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Abstract

In this research article, we brought into consideration the set of non-uniformly distributed nodes on
the unit circle to investigate a Lagrange-Hermite interpolation problem. These nodes are obtained
by projecting vertically the zeros of Jacobi polynomial onto the unit circle along with the boundary
points of the unit circle on the real line. Explicitly representing the interpolatory polynomial as
well as establishment of convergence theorem are the key highlights of this manuscript. The result
proved are of interest to approximation theory.

Keywords: Lagrange interpolation; Hermite interpolation; Unit circle; Jacobi polynomial; Rate
of convergence; Non-uniform nodes
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1. Introduction

Approximation of continous functions can be done using different methods by constructing alge-
braic or trigonometric polynomials. Polynomial interpolation has remained a ceaseless topic of
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2 S. Bahadur et al.

research since decades due to its various numerical applications such as forming the basis for al-
gorithms in numerical derivation and numerical quadrature. Lagrange and Hermite interpolation
are among the profuse approaches to peruse polynomial interpolation. A lot of literature (see Ba-
hadur and Varun (2018), Berriochoa et al. (2021), Bahadur and Varun (2022) and Bahadur and
Bano (2022)) got accumulated discussing the Lagrange and Hermite techniques of interpolation
and providing important results on the convergence of interpolatory polynomials. This research
article focuses on the intermediate problem between the Lagrange interpolation and the Hermite
interpolation.

Lagrange-Hermite interpolation: It is the process of finding a polynomial, which coincides with
the continuous function at certain pre-assigned points, called the nodes of interpolation, and its
derivative coinciding with not all of the nodes of the nodal system.

Trefethen (2011) broke the myths about the polynomial interpolation and quoted that polynomial
interpolants always converge if the function is smooth a little bit in Chebyshev points. Thus, the
function is required to be imposed by some restrictions such as altering conditions on its modulus
of continuity in order so that sequence of Lagrange-Hermite interpolation polynomials attains finer
properties of the convergence.

Kiš (1960) was the initiator of interpolation processes on the unit circle. He considered the La-
cunary interpolation on the nth roots of unity. Daruis and González-Vera (2000) took the roots of
complex numbers with modulus one as the nodal points and, using a suitable modulus of continuity,
obtained a result about convergence of the interpolants for continuous functions.

Berriochoa et al. (2016) studied the Lagrange-Hermite interpolation on the unit circle (LHIUC)
by prescribing the Lagrange values at the 2n roots of a complex number with modulus one and
prescribing values for the first derivative only on half of the nodes. They obtained two different
types of expressions for the interpolatory polynomials and provided sufficient conditions in order
to obtain convergence in case of continous functions.

Apart from the uniform nodal system (in the sense that nodes are equally spaced on the unit circle),
LHIUC have also been studied on some non-uniformly distributed nodes on the unit circle. Bahadur
and Varun (2017) studied LHIUC by projecting vertically the zeros of Legendre polynomial of
degree n together with the end points of the unit circle on the real line.

In the present paper, we consider a LHIUC problem on the nodal system constituted of projections
of the zeros of Jacobi polynomial of degree n vertically onto the unit circle together with the end
points of the unit circle on the real line . The novelty of this research article is that it aims to extend
the work of Bahadur and Varun (2017) by considering Jacobi polynomial instead of Legendre
polynomial in choosing the nodal points.

The paper has been organized in following manner. Preliminaries are given in Section 2. Section
3 introduces the interpolation problem and its regularity. Section 4 covers explicit representation
of the interpolatory polynomial. Section 5 is devoted to finding estimates whereas the convergence
theorem, and its proof has been assigned Section 6. Numerical experiment and the conclusions of
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the research article are provided in the Section 7 and Section 8, respectively.

2. Preliminaries

This section includes the following well known results, which we shall use. Throughout this re-
search paper, we denote the Jacobi polynomial of degree n by P

(α,β)
n (x).

