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ON THE TOTAL PERIMETER OF DISJOINT CONVEX BODIES

ARSENIY AKOPYAN AND ALEXEY GLAZYRIN

Abstract. In this note we introduce a pseudometric on convex planar curves based
on distances between normal lines and show its basic properties. Then we use this
pseudometric to give a short proof of the theorem by Pinchasi that the sum of perimeters
of k convex planar bodies with disjoint interiors contained in a convex body of perimeter
p and diameter d is not greater than p+ 2(k − 1)d.

1. Introduction

For a convex body C, we denote its perimeter by per(C) and its diameter by diam(C).
Given a convex body C, it is natural to find the maximal total perimeter of k disjoint
convex bodies confined to C. Glazyrin and Morić studied this problem in [6] and con-
jectured that the upper bound is always per(C) + 2(k − 1)diam(C). They proved this
bound for some particular cases and made partial progress towards the general conjecture
by showing the upper bound 1.22195per(C) + 2(k − 1)diam(C). In [10], Pinchasi proved
the general conjecture.

Theorem 1.1. [Pinchasi] If convex planar bodies Ci, 1 ≤ i ≤ k, with disjoint interiors
are contained in a convex planar body C, then

k∑
i=1

per(Ci) ≤ per(C) + 2(k − 1)diam(C).

In this note we provide a short and (almost) self-contained proof of Theorem 1.1 using
the construction of a pseudometric on convex curves. Apart from the proof, we find
this pseudometric and its properties inherently interesting. For the sake of simplicity,
some statements will be formulated for strictly convex curves, that is, curves that have
exactly one common point with each supporting line. In particular, all curves of constant
widths are strictly convex curves (see, for instance, [9, Theorem 3.1.1]). All statements
are true for general convex curves as well, with minor modifications. Throughout the
whole paper by convex curves we always mean closed convex curves and use the term
almost interchangeably with convex bodies.

2. Pseudometric on convex curves

In this section we define the pseudometric on the set of convex planar curves and
adjacent notions. We fix a unit vector u0 in the plane and by uθ, θ ∈ [0, 2π], define a unit
vector that is obtained by rotating u0 by angle θ counterclockwise. Given a convex curve
C, for each uθ there is a unique supporting line to C such that uθ is orthogonal to it and
the direction of uθ corresponds to the half-plane containing C. For a common point of the
supporting line and C, we will say that uθ is an inward normal vector to C at this point.
By a normal line ℓθ(C) we denote the line through the common point of the supporting
line and C in the direction of uθ. Note that normal lines are uniquely defined for all θ
when C is strictly convex. For general convex curves, ℓθ are uniquely defined for all but
countably many values of θ (this follows, for instance, from the result in [3]). Therefore,
the integrals in the definitions below are properly defined for all pairs of convex curves.
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Definition 2.1. For two convex curves C1 and C2, we define

pdist(C1, C2) =
1

2

2π∫

0

dist(ℓθ(C1), ℓθ(C2))dθ,

where dist is a standard Euclidean distance between parallel lines.

Remark 2.2. It is easy to show that if instead of dist we take the signed distance between
lines, then the integral in the right hand side is zero.

Proposition 2.3. The space of all convex curves equipped with the distance from Def-
inition 2.1 is a pseudometric space. Moreover, the distance is convex with respect to
Minkowski addition, that is,

pdist(tC1 + (1− t)C2, D) ≤ t pdist(C1, D) + (1− t) pdist(C2, D),

for all convex curves C1, C2, D and for any t ∈ [0, 1]. The equality for t ∈ (0, 1) holds
only if ℓθ(C1) and ℓθ(C2) are on the same side of ℓθ(D) for all θ.

Proof. The triangle inequality follows immediately from the one-dimensional triangle in-
equality for each θ, that is, from

dist(ℓθ(C1), ℓθ(C3)) ≤ dist(ℓθ(C1), ℓθ(C2)) + dist(ℓθ(C2), ℓθ(C3)).

The remaining properties of a pseudometric follow trivially from the definition.
For convexity, note that the normal line of a Minkowski sum is the Minkowski sum of

normal lines of the summands:

ℓθ(tC1 + (1− t)C2) = tℓθ(C1) + (1− t)ℓθ(C2).

