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Abstract

We have investigated the generalized quasilinearization method under some convenient conditions
for nonlinear initial value problem (IVP) of dynamic equation on time scale and constructed by
monotone sequences of function by using comparison theorem. The solutions of linear IVPs of
dynamic equation on time scale converge uniformly and monotonically to the unique solution of
the original problem and the convergence is quadratic.
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2 Ş. Çetin et al.

1. Introduction

The quasilinearization method technique coupled with the method of lower solution (LS) and up-
per solution (US) offer a clear analytic representation for the solution of nonlinear dynamic equa-
tion which provides (LS) and (US) predictions for the solution of a problem. The calculus theory
on time scales (see Bohner and Peterson (2001), Bohner and Peterson (2003) and references men-
tioned here) was put forward by Stefan Hilger in 1990 to connect continuous and discrete analyses.
There are many applications and it has a vast potential. The study of dynamical equations on time
scales is a very interesting research area that many researchers are interested in the qualitative
study of dynamic equation on time scales. During last years, many studies, books and articles have
been discussed and many interesting results were obtained. Some of the papers and books that can
be found are given by references to this paper.

Eloe (2002) has developed the method of quasilinearization to a family of two point boundary
value problems for dynamic equations on compact measure chains.

Krivec and Mandelzweig (2001) analyzed the convergence, monotonicity and its fast by using the
quasilinearization method to quantum mechanics. It was shown that the first few iterations provide
very accurate results. The number of iterations necessary to reach a given precision only moder-
ately increases for its larger values. Krivec and Mandelzweig (2003) applied to the quasilineariza-
tion method of solving nonlinear differential equations to the quantum mechanics by casting the
Schrödinger equation in the nonlinear Riccati form. The authors observed that the quasilineariza-
tion method gave excellent results when applied to computation of ground and excited bound state
energies and wave functions for a variety of the potentials in quantum mechanics.

Akın et al. (2005) applied the quasilinearization method to the unique solution of the BVP on time
scales by monotone convergent sequences of (LS) and (US). They obtained the rate of convergence.

Atici and Topal (2005) studied the convergence of monotone sequences for nonlinear dynamic
equations on time scales. They constructed two sequences which converge to the unique solution
of BVP.

Yang and Vatsala (2005) have developed generalized quasilinearization method for reaction diffu-
sion systems when the functions are the sum of convex and concave functions and obtained that the
corresponding linear systems converge monotonically, uniformly and quadratically to the unique
solution of the nonlinear problem.

Jankowski (2007) also used this method to integro differential equations of Volterra type. It was
also shown that two monotone sequences converge quadratically to a unique solution of the prob-
lem.

Yakar and Yakar (2010) applied the quasilinearization technique in Caputo’s fractional differential
equation. Under some conditions the authors obtained lower and upper sequences of the solutions
of linear differential equations and showed that these sequences converge to the unique solution
of the nonlinear differential equation semiquadratically and uniformly. Yakar (2014) applied the
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method to causal differential equations and obtained upper and lower sequences with initial time
difference of the linear causal differential equations. He proved that these sequences converge to
the unique solution of the equation superlinearly and uniformly.

Lakshmikantham and Vatsala (2013) applied the method to an initial value problem and obtained
lower and upper sequences on ordinary differantial equantions.

Koleva and Vulkov (2013) offered a fast quasilinearization numerical scheme, coupled with
Rothe’s method, for nonlinear parabolic equations. Under convenient conditions, they obtained the
uniform and monotone convergence that provide quadratic on each time level. Namely, numerical
results for nonlinear problems of optimal investment were presented and discussed.

