, this overview will help by providing the



reader the broader context against which the argument and its implications on the theoretical foundations of
turbulence will be discussed later in our paper. This overview represents strictly my personal philosophical
point of view. A more comprehensive and unbiased review of theoretical three-dimensional turbulence is
already available in the literature [31, 78, 87, 99].

A. Theoretical approaches to turbulence

The foundation on which recent successful theoretical work was accomplished on the problem of the
direct energy cascade rests on the following essential ideas: The first critical idea is the framework of
globally homogeneous and isotropic turbulence introduced by Taylor [51, 94, 102, 103] and popularized
by Batchelor [5]. Within that framework there have been numerous attempts to model turbulence using
closure models [63]. The second critical idea, due to Kraichnan, is his discovery that such models are not
realizable because they predict negative values for the energy spectrum [56]. Kraichnan counterproposed
a different closure model [57, 58], the direct interaction approximation (DIA), with the unique feature that
it makes use of response functions. Disagreement with experimental predictions prompted Kraichnan to
call attention to the problem of sweeping interactions [59], and to revise his earlier model. The new model
[60], the Lagrangian history direct interaction approximation (LHDIA), was one of the first models to make
predictions in agreement with experiment [61]. A review of Kraichnan’s work was given by Leslie [63]. It
is fair to say that LHDIA was the first successful theory of three-dimensional turbulence. Unfortunately, it
was not clear how to generalize LHDIA, which was a first order approximation, to higher orders, and as a
result, further development of this theoretical program was not possible for many years.

Parallel to these efforts, there have also been attempts to construct exact mathematical theories of turbu-
lence based on functional calculus. The first such formulation was given by Hopf [49], and an equivalent
reformulation in terms of path integrals by Rosen [95, 96]. Novikov [89] modified the Hopf formalism
to include a gaussian delta correlated stochastic forcing, intended to model the hydrodynamic instability
responsible for turbulence. An interesting application of this formalism is the more rigorous and power-
ful reformulations of the original dimensional analysis arguments used by Kolmogorov [83, 97]. Its main
disadvantage is that it restricts the statistical description to one-time velocity correlations. A generalization
to include many-time velocity correlations was given by Lewis and Kraichnan [64]; however even that is
inadequate because it does not include response functions.

The essential idea of the definitive approach was introduced by Wyld [106]. The main result is that
Feynman diagrams can be used to generalize DIA to higher orders, and that DIA itself is essentially a one-
loop line-renormalized diagrammatic theory. A generalization of this scheme to a wider range of dynamical
systems was given by Martin, Siggia, and Rose [81], although, as they themselves explained, without a suf-
ficiently rigorous justification. Phythian [91] used Feynman path integrals to reformulate the MSR theory,
and showed that it can be justified for dynamical systems that are local in time and first-order in time. An
assumption implicit in this argument is that the dynamical system has a unique solution for all time. This
claim has not been proven for the Navier-Stokes equations in three dimensions, however global regularity,
as a matter of fact, can be proved rigorously [52, 65] if the diffusion term in the Navier-Stokes equations
is replaced with a hyperdiffusion term likeJ*u,. A pedagogical introduction to MSR theory was given
recently by L'vov and Procaccia [71] and Eyink [25], and a careful review of the mathematical foundations
of the theory itself is given in the paper by Andersen [2] (also see references therein).

Unfortunately, the MSR formalism could not be applied to generalize Kraichnan’s more successful LH-
DIA theory because the Navier-Stokes equations in the Lagrangian representation are not local in time.
Eventually, a way was discovered around this difficulty, thus breaking the deadlock that has been plagueing
theory for decades. It involves combining the MSR formalism with renormalization schemes that eliminate
the sweeping interactions. The first such scheme was introduced by Yakhot [107], and another by Belinicher
and L'vov [6, 68]. Combined with the MSR formalism, one has a rather solid foundation for further theo-



retical work. It is these schemes, and the nature of the assumptions that they implicitly introduce, that will
concern us in this paper.

Since 1995, there have been some very remarkable developments in this direction: L'vov and Procaccia
have used the quasi-lagrangian renormalization scheme [6, 68] to formulate a diagrammatic theory [72—74]
that generalized Kraichnan’s DIA to all orders. It was shown that as long as the theory is truncated to finite
order, it predicts agreement with Kolmogorov's theory and the absence of intermittency corrections [72]. It
was also shown that if the theory is not truncated, there is a critical divergencitsgad to intermittency
corrections [73]. L'vov and Procaccét al also formulated a nonperturbative theory [70, 75—-77] based on
the fusion rules which are predicted by the underlying diagrammatic theory. This theory has been used
to derive a nonperturbative method [7, 8, 79] and a perturbative method [80] for calculating the scaling
exponents,. The perturbative method [80] has been used successfully to caléyldeall n accessible
to experimental measurement, but it requires that the deviatign fodbm the Kolmogorov prediction /3,
which is the small parameter, be already known. This ability of the L'vov-Procaccia theory to predict the
existence of intermittency is a significant accomplishment. A partial review of these developments was
given in [78]. The non-perturbative theory has also led to a clearer understanding of local isotropy [3, 9].

It is worth mentioning that there exists an entirely different theoretical approach to the problem based
on renormalization group methods. A detailed review is given in [31, 82, 98] and some relevant criticism
in Refs. [24, 62]. There are two interesting points of convergence between renormalization group methods
and the theories reviewed previously. First, Eyink [22, 23] employed the renormalization group method to
derive the fusion rules under certain assumptions both for shell models of turbulence and for hydrodynamic
turbulence itself. The fusion rules are a crucial element in both the perturbative and the non-perturbative
theories of L'vov and Procaccia. Second, Giles [36] used the renormalization group method to calculate
the scaling exponent§,, without relying on any experimental input, contrary to the paper [80]. In this
calculation, the sweeping interactions were eliminated using the scheme by Yakhot [107]. A comparative
study of the two approaches would help further progress.

B. The hypotheses that underlie MSR theory

In all the theoretical work that has been reviewed above, it is assumed that the Navier-Stokes equations
have a unique solution, that there exists hydrodynamic instability leading to turbulence, and that this insta-
bility can be modeled with stochastic forcing acting at large scales. These assumptions are introduced im-
plicitly simply by employing the MSR formalism. Although they are widely accepted on physical grounds,
there has also been substantial effort to deal with them rigorously.

An overview of the mathematical results on the existence and uniqueness of solutions to the Navier-
Stokes equations is given in ref. [20, 34] and references therein. Briefly, in two dimensions the existence
and unigueness of strong solutions has been shown rigorously. In three dimensions it has been shown that
weak solutions exist, but not that they are unique. It has also been shown that if strong solutions exist, they
will have to be unique, but it has not been shown that such strong solutions do in fact exist. The underlying
physical issue is whether the velocity field will develop singularities by vortex stretching as it is evolved by
the Navier-Stokes equations.

It is fortunate that this issue does not arise in numerical simulations because the finiteness of the resolu-
tion prevents singularities from developing. As long as the smallest resolved length scale is smaller by order
of magnitudes than the Kolmogorov microscale, the finite resolution approximation of the Navier-Stokes
equations models hydrodynamic turbulence quite adequately. Furthermore, the energy cascade, which is
very robust, will not allow any of the Fourier modes to blow out, since all the incoming energy will be
transferred to the dissipation range, where it will be disposed of efficiently, given adequate numerical res-
olution. Another benefit of the finite resolution model is that the path integrals of the corresponding MSR
theory are mathematically rigorous.



It should be noted that the Navier-Stokes equations themselvestbviouslymorerealistic than the
finite resolution model because a “finite resolutiog’imposed on fluid dynamics by Nature at the point
where the existence of discrete molecules is important. Thus, if one introduces the assumption that the finite
resolution approximation of the Navier-Stokes equations is a satisfactory physical model all by itself, then
one may disregard the mathematical issues associated with the existence, uniqueness, and regularity of the
solutions of the Navier-Stokes equations. This is not an unreasonable assuimpitiennertial rangeof
three-dimensional turbulence. We are on less solid ground with respect to the robustness of the cascades
of two-dimensional turbulence, but the underlying mathematical issues do not arise in two dimensions. We
do not wish to underestimate the importance of the mathematical issues of existence and uniqueness that
remain open for 3D Navier-Stokes; we merely want to highlight the implicit assumption that one makes
when one sidesteps these issues, as is done by every theory published to date.

Another very important issue which is “hidden under the rug” is proving the existence of turbulence
itself as a consequence of the Navier-Stokes equations. Unfortunately, the theoretical framework prescribed
by the MSR theory cannot account, even in principle, for the existence of the hydrodynamic instability
that causes turbulence. In the MSR framework, it is implicitly assumed that the effect of hydrodynamic
instability can benodeledby a stochastic forcing term. The assumption can be justified if one demonstrates
that the resulting stochastic behavior of the velocity field in the inertial range is invariant with respect to
large-scale perturbations to the statistics of the forcing term.

There is in fact an extension of MSR theory in terms of a supersymmetric path integral that includes
two additional fermionic ghost fields [1, 42, 44]. The surprising result is that correlations involving these
additional fields are related to the Lyapunov exponents [43] that quantify hydrodynamic instability. It is
therefore possible, in principle, to obtain statistical predictions from this framework with a deterministic
forcing as input [105]. Whether this is in fact a practical approach remains to be seen.

The assumptions described so far are needed to bring in the machinery of the MSR formalism. In order to
employ the formalism to explain the universality of the direct energy cascade and calculate the intermittency
corrections, it is necessary to hypothesize a mathematical description of the energy cascade and use that to
narrow down the specific solution which is self-consistent. Frisch [30, 31] proposed a set of hypothesis
consisting of assumptions of statistical symmetry (such as homogeneity, isotropy, self-similarity) and the
additional assumption of anomalous dissipation, as an appropriate refinement of Kolmogorov’s theory. The
nature of the theoretical argument is to show that there is only a unique solution that can be admitted that
satisfies the hypothesized statistical symmetries. A critical review of the assumed statistical symmetries,
and local vs. incremental homogeneity in particular, is part of what concerns us in this paper.

To summarize, we accept the following assumptions on physical or experimental grounds: first, there
exists a unique solution to the Navier-Stokes equations that develops hydrodynamic instability for large
Reynolds numbers; second, in the limit of fully developed turbulence, incremental homogeneity and incre-
mental isotropy (as defined by Frisch [30, 31], and see section Il B) are reinstated statistically, even if only
asymptotically, for the velocity field; third, we accept the hypothesis that there exists an anomalous energy
sink at small scales. These assumptions are a reasonable starting point for analytical theories of turbulence
in three dimensions.