Now it remains to use the fact that for each θ the distance to a given line ℓθ(D) is a convex
function (in other terms, for a fixed real a, the real function |x− a| is convex). If ℓθ(C1)
and ℓθ(C2) are in different open half-planes defined by ℓθ(D) then, due to continuity, there
is an interval of θ where this holds and the inequality must be strict. �

A single point can be considered a degenerate strictly convex curve. Definition 2.1
and Proposition 2.3 work in this case just the same. Moreover, for two points v1 and v2,
pdist(v1, v2) coincides with the regular Euclidean distance multiplied by 2.
The distance from Definition 2.1 does not define a metric because there are curves

that are different but have the same normal line bundles, for example, concentric circles.
Similarly, we can generalize a perimeter of a convex curve.

Definition 2.4. For convex curves C and D,

pperD(C) =
1

2

2π∫

0

(dist(ℓrθ(C), ℓθ(D)) + dist(ℓlθ(C), ℓθ(D)))dθ,

where ℓrθ(C) and ℓlθ(C) are supporting lines to C parallel to ℓθ(D).

Note that the standard perimeter (curve length) per(C) can be obtained by a similar
formula with dist(ℓrθ(C), ℓlθ(C)) under the integral. Therefore, the triangle inequality
implies that pperD(C) ≥ per(C) and the equality holds if and only if each normal line of
D intersects C. This happens, for instance, when D is a disk containing C and the center
of D is inside C so pper is indeed a generalization of the standard Euclidean perimeter.
It immediately follows from the definitions that for any point v and any curve D,

pperD(v) = 2pdist(v,D).
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For curves of constant width, the definitions above become even more convenient. In

particular, ℓθ = ℓθ+π for each θ ∈ [0, π] so we can substitute 1
2

∫ 2π

0
by

∫ π

0
both in Defini-

tion 2.1 and Definition 2.4.
The following lemma essentially extends the definition of a circle to all curves of constant

widths using the distance from Definition 2.1.

Lemma 2.5. For a constant width curve D and a point v, pdist(v,D) = diam(D) for
v ∈ D, pdist(v,D) < diam(D) for v inside D, and pdist(v,D) > diam(D) for v outside D.

In order to prove this lemma, we will need the following result about convex curves.
Assume γ is a strictly convex curve parametrized by inward normal vectors, that is, γ(θ)
is a point on the curve, where the inward normal vector is uθ (γ is not injective for singular
points of the curve). We do not need a precise form of this parametrization but the mere
fact that γ(θ) is almost everywhere differentiable (this follows from [9, Theorem 5.1.1] or
from the theorem of Aleksandrov [2]). For each θ, we define a unit tangent vector vθ by
rotating uθ by π/2 clockwise.

Lemma 2.6. For all strictly convex curves γ and for any pair of θ1, θ2 such that 0 ≤
θ1 ≤ θ2 ≤ 2π,

θ2∫

θ1

γ(θ) · vθ dθ = γ(θ1) · uθ1 − γ(θ2) · uθ2,

where · is the standard dot product in the plane.

Proof. Differentiating γ(θ) · uθ we get γ̇ · uθ + γ · (−vθ) = −γ · vθ for almost all θ so the
integral at hand is just the difference of values of γ · vθ at θ1 and θ2. �

Remark 2.7. This lemma may be extended to general convex curves by taking into account
line segments in D or carefully approximating D with strictly convex curves.

We also note that all curves of constant width are naturally characterized by their
parametrizations using the support function [7], [8], [9, Theorem 5.3.5].
The dot product γ(θ) · vθ is precisely the distance from the origin 0 to the normal line

ℓθ taken with a sign. The integral calculated in Lemma 2.6 can be used to calculate a
part of pdist(0, γ) as |γ(θ1) · uθ1 − γ(θ2) · uθ2| when the origin lies on the same side of all
normal lines ℓθ for all θ ∈ [θ1, θ2]. This is exactly what we are going to do in the proof of
Lemma 2.5.