Yakar (2015) investigated the qualitative behavior of a perturbed dynamic systems on time scales
that differs in initial time with respect to the unperturbed dynamic systems on time scales. He com-
pared the classical notion of stability to the notion of initial time difference stability on time scales.
Yakar, Arslan and Çiçek (2015) studied the monotone iterative technique by choosing upper and
lower solutions with initial time difference that start at different initial times for the initial value
problem. Under convenient conditions, they obtained monotone sequences which converge uni-
formly and monotonically to minimal and maximal solutions of initial value problem. Yakar and
Arslan (2019) constructed new definitions for a causal terminal value problem involving Riemann-
Liouville fractional derivatives and considered the Riemann-Liouville fractional causal terminal
value problem with the terminal value. They obtained the unique solution by combining tech-
niques from generalized quasilinearization. They obtained monotone sequences which converge
uniformly to the unique solution of initial value problem. They also showed the convergence is
quadratic.

Wang and Agarwal (2021) have widely applied the time scale calculus to study dynamic systems
in both theoretical and practical aspects. Wang and Tian (2015) investigated nonlinear boundary
problems for difference equations with causal operators. They obtained a criteria on the existence
of extremal solutions by using the method of upper and lower solutions coupled with the monotone
iterative technique. Wang and Tian (2014) discussed nonlinear boundary value problems for causal
differential equations with two monotone functions.

Yüzbaşı and Izadi (2022) developed two numerical methods based on the Bessel polynomials to
solve the fractional-order HIV-1 infection model of CD4 T-cells considering the impact of antiviral
drug treatment. In the first method which is called as Bessel matrix method, they transformed the
HIV problem into a system of nonlinear equations by using the Bessel polynomial. The second
method, which is called the Bessel-QLM method, transformed the HIV problem to a sequence of
linear equations by using the technique of quasilinearization, and they solved this by the direct
Bessel matrix method.
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4 Ş. Çetin et al.

2. Main Theorem

Let us consider the (LS) and (US) of nonlinear dynamic equation of IVP:

u∆ = w (θ, u) = f3 (θ, u) + f2 (θ, u) + f1 (θ, u) , (1)
u (0) = u0, (2)

where f3 (θ, u) , f2 (θ, u) , f1 (θ, u) ∈ Crd

[
T k ×R,R

]
.

We obtained the monotone sequences on time scale which converge uniformly to the unique so-
lution of the non-linear initial value problem (1). For this aim, the auxiliary linear IVPs were
constructed. Each element of the monotone function sequences are the solution of these linear
differential equations. By using the technique of upper and lower solutions, under convenient con-
ditions we showed this convergence is quadratic. In addition to this, we will prefer ∆t instead of
dt in the proof, since we are studying on time scale and not ordinary differential equation.

Theorem 2.1.

Suppose that the following hypotheses are satisfied:

(C1) Let Φ0,Ψ0 ∈ Crd

[
T k, R

]
be (LS) and (US) of (1), respectively, such that Φ0 (θ) ≤ Ψ0 (θ) on

T k.
(C2) f1u

(θ, u) , f2u
(θ, u) , f3u

(θ, u) , f1uu
(θ, u) , f2uu

(θ, u) , f3uu
(θ, u) exist and continuous func-

tions on T k × R, where f3 (θ, u) , f2 (θ, u) , f1 (θ, u) ∈ C2
rd

[
T k ×R,R

]
, and holds f1uu

(θ, u) ≥
0, f2uu

(θ, u) + ϕuu (θ, u) ≥ 0, whenever ϕuu exits and ϕuu (θ, u) > 0, and f3uu
(θ, u) ≤ 0, on Ω.

Then, there exist the monotone sequences {Φn (θ)} and {Ψn (θ)} which converge uniformly to the
unique solution of (1) and this convergence is quadratic.

Proof:

Because of (C2) it can be written that for Φ0 (θ) ≤ u2 ≤ u1 ≤ Ψ0 (θ) ,

f1 (θ, u1)− f1 (θ, u2) ≤ L1 (u1 − u2) , L1 > 0,

f2 (θ, u1)− f2 (θ, u2) ≤ L2 (u1 − u2) , L2 > 0, (3)
f3 (θ, u1)− f3 (θ, u2) ≤ L3 (u1 − u2) , L3 > 0.