[ll. HOMOGENEITY AND SWEEPING INTERACTIONS

The background on homogeneity is as follows: Taylor, Batchelor, Kraichnan, and others, have been
willing to tolerate the assumption that turbulence is globally homogeneous and isotropic. However, it was
suggested by Kolmogorov himself [54] that a far more realistic approach is to assume local homogeneity
and local isotropy. Both frameworks have been reviewed by Monin and Yaglom [85]. Kolmogorov also
emphasized the importance of studying stationary turbulence, corresponding to the forced-dissipative case,
instead of the free decaying case.



In recent work, Frisch [30, 31] proposed that Kolmogorov’s second paper [53] leads to a reformulation of
his theory along three assumptions: first, the assumption of local homogeneity and local isotropy (defined
differently than by Kolmogorov, see section Il B); second, an assumption of self-similarity; third, the
assumption of an anomalous energy sink. Using the first and third assumption, according to Frisch, one
derives the 45 law from which we obtairds = 1. From the second assumption we hgye- nh. Combined,
we obtain the predictiod, = n/3. The assumption of self-similarity, used by Frisch, axiomatically excludes
intermittency corrections to the scaling exponefjtsConsequently, the theoretical efforts to calculate the
scaling exponents from “first principles” essentially aim to weaken this assumption while tolerating the
other two assumptions.

Some faith in the assumption of an anomalous energy sink, in particular, is based on recent evidence
from numerical simulations [50] and theoretical evidence from the fusion rules [75, 76]. The assumption of
local isotropy can be understood from the principle of linear superposition of the isotropic and anisotropic
sectors of the symmetry grog0(3) [3, 9]. Finally, the assumption of self-similarity can be understood via
Z(h) covariance of the statistical theory [7, 8, 79]. This leaves then the assumption of local homogeneity.

A. Hierarchical definitions of homogeneity

Let ug(x,t) be the Eulerian velocity field, and introduce the Eulerian velocity differenges
W (X, X', ) = Ug (X,t) — Ug (X', ). (4)

The Eulerian generalized structure function is defined as the ensemble average of the product of such ve-
locity differences

F.o1020 ({x %1 t) = < [klﬂlwak(xk,x’k,t)] > ; (5)

where{x, X'}, is shorthand for a list ofi position vectors.

Originally, Frisch [30, 31] wrote his definitions of local homogeneity, local isotropy, and local stationar-
ity using an “equivalence in law” relation. It should be noted that one should distinguish batveegrtime
equivalencethat extends to many-time correlations, ame-time equivalend@at applies only to one-time
correlations. The clearest way to bring out this distinction is by defining the equivalence relation in terms
of characteristic functionals defined as

Z¥[p,t] = <exp<i/dx/dx’ wa(x,x’,t)pa(x,x’))>> (6)

25 p] = <exp<i/dx/dx’/dt Wa(x,x’,t)pa(x,x’,t))>>. (7)

The structure functions can be evaluated from the characteristic functional by variational differentiation and

settingp = 0. For example,

n1 o
: ®)

=1

R ([, Jat) = L” >] w1

0 Py (X, X'k p=0
The difference betweeR* [p] andZ**[p], is thatZ* [p] contains information only about one-time cor-

relations, whereaz'e;’fv’x“t [p] contains information about many-time correlations as well. This is exploited to
distinguish between many-time equivalence and one-time equivalence.



Definition 1 Consider two stochastic fieldg (x,x’,t) and wy (x,X',t). The “equivalence in law” relations
are defined as

X,x’

Ve (X, X, 1) X Wi (X, X, 1) <= Z2% [p,t] = Z5¥[p,t] Vp analytic 9)
Va (X, 1) We (%, X, 1) = 24 [p] = 2 4[p] ¥p analytic (10)
Here,xm’)fl represents one-time equivalence, éﬁﬁ represents many-time equivalence. Thus, we can distin-
guish between one-time global homogeneity H and many-time global homogeneilye H*:

U e H <= Ug(X,t) X Ug(X+Y,t), Vy € R (11)
U € F* = Ug(X,1) < Ug(X+Y,1), Yy € RY. (12)

A detailed review of previous definitions tifical homogeneity has been given by Hill [47]. To discuss
local homogeneity more carefully, we introduce the following definitions:

Definition 2 The velocity fieldi, as a stochastic field, is a member of the homogeneity glag#l) where
A C RY aregion inRY, if and only if the ensemble average defined as

I:m7n = < [||]uoq (Xl ,t)] ll[llwﬁk(ykay/kat)] > ) (13)

is invariant with respect to a space shift of its argumeaqtsy, Y’ for all n > 0in the domainA, i.e.

m n
<Z&m X + Z (8ﬁk7yk + aﬁky/k)) Fm,n = 0, VX| 7yk,y’k cA (14)
I= k=1

Definition 3 The velocity fieldi is a member of the homogeneity cldss(.A) whereA C RY a region in
RY, if and only if the ensemble average defined as

is invariant with respect to a space shift of its argumeaqtgy, Y’ for all n > 0in the domainA, i.e.
m n
Z aoq X + z (aﬁkyyk + aﬁk7y,k) Fran = 07 vX| 7yk7y/k €A (16)
=1 K=1

We also writed(m, = Hm(RY) and I, = I (RY). The distinction betweefi((A) and % (A) is that the
former requires translational invariance on the one-time correlation t€pagemwhereas the latter requires
translational invariance on the many-time correlation tefggy; both over the domain.

We also define the following transfinite homogeneity classes:

Ho(A) = () Fu(A) and 36,(A) = () IG(A). (17)
keN keN

In these homogeneity classes the ensemble average of any product of velocities multiplied with any product
of velocity differences will be invariant under spatial shifting. Note that even this homogeneity class is
weaker thamglobal homogeneityWe will also distinguish betweesne-time global homogeneitye H and
many-time global homogeneitye H*, which are defined as

U e H < Ug(X,t) X Ug(X+Y,t), Vy e RY (18)
U € H* = Ug(X,1) X ug(X+Y,1), ¥y € RY. (19)



Remark 1 Animmediate consequence of these definitions is that the homogeneity classes are hierarchically
ordered, according to the following relations

HC Hep(A) CH(A), VKeN, (20)

H* CH,(A) CHi(A), YkeN, (21)
Ha(A) C Hp(A) ANFHZ(A) C Hp(A), Ya,be N:a> b, (22)
HZ(A) CHa(A), Yae N. (23)

B. Remarks on Kolmogorov's and Frisch’s definition of local homogeneity

The term “local homogeneity” is usually identified with the definition that was given by Kolmogorov
[54]. However, in his reformulation of the Kolmogorov 1941 theory, Frisch [30, 31] identified local ho-
mogeneity, local isotropy, and local stationarity with incremental homogeneity, incremental isotropy, and
incremental stationarity. The definitions that he gave read:

!

Locally stationary: We (X, X, 1) " Wy (X, X/, t +At) VAL € R.
Locally homogeneous: W (X, X', 1) X Wo (X+Y,X +y.t) Yy € RY.
Locally isotropic: W (X, X', 1) % We (Xo+A(X—Xo), X0 +A(X —Xo),t) , VA€ SO(d).

Using our notation, the condition of incremental homogeneity can be writtenza®(o(A). It should be

stressed that Frisch postulated that these symmetries arasgiithtoticallyfor space shifts and time shifts

up to a relevant order of magnitude and proposed them as reasonable hypotheses to be used as the basis for
a modern reformulation of Kolmogorov’s 1941 theory [30, 31].

To motivate his hypotheses, Frisch argues that homogeneity, isotropy, and time invariance are satisfied
by the Navier-Stokes equations and they are violated only by the boundary conditions or any other rel-
evant means of generating turbulence. However, he suggests that for high Reynolds numbers, when the
turbulent motion is governed by a strange attractor, the symmetries of the governing equation are restored
asymptotically for small scales. Velocity differences are used to localize the symmetry to small scales.

The paradox inherent in this argument is that we cannot write governing equations for the velocity
differences, exclusively in terms of velocity differences. A nonlinear term involving the velocity field,
representing the sweeping interactions, is inevitable. As we shall argue below, the stronger homogeneity
assumptioru € H;(A) is required to drop this term. Furthermore, we will argue that H(A) is also
required to derive the 4-law, which is the first step in Frisch’s argument. Similar concerns were raised
recently by Frisch [32] who questioned the self-consistency of local homogeneity, both in the sense of
incremental homogeneity and in the sense of Kolmogorov.

As for Kolmogorov, in his first paper [54], he defined local homogeneity in a very interesting way.
Instead of using the Eulerian velocity differeneeg(x,x’,t), he used the following quantity:

Y(Xo,t0|X,t) :X—Xo—(t—to)u(XO,to) (24)
Wkol (Xo,to|X,t) = u(Y (Xo,to|X,t),t) — u(Xo,to). (25)

Here,Y represents the approximate displacement of a fluid particle that is being used as a frame of reference.
Because of its dependence on the velocity field, it is itself a stochastic variable. Kolmogorov employed the
probability density function ofvkg in his definitions. Furthermore, he included the requirement of local
stationarity in his definition of local homogeneity. As will become apparent in section 4, Kolmogorov’s
representation of velocity differences is in fact a precursor of the quasi-Lagrangian representation, and



we shall call it theKolmogorov quasi-Lagrangian representatiofdlthough Kolmogorov does not discuss
explicitly the problem of sweeping interactions, it is interesting that he foresaw to this extent the need for
an non-Eulerian representation of the velocity field.

Another curious feature of the Kolmogorov definition is that it appears to use a conditional ensemble
average conditioned on the statema(io,tp) = v instead of the usual unconditional ensemble average,
and includes independence with respect tas part of his definition of local homogeneity. Equivalently,
one may use a conditional average conditioned on the location of the fluid pafticlgo|Xx,t) =y and as-
sume independence with respecitolhe equivalence depends on using Kolmogorov’s quasi-Lagrangian
transformation, and is not applicable if one replaces it with the Belinicher-L'vov quasi-Lagrangian transfor-
mation.