Proof of Lemma 2.5. Let v ∈ D and assume that uθ1 is the inward normal vector to D
at v. Without loss of generality, v = 0 and θ1 = 0. Parametrizing the curve as above,
v = γ(0). Let v′ = γ(π). Note that v′ is diametrically opposite to v on D.
Clearly, v lies on the same side of all ℓθ for θ ∈ (0, π) (v may belong to some of these

lines if it is a singular point of the curve). By Lemma 2.6,

pdist(v,D) =

π∫

0

dist(v, ℓθ) dθ = |γ(0) · u0 − γ(π) · uπ| = |γ(π)| = diam(D).

Let v be inside D. Assume v1 is the point in D closest to v. Then the line v1v
is a normal line of D. Assume it intersects D at the second point v2. v1 and v2 are
diametrically opposite points of D. There is a normal line ℓθ(D) such that v1 and v2 are
in different open half-planes with respect to this line (for example, when uθ is orthogonal
to the line v1v2). By the convexity part of Proposition 2.3, pdist(v,D) is strictly smaller
than t pdist(v1, D) + (1 − t) pdist(v2, D) for a certain t ∈ (0, 1). Since pdist(v1, D) =
pdist(v2, D) = diam(D), pdist(v,D) < diam(D).
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Let v be outside D. Connect it to any point v1 inside D. Assume the line segment
vv1 intersects D at v2. Then pdist(v2, D) = diam(D) and pdist(v1, D) < diam(D). By
convexity, pdist(v,D) > diam(D). �

In the last lemma of this section, we prove the connection between perimeters of convex
bodies in a partition and distances from vertices of this partition.

Lemma 2.8. If a convex body with boundary C is partitioned into convex bodies with
boundaries Ci with all partition vertices vj of degree 3, then for any convex curve D,

∑
i

pperD(Ci) = pperD(C) +
∑
j

pdist(vj, D).

Proof. There are countably many values of θ such that C or one of Ci has a supporting
line parallel to uθ with more than one common point with it. It is, therefore, sufficient
to check that for all other θ, the integrand is the same in both sides of the suggested
equality. Integrands in both sides contain distances from lines parallel to uθ to ℓθ(D).
We just need to carefully check that the lines are the same in the right and the left hand
sides.
First, we take into account lines that do not go through vertices of the partition. They

show up as supporting lines of C in the right hand side and then they show up in the left
hand side too, as supporting lines of Ci.
All the remaining lines are going through vertices of the partition. There are two

possible scenarios: all partition edges from a vertex vj are on one side with respect to a
line parallel to uθ or three edges are split into two non-empty groups. In the former case,
vj is necessarily in C and the line through vj contributes to the left hand side twice, in
two pper(Ci), and to the right hand side twice, in pper(C) and one pdist(vj). In the latter
case, the line through vj contributes only to one of pper(Ci) and to one pdist(vj). �

3. Total perimeter of convex bodies

In this section, we provide a short proof of Theorem 1.1. For the first step of the proof,
we use the structural result from the paper of Pinchasi.

Proposition 3.1. [10] For disjoint convex bodies C1, C2,. . ., Ck inside the convex body
D, there exist a partition of D into convex bodies C ′

1, C ′

2, . . ., C ′

k+l, l ≥ 0, such that
Ci ⊆ C ′

i for all 1 ≤ i ≤ k, and all C ′

j, k + 1 ≤ j ≤ k + l, have no common points with
each other and with the boundary of D.

Sets C ′

j, k + 1 ≤ j ≤ k + l, are called holes of the partition. Note that
∑k

1 per(C
′

i) ≥∑k
1 per(Ci) so it is sufficient to prove the bound of Theorem 1.1 for the extended case

only.
For the next step, we explain how to extend this partition to a partition of a constant

width body D′, D ⊆ D′. We will need the following lemma.

Lemma 3.2. [1, Lemma 4] Any finite convex partition of a convex body in R
2 can be

extended to a convex partition of R2.

We extend the partition of D to the partition C̃1, . . ., C̃k+l of the plane by Lemma 3.2
and use it to get a partition of D′ into C ′′

1 = C̃1 ∩ D′, . . ., C ′′

k+l = C̃k+l ∩ D′. Note that
this extension does not change any convex parts that were strictly inside D including all
holes. Let l1, l2, . . ., ln be the lengths of new line segments added to the extended parts
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of the partition (see Figure 1). Then

k∑
i=1

per(C ′

i)− per(D) =

k∑
i=1

per(C ′′

i )− per(D′)− 2

n∑
j=1

lj .