Let us note that f1uu
(θ, u) ≥ 0, f2uu

(θ, u) + ϕuu (θ, u) ≥ 0, and f3uu
(θ, u) ≤ 0, provide the

following inequalities. For u ≥ v, u, v ∈ Ω,

f1 (θ, u) ≥ f1 (θ, v) + f1u (θ, v) (u− v) , (4)

f2 (θ, u) ≥ f2 (θ, v) + [f2u (θ, v) + ϕu (θ, v)] (u− v)− [ϕ (θ, u)− ϕ (θ, v)] , (5)

f3 (θ, u) ≥ f3 (θ, v) + f3u (θ, u) (u− v) . (6)
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Now, for the construction of the sequences, we take the following auxiliary IVPs

u∆ = g (θ,Φ0,Ψ0;u) = f1 (θ,Φ0) + f1u (θ,Φ0) (u− Φ0)

+f2 (θ,Φ0) + [f2u (θ,Φ0) + ϕu (θ,Φ0)] (u− Φ0) (7)
− [ϕ (θ, u)− ϕ (θ,Φ0)] + f3 (θ,Φ0) + f3u (θ,Ψ0) (u− Φ0) ,

u (0) = u0,

and

v∆ = G (θ,Φ0,Ψ0; v) = f1 (θ,Ψ0) + f1u (θ,Φ0) (v −Ψ0)

+f2 (θ,Ψ0) + [f2u (θ,Φ0) + ϕu (θ,Φ0)] (v −Ψ0) (8)
− [ϕ (θ, v)− ϕ (θ,Ψ0)] + f3 (θ,Ψ0) + f3u (θ,Ψ0) (v −Ψ0) ,

v (0) = u0.

Since Φ0 is (LS) of (1),

Φ∆
0 ≤ f3 (θ,Φ0) + f2 (θ,Φ0) + f1 (θ,Φ0) = g (θ,Φ0,Ψ0; Φ0) ,

and Ψ0 is (US) of (1) and by the inequalities (4), (5), and (6), it can be written

Ψ∆
0 ≥ f1 (θ,Φ0) + f1u (θ,Φ0) (Ψ0 − Φ0)

+f2 (θ,Φ0) + [f2u (θ,Φ0) + ϕu (θ,Φ0)] (Ψ0 − Φ0)− [ϕ (θ,Ψ0)− ϕ (θ,Φ0)]

+f3 (θ,Φ0) + f3u (θ,Ψ0) (Ψ0 − Φ0) = G (θ,Φ0,Ψ0; Ψ0) .

Therefore, Ψ0 and Φ0 are (LS) and (US) of (7). Then, there exists a unique solution of (7) called
Φ1, such that Φ0 (θ) ≤ Φ1 (θ) ≤ Ψ0 (θ) , θ ∈ T k. Similarly, we obtain

Φ∆
0 ≤ f1 (θ,Φ0) + f2 (θ,Φ0) + f3 (θ,Φ0)

≤ f1 (θ,Ψ0) + f1u (θ,Φ0) (Φ0 −Ψ0)

+f2 (θ,Ψ0) + [f2u (θ,Φ0) + ϕu (θ,Φ0)] (Φ0 −Ψ0)− [ϕ (θ,Φ0)− ϕ (θ,Ψ0)]

+f3 (θ,Ψ0) + f3u (θ,Ψ0) (Φ0 −Ψ0)

= G (θ,Φ0,Ψ0; Φ0) ,

and

Ψ∆
0 ≥ f1 (θ,Ψ0) + f2 (θ,Ψ0) + f3 (θ,Ψ0) = G (θ,Φ0,Ψ0; Ψ0) .

Hence, Ψ0 and Φ0 are natural (LS) and (US) of (8). Thus, there exists a unique solution of (8) called
Ψ1 such that Φ0 (θ) ≤ Ψ1 (θ) ≤ Ψ0 (θ) , θ ∈ T k. Now, it will be shown that Φ1 (θ) ≤ Ψ1 (θ) . By
using (7), we get

Φ∆
1 = g (θ,Φ0,Ψ0; Φ1) = f1 (θ,Φ0) + f1u (θ,Φ0) (Φ1 − Φ0)

+f2 (θ,Φ0) + [f2u (θ,Φ0) + ϕu (θ,Φ0)]

+ [f2u (θ,Φ0) + ϕu (θ,Φ0)] (Φ1 − Φ0)− [ϕ (θ,Φ1)− ϕ (θ,Φ0)]

+f3 (θ,Φ0) + f3u (θ,Ψ0) (Φ1 − Φ0)

≤ f1 (θ,Φ1) + f2 (θ,Φ1) + f3 (θ,Φ1) + (Φ1 − Φ0) [f3u (θ,Ψ0)− f3u (θ,Φ1)] .