For the case =ty it is easy to see that the Kolmogorov definition is as strong asHy. However,
more generally, the velocity differences used by Kolmogorov are evaluated at two different tands
to. For this reason, | find it very unlikely that Kolmogorov’s definition can be shown to be as strong as
u € H;. On the other hand, the use of the conditional ensemble average and the assumption that that
average is independent ofprobably strengthens the definition in unforeseen ways and may have some
interesting consequences. In section 4.4 we show that a modified version of the Kolmogorov definition of
local homogeneity is equivalent or stronger thp, thus providing the assumptions needed to prove the
4/5-law and eliminate the sweeping interactions.

A detailed discussion and criticism of Kolmogorov’s definition of local homogeneity is given by Frisch
[32]. In the same paper, contrary to his prior work [30, 31], Frisch distinguishes the term local homogeneity
from incremental homogeneity, and assigns Kolmogorov's definition as the definition of local homogeneity.
We have seen that the definition of local homogeneity by Kolmogorov includes an assumption of incre-
mental stationarity and also an assumption of a type of random Galilean invariance (i.e. independence with
respect tos). Incremental stationarity can be true even when incremental homogeneity is not true. Further-
more, as | shall argue in section 5 of this paper, we should intend to derive random Galilean invariance from
the theory instead of assuming it. Consequently, the original definitions [30, 31] of Frisch have the practical
advantage of conveniently separating these assumptions from each other, and the conceptual advantage of
not assuming too much.

C. Balance equations and sweeping

The clearest way to analyze the effect of the sweeping interactions on the theory of hydrodynamic
turbulence is by employing the balance equations of the Eulerian generalized structure functions. These
balance equations were introduced by L'vov and Procaccia [76] in a landmark paper, and they are derived
as follows.

The Navier-Stokes equations, where the pressure term has been eliminated, read

Ju
Tt“ + P dy(Ugly) = VOPUg + Py Tp, (26)

where® g is the projection operator defined as
‘Paﬁ = 606/3 — &xaﬁ |:|_2, (27)

andd,, represents spatial differentiation with respeckfo Repeated indices imply summation of compo-
nents. The balance equations are obtained by differentiating the definitinoth respect to time and
substituting the Navier-Stokes equations. This leads to exact equations of the form

dF,

ot +Dn=vIh+Qn, (28)
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whereD,, represents the contributions from the nonlinear tekpthe contributions of the dissipation term,
andQ, the contribution from the forcing term. To write the terms concisely, we use the following abbrevi-
ations to represent aggregates of arguments:
X = (x,X)
{X}n=1{X1,X2,...,Xn} (29)
{X(x}ﬁ - {X17 L) anfl)Xk+l7 L) ,Xn}-

The terms themselves read as follows. The forcing contribution is given by

n n
glo‘z"'o‘”({)(}n,t) — Z < [ |_| WOCI (X|7X/|at)] Takﬁ(fﬁ (Xkat) — fﬁ (X,k,t))> . (30)
K=1 \ |1=1,1k
The dissipation term is given by
n
310 ({X Jn,t) = D20 (X }n,t) = 3 (O, + TFR% 0 ({X }n. ), (31)
k=1

whereD)Z(k differentiates with respect tq, and similarIyD)Z(,k differentiates with respect tdy.
The remarkable result, shown in [76], is that the t&xthat represents the contribution of the nonlinear
term can be rewritten d3, = Oy, 1+ |y WwhereQ,, is a linear integrodifferential operator with general form

n
OnFn+1 = z Onan+1 (32)
k=1

OnFns1 = / O(Xk, Y1, Y2) Fasa (DX, Y1, Yo,t) dY1d Yo, (33)

> ; (34)

U ({XIn,t) = ;kil(u“(xk’t)+u“(xlk’t))' (35)

andl, is given by

n

|r§xla2man({x}nat) = Z (aﬁ.,xk +a/3.x’k) <uﬁ({x}nvt) [Ilﬂlwal (Xi,t)

k=1

wherelg ({X}n,t) is defined as

The first termOnF,. 1, includes the effect of pressure and part of the advection term, and the detailed form
of the operato®, has been given in Ref [37]. The second tetmyrepresents exclusively the effect of the
sweeping interactions.

This decomposition makes rigorous the notion that the nonlinear interactions in the Navier-Stokes equa-
tions consist of local interactions that are responsible for the energy cascade and sweeping interactions
which would disrupt the energy cascade if they contaminated the inertial range. It also exposes the condi-
tions under which the sweeping interactions can be neglected. We learn that if the ensemble average of the
velocity product that appears in the definitionlgis invariant under a spatial shift, then the derivatives of
that ensemble average will add up to zero. And here lies the heart of the problem. The assuragtign
by itself is not sufficient to sdt, = 0. Global homogeneity € H is sufficient, but it is a stronger assumption
than what is required.

Remark 2 The condition of incremental homogeneity, is writtemasHy(A). The homogeneity condition
needed to eliminate the sweeping interactions over the dohasu € 31 (A).
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It should be noted that the local tetbpF,. 1 and the dissipation terd preserve the incremental homo-
geneity conditioru € Hp(A). The two terms in the balance equations that can potentially violate incremen-
tal homogeneity, are the sweeping telirand the forcing tern@Q,. Asymptotic incremental homogeneity
cannot be disrupted in the inertial range by the forcing tdritthe forcing spectrum is confined to large
scales. The uncontrolled quantity is the sweeping tgrrRecently, Frisch [32] questioned the consistency
of local homogeneity, in the sense of Kolmogorov, and incremental homogeneity as a framework for study-
ing hydrodynamic turbulence. We see that incremental homogeneity can be a consistent framework on the
condition that the sweeping termis dominant only at large scales with its influence forgotten as the energy
cascades to smaller scales. If that is the case, then none of the other terms in the balance equations violate
incremental homogeneity. This is discussed in further detail in section 5.

D. Remarks on the4/5-law proof

In his second paper, Kolmogorov [53] employed an argument that is distinct from dimensional analysis
to explain the claim thaf, = n/3. He derived the /-law from which he obtaine§; = 1, and used a scaling
assumption to obtaify, = 2/3. Frisch’s [30, 31] contribution was his observation that the scaling argument
can be extended to account for all the scaling expongntd/ith this extension, Kolmogorov's second paper
[53] is then an equivalent reformulation of the dimensional analysis argument of his first paper [54]. The
superiority of the extended argument is that at least one of the scaling exponents is established rigorously.
One also bypasses the universality criticism, appearently attributed to Landau, of the original similarity
hypothesis of Kolmogorov. In his book, Frisch [31] gave a more detailed account of his argument, but he
didn’t derive the 45-law on the basis of incremental homogeneity and incremental isotropy as prescribed by
his framework; he used instead global homogeneity and global isotropy. The same holds for the alternative
proof by Rasmussen [92]. An old proof by Monin [84] and Monin and Yaglom [85] claimed to prove the
4/5-law on the basis of local homogeneity and local isotropy, but it was criticized by Lindborg [66]. The
criticism was addressed by Hill [46] who gave a corrected proof.

In particular, the criticism of Lindborg [66] was that it was not proved that the correlations involving
the pressure field gradient and the velocity field can be eliminated on the basis of local isotropy from the
equation that governs the time derivative of the second order structure function tensor. Hill [46] resolved
this objection by supplying the needed proof. The principle behind the proof is reflected, in a wider sense,
by the mathematical form of the general sweeping termhere there is only a local differential operator.

The elimination of the nonlocal integral operator frogrepresents the elimination of any contributions
by the pressure gradient termltpthat would break incremental homogeneity. The pressure graaibest
contribute to the tern®),F,.1 a non-local integrodifferential operator. However, becalgg, 1 can be
expressed exclusively in terms of the velocity differences, it preserves incremental homogeneity.

Nevertheless, the proof by Monin and Yaglom [85], as far as our intentions are concerned, has an addi-
tional shortcoming, which has also been noticed independently by Frisch [32]: it concerns the elimination of
the terms associated with the sweeping interactions. If we refer to the part of the discussion leading to equa-
tion (22.14) of Monin and Yaglom [85], we learn thhky are using the Belinicher-L'vov quasi-Lagrangian
transformation to eliminate the sweeping interaction teflthis can be made more clear if the reader com-
pares the argument involving the two unnumbered equations that precede equation (22.14) of Monin and
Yaglom [85] with section 4 and appendix A. The intention of this argument, according to Monin and Ya-
glom [85], is to “... transform the Navier-Stokes equations so that they contain only the velocity differences
and their derivatives”. This is precisely what the quasi-Lagrangian formulation does. As we shall argue in
the next section of this paper, applying the inverse transformation back to the Eulerian representation uses
an assumption of homogeneity stronger than incremental homogeneity, but thisdif,.

As far as the theory of the scaling exponents is concerned, it is only necessary tdknawelegant
way to calculatelz is from the solvability condition of the homogeneous equatighs = 0 [3, 75]. The
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idea here is to use the conservation of energy to show that

1d[Ss(r12) —Ss(riz)] | 1d[Ss(rvz) — Ss(rvz)]

— _|_ —

2 dry 2 dry (36)
-1 -1 -1 -1

= Alrgy -1y e

02F3(X17X/15 X2, XIZ) —

whereris = ||x1 — X2||, etc. It follows that the equatiofizFs = O will be satisfied for any configuration of
velocity differences if and only if3 = 1. The homogeneous equation can be obtained from the balance
equations in the limit of infinite Reynolds number. For the case of finite Reynolds number, there is a
homogeneous and particular solution to the generalized structure functions that are linearly superimposed
[38, 40]. Then the calculation @} is relevant only for the homogeneous solution. Aside from this issue, this
argument too requires that we $gt 0. Droppingl, cannot be justified under incremental homogeneity, in

the sense afi € Hp, and it requires the conditiame H;(A). We arrive then to the following conclusion.

Remark 3 The homogeneity condition needed to estahlisk 1 over the domaimd isu € Hq(A).

It should be noted that even though Hill [46] has claimed to show it&eldw on the basis of local
homogeneity and local isotropy, his definition of local homogeneity is mathematically stronger than the
definitionu € Hp(A) used in the Frisch framework, and it is in fact very similaute H;(A) (also see
section 4.1 of [48]). Consequently, while his proof correctly follows from his stated assumptions, it cannot
be used from within the Frisch framework of hypotheses to prove tbdaw without invoking additional
assumptions.