The differential equation satisfied by P
(α,β)
n (x) is,

(1− x2)P (α,β)
′′

n (x) + [β − α− (α+ β + 2)x]P (α,β)
′

n (x) + n(n+ α+ β + 1)P (α,β)
n (x) = 0, (1)

where x = 1+z2

2z .

Figure 1. Szegő transformation

Let Z2n be the set of nodes which are obtained by projecting vertically the zeros of P (α,β)
n (x) on

the unit circle,

Z2n = {zk = xk + iyk = cos θk + i sin θk ; zn+k = z̄k ; k = 1, 2, ...., n; xk, yk ∈ R}, (2)

where, R is the set of real numbers. Also, the polynomial defined on Z2n is given by

W(z) =
2n∏
k=1

(z − zk) = KnP
(α,β)
n

(
1 + z2

2z

)
zn, (3)

where

Kn = 22nn!
Γ(α + β + n+ 1)

Γ(α + β + 2n+ 1)
.

The polynomial defined on Z2n ∪ {−1, 1} is given by

R(z) = (z2 − 1)W(z). (4)

The fundamental polynomial of Lagrange interpolation on the zeros of W(z) and R(z) is given by
(5) and (6), respectively,

Lk(z) =
W(z)

(z − zk)W′(zk)
, k = 1(1)2n, (5)

3
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4 S. Bahadur et al.

Lk(z) =
R(z)

(z − zk)R′(zk)
, k = 0(1)2n+ 1. (6)

Here, z0 = 1 and z2n+1 = −1.

If |z| = 1, then

|z2 − 1| = 2
√
1− x2. (7)

We also use well known results (Szegő (1975)).

For −1 ≤ x ≤ 1 and α ≥ β,

(1− x2)1/2 | P (α,β)
n (x) |= O(nα−1), (8)

| P (α,β)
n (x) |= O(nα). (9)

Considering the set of nodes Z2n such that for each k, xk ∈ (−1, 1), we have

(1− x2
k)

−1 ∼

(
k

n

)−2

, (10)

| P (α,β)′

n (xk) |∼ k−α− 3

2nα+2, (11)

|zk − 1| =
√
2(1− xk). (12)

3. The Problem and the Regularity

We are interested in determining the interpolatory polynomial Hn(z) of degree ≤ 2n+3 satisfying
the following conditions:{

Hn(f, zk) = f(zk), k = 0(1)2n+ 1,

H′
n(f,±1) = β±1,

(13)

where f(zk) and β±1 are arbitrary complex constants.

Theorem 3.1.

Hn(z) is regular on Z2n

⋃
{−1, 1}.

Proof:

It is sufficient if we show the unique solution of (13) is Hn(z) ≡ 0.

Let us consider

Hn(z) = R(z) q(z), (14)

4
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where q(z) is a linear polynomial.

Since, R(zk) = 0 for k = 0(1)2n+ 1 from (4), this implies Hn(zk) = 0 for k = 0(1)2n+ 1.

On differentiating (14) with respect to z, we have

H′
n(z) = R(z) q′(z) + R′(z) q(z). (15)

Since H′
n(±1) = 0, we get q(±1) = 0.

Therefore, we have

q(z) = az + b, (16)

where a and b are the arbitrary constants independent of n and z. Now, substituting z = 1 and
z = −1 in (16), we get a = b = 0. Hence, the theorem follows. ■

4. Explicit Representation of Interpolatory Polynomials

We shall write

Hn(z) =
2n+1∑
k=0

f(zk)Ck(z) +
∑

k=0,2n+1

β±1Dk(z), (17)

where Ck(z) and Dk(z) are fundamental polynomials, each of degree atmost 2n+ 3 satisfying the
conditions (18) and (19), respectively,{

Ck(zj) = δkj ; j, k = 0(1)2n+ 1,

C ′

k(zj) = 0 ; k = 0(1)2n+ 1, j = 0, 2n+ 1,
(18)

{
Dk(zj) = 0 ; j = 0(1)2n+ 1, k = 0, 2n+ 1,

D′

k(zj) = δkj ; j, k = 0, 2n+ 1.
(19)

Theorem 4.1.

