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Machine Learning for Wireless Network

Throughput Prediction

Gustavo A Fernandez

The University of Texas Rio Grande Valley.

Abstract

This paper analyzes a dataset containing radio frequency (RF) measurements and Key Per-

formance Indicators (KPIs) captured at 1876.6MHz with a bandwidth of 10MHz from an

operational 4G LTE network in Nigeria. The dataset includes metrics such as RSRP (Refer-

ence Signal Received Power), which measures the power level of reference signals; RSRQ

(Reference Signal Received Quality), an indicator of signal quality that provides insight

into the number of users sharing the same resources; RSSI (Received Signal Strength Indi-

cator), which gauges the total received power in a bandwidth; SINR (Signal to Interference

plus Noise Ratio), a measure of signal quality considering both interference and noise; and

other KPIs, all derived from three evolved node base stations (eNodeBs). After meticulous

data cleaning, a subset of measurements from one serving eNB, spanning a 20-minute

duration, was selected for deeper analysis. The PDCP DL Throughput, as a vital KPI met-

ric, plays a paramount role in evaluating network quality and resource allocation strategies.

Leveraging the high granularity of the data, the primary aim was to predict throughput.

For this purpose, I compared the predictive capabilities of two machine learning mod-

els: Linear Regression and Random Forest. Metrics such as Mean Absolute Error (MAE),

Root Mean Squared Error (RMSE) were used to examine the models as they offer a com-

prehensive insight into the models accuracies. The comparative analysis highlighted the

superior performance of the Random Forest model in predicting the PDCP DL Through-

put. The insights derived from this research can potentially guide network engineers and

data scientists in optimizing network performance, ensuring a seamless user experience.

Furthermore, as the telecommunication industry advances towards the integration of 5G

and beyond, the methodologies explored in this paper will be invaluable in addressing the

increasingly complex challenges of future wireless networks.

Keywords: Wireless Network, Machine Learning, Regression, Random Forest
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1 Introduction

In today’s digital age, telecommunications stands as a cornerstone of global connectivity.

As the world becomes increasingly interconnected, cellular network operators grapple with

the relentless challenge of accommodating escalating user demands. The explosion in media

consumption, especially with the introduction of bandwidth-intensive applications, real-time

media streaming on social platforms, and the rapidly evolving realm of connected and

autonomous vehicles, has placed unprecedented pressure on network resources. To address

these challenges, operators are in a continuous quest for cutting-edge solutions. One of the

primary objectives is to refine resource allocation and load balancing mechanisms, ensuring

that networks can handle the ever-growing data traffic without compromising on performance.

The anticipatory approach to resource allocation and network management is a groundbreak-

ing paradigm that offers a potential solution to these challenges. At the heart of this approach

lies the ability to predict network connectivity fluctuations before they occur. By proactively

identifying potential changes in connectivity, operators can take preemptive actions, ensuring

that the user’s Quality of Service (QoS) remains consistent and reliable. A prime example

of this forward-thinking strategy is the concept of pre-buffering video content. By allocat-

ing additional resources in anticipation of a potential drop in future throughput values for a

user, operators can guarantee uninterrupted streaming experiences. The need for such proac-

tive measures stems from the paramount importance of delivering consistent and high-quality

network connectivity. The proliferation of bandwidth-demanding applications and the expo-

nential growth in media publishing and streaming on social platforms highlight the critical

need for innovative network management strategies.

Certain studies have made significant contributions to the field among the plethora of

research dedicated to enhancing network QoS. For instance, Yue et al. [1] embarked on a com-

prehensive correlation analysis, exploring the intricate relationships between Radio Signals

(RSs) and throughput across various scenarios, from stationary settings to dynamic highway

driving conditions. Their findings emphasized the potential of the Random Forest machine

learning model in predicting network performance based on metrics like RSRP, RSRQ, and

CQI. In a similar vein, Raca et al. [2] delved into the realm of predicting future throughput

windows, evaluating the predictive prowess of diverse machine learning models, from Ran-

dom Forest and Support Vector Machine (SVM) to Neural Networks (NN). Furthermore, a

study by A.Y. et al. [3] emphasized the significance of machine learning models in predicting

downlink throughput on 4G-LTE networks. Their research provides invaluable insights into

the practical applications of these models in real-world network scenarios.