It is possible to derive a rigorous version of thés4aw that does not require assumptions of homogene-
ity, isotropy, stationarity, and not even an ensemble average [21, 26, 104]. This is done by rephrasing the
statement to be proven. Specifically, it has been shown that

L tHAL dQ(A) dx Ss(x,rAe) 4
AI:To!m)yLnot dr/sqs) 4r /BV(’B) r __583’ 37)

for almost every (Lebesgue) poinin time, wheree is a unit vectorB C T2 is a local region in a periodic
boundary domaifi® (topologically equivalent to a torus) with volurvé B), andes is the local dissipation
rate over the regio® given by

ep= liino\/(li%)/dxs(x,t), (38)

whereg(x,t) = (1/2)v (sup(X,t)Sep (1)) is the dissipation rate density @t,t) ands,g = dgUp + dgUy
is the local strain tensor. A similar result was obtained earlier by Nie and Tanveer [88].

It should be noted that this result does not contradict our previous remark. Although the need to make
assumptions appears to have been eliminated, this is done so at the price of proving a statement that is
mathematically weaker. In the original formulation of th&s4aw, aside from an ensemble average, all the
integrals are absent. These integrals represent an interesting way of obviating the symmetry assumptions
needed to prove the/8-law in its original formulation.

Recently, there has been considerable interest in extending3Haw to account for deviations from the
theoretical prediction caused by the violation of incremental isotropy [12—15, 67]. From the viewpoint of the
experimentalist these extensions make it possible to confirm the validity of faklad against experimental
data. From the viewpoint of the theorist, deviations from incremental isotropy can be accounted for with
the SQ(3) group decomposition method [3, 9].
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IV. THE QUASI-LAGRANGIAN FORMULATION

The essence of the quasi-Lagrangian formulation (also calle@¢liricher-L'vov transformatiohis
to look at turbulence using a fluid particle as a non-inertial frame of reference. The representation is La-
grangian because we involve fluid particles, but it is not completely Lagrangian because the fluid particle
trajectory is only used to define a new frame of reference, and we continue to look at the velocity field in
an Eulerian manner. It is understood, of course, that the only interesting statistics are those involving points
within a sphere centered on the moving fluid particle with radius on the order of the integral lengtfyscale

Letu,(X,t) be the Eulerian velocity field, and Ipt, (Xo,to|t) be the position of the unique fluid particle
initiated at(xp,to) at timet relative to its initial position at timéy. The transformation is done in two
steps. First, we introduog, (Xo,to|X,t) as the Eulerian velocity with respect to the original inertial frame of
reference with a space shift that follows the fluid particle:

t
x,tt:/dru Xo+ p(Xo,t0|7), T
Pa (X0, tolt) . o (Xo+ p(Xo,t0|7), T) (39)

Va (X0, to[X,t) = U (X + p (X0, tolt),1).

Then, to complete the transformation we must subtract the velocity of the fluid particle uniformly, so that
the particle itself will appear to be motionless:

0
W, (Xo, to| X, t) = Vi (Xo, to| X, t) — apa(xo,to\t) = Vg (Xo,to|X,t) — Vi (Xo, to[Xo, t)

= Ua(X+p(Xo,to‘t),t) - ua(X0+p(X07t0|t)7t)’

(40)

We definew, (Xo,to|X,t) as the quasi-Lagrangian velocity field, and introduce the quasi-Lagrangian velocity
differenceWy, (xo,to|X,X’,t) given by

Wy (Xo, to|X, X', t) = W (Xo, to|X, ) — Wg (X0, to| X, t) = Vg (Xo,to|X,t) — Ve (Xo,to|X',1). (41)

Differentiating with respect to time, and substituting the Navier-Stokes equations, gives an equation of the
form

aWa o 2 2

St +VapyWsWy = v (05 + Uy )W + Fa, (42)
whereF, (Xo,to|x, X', t) is the quasi-lagrangian forcing, afig s, is a bilinear integrodifferential operator of

the form

VapWeWy = / dX gdXy Vepy(Xo|Xa, X g, Xy )W (X )Wy (Xy), (43)

with V (xo| X, X g, Xy) the corresponding kernel (see appendix A for more details). The remarkable feature
of this equation is that all the terms, and most especially the nonlinear term, are written in terms of velocity
differences. Fundamentally, this is the reason why the quasi-Lagrangian transformation eliminates the
sweeping interactions and renormalizes the MSR diagrammatic theory.

The key issue is whether it is possible to switch back to the Eulerian representation without reintroducing
the sweeping interactions. In a short appendix to their paper, L'vov and Procaccia [72] showid that
stationary turbulence the ensemble average of the same time quasi-Lagrangian velocity differences is equal
to the ensemble average of the corresponding Eulerian velocity differefitessame appendix is also
found in a previous unpublished paper [69]. The proof requires stationarity of the Eulerian velocity field, and
incompressibility. A homogeneity condition is also used, which is described as “translational invariance”.

In this section, we would like to carefully re-examine this proof, the assumptions needed to make it
work, and the relationship between this result and other claims that one might reasonably make about the
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quasi-Lagrangian velocity differences. Part of our motivation is the crucial importance of this result; the
entire L'vov-Procaccia theory [7, 8, 70, 72—-74, 79, 80] stands or falls on the validity of this argument. As
we have discussed previously in section 2, the L'vov-Procaccia theory and the Giles theory [36] are the
only two theories that can explain mathematically the reason why the inertial range of three-dimensional
turbulence has intermittency corrections. Our main interest is to show that the proof requires that we assume
u € H;,, which is a stronger condition than what is actually needed to eliminate the sweeping interactions
or to prove the 45-law (u € H1(A)). Preliminaries are given in section 4.1 and section 4.2, and the proof
itself is discussed in section 4.3.

A. Characterizations of the claim

Let Fn(Xo,to|{X,X }n,t) be the generalized structure function in the quasi-Lagrangian representation,
defined as

Fn(Xo,to[{X,X'}n,t) = < [ﬁWaK(XO,to\Xk,X’k,t)] > : (44)
k=1

The claim of L'vov and Procaccia [72] was that it can be shown that
Fn(Xo,to[{X, X' }n,t) = Fn({X,X'}n,t),Vn € N* (45)

which can be rewritten equivalently as

Wy (Xo,to|X, X', t) XX We (X, X', 1). (46)

As a first step, consider the following easy-to-prove propositions which give equivalent characterizations of
the claim (46):

Proposition 1 The claim(46) holds if and only if the quasi-Langrangian velocity is incrementally station-
ary with respect tog:

W (X0, to 1+ At %, X', t) "2 We (X0, tolx, X, t), VAL € R — {0} (47)
Proof: (=): Assume that the claim (46) holds. Then, it follows that
W (0,10 -+ B, X 1) % We (%, X, ) % W (3o, tolx, X' 1) (48)

(«=): Now assume that the quasi-Lagrangian velocity field is incrementally stationary with respgct to
Using the evaluation ligg.t p« (Xo,to[t) = 0, it follows that

X,X'

W (X0, tol%, X', ) "% lim We (Xo, to|x, X', 1) = lim e ({%,X'} + p (X0, to[t) 1) (49)
0— 0—

X W (X, X 1), (50)

Proposition 2 Assume incremental stationarity on the Eulerian velocity field:

X

Wer (X, X, 1) " Wi (X, X/, t + At), VAL € R. (51)

Then, the clain(46) holds if and only if the quasi-Langrangian velocity is incrementally stationary with
respect to t:

W (X0, to|X, X', t) & Wy (X0, to[X, X', t +At), VAt € R — {0} (52)
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Proof: (=): Assume that the claim (46) holds. Then,

X,X' X X,X'

Wy (X0, to|X, X', t +At), % wg (X, X, t 4+ At) < W (X, X, 1) "2 Wy (Xo, to]X, X', 1).

(«<): Now assume that the quasi-Lagrangian velocity field is incrementally stationary with respgct to
Using the evaluation lig.t pa (Xo,to|t) = O, it follows that,

xx' . xx' .
Wa(Xo,t0|X,X/,t) ~ tIETEOW(X(XOat0|X7X/7t) ~ tIITt-\OWOC({X7X/}+p(X07t0’t)vt)

X,X'
= Wg (X, X, tg) "~ W (X, X', t).

The implication of these propositions is that the relationship between the Eulerian and the quasi-
Lagrangian formulations can be established as an immediate consequence of stationarity of the quasi-
Lagrangian velocity field with respect tg. As Lebedev and L'vov [69] noted, the variakitedoes not
appear anywhere in the quasi-Lagrangian Navier-Stokes equations (42), consetineciatiynof the gov-
erning equations allows stationary solutions with respetgt tdowever, to assert that the quasi-Lagrangian
velocity fieldis stationary, it is necessary to assume that the quasi-Lagrangian forcing field is also station-
ary. Since the definition of the quasi-Lagrangian forcing field entangles the Eulerian forcingyfieith
the trajectory fieldp,, and since the trajectory field itself is not time invariant (due to the initial condition
pa(Xo,tolto) = 0), we cannot make this assumption without justification. This was the reason, cited by
Lebedev and Lvov [69], for the rigorous proof which is the topic of this section. Proposition 2 shows that
assuming stationarity in the quasi-Lagrangian representation is sufficient to prove the claim (46), and thus
this assumption implicitly introduces in the Eulerian frame the conditions needed to prove the claim.

B. MSR theory for Lagrangian trajectories

The governing equation fqu, is

apa(Xo,to|t)
ot

with initial condition py(Xo,to|to) = 0. Deriving the stationarity condition (47) requires an MSR theory
where the velocity fieldi, can be thought of as the forcing field with known statistical properties, and the
Lagrangian trajectories field, as the governed field whose properties we wish to deduce. Unfortunately

we may not apply the standard MSR theory because the equation itself does not assume the standard form
Ny [p] = uq With u, independent op and furthermore the initial condition is set at a finite tith@nd not

atty — —co. We need to develop the statistical theory from scratch, and for that purpose the path integral
formulation is most expedient.

Note that every value df corresponds to a distinct initial value problem. We may therefore treat, for
the purposes of the statistical theory, the figldas a function only okg,t and letty to be taken at a fixed
value. We can also go a step further and note that for every vakigtioé governing equation is an ordinary
differential equation. It follows that in constructing an MSR theorydgrwe have two options: We may
construct a statistical theory for thestricted problenin which xg is also fixed and the fielg,, is taken
as a function of only, or a theory for thdull problemin which onlyty remains fixed ang,, is taken as a
function ofxg andt. In the restricted case we cannot calculate correlations betweendigldih different
values ofxq. In the full case, we can. For our needs, the restricted statistical theory will be sufficient.

