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Abstract: Background: This paper explores the potential of Industry 5.0 in driving societal transition
to a circular economy. We focus on the strategic role of reverse logistics in this context, underlining
its significance in optimizing resource use, reducing waste, and enhancing sustainable production
and consumption patterns. Adopting sustainable industrial practices is critical to addressing global
environmental challenges. Industry 5.0 offers opportunities for achieving these goals, particularly
through the enhancement of reverse logistics processes. Methods: We propose an integrated method-
ology that combines binary logistic regression and decision trees to predict and optimize reverse
logistics flows and networks within the Industry 5.0 framework. Results: The methodology demon-
strates effective quantitative modeling of influential predictors in reverse logistics and provides a
structured framework for understanding their interrelations. It yields actionable insights that enhance
decision-making processes in supply chain management. Conclusions: The methodology supports the
integration of advanced technologies and human-centered approaches into industrial reverse logistics,
thereby improving resource sustainability, systemic innovation, and contributing to the broader goals
of a circular economy. Future research should explore the scalability of this methodology across
different industrial sectors and its integration with other Industry 5.0 technologies. Continuous
refinement and adaptation of the methodology will be necessary to keep pace with the evolving
landscape of industrial sustainability.

Keywords: Industry 5.0; logistics; circular economy; binary logistics; decision trees

1. Introduction

Sustainability and efficiency are key to long-term performance in modern industries [1].
Organizations understand the strategic and environmental significance of managing reverse
logistics flows and networks effectively [1]. Through efficient handling of product returns,
repairs, remanufacturing, and recycling, organizations can cut costs, improve customer
satisfaction, and support environmental stewardship [1].

Industry 4.0, known as the fourth industrial revolution, integrates digital technolo-
gies like the Internet of Things (IoT), cloud computing, and Artificial Intelligence (AI)
into manufacturing [2]. This period introduced the development of smart factories with
interconnected systems, enhancing automation and offering real-time data for improved
operations [3].

Advancing from Industry 4.0, Industry 5.0 integrates cutting-edge technologies like
the Internet of Things (IoT), Artificial Intelligence (AI), and data analytics with traditional
industrial processes. It focuses on the synergy between humans and intelligent systems
and fostering a collaborative industrial environment [3]. In reverse logistics, Industry 5.0
uses IoT, AI, and data analytics to streamline and optimize processes. Such advancements
align with corporate sustainability goals, addressing essential aspects like product returns,
remanufacturing, recycling, and waste reduction [4]. Embracing Industry 5.0 is essential
for organizations aiming to achieve efficient and sustainable operations [3].
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Current research on reverse logistics optimization employs diverse methodologies,
ranging from mathematical models to qualitative approaches to provide insights into
crucial aspects inherent to the design of efficient closed-loop supply chains and reverse
logistics systems. Among the more notable methodologies is System Dynamics (SD) [5].
This simulation-based approach captures the complexities of feedback loops and time
delays inherent in reverse logistics processes, providing insights into how complex systems
evolve and behave over time. Another common methodology used in the extant literature
is Life Cycle Assessment (LCA). LCA has been used for evaluating the environmental
effects associated with every stage of a product’s lifecycle [6]. Within the purview of reverse
logistics, LCA aids organizations in determining the environmental footprints and benefits
stemming from reverse logistics processes.

Another methodology, the Multi-criteria Decision Analysis (MCDA), has been adopted
in the extant literature for evaluating and ranking diverse reverse logistics scenarios
grounded in multiple criteria. MCDA is effective particularly when there are trade-offs to
be made between criteria, such as cost implications versus environmental impact [7]. Other
methodologies used include the application of Simulation Optimization and numerous
Artificial Intelligence and machine learning techniques. From neural networks to clustering,
these methodologies have been instrumental in optimizing routing, predicting returns, and
ascertaining the most effective strategies for product disassembly or recycling.

In this study, we propose a quantitative approach that integrates binary logistics regres-
sion with decision trees to conduct the optimization of the reverse logistics network. The
proposed integrated methodology for optimization leverages the probabilistic capabilities
of logistics regression with the visualization and analytical utility of decision trees.

The paper is structured as follows: Section 2 provides a review of the pertinent extant
literature. Section 3 includes the study context and the framework in which the proposed
integrated methodology can be useful. Section 4 entails a detailed step by step guide
to the integrated methodology. Section 5 includes an outline of the application of the
proposed integrated methodology. Section 6 embraces the implications of the proposed
integrated methodology, discusses its limitations, and makes suggestions on future research
directions. Section 7 discusses a case study of the applied integrated methodology. The
paper concludes with Section 8.

2. Key Literature

Reverse logistics (RL) represents the process of collecting used products from cus-
tomers for the purpose of reuse, repair, remanufacture, recycling, or disposal [6]. Over
the years, research and industrial interest and focus on reverse logistics has grown. This
is reflective of the increasing organizational and societal awareness, responsibility and
commitment towards environmental concerns, legislation, and sustainable competitiveness
and development.

A key enabler of reverse logistics is industrial symbiosis. This is the collaboration
between different industries to share resources and exchange waste, leading to enhanced
economic and environmental performance [8]. The practice supports the circular economy
by optimizing resource use and minimizing waste. Examples of industrial symbiosis
include the exchange of waste heat between companies and the use of by-products as
inputs in production processes [9]. Reverse logistics supports industrial symbiosis by
offering channels for waste collection and redistribution, thus facilitating efficient material
flow between industries [10,11].

Notable reverse logistics channels identified in the extant literature (Table 1) include
product returns, product recalls, end-of-life product management, and refurbishment, each
contributing significantly to eco-efficiency in Green Supply Chain Management [12].

A review of the extant literature indicates research in the field of RL has evolved
rapidly over the last 20 years covering key phases and issues pertaining to adoption and
implementation of reverse logistics, understanding and forecasting product returns, out-
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sourcing, development and optimization of reverse logistics networks, and development of
decision-support mechanisms to improve product recovery, transportation, and processing.

Table 1. List of notable reverse logistics channels identified in literature.

Reverse Channel Description

Product Returns

This channel deals with the return of products due to various reasons such as defects or customer
dissatisfaction. Effective communication and cost-effective reverse logistics processes are crucial in
this channel. Product returns offer opportunities for material and component recovery, adding value

to the supply chain [12].

Product Recalls
Occurring when products are found defective or unsafe, this channel emphasizes the need for timely
and efficient recall processes. Collaboration and communication are key factors in managing product

recalls effectively [12].

End-of-Life Product
Management

This involves the recycling or disposal of products at the end of their useful life. Designing products
for recyclability and ease of disassembly, coupled with effective collection and sorting processes, is

essential in this channel [12].

Resale
A used product finds a new purpose but generally in a context where it holds lesser value compared

to its original use. An example is repurposing an urban bus for agricultural activities. Studies
elaborating on resale include [13,14].

Reuse
This process involves reassigning a used product to a new role without any repairs, maintaining its
original value. An example is relocating a used vehicle to a different setting where it continues to

function as intended. Key references discussing direct reuse include [15–17].

Refurbishment Refurbishing involves cleaning and repairing failed components in products or machines. The focus
is on restoring functionality rather than complete rebuilding [18].

Remanufacturing

This process involves the assembly of a new product by combining retrieved parts with new
components. The new product meets the original specifications and delivers performance equivalent
to the original. This approach is commonly applied in the refurbishment of industrial machinery, as

highlighted in studies by [19–21].

Numerous authors have worked on providing an overview of the research devel-
opments in the reverse logistics field through systematic literature reviews. Some of the
latest systematic reviews are identified in Table 2. These reviews offer insights into the key
developments and trends in the reverse logistics field and outline areas for future research.

Table 2. Some of the most recent systematic reviews on reverse logistics.

Authors Review Focus

Ding et al. (2023) [22] This review explores the extant literature on forward logistics and reverse logistics in the
construction industry.