Building on the seminal work of these researchers and addressing the requirements of

contemporary telecommunication networks, this paper presents a detailed analysis of a 4G LTE

network dataset. Concentrating on key metrics such as RSRP, and RSRQ, the research aims

to employ machine learning techniques, notably Linear Regression and Random Forest, to

predict PDCP DL Throughput – a crucial metric in assessing network quality. Recent studies,

including those by D. Minovski et al.[4], and R. Zhohov et al. [5], have further emphasized

the importance and potential of machine learning in throughput prediction, underscoring the

relevance and timeliness of the present research.

While many studies have ventured into network throughput prediction, the distinctiveness

of this research manifests in several pivotal areas:
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Real World Data:

Grounded in data sourced from an operational 4G LTE network in Nigeria, this research offers

a pragmatic vantage point often eclipsed in predominantly theoretical pursuits.

Granularity of the Data:

The dataset vividly depicts real-time network dynamics with its intricate granularity captured

within a mere 20-minute frame. Such granularity is instrumental in discerning intricacies that

expansive datasets might inadvertently bypass.

Focused Predictors:

Singular emphasis is placed on RSRP (Reference Signal Received Power) and RSRQ (Refer-

ence Signal Received Quality) as the chief predictors, enabling a meticulous probe into these

pivotal metrics.

Temporal Feature Engineering:

In addition to RSRP and RSRQ, a feature engineered with a lag of 1 is seamlessly integrated,

infusing a temporal essence into the predictors. This strategic inclusion is geared towards

encapsulating the inherent temporal interdependencies, bolstering the predictive prowess of

the models.

Revisiting Linear Regression:

Contrary to the prevailing trend of gravitating toward intricate machine learning architectures,

this research reaffirms the merits of the foundational Linear Regression model. Enhanced with

a temporal facet, it underscores its relevance and efficacy in specific contexts.

This research heralds a pragmatic and astute approach to throughput prediction. As the

ensuing pages unravel the findings and insights, it is imperative to acknowledge the meticulous

strategies employed and fathom their ramifications for the telecommunications realm.

2 Materials and Methods

2.1 Data Collection

This research is centered on data derived from a functioning 4G LTE network in Nigeria [6].

The data, specifically the Key Performance Indicators (KPIs), were obtained from stationary

transmitters, commonly referred to as evolved node base stations (eNodeB). These eNodeBs,

with an average height of 25 meters, were equipped with commercial gear from a leading

network provider in Nigeria. Throughout the study, specialized Drive Test (DT) equipment was

employed to capture a range of metrics, including SINR, RSRP, RSRQ, RSSI, among other

vital KPIs, directly from the active sectors of the eNodeBs. My research specifically hones

in on metrics associated with the Packet Data Convergence Protocol (PDCP) Downlink (DL)

Throughput, particularly emphasizing radio measurements like RSRP and RSRQ. The data in

focus was recorded at a 4G LTE frequency of 1876.6MHz, operating within a bandwidth of

10MHz.
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2.2 Data Preprocessing

Wireless network datasets are inherently intricate, owing to their exposure to various fluc-

tuating environmental and technical variables. Recognizing this complexity, rigorous data

preprocessing was essential to ensure the robustness and reliability of the subsequent analysis.

To achieve a consistent dataset free from site-specific anomalies, focus was narrowed to

data sourced from a single site. This approach aimed to eliminate discrepancies or inconsis-

tencies that might emerge from variations across different sites. To ensure a comprehensive

understanding of the data’s completeness, missingness heatmaps were used to represent miss-

ing values across features visually. Given the critical nature of certain columns, rows with

missing values in these columns were eliminated, and they were determined to be missing at

random. The result of this meticulous cleanse was a dataset with heightened integrity.

The importance of temporal features in the analysis became evident. The Date Time

column was converted into a date time data type, laying the foundation for time series analysis.

The data was then grouped by this temporal feature, and specific aggregations were applied

to other columns to capture the mean within each time group. To further optimize the dataset,

rows with specific abnormal values in the Serving EARFCN column were removed. A lag

feature was introduced based on the PDCP Throughput DL column to add depth to the

analysis. This temporal aspect provides a time-shifted perspective, invaluable for forecasting

and understanding patterns.