If D′ has the same diameter as D, then it is sufficient to prove the bound for D′. Any
convex body can be extended to a body of constant width [5, Theorem 54] so it is sufficient
for us to prove the bound of Theorem 1.1 for the case when the large convex body has
constant width.

l1

l2
l3

Figure 1. Extending a partition of a triangle to the Reuleaux triangle of
the same diameter

Boundaries of the partition sets form a plane graph. By adding vertices and introducing
degenerate edges and faces we can assume that all vertices in this graph have degree 3. In
the first scenario, assume there is a vertex p of the plane graph surrounded by non-holes
and connected to vertices p1, . . ., pr, consecutively. Then we can introduce a degenerate
hole p′1 . . . p

′

r (all vertices of the hole geometrically coincide with p and are distinguishable
as planar graph vertices only) with degenerate edges p′1p

′

2, . . ., p
′

rp
′

1 so that p1p
′

1, . . ., prp
′

r

are also edges of the plane graph. In the second scenario, assume there is a vertex p of
degree at least 4 on the boundary of the body D or p is a vertex of one of the holes.
Let p be connected to p1, . . ., pr, consecutively, with pp1 and ppr on the boundary of
D/hole. Then we can add vertices p′1, . . . , p

′

r (again geometrically coinciding with p) with
degenerate edges p′1p

′

2, . . ., p
′

r−1p
′

r lying consecutively on the boundary of D/hole so that
p1p

′

1, . . ., prp
′

r are also edges of the plane graph.
After all reductions, Theorem 1.1 follows from the following theorem.

Theorem 3.3. A constant width body D is partitioned into convex bodies C1, . . ., Ck,
H1, . . ., Hl such that all Hj, 1 ≤ j ≤ l, are pairwise disjoint and have no common points
with the boundary of D and all vertices of the graph defined by the partition have degree
3. Then

k∑
i=1

pper(Ci) ≤ per(D) + 2(k − 1)diam(D).

Before proving Theorem 3.3 we give a proof to the key lemma.
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Lemma 3.4. For any convex polygon P with vertices ai, 1 ≤ i ≤ m, inside a constant
width body D,

m∑
1

pdist(ai, D) ≤ pperD(P ) + (m− 2)diam(D).

Proof. First, we show by induction that it is sufficient to prove this lemma for triangles.
Indeed, if we already know that the statement holds for all polygons with not more than
m sides, m ≥ 3, then we can partition an m-gon P into an (m − 1)-gon P1 with the set
of vertices S1 and a triangle P2 with the set of vertices S2. By the inductive hypothesis,∑
a∈S1

pdist(a,D)+
∑
a∈S2

pdist(a,D) ≤ pperD(P1)+(m−3)diam(D)+pperD(P2)+diam(D).

By Lemma 2.8,

pperD(P1) + pperD(P2) = pperD(P ) +
∑

a∈S1∩S2

pdist(a,D).

Substituting this sum in the inequality above we get the required bound for the m-gon
P .
For a triangle a1a2a3,

(3.1)
3∑
1

pdist(ai, D)− pperD(a1a2a3) =

π∫

0

dist(ℓmid
θ , ℓθ(D))dθ,

where ℓmid
θ is the interjacent line of the triangle in direction of uθ, that is, ℓmid

θ goes
through a vertex and crosses the triangle. If a1a2a3 is a degenerate triangle, one point or
a line segment, the integral above is the same as pdist(a,D) for one of the vertices a so
it is not larger than diam(D) by Lemma 2.5.
For nondegenerate triangles, the convexity of the integral in (3.1) (the proof of convexity

is analogous to the proof of Proposition 2.3) implies that among all triangles with parallel
sides, the maximum of