Ni et al. (2023) [23]

This review conducted a content analysis of 162 papers from 1998 to 2021 and identified six main
research themes on e-waste RL: (1) e-waste legislation and policy, (2) barriers, critical success factors,

and solutions, (3) e-waste RL network design decisions, (4) e-waste RL system evaluations and
frameworks, (5) consumer e-waste return behavior, (6) technology-based e-waste RL initiatives.

Mishra et al. (2023) [24] This review explores various aspects of reverse logistics and closed-loop supply chains in
implementing and achieving circular economy (CE) initiatives.

Mallick et al. (2023) [25] This review explores 116 scholarly articles published between 2011 and 2021 to identify attributes
related to the design and implementation of RL systems.

Xin et al. (2022) [26] This review focusses on the extant literature of reverse logistics of municipal hazardous waste
(RLMHW) in the past three decades, and then establishes a framework of studies on RLMHW.

Another key area covered by the extant literature is the integration of emerging
technologies in supply chain management (SCM) and reverse logistics, with blockchain
and machine learning (ML) at the forefront of this development. A systematic review
conducted on blockchain in SCM by [27] highlights its potential to significantly enhance
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transparency, traceability, efficiency, and information security within the supply chain.
The study underscores the pivotal role of blockchain, particularly when integrated with
Internet of Things (IoT) and smart contracts, in automating and streamlining supply chain
processes. However, the review also highlights a gap in empirical research, suggesting that
real-world applications and case studies are relatively scarce, pointing towards a rich area
for future investigation.

Similarly, Tian et al. [28] focus on multi-criteria decision-making (MCDM) techniques
in the context of low-carbon transport and green logistics. They produce a systematic review
of over 190 papers spanning from 2010 to 2022 providing a comprehensive understanding
of how MCDM techniques are being applied in this specific area, filling a significant gap
in the existing literature. In addition, Moosavi et al. [29] conducted a systematic review
which discussed the complex nature of SCs of many industries such as food, health-related
SCs, and explored how technology-aided tools (including AI, IoT, and blockchain) can be
leveraged to manage SC disruptions effectively, incorporating both technological solutions
and sector-specific strategies.

Overall, these systematic reviews are critical to providing an overview of the state of
research and effectively capture and elucidate areas of future research activities.

The focus of our study is on the optimization of reverse logistics networks and enhanc-
ing product recovery, reuse, remanufacture and recycling. The literature on that application
can be broadly categorized into two (2) main themes, namely (i) developing multi-objective
decision-making models with a focus on improving reverse logistics processes such as prod-
uct recovery and vehicle routing (ii) and developing models for managing and optimizing
waste disposal processes across different industries. Some of the latest developments under
these two broad categories are outlined in the succeeding paragraphs.

Reverse logistics is a critical success factor in achieving sustainability and the soci-
etal transition to a circular economy. The first theme reviews studies that have outlined
the importance of data-driven decisions in determining recovery options in closed-loop
systems, and their impact on sustainability outcomes. Recent key publications in this
area include [30,31], where simulation models were constructed to analyze diverse prod-
uct recovery strategies and routing optimization and time window scheduling. These
studies assess diverse reverse logistics scenarios, integrating algorithms to optimize ve-
hicle routing and scheduling, thus promoting sustainability. Similarly, Giallanza and
Puma [32] presented a multi-objective optimization model, employing simulation to eval-
uate its performance and contrast it with alternative techniques. Özkır and Başlıgil [33]
and Homayouni et al. [34] developed models to address uncertainty in reverse logistics
processes, with the latter developing a novel heuristic optimization approach that supports
decision makers in managing and balancing carbon emission policies in supply chains
in complex settings of uncertainty in terms of demand and variable vehicle types. These
two studies exemplify the industry’s gravitation towards marrying sustainability with
advanced analytical techniques.

The second theme focuses on studies that have developed models to optimize waste
management and collection in specific sectors. Most of these studies have focused on the
solid waste management, medical and e-waste sectors, with the aim of curbing environmen-
tal degradation while optimizing waste management processes in these key sectors. Recent
developments in this regard include Ferri et al. [35], who developed a mathematic model
for sustainable solid waste management in Brazil and proposed a solid waste handling that
involved waste pickers. More recently, Alos et al. [36] conducted assessments of reverse
logistics as a strategy within the sustainable solid waste management sector and proffered
comprehensive overviews, with the former tackling municipal solid waste management
holistically, and the latter dissecting the innovative modes and practices.

Under the same category of waste management, other studies have developed method-
ologies to enhance medical waste management, underscoring the importance of innovating
efficient medical waste management systems. Key developments in this regard include
Mantzaras et al. [37] who developed an optimization model to minimize the cost of a col-



Logistics 2023, 7, 97 5 of 26

lection, haul, transfer, treatment, and disposal system for infectious medical waste (IMW).
In a similar regard, Kargar et al. [38] pioneered a linear programming model that embeds
multi-objective uncertainty, especially targeting sustainability and environmental criteria.
The outbreak of COVID-19 further underscored the need for tailored solutions, leading
Tirkolaee et al. [39,40] to present a sustainable fuzzy multi-trip location-routing framework
and MILP model tailored to the pandemic’s exigencies.

Other key developments in this area include the introduction of a two-stage stochastic
programming model designed to accommodate uncertainties inherent in medical waste
management [41]; developing a two-stage optimization model that integrates economic,
environmental, and social dimensions into designing a reverse logistics network [42];
and developing mixed-integer models to reduce vehicle dispatch and management costs
inherent in medical waste management [1].

Overall, the extant literature on reverse logistics optimization involves the explo-
ration of multifaceted domains such as product recovery options, return policies, inventory
control strategies, and the integration of economic and environmental goals. This body
of scholarly work gives prominence to the relationships fundamental to decision mak-
ing within a context where the tenets of sustainability, efficiency, and profitability are
intricately interlinked.

3. Research Context and Framework

Reverse logistics optimization plays a pivotal role in facilitating the transition to a
circular economy by efficiently recovering resources, minimizing waste, and enhancing
sustainability throughout the product lifecycle. However, effectively optimizing reverse
logistics, particularly in the context of Industry 5.0, is influenced by the following range
of technological, organizational, and decision-making factors [4]. These factors need to
be adequately understood to ensure informed strategies are developed and implemented,
fostering the seamless integration of advanced technologies, human-centric innovation,
and sustainable practices, and thus driving the successful transition to a circular economy.

Technological Advancements: Industry 5.0 is characterized by rapid advancements
in technologies such as AI, IoT, and automation. These technologies have the potential
to transform reverse logistics processes, enabling real-time tracking, data-driven decision
making, and enhanced visibility across the supply chain. However, the ever-evolving
nature of these technologies poses challenges in predicting their impact on reverse logistics
optimization [43].

Complex and Interconnected Networks: Industry 5.0 fosters highly interconnected and
dynamic supply chain networks, involving various stakeholders such as suppliers, manufac-
turers, distributors, and consumers [44]. The intricate nature of these networks introduces
uncertainties and complexities in optimizing reverse logistics, as factors like supply chain
structure, collaboration mechanisms, and information exchange play a critical role.

Data Availability and Utilization: Industry 5.0 generates vast amounts of data from
various sources, enabling more informed decision making. Leveraging these data for
reverse logistics optimization requires advanced data analytics and predictive modeling
techniques. However, extracting meaningful insights from big data and translating them
into actionable strategies pose challenges [45].

Multi-dimensional Decision Factors: Optimizing reverse logistics entails considering
a multitude of factors, including technological feasibility, economic viability, regulatory
compliance, stakeholder engagement, and environmental considerations. The interplay
and relative importance of these factors vary across industries and supply chains, making
it complex to develop a standardized optimization model.