The fundamental polynomial Dk(z) is given by

Dk(z) =
R(z)(z + zk)

4Kn

, (20)

where k = 0, 2n+ 1.

Proof:

Let us consider

Dk(z) = (z2 − 1)W(z)p(z), (21)

5
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6 S. Bahadur et al.

where p(z) is a linear polynomial. From the first condition in (19), one can verify that Dk(zj) = 0,
for j = 0(1)2n+ 1.

Differentiating Equation (21) with respect to z, we get

D′
k(z) = 2zW(z)p(z) + (z2 − 1)W′(z)p(z) + (z2 − 1)W(z)p′(z). (22)

For j = 0, 2n+ 1, we have

D′
k(zj) = 2zjW(zj)p(zj). (23)

Using the second set of condition of (19), (6) and (7), we get p(1) =
1

2Kn

and p(−1) =
−1

2Kn

.

Therefore, we have

p(z) =
z + zk
4Kn

. (24)

Hence, the theorem follows. ■

Theorem 4.2.

The fundamental polynomial Ck(z) is defined differently for various values of k.

For k = 1(1)2n,

Ck(z) = Lk(z) +
(z + zk)R(z)
(z2k − 1)R′(zk)

, (25)

and for k = 0, 2n+ 1,

Ck(z) = (z + zk)Lk(z)

[
1

2zk
−
( 1

4z2k
+

L′
k(zk)

2zk

)
(z − zk)

]
. (26)

Proof:

Case I: For k = 1(1)2n, let us consider

Ck(z) = Lk(z) + ak(z + zk)R(z), (27)

where ak is a constant independent of n and z. Using (4) and (6), we can verify the first set of
conditions in (18).

On differentiating (27) with respect to z, we get

C ′
k(z) = L′

k(z) + ak(z + zk)R′(z) + akR(z).

At z = zj , we get

C ′
k(zj) = L′

k(zj) + ak(zj + zk)R′(zj).

To satisfy the second set of conditions in (18), C ′
k(zj) = 0. Thus, we get

L′
k(zj) + ak(zj + zk)R′(zj) = 0, (28)

ak = − L′
k(zj)

(zj + zk)R′(zj)
. (29)

6
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Let us simplify further by substituting the value of L′
k(zj).

Using (6), we have

Lk(z)(z − zk)R
′
(zk) = R(z). (30)

On differentiating with respect to z, we get

L′
k(z)(z − zk)R

′
(zk) + Lk(z)R

′
(zk) = R′(z). (31)

Substituting z = zj in (31), we get

L′
k(zj)(zj − zk)R

′
(zk) = R′(zj). (32)

Putting this value of R′(zj) in (28), we get

ak =
1

R′(zk)(z2k − z2j )
. (33)

Since j = 0, 2n + 1 for the second set of conditions in (19) implies z2j = (±1)2 = 1, we can
rewrite (33) as

ak =
1

R′(zk)(z2k − 1)
. (34)

Putting value of ak from (34) in (27), we have

Ck(z) = Lk(z) +
(z + zk)R(z)
(z2k − 1)R′(zk)

. (35)

Case II: For k = 0, 2n+ 1, let us consider

Ck(z) = (z + zk)Lk(z)pk(z), (36)

where pk(z) is a linear polynomial.

On satisfying the first set of conditions in (18), we get
p0(z0) =

1

2
,

p2n+1(z2n+1) = −1

2
.

(37)

Similarly, satisfying the second set of conditions in (18), we get
p′0(z0) = −1

2

(1
2
+ L′

0(z0)
)
,

p′2n+1(z2n+1) =
1

2

(1
2
− L′

2n+1(z2n+1)
)
.

(38)

Combining the results of (37) and (38), we get
pk(zk) =

1

2zk
,

p′k(zk) = −pk(zk)

2zk

(
1 + 2zkL′

k(zk)
)
.

(39)

7
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Since pk(z) is a linear polynomial, let us consider

pk(z) = c1 + d1(z − zk), (40)

where c1 and d1 are the constants independent of n and z.