∑
pdist(ai, D) is necessarily attained on a triangle with at least

two vertices on the boundary of D.
Each curve of constant width can be approximated by a smooth curve of constant

width (see, for instance, [11, 12]) so we assume that D has a smooth boundary. We can
also assume that the curvature of the boundary is bounded from above (for instance, by
approximatingD withD+εω, where ω is a circle with center at the origin and unit radius).
The function pdist(a1, D)+pdist(a2, D)+pdist(a3, D)−pperD(a1a2a3) is continuous with
respect to a1, a2, a3 ∈ D so it reaches its maximum at some triple of points. We consider
the triple where it is maximal and, using the argument from above, assume a1 and a2 are
on the boundary of D. We also assume that the boundary of D is parametrized by γ(θ).
For the next step of the proof, we show that normal lines trough a1 and a2 are necessarily

interior angle bisectors of △a1a2a3. Assume the normal line at a1 is not the angle bisector
of △a1a2a3. The idea of the proof is to move a1 along the curve by a small distance ∆
and show that the integral can increase with this move. When doing so, all interjacent
lines ℓmid

θ through a1 change linearly in terms of ∆ and we will show that this change
entails the linear part of the change in 3.1. At the same time, the measure of θ such that
lines ℓmid

θ change a vertex they pass through is also of linear size in terms of ∆ so in total
the change of this kind gives only an O(∆2) error. Overall, the change is linear in ∆ so
we can move a1 to increase the integral.
Let us write these arguments in more detail. Denote by ℓ1θ, ℓ

2
θ, ℓ

3
θ the lines with direction

of uθ through a1, a2, a3, respectively. Assume ℓ1θ is an interjacent line when θ ∈ [θ1, θ2], ℓ
2
θ

is an interjacent line when θ ∈ [θ2, θ3], and ℓ3θ is an interjacent line when θ ∈ [θ3, θ1 + π].
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Also assume ℓθ∗ is a normal line through a1 and θ∗ ∈ (θ1, θ2) but θ∗ 6= (θ1 + θ2)/2 (the
case when θ∗ /∈ (θ1, θ2) will be considered later). Under this notation,

π∫

0

dist(ℓmid
θ , ℓθ(D))dθ =

θ2∫

θ1

dist(ℓ1θ, ℓθ(D))dθ+

θ3∫

θ2

dist(ℓ2θ, ℓθ(D))dθ+

θ1+π∫

θ3

dist(ℓ3θ, ℓθ(D))dθ.

Now we vary a1 by moving it along the boundary of D to a point a′1 so that |a1a
′

1| = ∆
and denote by ℓ1

′

θ a line in direction of uθ through a′1. At this point our goal is to show
that the change of

∫ π

0
dist(ℓmid

θ , ℓθ(D))dθ is linear with respect to ∆. First, we denote new

interjacent lines by ℓmid′

θ and note that dist(ℓmid
θ , ℓθ(D)) − dist(ℓmid′

θ , ℓθ(D)) ∈ O(∆) for
all θ. Second, we assume that new angles where interjacent lines change are θ′1, θ

′

2, and
θ′3 and note that θi − θ′i ∈ O(∆) for i = 1, 2, 3. Then

π∫

0

dist(ℓmid′

θ , ℓθ(D))dθ =

θ′
2∫

θ′
1

dist(ℓ1
′

θ , ℓθ(D))dθ+

θ′
3∫

θ′
2

dist(ℓ2θ, ℓθ(D))dθ+

θ′
1
+π∫

θ′
3

dist(ℓ3θ, ℓθ(D))dθ

=

θ2∫

θ1

dist(ℓ1
′

θ , ℓθ(D))dθ +

θ3∫

θ2

dist(ℓ2θ, ℓθ(D))dθ +

θ1+π∫

θ3

dist(ℓ3θ, ℓθ(D))dθ +O(∆2)

so the linear part of the change may show up only in the first integral.
Using Lemma 2.6 we get

θ2∫

θ1

dist(ℓ1θ, ℓθ(D))dθ =

θ∗∫

θ1

(a1 − γ(θ)) · vθ dθ +

θ2∫

θ∗

(γ(θ)− a1) · vθ dθ

= (a1 − γ(θ1)) · uθ1 − 2(a1 − γ(θ∗)) · uθ∗ + (a1 − γ(θ2)) · uθ2

= a1 · (uθ1 − 2uθ∗ + uθ2)− γ(θ1) · uθ1 + 2γ(θ∗) · uθ∗ − γ(θ2) · uθ2.