2.3 Model Selection

A combination of modeling strategies was employed to address the multifaceted challenge of

forecasting PDCP throughput. Linear Regression, a foundational pillar of statistical modeling,

was harnessed. Enhanced with a temporal feature, it adeptly discerned and accounted for

the time-based patterns and trends intrinsic to the dataset. The essence of this model was to

draw a linear relationship between the target variable, PDCP DL Throughput, and its array of

predictors, prominently spotlighting the temporal aspect.

On the other hand, the Random Forest algorithm provided a more intricate perspective.

This ensemble technique, by weaving together insights from numerous decision trees during

its training phase, offers a profound depth of analysis. For classification, it delivers the mode of

the classes, while in regression scenarios, it presents the mean prediction. Its inherent ability

to grapple with non-linear complexities and unearth subtle patterns in the dataset proved

invaluable in this forecasting endeavor.

These methodologies, each with distinctive strengths, converged to form a robust and

comprehensive forecasting framework.

2.4 Model Evaluation

The efficacy of the employed models was rigorously evaluated using an array of metrics, each

uniquely tailored to gauge different facets of prediction accuracy and model reliability:

Mean Absolute Error (MAE): A straightforward metric, the MAE computes the average of the

absolute discrepancies between forecasted and actual outcomes. Mathematically, it is defined
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as:

MAE =

1

𝑛

𝑛
∑︁

𝑖=1

|𝑦𝑖 − 𝑦̂𝑖 |

where 𝑦𝑖 is the actual value, 𝑦̂𝑖 is the predicted value, and 𝑛 is the number of observations.

Root Mean Squared Error (RMSE): Delving deeper into error magnitudes, the RMSE cap-

tures the square root of the mean of squared deviations between predictions and actual

observations. Its formula is:

RMSE =

√

√

1

𝑛

𝑛
∑︁

𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)2

R-squared: Primarily associated with linear regression, the 𝑅2 value elucidates the proportion

of variance in the dependent variable that the independent variables in the model account for.

It is computed as:

𝑅2
= 1 −

SSres

SStot

where SSres is the sum of squares of the residuals and SStot is the total sum of squares.

By harnessing these evaluation techniques, the aim was to measure the prediction precision

of the models for PDCP DL throughput and to furnish insights that can illuminate pathways

for subsequent research endeavors in this arena.

3 Results

3.1 Descriptive Analysis

An examination of the PDCP DL Throughput data over the specified 20-minute interval

revealed its inherently dynamic nature. While no discernible pattern was immediately evident,

the data vividly portrayed wireless networks’ ever-fluctuating and volatile nature. Every pass-

ing second exhibited throughput alterations, underlining the network environment’s non-static

and rapidly evolving characteristics. This continuous oscillation in throughput underscores the

challenges and intricacies of predicting such a metric, given its susceptibility to a multitude

of factors that can change from moment to moment. A visual representation of this dynamic

throughput over the interval can be seen in Figure 1.
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Fig. 1 Dynamic PDCP DL Throughput over a 20-minute interval.

To further comprehend the data’s characteristics, summary statistics of the numerical

features were computed. These statistics offer insights into the distribution, central tendency,

and spread of the data for each feature.

Table 1 Descriptive statistics of the dataset’s numerical features.

Serving RSRP Serving RSRQ Serving RSSI PCC SINR PHY Throughput DL PDCP Throughput DL

count 1504.0 1504.0 1504.0 1504.0 1504.0 1504.0

mean -85.27 -9.00 -62.02 9.08 7186.58 6026.89

std 7.88 1.10 7.52 6.65 5201.80 4696.75

min -99.91 -14.25 -76.56 -7.62 128.0 0.0

25% -91.28 -9.62 -67.51 3.79 3461.82 2676.51

50% -86.75 -8.83 -63.95 7.95 5326.36 4454.01

75% -79.72 -8.30 -56.82 13.7 9596.29 8297.02

max -59.05 -3.7 -35.92 26.08 28890.94 28040.11

3.2 Model Performance

Central to this research was the task of gauging the forecasting aptitudes of two distinct models

for PDCP DL throughput. Their performances, detailed in Table 2, offer a lens into their

predictive strengths.