Using (39), we have 
pk(zk) = c1 =

1

2zk
,

p′k(zk) = d1 = −
( 1

4z2k
+

L′
k(zk)

2zk

)
.

(41)

Substituting the values of constants c1 and d1 from (41) in (40), we get

pk(z) =

[
1

2zk
−
( 1

4z2k
+

L′
k(zk)

2zk

)
(z − zk)

]
.

We get the desired result (26) by putting the value of pk(z) in (36). Hence, the theorem follows. ■

5. Estimation of Fundamental Polynomials

Lemma 5.1.

Let Lk(z) be given by (6), then

max
|z|=1

2n+1∑
k=0

| Lk(z) | ≤ b1

2n+1∑
k=0

1

k−α+ 3

2

, (42)

where b1 is a constant independent of n and z.

Proof:

From (6), we have

|Lk(z)| =
|R(z)|

|(z − zk)| |R′(zk)|
, k = 0(1)2n+ 1,

=
|(z2 − 1)W(z)|

|(z − zk)| |(z2k − 1)W′(zk) + 2zkW(zk)|
. (43)

For k = 1(1)2n and using (3) above the equation can be written as,

|Lk(z)| =
|(z2 − 1)W(z)|

|(z − zk)| |(z2k − 1)W′(zk)|
,

=
2|z2 − 1| |P (α,β)

n (x)| |zn|
|z − zk| |z2k − 1|2 |P (α,β)′

n (xk)| |zn−2
k |

.

Since max |z| = 1 and |zk| = 1, we have

|Lk(z)| ≤
√
1− x2|P (α,β)

n (x)|
√
(1− xxk)

|x− xk|(1− x2
k)|P

(α,β)′
n (xk)|

.

8
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Let us consider | x− xk |≥
1

2

√
1− x2

k and using (8), (10) and (11), we have

|Lk(z)| ≤ b1
1

k−α+ 3

2

,

where b1 is a constant. Taking summation on both sides, we get
2n∑
k=1

|Lk(z)| ≤ b1

2n∑
k=1

1

k−α+ 3

2

. (44)

For k = 0 and 2n+ 1, Equation (43) can be written as,

|Lk(z)| =
|(z2 − 1)W(z)|

|(z − zk)| |2zkW(zk)|
,

,

|Lk(z)| =
|(z2 − 1)| |P (α,β)

n (x)| |zn|
|(z − zk)| |2zn+1

k ||P (α,β)
n (xk)|

.

Since max |z| = 1 and |zk| = 1, we have

|Lk(z)| ≤
√
1− x2 |P (α,β)

n (x)|
√
(1− xxk)

|x− xk| |P (α,β)
n (xk)|

.

Let us consider | x− xk |≥ 1
2

√
1− x2

k and using (8) and (10), we have

|Lk(z)| ≤ b2, (45)
■

where b2 is constant.

The estimate remains the same in the case where |x− xk| > 1
2

√
1− x2

k. Combining (44) and (45),
we get (42).

Lemma 5.2.

Let Dk(z) be given by (20). Then for k = 0, 2n+ 1,

| Dk(z) | ≤ O(nα−1). (46)

Proof:

From (20), we have

| Dk(z) |=
∣∣∣∣R(z)(z + zk)

4Kn

∣∣∣∣ .
Using (3) and (4), we get

| Dk(z) |=
|z2 − 1||P (α,β)

n (x)||zn||z + zk|
4

.

Since, max |z| = 1. Using (7), we have

| Dk(z) |≤
√
1− x2 |P (α,β)

n (x)|.

9
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Thus, using (8), we have our lemma. ■

Lemma 5.3.

Let Ck(z) be given in Theorem (35), then

2n+1∑
k=0

| Ck(z) |≤ c2 n
α+1,

where c2 is a constant independent of n and z.

Proof:

From (35), the fundamental polynomial Ck(z) for k = 1(1)2n is,

Ck(z) = Lk(z) +
(z + zk)R(z)
(z2k − 1)R′(zk)

.