Introduce an operatdiy, [p] via the kernel

Q)&Oﬁ[p](t,y,’f)Eéaﬁ5(t—’b')5<y—X0—p(t)), (54)

= Ua(X0+p(X0at0‘t)at)v (53)
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such that

+o0

Qolplua = [ dy [ dr Qiglpl(Ly. )up(,7) = Ualio+p(0).0). (55)

We also introduce a functionéll, 1, [u] that constructp,, from the velocity field. This operation is of course
admissible in both the restricted and the full theory.

Sincep = Ly, 1,[U] is equivalent t, = Qx,[p]Uq, it follows that there exists a functiondu] such that
O[pa — Qe [P]Ua] = J[U]d[p — Ly, 1,[U]] which can be evaluated by integrating both sides pver

A= [ D lpu— Dolp]ue (56)

The integral is a Feynman path integral [28] (a pedagogical introduction is given in Ref. [101]). Here,
P(to) is the domain of integration and it is defined as the set opglt) that satisfy the initial condition

pa(to) =0. We also defin@ as the set of all possible paths. Suppose we would like to evaluate the ensemble
averageM|u,p]) whereM is some arbitrary functional gf, andu,. We treat the velocity field, as a

forcing field with known statistics. We assume then that we know how to evaluate the ensemble average of
any expression in terms of the velocity field. We have:

(Ml pl) = Ml Lol = [ Dp Mlupl8lp — Lrall]

— [ Dp Ml pI3lp  Laoll)
(to)

- /(P(to) 'Dp <M[U,p]J_1[U]5[pa - on[p]UaD

~ [, D {Miu.pla ) [ DB expliulpa—Bulplua) )

P(to)
:/%) Dp /?Dﬁ exp(iBupo) (MU, p]J L [u] eXp( —i B Qx,[P]Ux))-

Here, we have used the convention that repeated Greek indices imply integrating temporal coordinates
throughout their domain in addition to summation of vector components. For example, the expression
Bape is an implicit abbreviation for

ﬁapoc = dt ﬁa(t)pa(t)‘ (57)

We also use the formal representation for the delta functional

61u/ = | DB explifoua). (58)
which is valid in the sense of generalized functional distributions.

If the velocity field is incompressible, it can be shown thaf = 1. A detailed proof of this result is
given in appendix B. Then, the stochastic theory simplifies to:

Miup) = [ 1y DPDB EXRiBpe) (M[u. ]l expl i D[Pt (59)

This statement is a concise expression of the statistical theory for Lagrangian trajectories.
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C. Transform back to Eulerian representation

We now use the statistical theory to derive the relationship between the quasi-Lagrangian correlation
and the Eulerian correlation. The proof given here follows the one given by L'vov and Procaccia [72], but
it is presented in more detail to show the underlying assumptions. The proof makes an essential use of Eq.
(59) derived above.

The argument is essentially based on the following identity:

Pa(ro,to+ Atft) = pe(ro,tolt) — pa(ro,tolto + At). (60)

To see why this is true, note that the expression on the right-hand side satisfies the governing equation for
thety + At problem, and it also satisfies its initial condition. Therefore, by uniqueness, the right-hand side
has to be equal to the left-hand side.

To facilitate with calculations, we defirfey, [, p] as

N[5 p] = (M exB B0 o)) )
~ (Mluplexp(~i fatpaltiuato+p(.0) ) ), 62)

and we also use the notatidvi(xo,tp) for the ensemble averag®|u, p]) evaluated under a given choice
of Xo andty. Consequently, we may write

Mixato) = [ vy PP DB BB Mol ) (63)

= / /?(to)x?i?pﬂﬁ eXp<i / dtﬁa(t)apgt(t)>mxo[[3, p). (64)

The key statement to be proven is the following proposition, that shows the connection between station-
arity in the quasi-Lagrangian representation and homogeneity in the Eulerian representation.

Proposition 3 If the velocity field u is incompressible, then

VB € P:¥x e RY: My,[B,p +X] = My, [B,p] = VAL € R : M(Xo,to +At) = M(Xo,to) (65)

Proof:
To facilitate our argument, introduce a new fidlg defined as equal to the right hand side of (60).

Aa(rosto[t) = pa(ro,to+Atft) (66)
= Pa(ro.toft) — pa(ro,tolto+ At) = Bygpg. (67)

The connection betweeh, andpy, is linear, in the sense that we can construct an appropriate kBgel

made of delta functions that transforms one field into the other. The functional determiistedual to

1, so achange in variables under the path integral does not introduce an additional factor,hamelp.

This is usually true with simple transformations, such as space shifting and rotations, because they merely
reshuffle the order in which we integrate over all possible histories. In this case, we need to take into account
that the permissible histories are constrained by the initial conditjdno, to|to + At) = O which is different

from the initial condition of the fielg,. It follows that, while there is no need to introduce a functional
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determinant, the domain of integration has to change fPdtg) to P(to + At) . Finally, it is easy to see that
dAq /0t = dpy/dt and the hypothesis implies thiaty, [, p] = My, [B,A]. We may then write:

. dpu(t
ot~ [ pvpens(i fatpu e )t (p.p (68)
Plto) x P ot
= [ oamp exp(i [ ﬁa<t>“°‘“)) M B, 2] (69)
P(to-+At) x P ot
= M(Xo,to + At) VAL € R. (70)
Proposition 4 If ug is incompressible, then
u € H;, = VAt € R : Wy (Xo,to + At|x,X',t) XX Wi (X0, to|X, X', t). (71)

Proof: Letn € N* be given, and define the functiordlu, p] as

n
Mlu,p] = HWak(xo,to\xij’kjt) (72)
k=1
n
= [ [Uax (X + p (X0, to[t), 1) — Uay, (X' + p (X0, to]t), 1)) (73)
k=1

Consequently, the functionady, [, p] reads

20lB.p] = (M plexp( i [ dtfuluaxo+p(01.0)) ) 79
=5 G [ () Bt

X < llljwﬁl (Xo,to‘X| 7X,| 7t>] [lﬁl U(Xk(XO + p(tk>,tk)] > . (75)

From the assumption € J(;, we see that the ensemble average in the equation above is invariant with
respect to a uniform spatial shift. It follows tHdit,[8, p +X] = My, [B,p], ¥x € RY, and using proposition
3, this implies thaiV{(xo,to + At) = M(Xo,10), VAt € R. Consequently, we have

?n(Xo,to‘{X}n,'[) = M(Xo,to) = M(Xo,to+At) (76)
= Fn(Xo,to+ At[{X}n,t), Vn e N*. 77)

The claim (46) follows by combining proposition 4 with proposition 1. It should be noted that once
the relationship between quasi-Lagrangian correlation functions and Eulerian correlation functions is es-
tablished, it can be easily extended to response functions as well without making any further assump-
tions. Starting from the stationarity condition (51), we deduce from the quasi-Lagrangian formulation of
the Navier-Stokes equations that the quasi-Lagrangian forcing field is also stationary. Then, we may use
an MSR theory on the quasi-Lagrangian Navier-Stokes equations to obtain stationarity on the response
functions. From there, the relationship between the quasi-Lagrangian response functions and the Eulerian
response functions can be easily established.
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D. A derivation via conditional local homogeneity

The artifact introduced by the quasi-Lagrangian formulation is that the turbulent velocity field is being
perceived from the viewpoint of an arbitrary fluid particle whose own motion is also stochastic. Conse-
quently, to relate the quasi-Lagrangian correlation tet¥§@Ko,to|{X }n,t) with the Eulerian correlation
tensorF,({X}n,t) @ certain sense of homogeneity is required to ensure that the velocity field is being per-
ceived by the fluid particle in the same way regardless of the actual position of the particle. Our analysis
of the proof, given previously, has shown that the homogeneity condition used by the proof is stronger than
the conditioru € H; required to eliminate the sweeping interactions. What is particularly interesting about
the stronger conditiom € J(;, is that it requires translational invariance from a group of rireny-time
correlation tensorg;;, .

Let us now consider an alternative approach. Introduce the conditional correlation tensor defined as

n
Fn(Xo,to, Y[{X}n,t) = < [] Wex (X0, tol X, X'k, )| P (X0, tolt) = Y> (78)
K=1

n
= < M W, (X +Y, X'k +Y,t) | p(Xo, to[t) —Y>- (79)
K1

This definition is identical to the definition of the quasi-Lagrangian correlation tehg®s, to| { X }n,t), ex-

cept that the ensemble average is replaced with the conditional average predicated on the fluid particle being
located at positioty at a given timet. Let p(Xo,to|X,t) be the probability that a fluid particle originating

at (xo,to) will be located atx at timet. It follows that the Eulerian correlation tensiy({X}n,t) and the
quasi-Lagrangian tens6(Xo,to|{X }n,t) are given by

Fal (X3 t) = [ dy Tl fo,yI{X}n =Y. P, oly. ) (80)
Fa(00-tol (X 1) = [ dy Fa(x0.10.Y (X} 1)P0x0-toy-). (81

It is trivial to see that ifFn(Xo,to0, y|{X }n,t) is invariant with respect t¢X }, — {X}n + Ax (conditional
local homogeneity), then the Eulerian correlator and the quasi-Lagrangian correlator will be equal.

Now let us consider the implications from a Kolmogorov-like definition of local homogeneity where we
assume thaff,(xo, to, Y|{X }n,t) is independent of withoutassuming invariance with respect{¥ }, —
{X}n+Ax. Then we have

T 0{X}nrt) = [ dy Faloto.y{X}n1)POK0.loly. 1) ®2)
= Falx0.to,yI{X}n.t) [ d pxo.toly:t) 83)
= Fn(Xo,to, Y{X}n, 1), (84)

and
Fal (X ) = [ dy Fa(osto,y1 (X }n — Y. )P(xo. oly. 1) ®5)
= [ dy Fnlxa.tol{X}n—y.1) POx0-toly ). (86)

To establish equality between the Eulerian correlation teRgdiX }n,t) and the quasi-Lagrangian tensor
Fn(Xo,to/{X }n,t), we also need(Xo,to|{X }n,t) to be invariant with respect tpX }, — {X}n+Ax. Un-
fortunately, this can only be established if we also assume an ergodic-like hypothegéxthtiix,t) is
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independent oX. It is reasonable to expect this hypothesis to hold fsrtg. Then, it follows that

gjn(X()atO‘{x}n +Axat) :/dy Srn(X07t07y|{X}n+Ax,t)p(X07t0|Yat) (87)
:/dy Fn(Xo,to, Y +AX[{X }n +AX,t) p(Xo, toly + AX,t) (88)
= /dy Fn(Xo,to, YI{X}n, t) P(Xo,toly;t) = Fn(Xo,to/{X}n,1). (89)

This result, combined with Eq. (86) and (84), implies that

Fn(Xo, tol{X}n,t) = Fa({X}n,t), (90)
which in turn, combined with Eq. (89) also gives the Hy condition:

Fo({X}n+0x,1) = Fy({Xn,t), ¥AX € RY, (91)

It appears that the ergodic assumptionpdRro, to|x,t) is necessary to derive Egs. (89), (90), and (91). The
assumption of invariance df,(Xo, to, y|{X }n,t) with respect toy is not sufficient.