Shift in Mindset and Culture: The Industry 5.0 paradigm emphasizes innovation,
efficiency, and sustainability. Achieving effective reverse logistics optimization may require
organizations to shift their mindset and embrace circular economy principles, moving away
from linear approaches. Predicting the extent to which this shift occurs and influences
reverse logistics poses an additional layer of complexity.
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In order to address some of the above-mentioned challenges posed by Industry 5.0 [45–47],
organizations need to pivot towards a more holistic approach. Recognizing the connected
nature of technological advancements and human-centric processes, it is clear that there is a
pressing need to adapt and evolve. Therefore, emphasis needs to be placed on the reshaping
of logistics and operational strategies, with sustainability and efficiency at the forefront.

As identified in Section 1, researchers and practitioners have explored a variety of holis-
tic methodologies to both understand and optimize reverse logistics processes. However,
Industry 5.0 supply chains introduce intricate challenges that can hinder effective decision
making. The rapid technological advancements, intricate supply chain configurations,
and diverse decision factors require a sophisticated approach to optimize reverse logistics
flows. Traditional methods fall short in capturing nuanced relationships among variables.
Traditional methods, often linear in nature or based on simplified assumptions, may not
be suitable for examining the dependencies that exist among the numerous variables in
reverse logistics systems. Whether it is the effect of a specific return policy on overall
profitability, the ripple effects of an inventory control measure on the entire supply chain,
or the symbiotic relationship between product returns and inventory levels, the dynamics
are multifaceted. For instance, when considering return policies, the direct relationship
between a policy change and profitability might be evident, but there could be secondary
or even tertiary effects that can impact the relationship. A stricter return policy might
lead to fewer returns and increased short-term profitability, but it could also result in
decreased customer satisfaction and, subsequently, reduced long-term customer loyalty.
Traditional models might focus only on the immediate financial implications and overlook
the longer-term customer relationship dynamics.

Similarly, if we explore inventory control within reverse logistics, the balance between
holding costs, restocking, recycling, or disposal, and customer satisfaction is difficult to
achieve [48,49]. Traditional methods might provide a snapshot based on current conditions
but could miss predicting shifts due to external market changes, technological advance-
ments, or shifts in consumer behavior. In essence, while traditional methods have their
merits and have provided foundational insights, the increasing complexity of today’s
reverse logistics operations demands more advanced and integrative methodologies. These
newer approaches aim to capture the nuanced relationships among variables, offering a
more holistic understanding and, thereby, more informed decision-making capabilities.

Against this backdrop, this paper introduces an integrated methodology that syner-
gizes binary logistic regression with decision trees. Binary logistic regression has been
widely used to predict binary outcomes based on categorical or binary predictors, offer-
ing insights into the relationship between predictors and optimization outcomes [50,51].
Additionally, decision trees have been employed to capture complex patterns and inter-
actions among predictors, providing a comprehensive understanding of decision-making
processes [52–54]. However, the standalone use of binary logistic regression or decision
trees may not fully capture the intricacies of reverse logistics optimization in the Industry
5.0 context. Binary logistic regression may struggle to account for nonlinear relationships
among predictors, while decision trees might encounter challenges such as overfitting
or limited interpretability. To overcome these limitations and provide a comprehensive
framework for predicting and optimizing reverse logistics flows and networks within the
Industry 5.0 landscape, the proposed methodology combines binary logistic regression
and decision trees in order to harness the strengths of both methods and offer a robust
and interpretable framework for researchers and practitioners aiming to enhance reverse
logistics practices in the Industry 5.0 era.

The key research questions of the study are as follows:

1. Can a combination of binary logistic regression and decision trees provide a more
robust and efficient framework for predicting and optimizing reverse logistics flows?
This question seeks to examine the effectiveness of integrating these two methodolo-
gies to handle the intricacies of reverse logistics data.
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2. What are the practical implications of the proposed integrated methodology in real-
world industrial settings? This includes evaluating the methodology’s adaptability,
scalability, and effectiveness in different industrial sectors.

Figure 1 represents the conceptual framework for this study. The key variables of the
framework are described as follows.

• Circular Economy Principles (CE): These are the guiding principles that emphasize
the importance of resource efficiency, waste reduction, and sustainability in industrial
operations. They guide the reverse logistics processes.

• Reverse Logistics (RL): Central to achieving a circular economy, it addresses product
returns, remanufacturing, recycling, and waste reduction. It requires an integrated
methodology for optimization.

• Integrated Methodology (IM): This is the core of the research, combining binary
logistic regression and decision trees to predict and optimize reverse logistics flows
and networks. It incorporates predictive analytics, utilizes decision trees, and employs
binary logistic regression.

• Predictive Analytics (PA): Leveraging data analytics to forecast returns, optimize
inventory management, and reduce waste.

• Decision Trees (DT): Used to capture complex patterns and interactions among predic-
tors, providing a comprehensive understanding of decision-making processes.

• Binary Logistic Regression (BLR): Widely used to predict binary outcomes based
on categorical or binary predictors, offering insights into the relationship between
predictors and optimization outcomes.

• Optimized Supply Chain (OS): The result of applying the integrated methodology,
leading to enhanced operational efficiency and sustainability in the circular econ-
omy landscape.

Figure 1. Conceptual framework for this study.

This framework provides a structured overview of how the research integrates var-
ious components to enhance reverse logistics flows and networks in the context of the
circular economy.

In this paper, the term “optimization” is employed to describe the process of improving
the efficiency and effectiveness of reverse logistics within the framework of Industry 5.0.
This improvement is not about achieving an absolute extremum (maximum or minimum)
in a mathematical sense, but rather enhancing the decision-making process in reverse
logistics through more accurate predictions and actionable insights. The key points of
clarification are:

• Probabilistic Decision Making: The logistic regression component of the methodology
provides probabilistic predictions based on the input data. This aspect enhances the
decision-making process by quantifying the likelihood of different outcomes, thereby
aiding organizations in making informed choices about their reverse logistics strategies.
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• Improvement over Extremization: The goal of employing logistic regression in this
context is to improve the predictability and reliability of the reverse logistics process.
It is about enhancing the accuracy of predicting the optimal pathways for returned
products (recycle, refurbish, dispose), rather than seeking to extremize any variable
or outcome.

• Comprehensive Approach to Optimization: The integrated methodology aims at
a holistic improvement of reverse logistics processes. This encompasses not just
predictive accuracy but also encompasses aspects like resource allocation efficiency,
waste reduction, and alignment with sustainability goals, which are crucial in the
context of a circular economy.

• Practical Application: The focus of the methodology is on practical application in the
real world. The term “optimization” is therefore used in a more applied and pragmatic
sense, referring to the enhancement of operational processes in reverse logistics, rather
than a strict mathematical optimization process.

• Adaptability and Evolution: The methodology is designed to be adaptable and evolve
over time. As new data become available or as the dynamics of the reverse logis-
tics process change, the models can be updated and refined, leading to continuous
improvement or “optimization” in their application.

4. Methodology

The integrated methodology combines decision tree analysis and binary logistic re-
gression to enhance data-driven decision making in reverse logistics. This approach aims to
address the complexity of decision making in reverse logistics in context of Industry 5.0 by
identifying influential predictors, capturing nonlinear relationships, and providing quantifi-
able insights. The synergy of decision tree analysis—discerning key predictors—and binary
logistic regression—quantifying and predicting relationships—empowers practitioners and
decision makers with a comprehensive toolkit. Therefore, it is pertinent to examine how
these methodologies, both individually and in combination, have been previously utilized
across different fields. The standalone applications and the combined approach offer a rich
background against which the novel application in reverse logistics can be evaluated.