Taking modulus on both the sides, we have

|Ck(z)| ≤ |Lk(z)|+
|z + zk||R(z)|
|z2k − 1||R′(zk)|

.

Using (3) and (4), we get

|Ck(z)| ≤ |Lk(z)|+
2|z + zk||z2 − 1||P (α,β)

n (x)||zn|
|z2k − 1|3|P (α,β)′

n (xk)||znk |
.

Since max |z| = 1 and |zk| = 1, using (7), we have

|Ck(z)| ≤ |Lk(z)|+
√
1− x2|P (α,β)

n (x)|
(1− x2

k)
3

2 |P (α,β)′
n (xk)|

.

Using (8), (10) and (11), we get

|Ck(z)| ≤ |Lk(z)|+
1

k−α+ 3

2

.

Taking summation on both the sides, we obtain
2n∑
k=1

|Ck(z)| ≤
2n∑
k=1

|Lk(z)|+
2n∑
k=1

1

k−α+ 3

2

. (47)

Now, for k = 0, 2n+ 1, from (26), we have

Ck(z) = (z + zk)Lk(z)

[
1

2zk
−

(
1

4z2k
+

L′
k(zk)

2zk

)
(z − zk)

]
.

Taking modulus on both the sides, we get

|Ck(z)| ≤ |Lk(z)|+

∣∣∣∣∣
(

1

4z2k
+

L′
k(zk)

2zk

)
(z2 − z2k)Lk(z)

∣∣∣∣∣.

10
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Taking summation, we have

∑
k=0,2n+1

|Ck(z)| ≤
∑

k=0,2n+1

|Lk(z)|+
∑

k=0,2n+1

∣∣∣∣∣
(

1

4z2k
+

L′
k(zk)

2zk

)
(z2 − z2k)Lk(z)

∣∣∣∣∣.
Using (3) and (4), we get ∑

k=0,2n+1

|Ck(z)| ≤
∑

k=0,2n+1

|Lk(z)|+ c2n
α+1, (48)

where c2 is a constant independent of z and n.

Combining (47) and (48), we obtain

2n+1∑
k=0

|Ck(z)| ≤
2n+1∑
k=0

|Lk(z)|+ c2n
α+1 +

2n∑
k=1

1

k−α+ 3

2

. (49)

Using Lemma 5.1, we have our desired Lemma 5.3 . ■

6. Convergence

Theorem 6.1.

Let f(z) be a function continuous on closed unit disk and analytic on open unit disk. Let the
arbitrary numbers β±1’s be such that

| β±1 |= O(nωr(f, n
−1)). (50)

Then, the sequence of interpolatory polynomial {Hn(z)} defined by

Hn(z) =
2n+1∑
k=0

f(zk)Ck(z) +
∑

k=0,2n+1

β±1Dk(z), (51)

satisfies the relation

| Hn(z)− f(z) |= O(ωr(f, n
−1)nα+1), (52)

where ωr(f, n
−1) denotes the rth modulus of continuity of f(z).

Remark 6.1.

Let f(z) be a function continuous on closed unit disk and analytic on open unit disk and
f (r)ϵ Lip ν, ν > 0. Then, the sequence {Hn(z)} converges uniformly to f(z) on closed unit disk,
which follows from (52) as

ωr(f, n
−1) = O(n−r−ν+1), {ν > α− r + 2}. (53)

To prove Theorem 6.1, we shall need following.
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Let f(z) be a function continuous on closed unit disk and analytic on open unit disk. Then, there
exists a polynomial Fn(z) of degree ≤ 2n+ 3 satisfying the inequality (Jackson (1911))

| f(z)− Fn(z) | ≤ C ωr(f, n
−1), z = eiθ(0 ≤ θ < 2π), (54)

and also an inequality (Kiš (1960))

| F(m)
n (z) | ≤ C nm ωr(f, n

−1), m εZ+, (55)

where C is a constant independent of n and z.