The Linear Regression model, bolstered with a temporal aspect, showcased a commendable

accuracy, as evidenced by its 𝑅2 value. However, when benchmarked against metrics like

MAE and RMSE, the Random Forest model, with its ensemble-based approach, proved to be

slightly superior in its predictive accuracy.

Comparing the performance metrics, it becomes evident that the Random Forest model

holds a slight advantage over the Linear Regression model in terms of predictive accuracy, as

indicated by measures like MAE and RMSE. This comparison is further visualized in Figure 2,

which plots predicted values against actual values. Through this figure, areas where each

model excels or struggles are highlighted, offering a clear view of their respective prediction

strengths and limitations.
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Table 2 Performance metrics for model evaluation.

Model MAE RMSE 𝑅
2

Linear Regression with Temporal Feature 1,188.59 1,789.64 0.8218

Random Forest 1,100.69 1,736.90 0.8321

Fig. 2 Comparison of predicted values against actual values for the Linear Regression and Random Forest models.

4 Discussion

Predicting PDCP DL Throughput in wireless networks is an intricate endeavor, laden with

both challenges and avenues for the application of advanced predictive modeling. This study

delved deep into these intricacies, utilizing both Linear Regression—enhanced with a temporal

feature—and the Random Forest model to shed light on throughput predictability.

A cornerstone in model evaluation, the Mean Squared Error (MSE) speaks volumes

about prediction accuracy. Both models displayed admirable prowess. Yet, the Random Forest

model slightly edged out its counterpart, registering an MSE of 3,016,817.89 against Linear

Regression’s 3,202,810.38. This edge can be attributed to the ensemble nature of Random

Forest, adept at discerning non-linearities and subtle data patterns.

The 𝑅2 score, delineating the explanatory power of the models regarding the variations in

PDCP DL Throughput, painted a congruent picture. Both models posted impressive 𝑅2 scores

exceeding 0.8. The Random Forest model, however, with an 𝑅2 of 0.8321, slightly surpassed

the 0.8218 score of the Linear Regression model.

Further insights were gleaned from the Mean Absolute Error (MAE) and Root Mean

Squared Error (RMSE) metrics. The close MAEs of 1,188.59 for Linear Regression and

1,100.69 for Random Forest, coupled with respective RMSEs of 1,789.64 and 1,736.90,

7



reiterate the neck-to-neck performance of the two models. Yet, the slight superiority of the

Random Forest model remained consistent across all metrics.

While the empirical data leans toward Random Forest, the virtues of each model in varied

contexts cannot be understated. With its transparency, Linear Regression elucidates clear

feature-target relationships—priceless in situations where clarity supersedes sheer accuracy.

With its nuanced handling of complex feature dynamics, Random Forest becomes the go-to

when top-tier prediction accuracy is the order of the day.

However, it’s imperative to temper these findings with the understanding of the dataset’s

scope—focused on a singular site over a 20-minute span. This dataset, albeit rich, captures a

mere moment in the vast expanse of network operations. When faced with diverse conditions

or prolonged durations, the true mettle of these models beckons further exploration.

To encapsulate, this investigation accentuates the significance of judicious model selection

in the realm of throughput forecasting. While Random Forest clinched slightly superior metrics

in this endeavor, the ultimate choice hinges on the unique demands of the task—whether

it’s model interpretability, sheer accuracy, or computational nimbleness. As the tapestry of

wireless communication grows more intricate, the tools we harness must evolve in tandem,

propelling the field to new pinnacles of innovation and service par excellence.

4.1 Limitations and Future Directions

Regardless of its depth and rigor, every research endeavor has inherent limitations, and this

study is no exception. One of the perennial challenges in machine learning is overfitting,

where a model becomes too attuned to the training data, compromising its generalization to

new, unseen data. Given the high granularity of our dataset and the complexity of the Random

Forest model, there’s a potential risk of overfitting. Regularization techniques or pruning might

be needed to ensure that our models are robust and generalizable.