As we have mentioned previously, in his first paper, Kolmogorov [54] also defined local homogeneity
using a conditional ensemble average conditioned on the fluid velocity at the reference point. Because of
the approximate nature of the quasi-Lagrangian transformation used by Kolmogorov (which is not identical
to the quasi-Lagrangian transformation of Belinicher and L'vov), his definition can be rephrased in terms of
a conditional average on thecation of the fluid particle. We have shown that if one uses the Belinicher-
L'vov quasi-Lagrangian transformation instead of the Kolmogorov quasi-Lagrangian transformation, and
changes the conditional ensemble average from usingdloeity of the reference fluid particle to using
the location of the reference fluid particle, then this modified definition of local homogeneity combined
with a reasonable ergodic-like hypothed@eseliminate the sweeping interactions. We may conjecture that
Kolmogorov had the elimination of sweeping in mind when he formulated his definition, but there is no
such explicit indication in his papers.

V. HOW THE ELIMINATION OF THE SWEEPING INTERACTIONS SHOULD BE JUSTIFIED

We have seen that when using the quasi-Lagrangian transformation we end up making the homogeneity
assumptioru € 3}, which is much stronger than the assumption of incremental homogeneity(y(A)
of the Frisch framework of hypotheses, otherwise we cannot return back to the Eulerian representation.
Furthermore, this homogeneity assumption is introduced implicitly just by assuming stationarity in the
guasi-Lagrangian representation, even if we don’t wish to go back to the Eulerian representation (see
proposition 2). The question that we would like to consider now is whether the utility of the theoretical
work [7, 8, 70, 72—-74, 79, 80] that relies on the transformation itself is diminished. We would like to claim
that this is not the case, and define a line of investigation that can clarify this further. From an experimental
standpoint, the very existence of a robust energy cascade indicates that the sweeping effect is confined to the
large scales, and therefore it can be neglected with impunity. The main question that needs to be addressed
is: How should one justifgheoreticallythe elimination of the sweeping interactions?

A. Elimination of the sweeping interactions

It is widely accepted that the behavior of the structure functions in the inertial range does not depend on
the statistical properties of forcing, as long as the spectrum of the forcing term is confined to large length
scales. In a sense, as the energy cascades toward smaller length scales, the characteristic features of the
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forcing term are “forgotten”. One may conjecture that the sweeping interactions behave in a similar way
as a large-scale forcing term whose effect is forgotten in the inertial range. We may base this conjecture
on the fact that even though the required homogeneity symretry{;(A) may not hold exactly, it can

be expected to hold asymptotically at small scales. Consequently, even though we cayioXs$gil = 0

exactly, we might expect this term to become rapidly small when the average sep&&@iween the
points{X}, goes to zero. But does it vanish rapidly enough? A rigorous argument would have to estimate
how fastl,, as a function oR, is approaching zero in the small-scale lilRjt¢o — 0, and then calculate the
scaling exponemh, associated with the ratio

In(R{X}n) R\
Tneari = (&) 92)

whereRis the scaling parameter adglthe forcing scale. Then, provided that one starts with the assumption
u € Hop, proving A, > 0 is also a proof thati € H;(A) which is sufficient to eliminate the sweeping
interactions. Let, be the scaling exponent &f(R{X},). If we assume that the generalized structure
functions Fy(R{X}n) satisfy the fusion rules [75, 76], then the scaling exponend@f,.1(R{X}n) is
{nr1— 1 and it follows thaty, = A, — (&n1 — 1). The challenge, then, is to calculate the scaling exponents
An Which are not likely to be universal.

It is easy to see that this argument cannot be extended to the inverse energy cascade of two-dimensional
turbulence. In that case, the forcing term operates at large wavenumbers. Given that we can reasonably
assume that the inverse energy cascade is local, we expect that the forcing term is forgotten in the inertial
range. The problem is that the energy is how going towards small wavenumbers. As we havéynoted,
essentially measures how much homogeneity is violated at a given lengttRsoaldarge length scales,
the flow will begin to sense the violation of homogeneity caused by the boundary conditions which will in
turn make the sweeping teriplarger in magnitude. If it becomes comparable to the tebm&n. 1, it will
probably disrupt the inverse energy cascade.

Numerical simulations have shown that it is possible to obtain an inverse energy cascade under certain
conditions [10], but it can also be disrupted under other conditions [11, 16-18]. Physically, this disruption
arises from the spontaneous generation of long-lived coherent vortices that carry a significant amount of
enstrophy. An explanation of this effect was given by Boffadtaal [10], in terms of the “bottleneck”
effect [27]. The general idea is that the behavior of the energy spectrum in the inertial range is modified
at wavenumbers near the dissipation range because some of the triad interactions at these length scales
are disrupted by the dissipation term, thus making the transfer of energy less efficient. It is reasonable to
anticipate the same effect in a high-resolution simulation of the inverse energy cascade, where the cascade
has manifested successfully, without being arrested by coherent structures. However, we would like to
suggest that the deviations observed by Danilov and Gurarie [16—18] and Borue [11] are more likely to be
caused by a similar effect where the triad interactions are disrigytéae sweeping term rather than the
dissipation terniD,F, at large scales.

The coherent structures that appear in two-dimensional turbulence can be conceptualized as concentrated
small blobs of very high vorticity that raise a two-dimensional “hurricane” in the velocity field around them.
Thus, from an intuitive standpoint, it is reasonable to expect that their presence in the flow should amplify
the sweeping effect. From a theoretical perspective, one can sdy &éxaites a “particular” solution of the
statistical theory for the correlatoFs which combines linearly [39, 41] with the “homogeneous” solution
of the homogeneous theo,F,. 1 = 0 that corresponds to the inverse energy cascade. It follows then that
to obtain an inverse energy cascade in the forced-dissipative setting, one requires a dissipation term at large
scales which will not only dispose of the incoming energy, but will also damp out the sweeping,term
over the entire range of length scales where it is comparabifp @, 1. It also follows that there should
be a conspicuous discrepancy between the energy spectrum in the quasi-Lagrangian representation and the
energy spectrum in the Eulerian representation, when the coherent structures provide the dominant contri-
bution to the Eulerian energy spectrum. It is well-known that in the Eulerian representation the coherent
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structures contribute a dominakt® term [11]. On the other hand, in the quasi-Lagrangian representation,
one should recover the %3 contribution from the underlying inverse energy cascade. It has already been
established that the underlyifg®/3 spectrum can be recovered if the coherent structures are artificially re-
moved, either by a wavelet technique [29], or more crudely [11, 17]. If our conjecture holds, then it should
be possible to obtain the same effect simply by transforming into the quasi-Lagrangian representation.

We have referenced the inverse energy cascade of two-dimensional turbulence as an example where it
is not safe to “eliminate” the sweeping interactions. The criticism of the quasi-Lagrangian formulation by
Mou and Weichman [86] is essentially that it has not been demonstrated that it is “safe”, in the same sense,
to eliminate the sweeping interactions in the downscale energy cascade of three-dimensional turbulence.

B. Alternatives to Lagrangian transformations

It is possible to use the theoretical wdnksedon the quasi-Lagrangian transformation in a way that
requires only the assumptianc H;(A) instead ofu € ;). This can be done via the following line of ar-
gument: The quasi-Lagrangian formulation modifies the Navier-Stokes equations by redefining the material
derivative (see appendix A). The modified equation remains mathematically equivalent to the Navier-Stokes
equation because the velocity field is reinterpreted from an Eulerian field into a quasi-Lagrangian field. It
is precisely this reinterpretation which necessitates the stronger assumpgtt®i}, to enable a return back
to the Eulerian representation. On the other hand, if we accept the hypothesis that the sweeping interactions
can be absorbed into the statistical forcing tewa,can modify the equation of motion in precisely the same
way without changing the interpretation of the velocity fididom there, one can derive the same balance
equations (28) except that one will halye= 0, and consequently the only assumption that is being made
implicitly is justu € H;(A). One may then proceed from this Eulerian modified Navier-Stokes equation and
develop the Lvov-Procaccia theory [7, 8, 70, 72—74, 79, 80] with impunity, since the modified governing
equation would have the same mathematical form as the quasi-Lagrangian Navier-Stokes equation.

In geometrical language, the difference between the quasi-Lagrangian transformation and what | propose
is the following: In the quasi-Lagrangian transformation we perceive the flow from the point of view of
a single fluid particle. The claim to be established is that the one-time statistical properties of velocity
differences should remain invariant when switching between the inertial frame of reference and the non-
inertial frame of reference defined by the fluid particle. My suggestion is to consider a transformation
where for a given point in space and tiriet) we perceive the flow from the point of view of whatever
fluid particle just happens to be there(ag,t). This leads to the Navier-Stokes equations for the Eulerian
velocity differencesn, (x,x’,t). Then, the homogeneity assumptiore 3; is sufficient to establish the
claim that the one-time statistical properties of velocity differenegs, x’,t) will remain invariant under a
transformation from the inertial frame of reference to a non-inertial frame of reference defined by the fluid
particle at(xo,t). This claim is in fact mathematically equivalent to the conditipa: O which follows from
ue Hi.

In connection with this argument, it is interesting to note that the idea of just modifying the Navier-
Stokes equation was considered by Kraichnan [59] in 1964, who suggested a more crude modification. This
modification brute-forces locality in Fourier space by discarding triad interactions across a wide wavenum-
ber interval and retaining only the local triad interactions. From the same paper we learn that Kraichnan
suspected that there was a relationship between the quasi-Lagrangian transformation of Kolmogorov and
the general idea of modifying the Navier-Stokes equation in such a way but noted that bringing that out
rigorously is difficult. In my view the quasi-Lagrangian transformation of Belinicher and Lvov, which
is different from the Lagrangian transformation used by Kraichnan in his theories, is the key to finding
possibly the best way to modify the Navier-Stokes equations in the way that Kraichnan and Kolmogorov
intended.