Proof:

Since Hn(z) is the uniquely determined polynomial of degree ≤ 2n+3 and the polynomial Fn(z)
satisfying equation (54) and (55) can be expressed as

Fn(z) =
2n+1∑
k=0

Fn(zk)Ck(z) +
∑

k=0,2n+1

F′

n(zk)Dk(z), (56)

then, we can write

| Hn(z)− f(z) | ≤ | Hn(z)− Fn(z) | + | Fn(z)− f(z) | .

Using (51) and (56), we have

| Hn(z)− f(z) | ≤
2n+1∑
k=0

| f(zk)− Fn(zk) || Ck(z) |

+
∑

k=0,2n+1

| β±1 − F′
n(zk) || Ck(z) | + | Fn(z)− f(z) |,

| Hn(z)− f(z) | ≤
2n+1∑
k=0

| f(zk)− Fn(zk) || Ck(z) |︸ ︷︷ ︸
A1

+
∑

k=0,2n+1

| β±1 || Dk(z) |︸ ︷︷ ︸
A2

+
∑

k=0,2n+1

| F′
n(zk) || Dk(z) |︸ ︷︷ ︸
A3

+ | Fn(z)− f(z) |︸ ︷︷ ︸
A4

. (57)

Using (54) and Lemma 5.3, we get

A1 = O(ωr(f, n
−1)nα+1). (58)

Using (50) and Lemma 5.2, we get

A2 = O(nα ωr(f, n
−1)). (59)

Using (55) and Lemma 5.2, we get

A3 = O(nα ωr(f, n
−1)). (60)

Using (54), we have

A4 = O(ωr(f, n
−1)). (61)
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Using (58), (59), (60), (61) in (57), we get

| Hn(z)− f(z) |= O(ωr(f, n
−1)nα+1). (62)

Hence, Theorem 6.1 follows. ■

7. Numerical Experiments

To visualize the contribution of this research work, we carried out numerical experiments. We work
in the following way for the included example.

• Nodal system Z2n is used with varying values of n.
• We detail a test function f(z) and the Lagrange interpolating polynomial Hn(z) in 1000 random

points of T ∪ D.
• To showcase the interpolation behavior on the boundary and within the unit circle, maximum

error has been estimated in 1000 random points.

Example 7.1.

We consider a function f continuous on z ∈ T ∪ D and analytic in D satisfying the hypothesis of
Theorem 6.1 defined by

f(z) = 0.5 +

(
z + 1

z

2

)
sin

(
2

z + 1
z

)

We choose Jacobi polynomial parameters as α = β = 0. Calculations performed has been arranged
in Table 1. Column 1 of the Table 1 contains the varying values of n. Column 2 contains the
estimated maximum error | Hn(z)−f(z) |. Notice that, in accordance with Theorem 6.1, the order
of the error must be O(ωr(f, n

−1)n). So, for any modulus of continuity, the rate of convergence is

calculated to be
1

np
where p > 0.

It can be clearly seen that with the varying values of n, values in column 2 shows resemblance with
the values in coloumn 3. This clearly indicates that, numerically obtained results shows closeness
with the analytically obtained results.

So, f(z) analytic in z ∈ T ∪ D can be very well approximated via the interpolatory polynomial
created on the projected nodes of the zeros of Jacobi polynomial.
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Table 1

n max | Hn(z)−f(z) | 1

np
(p = 1)

2 0.11620 0.5

4 0.22701 0.25

8 0.11198 0.125

16 0.05729 0.0625

32 0.03103 0.03125

64 0.02000 0.015625

128 0.01061 0.0078125

8. Conclusion

Bahadur and Varun in 2017 considered a Lagrange-Hermite interpolation problem making use
of the zeros of Legendre polynomial for the nodal system whereas this research paper poses a
problem, which is an extension to the same problem, since it involves the more general Jacobi
polynomial zeros for the constuction of the nodal system. By putting the value of α equal to zero in
our main convergence result and comparing it with the convergence theorem of the paper published
by Bahadur and Varun in 2017, we can conclude that when α equals to zero, results are comparable.
Since, we are not restricted to use different values of α, we get a good approximation of a function,
which is continuous on the closed unit disk and analytic on the open unit disk.
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