Additionally, while offering a detailed snapshot, the study’s focus on a singular site over

a brief 20-minute span does not encompass the myriad dynamics of wireless networks over

extended periods or across diverse geographical locales. Such constraints could influence the

model’s adaptability to broader network scenarios.

Future research could address these limitations by incorporating data from multiple sites

or by exploring longer timeframes, thus ensuring a more comprehensive representation of net-

work dynamics. Moreover, experimenting with other advanced predictive models or ensemble

techniques might further enhance the predictive accuracy and robustness against overfitting.

The integration of additional features, perhaps from external datasets or newer technologi-

cal advancements in the wireless domain, could also prove invaluable in refining throughput

predictions.

Ultimately, as the field of wireless communication continues to evolve, there will be an

ever-growing imperative to adapt, innovate, and refine the methodologies employed, ensuring

that research remains abreast of technological progress.

5 Conclusion

Wireless networks are the bedrock of our increasingly digitalized world. Ensuring their optimal

performance is more than just a technical imperative; it’s pivotal to the seamless integration

of technology into our daily lives. In this study, the endeavor to predict PDCP DL Throughput
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via Linear Regression and Random Forest models cast light on the multifaceted nature of

such a task. While the Random Forest model slightly edged ahead, showcasing the prowess

of ensemble methodologies in deciphering complex data patterns, the Linear Regression’s

performance was not to be overshadowed. Its robustness, especially when bolstered with a

temporal dimension, reiterated the lasting relevance of traditional statistical approaches.

The scope of the research, limited to a dataset from a singular location within a concise

time window, serves as a snapshot—a vignette of the grander tableau of challenges in wireless

network predictions. A key takeaway is the absence of a one-size-fits-all solution. The choice

of predictive model hinges on the nuanced requirements of the task at hand, be it sheer

predictive accuracy, model transparency, or computational pragmatism.

Looking ahead, as we stand at the cusp of a 5G-dominated world with whispers of

6G innovations, the imperative for refined, accurate, and adaptable forecasting tools grows

exponentially. This study underscores the necessity for an adaptive research ethos—one that

is receptive to the swift currents of technological progress. By championing such a spirit of

relentless innovation and introspection, we pave the way for wireless networks that are not

just technically superior but also deeply resonant with the dynamic needs of their users.

References

[1] Yue, C., Jin, R., Suh, K., Qin, Y., Wang, B., Wei, W.: Linkforecast: Cellular link bandwidth

prediction in lte networks. IEEE Transactions on Mobile Computing 17(7), 1582–1594

(2017)

[2] Raca, D., Zahran, A.H., Sreenan, C.J., Sinha, R.K., Halepovic, E., Jana, R., Gopalakrish-

nan, V.: On leveraging machine and deep learning for throughput prediction in cellular

networks: Design, performance, and challenges. IEEE Communications Magazine 58(3),

11–17 (2020)

[3] Al-Thaedan, A., Shakir, Z., Mjhool, A.Y., Alsabah, R., Al-Sabbagh, A., Salah, M., Zec,

J.: Downlink throughput prediction using machine learning models on 4g-lte networks.

International Journal of Information Technology, 1–7 (2023)

[4] Minovski, D., Ogren, N., Ahlund, C., Mitra, K.: Throughput prediction using machine

learning in lte and 5g networks. IEEE Transactions on Mobile Computing (2021)

[5] Zhohov, R., Palaios, A., Geuer, P.: One step further: Tunable and explainable throughput

prediction based on large-scale commercial networks. In: 2021 IEEE 4th 5G World Forum

(5GWF), pp. 430–435 (2021). IEEE

[6] Imoize, A.L., Orolu, K., Atayero, A.A.-A.: Analysis of key performance indicators of a

4g lte network based on experimental data obtained from a densely populated smart city.

Data in brief 29, 105304 (2020)

9


	Machine Learning for Wireless Network Throughput Prediction
	Introduction
	Real World Data:
	Granularity of the Data:
	Focused Predictors:
	Temporal Feature Engineering:
	Revisiting Linear Regression:



	Materials and Methods
	Data Collection
	Data Preprocessing
	Model Selection
	Model Evaluation

	Results
	Descriptive Analysis
	Model Performance

	Discussion
	Limitations and Future Directions

	Conclusion