An alternative argument that was proposed by Yakhot [107] and used by Giles [36] to calculate a per-
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turbation expansion for the scaling exponeéitseliminates the sweeping interactions by modifying the
statistical theory itself. This is different from the quasi-Lagrangian formulation and my proposal where the
change is made on the governing equation ueth propagated into the statistical theory. Again, to justify

why one can modify the statistical theory requires the assumpt®ofi{1(A) or an argument justifying the
hypothesis that the sweeping interactions can be modeled as large-scale stochastic forcing, which brings us
back to the challenge of showing thist > 0.

C. Estimating the scaling exponent\,

The problem of calculating the scaling exponehtsand A, needs to be investigated primarily with
numerical simulations and the analysis of experimental data. However, it is possible to make a speculative
theoretical calculation, if we are willing to commit the following crimes against reality: First, we assume
that the velocity fieldu,(x,t) can be modeled as a random gaussian delta-correlated (in time) stochastic
field acting at large scales. Furthermore, we assume that the velocityfielct) has an effect on the
velocity differenceswy (x,x’,t) via the sweeping interactions, but completely disregard the reverse effect
of the velocity differences on the velocity field via eddy viscosity, and the facuthat t) andw, (x, X', t)
are obviously constrained by the definitionwaf (x,x/,t). In other words, we assume thag (x,x’,t) is
advected as a passive scalaryx,t) and thatu,(x,t) can be assumed to be a random gaussian delta-
correlated in time field. Note thai, (x,x’,t) is still also forced byf,,.

We have shown in Appendix C that under these assumptions the sweeping, (€xh,,t) can be
decomposed into three contributions:

In(Dnt) = Iy (X0 D)+ n ) (X t) + I (X n.b), (93)
which are given by

L@ ({Xnt) = <uﬁ({x}n’t)> Heo20P ({X b, 1), (94)
iz (X t) ; z ity om 1O (X ) g (X, X ), (95)
i (XD Z Z B (X, X1, e 20moB [y m) (96)

Here,H%02 0 Bfﬁ , andl,, are defined as

H02 B (11 t) Z (9p i + Ip s )12 ({X I, 1) | (97)
BYP (X, Y, 1) = (U (Y, )wa (X, 1)) — (Ug (Y, 1)) (W (X, 1)), (98)
2
IOC(X17X27t) = Z (a&xk +8ﬁ,X’k)B?B (X17X27t)' (99)
k=1

It is worth noting that the assumptiane 3o implies thatHa({X}n,t) = 0 and therefore, ;) ({X}n,t) =
n,3)({X}n,t) = 0. However, we will retain generality and keep all three terms. It should also be stressed that

we arenotassuming statistical independence between the velocityighki t) and the velocity differences

Wy (X,X',t). On the contrary, we assume that the two are related to each other in the sense that the velocity

field uy (x,1) is forcing the velocity differences, (x,x’,t) via the sweeping interactions. However, the case

of total statistical independence gives exattly{ X }n,t) = In (1)({X}n,t), SO it is covered by our argument
bellow.
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Let A be the scaling exponent Bﬁ‘ﬁ such that
B (RX,RY, t) ~ (R/o)*, (100)
for scales in the inertial range. It immediately follows thascales as
la(RX1,RX2.t) ~ (R/£0)* (1/R)9(R). (101)

Here,g(R) is a smooth function which represents departure from local homogeneity in thewserigg.
Without loss of generality, we associate the scaling expdmenthe functiorg(R). The contribution(1/R)
arises from the derivatives. Using a similar line of argument we seéthstales as

g 90 (R{X }n, ) ~ (R/£0)(1/R) fo(R), (102)

where f,(R) is also a smooth function representing departure from incremental homogereityy. We
associate the scaling exponegtto the functionf,(R). The three contributions ta({X}n,t) then scale as

In,(1) (R{X}n.t) ~ (R/Lo)*"(1/R) fa(R), (103)
In(2) (R{X}n,t) ~ (R/lo)*(R/¢0)* (1/R)Y(R), (104)
In.(3) (R{X}n,t) ~ (R/€0)* (R/€0)*"*(1/R) fn-1(R), (105)

and from power counting we find that the corresponding scaling exponents are
An,l =Cn—1+an, ln,2 =lh1+A—1+Db, and)tn,3 =C1+A—1+an 1. (106)

Using the multifractal formulation, the contribution that supports théldelr exponenh gives ¢, = nh+
Z(h) , which gives the following evaluation for the scaling exponeénts

Bna(h) = (Gh—1+an) = (Cnya—1) =—h+an, (107)
An2(h) = (Gn-1+ A = 1+4D0) = (Grr1—1) = -2h+ 1+, (108)
Bng(h) = (Gr-1+A —1+an1) — (L1 —1) = —2h+A +an 1 (109)

Because the functionf,(R) andg(R) are smooth, we can Taylor-expand them aroRrd 0 and get, to

first order,a, = b= 1. Itis also reasonable to assume that 0 sincerﬁ involves a velocity difference.

From these evaluations we find that the window for positive scaling expoAgrissat leasth € (0,1/2).
Admittedly, this is a rather narrow interval, even though it is sufficient for the downscale energy cascade
of three-dimensional turbulence. However, the situation is probably a lot better than that. If we allow
negative evaluations @&, which can be defined by reflecting the poifi¥}, around their center of mass,

we may expect thaR = 0 is an extremum and therefofg(R) = ¢'(R) = 0. It is easy to show that, using

the evaluatiora,, = b = 2, we find that the window for positive scaling exponeffscovers the entire

rangeh € (0,1) of local scaling exponents. Although this is somewhat encouraging, the real challenge is to
determine what happens in reality and make a comparison of that against the speculative predictions given
above.

VI. DISCUSSION AND CONCLUSION

In the original formulation of his theory, Kolmogorov assumed local homogeneity, local isotropy, and
local stationarity in a non-Eulerian representation very similar to the quasi-Lagrangian representation of
Belinicher and L'vov. Frisch [30, 31] revised this argument by stating the same assumptions in the Eulerian
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representation. This is a decision that we agree with, because the energy spectrum and the structure func-
tions are both Eulerian rather than Lagrangian quantities. Furthermore, as we have argued in the previous
section, it is desirable to justify the elimination of the sweeping interactions theoretically, rather than hide
the problem under a stronger definition of local homogeneity. Frisch [31] has also chosen to strengthen
the assumption of self-similarity to make it possible to deduce all the scaling expafeatsl obtain

the prediction{, = n/3. Ultimately, this assumption needs to be replaced with a weaker assumption of
self-similarity to permit intermittency corrections, and this is the approach followed in the L'vov-Procaccia
theory [7, 8, 70, 7274, 79, 80]. Frisch himself proposed the multi-fractal hypothesis [31], which converges
with the approach of Belinicheat al. in the papers [7, 8, 79] in a very interesting way. Finally, Frisch [31]
made the very important observation that, in order to carry Kolmogorov’s argument through, it is necessary
to assume the existence of an anomalous energy sink.

In the present paper we have shown that the assumptions of the Frisch framework are still not strong
enough to prove the/%-law in the Eulerian representation. We have also shown that the problem of elim-
inating the sweeping interactions with a predictive argument remains open. The hypotke$ig(A)
can rectify both problems. Even better, starting from the more reasonable hypaette$ig(A), a rigor-
ous proof that establisheés, > 0 would be sufficient to establishe H;(A). A positive response to the
guestion raised recently by Frisch [32] concerning the self-consistency of incremental homogeneity in the
u € Ho(A) sense would also follow from the validity of the conjecti¢e> 0. This would be a fundamental
breakthrough finally putting to rest the problem of the sweeping interactions that has concerned the com-
munity for the last 60 years. It would essentially establish that the sweeping interactions can be modeled as
stochastic forcing acting only at large scales. Then we can simply drop from the Navier-Stokes equations
the portion of the nonlinearity associated with the sweeping interactions, and build the entire statistical the-
ory on the modified Navier-Stokes equations. We have also explained why it may not be desirable to use
the Belinicher-L'vov quasi-Lagrangian formulation to go around the problem. The reason is that using the
quasi-Lagrangian formulation requires the even stronger assump#di;,.

We would also like to emphasize that our conclusionsnatea criticism of the L'vov-Procaccia theory
basedon the quasi-Lagrangian formulation [7, 8, 70, 72-74, 79, 80]. In fact, as long as one’s intention
is to solve the problem dflobally homogeneous turbulence, there is no issue whatsoever with respect to
the sweeping interactions and the quasi-Lagrangian transformation, provided that the assumption of global
homogeneity isnany-timerather tharone-time On the other hand, it is desirable to move away from the
assumptions of global homogeneity and global isotropy, which cannot be physically realized, and take steps
towards building a theory based on the assumptions of asymptotic incremental homogert&igy.A) and
incremental isotropy in an Eulerian framework, as envisioned by Frisch. Our paper implies that the results
of the L'vov-Procaccia theory [7, 8, 70, 72—74, 79, 80] can be readily carried over and applied towards
this goal, provided that the hypothedig > 0 is proved, and our proposal of section V B rather than the
guasi-Lagrangian transformation is employed.
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APPENDIX A: QUASI-LAGRANGIAN REPRESENTATION OF THE NAVIER-STOKES EQUATIONS

We show how the quasi-Lagrangian transformation makes it possible to write the Navier-Stokes equa-
tions in terms of velocity differences, thereby eliminating the sweeping interactions. The reader should
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compare this argument with the derivation of th&4aw by Monin and Yaglom [85], to see that they are
doing the same thing.
We begin by noting that the Eulerian velocity field(x,t) can be reconstructed from, (Xo, to|X,t) as

Uac(X,t) = Ug (X — p (X0, tolt) + P (Xo.tolt) ) = Ve (Xo, tolX — p (X, tolt) ). (A1)
To eliminatep (Xo, to|t) we use

Pa(Xo,tolt) / d7 ug (X + p(Xo,to|7), T / d7 Vg (Xo,to0|X, T), (A2)

and thereforeyy (x,t) reads

Ug (X, 1) = Vg (xo,t0|x— /ttdr v(xo,t0|x,r),t) ) (A3)
0

Let Ry (Xo,to|X,t) be defined as

Ro (X0, to[X,t) = (X)o — /t: d7 Vo (Xo,to[X, 7) = (X)a — P (X0, tot), (A4)

such thatuy (X,t) = Vg (Xo,to|R(Xo,to|X,t),t). Also, definevd (xo,tolt) = Ve (Xo,to|Xo,t) such that we may
write conciselyw, = Vo — V3. Itis easy to see that, xRs = 8,5 anddR,/dt = —\§, and we may use
these relations to show that the quasi-Lagrangian transformation preserves incompressibility, as follows:

OaxWo = g x (Ve —Vg) = doxVo = (aﬁ,xvoc>6aﬁ = (aﬁ,xva>(aa,xRﬁ) = dgxUg = 0. (A5)

The key result is that the sweeping interactions are eliminated in the transformation of the material
derivative itself. The show this, consider an arbitrary fidlck,t) and its quasi-Lagrangian transformation
U(xo,to|X,t) (where the fluid particle follows the Eulerian velocity field(x,t) ). From the relation

u (Xat) = u(X07t0‘R<XO7t0‘X7t)7t)a (AG)
we find that

ouU au 8Ra au

and

aa7xU — (aﬁxu)<aa7xRB) — (aﬁ{xu)SaB — (aa’xu), (A8)

and it follows that:

DU JdU U
Bt~ gt T Yedal =G

This equation is identical to the unnumbered equation preceding equation (22.14) in Monin and Yaglom
[85]. It is easy to see that since the material derivative is written in terms of velocity differences, if it is
applied onwg (X, to|X,t) we shall obtain an equation written exclusively in terms of velocity differences.