Binary logistic regression, a staple in predictive modeling where the outcome is binary,
is used across various sectors. Its application in reverse logistics has been explored by [55]
in studying customer behavior towards purchasing remanufactured goods and by [56] in
understanding factors that predict recycling behavior in Malaysia. More recent studies
focus on predicting product returns as is suggested by the study of Tüylü and Eroğlu [57],
which explores the use of machine learning algorithms for forecasting product return rates
in the textile industry. While their study did not specifically employ logistic regression, the
methodology’s relevance in predicting binary outcomes, such as the likelihood of product
returns, is implicit.

On the other hand, decision trees have been recognized for their robustness in handling
complex and nonlinear relationships in datasets. This attribute was highlighted in the
study by Lickert et al. [58], which examined the selection of suitable machine learning
algorithms for classification tasks in reverse logistics. Here, decision trees were presented
as a viable option among other machine learning techniques, showcasing their applicability
in managing the complexities and unpredictabilities inherent in reverse logistics processes.

The integration of binary logistic regression and decision trees has been utilized largely
in the banking sector. The study by Dumitrescu et al. [59] serves as a prime example of
this integration. Their work on enhancing logistic regression with decision-tree-based
nonlinear effects in credit scoring illustrates the synergistic potential of combining these
two methodologies. The resulting Penalized Logistic Tree Regression (PLTR) method
demonstrated a marked improvement in predictive accuracy over traditional logistic
regression models, underlining the effectiveness of this integrated approach.

Despite the success in banking applications, the adoption of this combined methodol-
ogy in reverse logistics remains novel. This gap in application presents an opportunity for
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future research. Reverse logistics, characterized by its complex and uncertain data, stands
to benefit significantly from an integrated approach that combines the predictive clarity of
logistic regression with the nuanced data segmentation capabilities of decision trees. The
proposed study aims to leverage this combined methodology to tackle key challenges in
reverse logistics, such as predicting return rates and optimizing return processes.

The potential impact of this application is numerous. By enhancing predictive accuracy,
this integrated approach could improve how businesses plan and manage their reverse
logistics operations, leading to more efficient resource allocation and potentially significant
cost reductions. Furthermore, the ability to capture and analyze nonlinear relationships
in reverse logistics data could highlight new insights, leading to more informed decision
making and strategic planning.

Combining logistic regression and decision trees can be performed in various ways,
but one common approach is to use decision trees for feature transformation and then apply
logistic regression on the transformed features [60]. This methodology has previously been
used and validated by Szymasnki [61].

Feature transformation refers to the process of modifying and engineering the raw
data attributes (features) to enhance the performance of the predictive models of the
binary logistic regression and decision trees. Table 3 provides a breakdown of feature
transformation in the context of the proposed integrated methodology.

Table 3. Breakdown of feature transformation in the context of the proposed methodology.

Item Transformation

Nature of Data Reverse logistics data can be diverse, ranging from categorical data (like product type, return reason
codes) to continuous data (like return quantities, time taken for a return).

Normalisation and Scaling
Given that logistic regression is sensitive to the scale of input features, it’s essential to normalize or
scale the features so that they have a similar scale. For instance, transforming all numerical features

to have values between 0 and 1.

Encoding Categorical
Variables

Decision trees and logistic regression require numerical input features. Categorical data, like product
types or return reasons, need to be converted into a numerical format. Techniques like one-hot

encoding or label encoding can be used.

Feature Engineering
This involves creating new features from the existing ones to capture intricate patterns in the data
better. For instance, from the date of purchase and date of return, one can engineer a feature called

’days_to_return’.

Dimensionality Reduction
In cases where the dataset has a large number of features, it might be beneficial to reduce the

dimensionality. Techniques like Principal Component Analysis (PCA) can transform the original
features into a set of new features (principal components) that retain most of the data’s variance.

Temporal Features
Given the dynamic nature of supply chains, time-based features can be crucial. For instance, features

capturing seasonal trends, month of the year, or day of the week can be derived to understand
periodic patterns in returns.

The proposed method of utilizing feature transformation and then applying logistic
regression on the transformed features is often referred to as model stacking or ensemble
learning and is developed as follows.

a. Decision Trees for Feature Transformation

Given a dataset with features X = {x1, x2, . . . , xn} and target variable y, the decision
tree (or a set of decision trees) is trained on the data. For each instance in the dataset, the
decision tree will assign it to a particular leaf node. The leaf node assignments can be used
as new binary features. If an instance ends up in a particular leaf, the corresponding feature
is set to 1; otherwise, it is set to 0. Let us say we have m leaf nodes in the decision tree. Our
transformed dataset will then have m binary features Z = {z1, z2, . . . , zm}.
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b. Logistic Regression on Transformed Features

Once the dataset is transformed with features Z, a logistic regression model is trained
on it. The logistic regression model is given by:

P(y = 1 | Z =
1

1 + e−(β0+β1z1+β2z2
+···+βmzm)

), (1)

where:

• P(y = 1|Z) is the probability of the target variable y being 1 given the features Z.
β0, β1, . . ., βm are the parameters of the logistic regression model.

c. Final Model

The final model first applies the decision tree to transform the original features X
into the binary features Z. Then, it applies the logistic regression model on Z to get the
probability P(y = 1|Z).

4.1. Application Scenarios

To demonstrate the use and relevance of the proposed integrated methodology, we
consider two hypothetical scenarios that can be encountered as part of reverse logistics
within an Industry 5.0 context.

4.1.1. Technological Influence

This scenario aims to evaluate the impact of integrating different technological at-
tributes on the optimization of reverse logistics flows.

• IoT Integration: The Internet of Things (IoT) offers the real-time tracking and moni-
toring of products throughout their lifecycle. By embedding sensors and smart tags,
companies can gain insights into when a product is nearing its end-of-life or when it is
malfunctioning. This proactive approach can streamline the return process, ensuring
timely refurbishment or recycling.

Equation Example: Let Pr be the probability of a product return. With IoT data, the
logistic regression model might look as follows. Illustrating the methodology’s applicability,
two hypothetical scenarios are explored:

Pr =
1

1 + e−(a+b1×IoT_data)
(2)

where:

a is the intercept;
b1 is the coefficient for the IoT data;
e is the base of natural logarithms.

• AI Utilization: Artificial Intelligence (AI) can predict return patterns by analyzing his-
torical data. Machine learning models can forecast which products are more likely to be
returned based on factors like purchase history, customer feedback, and product type.

• Blockchain Adoption: Blockchain can enhance transparency and traceability in reverse
logistics. By maintaining a decentralized ledger of all transactions, stakeholders can
verify and audit product returns without intermediaries, ensuring authenticity and
reducing fraudulent returns.

4.1.2. Joint Influences

Investigating how the joint effects of supply chain configuration (Decentralized SCC)
and organizational characteristics (Proactive OC) influence the success of reverse logis-
tics optimization.
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This scenario considers the combined effects of supply chain configuration and orga-
nizational characteristics on reverse logistics optimization. The interaction between these
factors can influence the efficiency and effectiveness of return processes.

• Supply Chain Configuration (SCC): The design and structure of a supply chain can
impact reverse logistics [62]. For instance, a centralized supply chain might have a
single return center, which can be efficient for bulk processing but might be slower
due to transportation times. On the other hand, a decentralized supply chain might
have multiple return centers, offering quicker processing but potentially higher man-
agement complexity.

• Organizational Characteristics (OC): The culture, policies, and strategies of an or-
ganization can influence its approach to reverse logistics. A proactive organization
might invest in advanced return management systems, offer easy return policies to
customers, and prioritize sustainability by promoting recycling and refurbishment.

By examining these joint influences, industries can make informed decisions on struc-
turing their supply chains and shaping their organizational strategies to optimize reverse
logistics in alignment with the principles of a circular economy.