Assume ℓθ∗∗ is the normal line at a′1, θ
∗∗ ∈ (θ1, θ2). Note that θ∗∗ − θ∗ ∈ O(∆) because

the curvature of the boundary of D is bounded from above. Then

θ2∫

θ1

dist(ℓ1
′

θ , ℓθ(D))dθ =

θ∗∗∫

θ1

(a′1 − γ(θ)) · vθ dθ +

θ2∫

θ∗∗

(γ(θ)− a′1) · vθ dθ

=

θ∗∫

θ1

(a′1 − γ(θ)) · vθ dθ +

θ2∫

θ∗

(γ(θ)− a′1) · vθ dθ +O(∆2)

= a′1 · (uθ1 − 2uθ∗ + uθ2)− γ(θ1) · uθ1 + 2γ(θ∗) · uθ∗ − γ(θ2) · uθ2 +O(∆2).

=

θ2∫

θ1

dist(ℓ1θ, ℓθ(D))dθ + (a′1 − a1) · (uθ1 − 2uθ∗ + uθ2) +O(∆2).

Due to the smoothness of the boundary of D, a′1 − a1 = ±∆ vθ∗ +O(∆2) so

θ2∫

θ1

dist(ℓ1
′

θ , ℓθ(D))dθ −

θ2∫

θ1

dist(ℓ1θ, ℓθ(D))dθ = ±∆ vθ∗ · (uθ1 − 2uθ∗ + uθ2) +O(∆2).

The dot product vθ∗ · (uθ1−2uθ∗ +uθ2) is not zero since θ∗ 6= (θ1+θ2)/2 so there is a linear
component in the change of the integral. We choose the direction of the move depending
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on the sign of the dot product to ensure that the difference is positive and the integrals
increases. Overall, we conclude the maximal value cannot be attained on a triangle unless
the normal line through a1 is the interior angle bisector of △a1a2a3.
In the case θ∗ < θ1, there is a direction along the boundary of D such that moving

a1 in this direction increases all dist(ℓ1θ, ℓθ(D)) linearly in ∆. This move entails a linear
increase of the integral from (3.1). The other cases for θ∗ are analogous with additional
O(∆2) terms for θ∗ = θ1 or θ2 (because θ∗∗ may jump inside the interval (θ1, θ2)).
We have showed that the normal line at a1 is the angle bisector of the triangle. Anal-

ogously, the normal line at a2 must be the interior angle bisector as well.
For the last step of the proof, we will use the following geometric fact by Balitskiy.

Lemma 3.5. [4, Proof of Theorem 4.1] Let points y1 and y2 be chosen on the interior
angle bisectors of △x1x2x3 from x1 and x2, respectively. If |x1y1| = |x2y2| ≥

1
2
per(x1x2x3),

then |y1y2| > |x1y1|.

Now we choose the points b1 and b2 in D diametrically opposite to a1 and a2, respec-
tively. We know that |a1b1| = |a2b2| = diam(D) and |b1b2| < diam(D). By Lemma 3.5,
per(a1a2a3) ≥ 2|a1b1| = 2diam(D). Then, as required,

3∑
1

pdist(ai, D)− pperD(a1a2a3) ≤ 3diam(D)− per(a1a2a3) ≤ diam(D).

�

Proof of Theorem 3.3. By Euler’s formula, the number of partition vertices is 2(k+ l−1).
Then

k∑
i=1

pperD(Ci) = per(D) +

2(k+l−1)∑
j=1

pdist(vj, D)−

l∑
i=1

pperD(Hi)

Using Lemma 3.4 for all holes we get

k∑
i=1

pperD(Ci) ≤ per(D) +
∑

vj /∈∪Hi

pdist(vj, D) +
∑

vj∈∪Hi

diam(D)− 2l diam(D)

Finally, by Lemma 2.5, all pdist(vj, D) ≤ diam(D), so

k∑
i=1

pperD(Ci) ≤ per(D) + 2(k + l − 1)diam(D)− 2l diam(D)

= per(D) + 2(k − 1)diam(D).

�
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