+ W dg x U (A9)
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APPENDIX B: EVALUATION OF J[y]

In this appendix, we provide a detailed evaluation of the functional determifdrthat we encounter
in the derivation of the MSR theory for Lagrangian trajectories. The procedure was outlined briefly in L'vov
and Procaccia [72]. However it is not as trivial as it seems. We have followed the outline and rederived the
following more complete version of the proof:

First, we discretize time ift intervals and introduce the following notation:

th = to + nAt
Pa = Pa(Xo,loltn)
ua = ua(X0+pa7tn>
Ug" = Ug (X0 + Py, tm)-

(B1)

Each of the objectp?,ul,uy" is a field that is a function ofo only. Note thatpQ = 0. The governing
equation for the Lagrangian trajectories field is equivalent to a set of the following discretized equations:

p3+l B p(r)} n

" = Uy, B2
At @ (B2)

There are, of course, many alternative discretizations to choose from. The rule is that, once we have cho-

sen a discretization, we have to stay with it. We cannot switch to another scheme in the middle of the

computations, for the sake of convenience. To evalliafeve proceed from the path integral definition:

3= [ Dp o~y lplug

o do" . (gt —pg g
—A'{Tonezl__l{o}/ a5< a e (83)

 An(At) 2 Ba(AY)

- AIETOnEI [1 a ’

1 a n=—o

whereA,(At) andBy(At) are defined as

A= /d n+15 pg+1_pg_ n
An( )_ pOC At uOC ’

n+1_
n(At) /dpa < p"‘—ug).

Here,a is a normalization constant such that the product in (B3) converges. Obviously, if such a constant
exists, it will be unique.
TheA, integral is easy to evaluate:

(B4)

An(At) = /dp”+1 AtS(phtt —ph — AtUl) = At. (B5)

To evaluateB,, we need to rewrite the discretized governing equation so that it is explicit with resgeLt to

n+1
Pa

— P = Dtug(Xo+ pg,tn)
= Mtug (X0 + pi™t — piriat 4+ O(At?), t)
= At (Ua(Xo+ pf ™ t) — P A I (Ua (Xo+ p§ 1)) + O(AL?)

= ug "t — (Pt — pp)dpu AL+ O(AL),

(B6)
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therefore

(8ap +Ipui ""B) (P — pp) = ug M. (B7)

We proceed by employing the following change of variables:

R, = (8qp + dpua’ "At)pp. (B8)

The integral differentials are transformed according to a determinant as follows:

dR;, = det(Sep + gy "At)dpy. (B9)

We will now show that incompressibility implies that the determinant is equal to 1. For brevity, introduce
Maﬁ = 5 o + 8ﬁ UrH_l "At. (BlO)

In the determinant expansion, every term other thlapM»,Ms3 is O(Atz) because it includes at least two
off-diagonal factors each of which contributes a factofAbf It follows that:

detM = M131M2,Masz + O(At?)
= (14 AtorU] ™" (14 Atdpuh ") (14 Atdsu] M) + O(At?)
= 14 AU "+ Uy " 4 95Ul M) + O(At?)
=1+ 0(At?).

(B11)

Note that in the last step we employed the incompressibility condition. It followsdiptat dR' . We
may now proceed and evaluate the integgal

Bn(At) :/dp”AtS[ nl_ph — Atul]

— At / dp" 8((8ap + U -"A) (03 — pf) — UG ")

= At(1+ O(At?)) (B12)
< [ AR 6((8ap -+ g "B — R, — At )

= At +O(At3).

In the last step, the crucial requirement is tpgfl and un+ln should not depend op} and therefordR),.

If we set the normalization constaat= At, thenJ[u] evaluates as:

+oo -1
o =m0 175

n=—o0
Note thatO(At?) contributions to the integrals,(At) andBn(At), which we have disregarded, would vanish
anyway after taking the limifst — 0, so they can be safely ignored with impunity.

—1 (B13)

APPENDIX C: SWEEPING INTERACTIONS UNDER A GAUSSIAN MEAN FIELD

We exploit the following mathematical result: fif,(x1,t1) is a Gaussian stochastic field, the ensemble
averages of the fornify(x1,t1)R[f]) can be evaluated for any analytic functiofif] by the following
integral

<fa(X1,t1)R[f]> = <fa(X1,t1)> <R[f]> +,/dX2dt2 <fa(X1,t1) fﬁ (X27t2>>c <5f;ﬂ(:ax[2f’]t2)> R (Cl)
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where

< fo (Xl,tl) fﬁ (X27t2)>c = < fo (Xl,tl) fﬁ (Xz,t2)> — <fa (Xl,t1)> < fﬁ (X2,t2)> . (C2)

This a generalization of Gaussian integration by parts, a technique attributed by Frisch [31] to Novikov [89],
Donsker [19] and Furutsu [33].
We begin the proof by defining the following correlation functions:

Ugp (X1, X2,t2) = (Ug (X1, t1)Ug (X2,t2) ) — (Ug (X1, t1)) (Ug (X2, t2) ) , (C3)

B P ({X}n, Y, t) = <(uﬁ(th)) ﬁwoq (let)] > —(Up (Y, 1)) Ry @ ({X}n,1), (C4)

n
Hgaoz00 (X}, t) [Z (9. + Ipaci F2 0 (X}, 1) | (C5)
and also the following response functions:
Xt y,to) =( ——— ), C6
Rop (X, 11,y t2) <5u,3(y &) (C6)

Oo

Rgl'“anﬁ({x}n,t’y’ T) = <6Ul§

o [feoss] ) -

Here, we disregard the fact thag (x,t) andw,(x,x’,t) are related by definition and assume that the only
effect of ug(x,t) on wy(x,x,t) is via the sweeping interaction. We also assume that the velocity field
Ug (X,t) is delta-correlated which implies that

/\

Ugp (X1,t1;X2,t2) = Uap (X1,X2)8(tg —t2). (C8)
We begin by splittindn({X }n,t) into two terms

In({X}n,t) = In 1) ({X}n,t) + In 213 ({Xn 1), (C9)
with I, 1) ({X}n,t) given by

a1a-+-0n mt) = S B x. + B x, n, o (X1,

I {XGn,t) k;( B x + . ){(u,3 {X}n,t <[|_!W (X),t ]>} (C10)
= <uI3({X}n,t)> [k§1(8ﬁ7xk —|—8ﬁ7x,k)|:na1a2~.‘an({X}n,t)] (Cll)
= (Ug({X}n, 1)) H{1o2 0P ({X }, 1) (C12)

Here we have used the incompressibility condition.
n
z (9B % + Ip.x) (Up({X}n,t)) = 0. (C13)

The remaining contribution th,({X}n,t) reads

_1

n
ZnZ

k=11

Iallzxigan {X}na a&Xk_|_8B7X,k)Bg1“'anﬁ({X}n7X|7t). (Cl4)

M
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Using Gaussian integration by parts we may write

B (X, Y, t) = /dzdr Ry (X,:2,7)Upy(y,t:2,7) + Up, (¥, 1:2,7)] (C15)
= [ 42 Ray (X, 2.0 Up3.2)+ Up, 2] (c16)

and
B P (X}, Y1) = / dzdt RO ({X o 1:2,7)[Up, (¥, t:2,T) + Up, (¥, £:2, 7)) (C17)
= [ 2RI (X}, t:2) Upyly,2) + Ugy Y 2)]. (C18)

The key step is to note that

0B _
R ({ X,y 1) <6UB 5 [l_!qu Xi,t ]> (C19)
d A SWigy (X, t
=5 (][], waxi0| Gt (c20)
=1\ [1=11%k ug (y,t)
n
= 3 R e ()R (Xks B Y1) (C21)
K=1
Here we exploit the fact, first pointed out in Ref. [74], that the variational derivative

(6w, (Xk,t))/(8ug(y,t)) is not correlated with the velocity differenceg, (X|,t) because no time is be-
ing allowed for the interaction to develop a correlation. This relationship between the response functions
implies a corresponding relationship betweii{X }n,Y,t) andB; (X, Y,t):

BB ({X1,, Y t) = / dz Llen“l;“k-lo‘k““'“”({X}ﬁ)RakB(xk,t;z,t)] [Upy(y,2) +Upy(Y',2)]  (C22)

I
M >
-n
e

ji.ak—lakJrl“‘an({X}ﬁ) [/dz R (Xk;1:Z,1)[Ug, (Y, 2) +UBy(y’,Z)] (C23)

=
sl
MR

= 1oa< 1041 otn({x}) akﬁ(x Y '[) (C24)

n—
1

=
Il

It immediately follows that

1 hnon
RO =50 3 5 5 Ot I i O (OODB (Xin 4.0, (c25)
k=11=1m=1
which can be broken down to
|rt111062 a” {X}n, Z Z FOC1 “Ofm-10m+1-- an({X}nm)lam(Xm,Xht), (C26)
1= 1m:1
|rtﬁa2 ocn ({X}n,t) Zl z Bamﬁ (Xm, X1, t )Hal “Otm—10lmy 1+ a"B({X}n) (C27)
with
2 5e?
Xl,X2, z 85 Xk+8[5 x’ (X]_,Xz,t). (C28)

k=1
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