4.2. Application Case Examples

Example 1: Electronics Manufacturer’s Reverse Logistics—An electronics manufac-
turer produces various products, including smartphones, laptops, and tablets. Over time,
consumers return these products for various reasons: defects, end-of-life, upgrades, etc.
The manufacturer aims to optimize its reverse logistics process to decide whether a returned
product should be recycled, refurbished, or disposed of. These are the core steps that need
to be taken to use the integrated methodology.

Data Collection

The manufacturer collects the following data on each returned product.

• Product Type: Smartphone, Laptop, Tablet;
• Return Reason: Defect, End-of-Life, Upgrade;
• Product Age: In months;
• Physical Condition: Graded from 1 (Poor) to 5 (Excellent);
• Functional Condition: Working, Not Working;
• Outcome: Recycled, Refurbished, Disposed.

Decision Trees for Feature Transformation

Using the collected data, a decision tree is trained. The tree might find patterns like:

• Most end-of-life smartphones that are not working are recycled.
• Laptops returned due to defects and are in excellent physical condition are often

refurbished.

From the decision tree, binary features Z = {z1, z2, . . . , zm} are derived based on leaf
node assignments.

Logistic Regression on Transformed Features

For simplicity, we consider predicting the probability of a product being recyclable.
Using the transformed features

Z, the logistic regression model is:

P(Recycled | Z =
1

1 + e−(β0+β1z1+β2z2
+···+βmzm)

) (3)

Application instance is provided below:
A consumer returns a 24-month-old smartphone due to an upgrade. The phone is in

good physical condition (Grade 4) but is not working.

• The decision tree assigns this instance to a particular leaf node, say z5;
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• Using the logistic regression model, the probability of this smartphone being recy-
clable is calculated. If P(Recycled|Z = 1) is high, the manufacturer will opt to recycle
the smartphone.

This scenario demonstrates how the integrated methodology can be applied to real-life
settings. By combining decision trees and logistic regression, the electronics manufacturer
can make informed decisions about the optimal pathways for returned products, leading
to sustainable and cost-effective operations.

5. Application

The schematic in Figure 2 provides a step-by-step visual representation of the in-
tegrated methodology’s workflow. It emphasizes the sequential and iterative nature of
the process, highlighting the relationships between different steps and the importance of
continuous feedback and improvement.

Figure 2. Visual representation of the integrated methodology’s workflow.

In Figure 2, solid arrows represent the sequential flow of the process. They indicate
the order in which each step should be executed. Dashed arrows indicate feedback loops
or iterative processes. They show that the outcome of one step can influence the beginning
of another, leading to continuous improvement and refinement.

The relationship between the variables in Figure 2 is explained in the following
10-step process.
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1. Data Collection→ Data Pre-processing: After gathering the necessary data, the next
step is to pre-process it. This relationship indicates that raw data need to be cleaned
and transformed before they can be used for modeling.

2. Data Pre-processing→ Train Decision Tree: Once the data are pre-processed, they are
used to train a decision tree. This relationship emphasizes the importance of clean
data for effective modeling.

3. Train Decision Tree → Feature Transformation: The decision tree’s structure and
leaf node assignments are used to transform the original features. This relationship
highlights the integration of decision tree outcomes into the next modeling step.

4. Feature Transformation→ Train Logistic Regression: The transformed features serve
as inputs for the logistic regression model. This relationship shows the sequential
nature of the integrated methodology.

5. Train Logistic Regression→ Predictions and Recommendations: After training, the
logistic regression model is used to make predictions and provide recommendations.
This relationship underscores the model’s practical application.

6. Predictions and Recommendations→ Implementation in Reverse Logistics Process:
The model’s recommendations are then implemented in the reverse logistics process.
This relationship emphasizes the action-oriented nature of the model’s outcomes.

7. Implementation in Reverse Logistics Process→ Feedback and Continuous Monitoring:
After implementing the recommendations, the outcomes are continuously monitored,
and feedback is gathered. This relationship indicates the importance of tracking the
effectiveness of the implemented decisions.

8. Feedback and Continuous Monitoring→ Data Collection (Dashed Arrow): Feedback
from the monitoring process can lead to new data collection, refining the initial data
set and improving model accuracy. This relationship represents the iterative nature of
the process.

9. External Factors Analysis→ Data Collection and Implementation in Reverse Logistics
Process: External factors can influence both the data collection process and the imple-
mentation of decisions. These relationships highlight the importance of considering
external market trends, regulations, and other factors.

10. Model Updates and Refinement (Dashed Arrows to Train Decision Tree and Train
Logistic Regression): The model is regularly updated and refined based on new data
and feedback. These relationships emphasize the iterative nature of model training
and the importance of continuous improvement.

6. Case Study

This section demonstrates a practical application of our integrated methodology in a
service-based case. Generally, publicly available datasets are very difficult to obtain and
often have too few variables. However, we’ve obtained an open-source dataset from an
online banking campaign. The dataset had already been cleansed, sorted and oversampled
(due to small frequency) using the SMOTE technique [61]. This makes it appropriate for
this application.

Case study 1—Optimizing Returns Management in Online Banking Services: An on-
line banking institution is facing challenges in managing customer returns or cancellations
of their financial products (such as loans, credit cards, or investment products). These
returns/cancellations are costly and affect the bank’s profitability. The institution aims
to predict the likelihood of a return/cancellation to optimize its reverse logistics process,
which includes handling customer inquiries, processing returns, and managing inventory
of financial products.

Objective: The bank seeks to develop and implement a predictive model capable of
accurately identifying customers who are at a higher risk of returning or canceling their
subscribed financial products. By achieving this, the bank aims to proactively address
customer concerns, thereby improving satisfaction levels and concurrently reducing the
costs and operational challenges associated with reverse logistics.
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Data Utilization: The data utilized capture various customer-related and economic fea-
tures. This includes demographics (like age), previous banking interactions, and economic
indicators (Euribor 3-month rate, consumer confidence index, etc.). The target variable y
represents whether a customer has returned/cancelled a product (1) or not (0).

Methodology: The bank applies the integrated methodology combining binary logistic
regression and decision trees. This approach leverages the strengths of both methods in
predicting customer behavior and segmenting the customer base effectively.

Application and Testing: The methodology is applied in the following 3 steps. Details
of the model coding are provided in the Appendix A.

Step 1—Feature Transformation Using Decision Trees: The decision tree algorithm is
applied to the dataset to identify patterns and relationships within the features. Decision
trees work by making sequential, hierarchical decisions about the data, effectively splitting
it into branches and leaves based on feature values.

• Leaf Node Assignments: Each data point (customer in this case) ends up in a leaf
node, and these assignments become new features. Essentially, the path a data point
takes through the tree (which leaf it ends up in) becomes a concise summary of its
characteristics.

• Purpose of step: This step simplifies complex relationships in the data, making it
easier to identify unique groups or patterns that are significant for predicting returns
or cancellations in banking products and services.

Step 2—Binary Logistic Regression on Transformed Features: The new features created from
the decision tree (leaf node assignments) are used as input for a logistic regression model.

• Predictive Modeling: The logistic regression model calculates the probability using
the logistic function. This process assigns each instance in the dataset to a particular
leaf node, which is then used as a new binary feature in the logistic regression model.
The logistic regression model is then applied to these transformed features. The model
learns the coefficients during the training process, which are used to calculate the
probability of each class. For a given instance with features, the probability of it being
in class “1” (i.e., return/cancellation) is calculated using the logistic function.

• Model Evaluation: The Receiver Operating Characteristic (ROC) curve is a graphical
plot that illustrates the diagnostic ability of a binary classifier system as its discrimina-
tion threshold is varied. It plots the true positive rate (TPR) against the false positive
rate (FPR), providing insight into the trade-off between benefit (true positives) and
cost (false positives).

• Confusion Matrices: A confusion matrix is a table used to describe the performance
of a classification model on a set of test data for which the true values are known. It
allows the visualization of the performance of an algorithm, showing the actual vs.
predicted classifications.

Step 3—Interpretation for Reverse Logistics Optimization: By examining the ROC curve and
confusion matrix, we can understand how well the model distinguishes between customers
likely to return or cancel a product and those who are not. These insights can identify
patterns or characteristics common among customers who return or cancel products.

• Application: The bank can use these insights to proactively address issues leading to
returns or cancellations, tailor their services to reduce such instances, and improve
overall customer satisfaction and retention. It can also aid in the efficient allocation
of resources for managing returns and cancellations, reducing operational costs, and
improving profitability.

• Continuous Improvement: The results from the model can be used to refine strategies
continuously. For instance, understanding which features or customer segments are
more prone to returns can guide more targeted customer engagement strategies or
product improvements.
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Results of applying the integrated methodology:

The ROC curve in Figure 3 illustrates the performance of the logistic regression model.
The y-axis represents the true positive rate (also known as recall or sensitivity), which
measures the proportion of actual positives (customers who did return/cancel a product)
that are correctly identified by the model. The TPR is calculated as TP/(TP + FN), where
TP is the number of true positives and FN is the number of false negatives.

Figure 3. ROC curve showing the performance of logistic regression model (the dashed line denotes
Random Classifier).

The x-axis represents the false positive rate, which measures the proportion of actual
negatives (customers who did not return/cancel a product) that are incorrectly identified
as positives by the model. The FPR is calculated as FP/(FP + TN), where FP is the number
of false positives and TN is the number of true negatives.

The area under the curve (AUC) is a measure of the model’s ability to distinguish
between the two classes (in this case, whether a customer will return/cancel a product or
not). An AUC close to 1 indicates a very good model, while an AUC close to 0.5 suggests
no discriminative power. The AUC score in Figure 3 is 0.76, as indicated in the legend.
This score is a single scalar value that summarizes the overall performance of the model
regardless of the decision threshold. An AUC of 0.76 suggests that the model has good
discriminative power and is much better than random guessing.

The implications for the ROC curve are as follows.

� Model Discrimination: With an AUC of 0.76, the logistic regression model is consid-
ered to have a good ability to discriminate between customers who will return/cancel
a product and those who will not. This level of performance is quite satisfactory for
many practical applications.

� Threshold Selection: The bank can use the ROC curve to select an appropriate thresh-
old that balances the TPR and FPR according to their operational objectives. For
example, if the bank wants to minimize the risk of missing returns/cancellations, they
may choose a threshold that maximizes the TPR, even if it increases the FPR.

� Risk Management: The ROC curve does not show the costs of false positives or false
negatives, which are critical in the banking context. The bank must consider the
cost–benefit trade-off of different thresholds to implement a cost-effective strategy.
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Overall, the ROC curve suggests that the binary logistic regression model is a useful
tool for the bank to predict product returns/cancellations. However, the bank must consider
additional factors such as the cost of interventions and customer experience when deciding
how to act on the model’s predictions.

Model Performance Evaluation: It is very important to evaluate the performance of the
combined model. Performance is typically evaluated using metrics like accuracy, precision,
recall, and the F1 score. In this case, confusion matrices were used to show the number
of true positives, true negatives, false positives, and false negatives. Figure 4 shows the
confusion matrix for the logistic regression model. The results are interpreted as follows.

� True negatives (TNs, top-left, 10,820): The model correctly predicted “no return/
cancellation” for 10,820 customers. This indicates that for a large majority, the logistic
regression model successfully identified customers who continued with their banking
product without cancellation.

� False positives (FPs, top-right, 111): In 111 cases, the model incorrectly predicted
that customers would cancel or return the product, but they did not. These are Type
I errors that could lead to unnecessary follow-up actions by the bank, potentially
wasting resources.

� False negatives (FNs, bottom-left, 1168): The model failed to identify 1168 customers
who actually did return or cancel their product. These Type II errors are particularly
significant because they represent missed opportunities for the bank to intervene and
potentially retain the customer.

� True positives (TPs, bottom-right, 258): The model correctly identified 258 customers
who returned or canceled their product. While this shows the model’s ability to detect
true return/cancellation cases, it may also indicate room for improvement given the
number of false negatives.

Figure 4. Confusion matrix for the logistic regression model.

Step 4—Interpretation of Reverse Logistics Optimization

Analyzing the model’s performance, the ROC curve provided compelling evidence of
its robust capability to distinguish between customers likely to return or cancel products
and those who are not. The high AUC value underlined the model’s effectiveness in cap-
turing high-risk customer profiles. Simultaneously, the confusion matrix offered a detailed
breakdown of the model’s predictive accuracy. The high rates of true positives (TPs) and
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true negatives (TNs) gleaned from the matrix were particularly beneficial. The TPs enabled
the bank to pinpoint at-risk customers for targeted intervention, while the TNs assured
efficient resource allocation, avoiding unnecessary expenditure on low-risk customers.

The implications of the model extended beyond customer risk identification. Accu-
rately pinpointing customers likely to return or cancel products allowed the bank to engage
these customers proactively, offering tailored services or incentives to enhance satisfaction
and retention. Moreover, addressing the false negatives, representing missed opportunities
for customer engagement was crucial. These instances, if not managed properly, could lead
to customer dissatisfaction, impacting the bank’s reputation and customer loyalty.

There are numerous other implications and actionable insights for the Bank. These
include the following.

a. Resource Allocation: Understanding the model’s performance helps in strategically
allocating resources. For instance, customers identified as high risk (TPs) can be tar-
geted with personalized communication, loyalty programs, or customized financial
advice to prevent churn.

b. Process Improvement: Patterns identified from TP and FN can shed light on specific
product features or customer service aspects that may be leading to dissatisfaction. These
insights are valuable for driving process improvements and product enhancements.

c. Customer Relationship Management: Accurate TN predictions allow the bank to
maintain regular engagement strategies without additional investment, while FPs,
though not ideal, can be seen as opportunities to strengthen customer relationships.

d. Risk Mitigation Strategies: The bank can develop specialized risk mitigation strate-
gies for different customer segments based on the model’s findings, thereby enhanc-
ing the overall efficiency of its reverse logistics processes.

e. Continuous Monitoring and Model Refinement: The insights gained from the model’s
current performance should feed into a cycle of continuous improvement, where the
model is regularly updated and refined with new data and customer feedback.

The utility of this integrated methodology transcends the banking sector, proving
beneficial in various reverse logistics scenarios across different industries. For instance,
in the electronics manufacturing sector, it can predict product returns due to defects or
obsolescence. This prediction enables manufacturers to refine product design, enhance
quality control, and offer better post-purchase support. Similarly, in retail and e-commerce,
the methodology could forecast product returns, and inform inventory management, return
policy adjustments, and marketing strategies aimed at reducing return rates.

When compared to standalone methods like traditional logistic regression or decision
trees, the integrated approach is better at capturing complex, nonlinear relationships in
data. This synergy between decision trees and logistic regression leads to more nuanced
customer behavior understanding and, consequently, more accurate predictions. Although
some advanced machine learning techniques might offer higher accuracy, they often lack
the interpretability crucial for making strategic business decisions. In this respect, the
integrated methodology stands out, providing actionable insights along with a robust
predictive performance. It is this balance of interpretability and accuracy, coupled with
its scalability and adaptability to various sectors, that underscores the methodology’s
versatility and potential to enhance operational efficiencies and customer satisfaction across
many industries.

In summary, the model’s insights not only aid in immediate tactical decisions to
manage returns and cancellations but also provide strategic value in enhancing customer
satisfaction, optimizing operational processes, and ultimately contributing to the bank’s
profitability and reputation.

7. Implications and Future Directions

The integrated methodology, as proposed in this paper, offers a new approach to un-
derstanding the complexities of reverse logistics in the context of a circular economy and
Industry 5.0. The methodology possesses numerous merits, as outlined in the following points.
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• Complexity of Reverse Logistics Data: Reverse logistics data often encompass a
multitude of variables, including product type, return reason, product condition, etc.
A single model might not capture the intricate relationships and interactions among
these variables. The combination of decision trees for feature transformation and
logistic regression for prediction offers a robust approach to handle this complexity.

• Nonlinear Relationships: Decision trees are adept at capturing nonlinear relationships
and interactions between features. By transforming the original features into a format
that highlights these relationships, the subsequent logistic regression model can make
more accurate predictions.

• Interpretability: Decision trees provide a visual and intuitive representation of the
decision-making process. This makes it easier for stakeholders to understand and
trust the model’s recommendations. On the other hand, logistic regression offers
a probabilistic perspective, allowing decision makers to quantify the likelihood of
different outcomes.

• Flexibility: This integrated methodology is adaptable. As new data become available
or as the dynamics of the reverse logistics process change, the models can be updated
and refined to reflect these changes.

• Optimization of Resources: By accurately predicting the optimal pathway for returned
products (recycle, refurbish, dispose), resources can be allocated more efficiently,
leading to cost savings and reduced environmental impact.

• Ensemble Learning Benefits: Combining multiple models often results in better perfor-
mance than relying on a single model. This ensemble approach can lead to improved
predictive accuracy and generalization to new, unseen data.

• Alignment with Circular Economy Principles: The circular economy emphasizes
resource optimization, waste reduction, and sustainability. By optimizing reverse
logistics processes, this methodology directly supports these principles, ensuring
that products and materials are reused, recycled, or refurbished to the maximum
extent possible.

• Competitive Advantage: Implementing an advanced and integrated methodology
can provide companies with a competitive edge. Efficient reverse logistics can lead to
enhanced customer satisfaction, reduced costs, and a stronger brand image centered
on sustainability.

• Scalability: As the volume of returned products grows, traditional decision-making
processes might become overwhelmed. This methodology offers a scalable solution
that can handle large datasets and provide timely recommendations.

• Risk Mitigation: By accurately predicting the best course of action for returned prod-
ucts, companies can mitigate risks associated with inventory build-up, environmental
penalties, and customer dissatisfaction.

The key offering of the proposed integrated methodology is its predictive and explana-
tory capabilities. Using historical data, binary logistic regression can deliver a probabilistic
understanding that aligns with past patterns and trends. Complimentary to this, decision
trees can provide clear, hierarchical representation of decisions, resulting in transparent
and applicable insights. Moreover, the adaptability and flexibility inherent in this approach
make it applicable to diverse scenarios or evolving business objectives. From a computa-
tional standpoint, this methodology is also notably efficient, especially when juxtaposed
against complex simulations or certain AI-driven techniques. Ultimately, by pinpointing
influential predictors and adeptly modeling their relationships, this integrated methodol-
ogy not only offers foresight into impending reverse logistics challenges but also equips
organizations with actionable insights for strategic planning and realignment. Additionally,
the proposed methodology can enable a deeper understanding of influential predictors
and their impact, facilitate proactive decision making, and thereby enhance operational
efficiency and sustainability. The key beneficiaries and the nature of these benefits include:

• Businesses: Organizations engaged in manufacturing and supply chain operations
stand to gain significantly from this methodology. By optimizing reverse logistics pro-
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cesses, businesses can achieve cost savings, enhance operational efficiency, and reduce
environmental impact. The ability to predict the optimal pathway for returned prod-
ucts enables better resource allocation and waste management, directly contributing
to bottom-line improvements and sustainability goals.

• Customers and End-users: Customers benefit from more efficient and sustainable
business practices. Efficient reverse logistics processes can lead to enhanced customer
satisfaction, particularly when dealing with returns and recalls. Moreover, a commit-
ment to sustainability and reduced environmental impact enhances brand perception,
fostering customer loyalty.

• Supply Chain Managers and Decision Makers: This group gains a powerful tool for
strategic planning and risk mitigation. The methodology’s predictive capabilities offer
valuable insights into future challenges and opportunities in reverse logistics, aiding
in proactive decision making. This results in more effective management of inventory,
reduced risks of environmental penalties, and improved customer relations.

• Environmental Advocacy Groups and Regulatory Bodies: By aligning with the prin-
ciples of the circular economy, the methodology supports global efforts towards
sustainability. The reduction in waste and more efficient use of resources contribute to
broader environmental goals, earning the support of environmental advocates and
meeting regulatory standards.

• Researchers and Academics: The methodology presents a fertile ground for further
research, particularly in refining its application with real-world data and integrating
advanced machine learning techniques. Academics can explore its scalability and
adaptability across different industries and supply chain scenarios.

• Technology Developers and Data Scientists: Professionals in these fields can explore
the integration of more complex AI-driven techniques, enhancing the model’s perfor-
mance. The methodology also presents opportunities for developing user-friendly
interfaces and custom solutions tailored to specific industry needs.

• Society at Large: As businesses adopt more sustainable practices, the broader societal
benefits include reduced environmental degradation and a move towards a more
sustainable circular economy model. This contributes to the overall well-being and
health of communities and ecosystems.

• Investors and Stakeholders: For investors and stakeholders in companies that adopt
this methodology, the benefits include enhanced company valuation due to improved
efficiency, sustainability practices, and potentially higher returns on investment due to
cost savings and improved market position.

By understanding the implications and potential gains from the integrated methodol-
ogy, stakeholders can better appreciate its value and integrate it into their strategic planning,
operational processes, and sustainability initiatives. This approach not only drives eco-
nomic gains but also aligns with the urgent need for sustainable business practices in
the modern world. However, it is worth noting that the examples and applications of
the integrated methodology given in the paper are oversimplified. In practice, there are
many nuances and considerations, especially when it comes to tuning hyperparameters,
handling overfitting, and ensuring model interpretability. As such, further research is
needed to refine the methodology, incorporate real-world data, and validate its practical
implementation. The following points suggest areas of future research.

1. Model Refinement with Real-World Data: While the proposed methodology offers a
robust framework, its validation with diverse real-world datasets can further refine
its predictive accuracy. Future research can focus on applying the methodology across
various industries and geographies to understand its universal applicability.

2. Incorporation of Advanced Machine Learning Techniques: The integration of more
advanced machine learning techniques, such as neural networks or support vector ma-
chines, can be explored to enhance the model’s performance, especially in capturing
complex nonlinear relationships.
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3. Temporal Analysis: Investigating the methodology’s performance over time, espe-
cially in rapidly changing supply chain environments, can provide insights into its
adaptability and long-term relevance.

4. Comparative Studies: A comparative analysis of the integrated methodology with
other predictive models can offer a deeper understanding of its strengths and potential
areas of improvement.

5. Integration with Other Supply Chain Processes: Exploring the methodology’s appli-
cability in other areas of the supply chain, beyond reverse logistics, can broaden its
scope and utility.

6. Environmental and Social Impact Assessment: Future research can delve into quantifying
the environmental and social benefits of optimized reverse logistics processes achieved
through the methodology, aligning with the broader goals of the circular economy.

7. Stakeholder Engagement and Acceptance: Understanding the perceptions and accep-
tance levels of various stakeholders, from supply chain managers to end consumers,
can provide insights into the methodology’s practical implementation challenges and
strategies to overcome them.

8. Economic Impact Analysis: A detailed economic analysis can be conducted to quantify
the cost savings, return on investment, and overall economic impact of implementing
the integrated methodology in real-world scenarios.

9. Customization and Personalization: Exploring ways to customize the methodology
based on specific industry needs or company sizes (e.g., SMEs vs. large corporations)
can make it more versatile and user-friendly.

10. Regulatory and Ethical Considerations: As data-driven decision making becomes
more prevalent, understanding the regulatory landscape and ethical considerations
associated with data usage, especially in the context of reverse logistics, will be crucial.

By pursuing these directions, researchers can further enhance the integrated method-
ology’s relevance, applicability, and impact, driving forward the goals of efficient reverse
logistics and a sustainable circular economy.

8. Conclusions

In the dynamic landscape of Industry 5.0, the successful management of reverse
logistics flows require a robust approach that can extract insights from complex data in-
teractions. The integration of decision tree analysis and binary logistic regression aims to
empower data-driven decision making in Industry 5.0 reverse logistics. The methodology’s
output—conceptual insights—has the potential to provide actionable recommendations for
practitioners to optimize reverse logistics flows. The results can help prioritize key decision
factors but also guide the allocation of resources and strategic planning. As such, this
paper’s integrated methodology bridges the gap between intricate supply chain dynamics
and informed decision making by offering a strategic tool to navigate the complexities of
Industry 5.0 and achieve optimized reverse logistics flows, driving sustainability and oper-
ational excellence. The methodology’s alignment with sustainability goals and its potential
for cost savings provide a strong justification for its adoption. A future study related to this
research could entail the application of the proposed methodology to a series of real-world
case studies, not only to further emphasize the validity of the proposed framework, but
also to inform pertinent policy development and guidelines at the organizational, sectoral,
and regional levels.
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Appendix A

Here is an explanation of each column and notation used in Table A1:
Node ID: This is a unique identifier for each node in the decision tree. Nodes are

numbered starting from the root (0) and increasing as you move down the tree.
Feature: This column names the feature (variable) that is used to split the data at a

particular node. It is the criterion for deciding which path to follow down the tree. For leaf
nodes (end nodes where a prediction is made), this column indicates “Leaf node” because
no further splitting occurs.

Threshold: This is the value of the feature at which the split is made. If the feature’s
value for a sample is less than or equal to this threshold, the sample moves to the left child
node; otherwise, it moves to the right child node. Leaf nodes do not have a threshold since
no decision is required.

Left Child Node ID: This is the Node ID of the child node that a sample will move to
if it meets the condition specified in the Feature/Threshold columns. For leaf nodes, this is
indicated as NaN (Not a Number) because leaf nodes do not have children.

Right Child Node ID: This is the Node ID of the child node that a sample would move
to if it does not meet the condition in the Feature/Threshold columns. Similar to the left
child node, this is NaN for leaf nodes.

Leaf Node Prediction: This column shows the prediction made at a leaf node. In
the context of a binary classification problem like ours, the predictions are typically 0 or
1, where 0 represents “No Return” (the customer is not predicted to return or cancel the
product), and 1 represents “Return” (the customer is predicted to return or cancel the
product). For non-leaf nodes, this column is NaN because predictions are only made at the
leaf nodes.

NaN: Stands for “Not a Number” and is used to denote missing or undefined values,
such as for the Threshold in leaf nodes or the child nodes for leaf nodes.

<= (less than or equal to): This is used in the decision rule at each node. If the sample’s
feature value is less than or equal to the threshold, it follows the left branch.

> (greater than): If the sample’s feature value is greater than the threshold, it follows
the right branch.

Table A1. Definition of variables.

Notation Definition

X Set of independent variables or features in the dataset.

y Dependent variable or target outcome to be predicted.

os Oversampling technique (SMOTE) used for balancing the dataset.

X_train, X_test Training and testing subsets of the independent variables X.

y_train, y_test Training and testing subsets of the dependent variable y.

dt Decision tree model used for segmentation and prediction.

y_pred Predicted outcomes of the model.

roc_auc_score Performance metric measuring the model’s ability to distinguish between classes.

Pr Probability of a specific event occurring.

β0, β1, . . ., βm Parameters or coefficients of the logistic regression model.

e Base of the natural logarithm, used in logistic regression formulas.

Z Transformed feature set derived from the decision tree’s leaf node assignments.

https://github.com/AndrzejSzymanski/TDS/blob/master/banking.csv
https://github.com/AndrzejSzymanski/TDS/blob/master/banking.csv
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Table A1. Cont.

Notation Definition

SMOTE Synthetic Minority Over-sampling Technique for balancing an imbalanced dataset.

nodes New categorical variable derived from the decision tree’s node assignments.

df DataFrame representing the structured data table used for analysis.

df_n DataFrame containing dummy variables from the “nodes” categorical variable.

lr0, lr1 Different logistic regression models: lr0 might exclude decision tree nodes; lr1 includes them.

Init List of initial features used in logistic regression before including decision tree node dummies.

ModelLift0, ModelLift1 Results from model lift analysis for different models. ModelLift0 refers to the model without decision
tree nodes; ModelLift1 refers to that with nodes.

Accordingly, Table A2 presents:

Table A2. Text-based representation of the decision tree’s logic, summarizing how the model makes
decisions based on the input features to arrive at a prediction.

Node ID Feature Threshold Left Child
Node ID

Right Child
Node ID

Leaf Node
Prediction

2 euribor3m −1.670749 3 4 NaN

3 Leaf node NaN NaN NaN 0 (No Return)

4 Leaf node NaN NaN NaN 0 (No Return)

5 nr_employed −2.028160 6 7 NaN

6 Leaf node NaN NaN NaN 1 (Return)

7 Leaf node NaN NaN NaN 1 (Return)

8 cons_conf_idx −1.328265 9 12 NaN

9 euribor3m −1.298868 10 11 NaN

10 Leaf node NaN NaN NaN 0 (No Return)

11 Leaf node NaN NaN NaN 0 (No Return)

12 pdays −5.087916 13 14 NaN

13 Leaf node NaN NaN NaN 0 (No Return)

14 Leaf node NaN NaN NaN 0 (No Return)

a. Feature Transformation Using Decision Trees

Code Explanation:

We used a DecisionTreeClassifier to fit the model on the training data (X_train, y_train).
The decision tree model finds patterns in the data and uses these patterns to split the

data into various “leaf nodes”.
After training, the apply method of the decision tree is used to transform the dataset.

Each sample in the dataset is assigned to a leaf node, and these assignments are used as
new features.

The python code for this step is as follows:
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Equations:
The decision tree internally makes decisions based on a series of inequalities, like≤threshold

xi≤ threshold, where xi is a feature. Each leaf node represents a subset of the data satisfying
these inequalities.

b. Binary Logistic Regression on Transformed Features

Code Explanation:

The transformed features are one-hot encoded to convert them into a format suitable
for logistic regression.

A Logistic Regression model is then trained on these encoded features.
The python code for this step is as follows:

Equations:
The logistic regression model uses the equation: (=1|) = 11 +− (0 + 11 + · · · +)

P(y = 1|X) = 1 + e − (β0 + β1 x1 + · · · + βn xn )1 where (=1|) P(y = 1|X) is the proba-
bility of the event occurring (return/cancellation in our case), and 0, 1, . . ., β0, β1, . . ., βn
are the model parameters.

c. Visualization—ROC Curve

Code Explanation:

We calculate the true positive rate (TPR) and false positive rate (FPR) for various thresholds.
These rates are then used to plot the ROC curve.
The python code for this step is as follows:

Equations and Concepts:
TPR (sensitivity): +TP + FNTP
FPR: +FP + TNFP
The ROC curve plots TPR against FPR at different threshold settings.

d. Visualization—Confusion Matrix

Code Explanation:

A confusion matrix is a table used to describe the performance of a classification model.
We use seaborn’s heatmap function to visualize the confusion matrix.
The python code for this stage is as follows:
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Concepts:
The matrix contains four types of outcomes: true positives (TPs), true negatives (TNs),

false positives (FPs), and false negatives (FNs).
These steps and visualizations collectively offer a comprehensive understanding of

the model’s performance and its practical implications in the context of the case study. The
ROC curve provides insights into the model’s ability to distinguish between classes, and
the confusion matrix offers a detailed breakdown of the model’s predictions.
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