Due to the convexity and concavity properties of the functions f1, f2, f3 for Ψ0 ≥ Φ1 , we get

Φ∆
1 ≤ f1 (θ,Φ1) + f2 (θ,Φ1) + f3 (θ,Φ1) .

5
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6 Ş. Çetin et al.

Similarly, by using (8), we obtain

Ψ∆
1 = G (θ,Φ0,Ψ0; Ψ1) = f1 (θ,Ψ0) + f1u (θ,Φ0) (Ψ1 −Ψ0)

+f2 (θ,Ψ0) + [f2u (θ,Φ0) + ϕu (θ,Φ0)] (Ψ1 −Ψ0)− [ϕ (θ,Ψ1)− ϕ (θ,Ψ0)]

+f3 (θ,Ψ1) + f3u (θ,Ψ0) (Ψ1 −Ψ0)

≥ f1 (θ,Ψ1) + f1u (θ,Ψ1) (Ψ0 −Ψ1) + f1u (θ,Φ0) (Ψ1 −Ψ0)

+f2 (θ,Ψ1) + [f2u (θ,Ψ1) + ϕu (θ,Ψ1)] (Ψ0 −Ψ1)− [ϕ (θ,Ψ0)− ϕ (θ,Ψ1)]

+ [f2u (θ,Φ0) + ϕu (θ,Φ0)] (Ψ1 −Ψ0)− [ϕ (θ,Ψ1)− ϕ (θ,Ψ0)]

+f3 (θ,Ψ1) + f3u (θ,Ψ0) (Ψ0 −Ψ1) + f3u (θ,Ψ0) (Ψ1 −Ψ0) .

By the condition (C2) with Ψ1 ≥ Φ0, we have

Ψ∆
1 ≥ f1 (θ,Ψ1) + f2 (θ,Ψ1) + f3 (θ,Ψ1) .

The condition (3) and Ψ1, Φ1 are (LS) and (US) of (1), respectively, with Φ1 (0) ≤ Ψ1 (0) , yield
Φ1 (θ) ≤ Ψ1 (θ) . Therefore, we have established the inequalities such as,

Φ0 (θ) ≤ Φ1 (θ) ≤ Ψ1 (θ) ≤ Ψ0 (θ) .

Let us continue with the next step and consider the following IVPs,

u∆ = g (θ,Φ1,Ψ1;u) = f1 (θ,Φ1) + f1u (θ,Φ1) (u− Φ1)

+f2 (θ,Φ1) + [f2u (θ,Φ1) + ϕu (θ,Φ1)] (u− Φ1) (9)
− [ϕ (θ, u)− ϕ (θ,Φ1)] + f3 (θ,Φ1) + f3u (θ,Ψ1) (u− Φ1) ,

u (0) = u0,

and

v∆ = G (θ,Φ1,Ψ1; v) = f1 (θ,Ψ1) + f1u (θ,Φ1) (v −Ψ1)

+f2 (θ,Ψ1) + [f2u (θ,Φ1) + ϕu (θ,Φ1)] (v −Ψ1) (10)
− [ϕ (θ, v)− ϕ (θ,Ψ1)] + f3 (θ,Ψ1) + f3u (θ,Ψ1) (v −Ψ1) ,

v (0) = u0.

By (7), we have

Φ∆
1 ≤ f1 (θ,Φ1) + f2 (θ,Φ1) + f3 (θ,Φ1) = g (θ,Φ1,Ψ1; Φ1) .

Similarly, we can get

Ψ∆
1 ≥ f1 (θ,Ψ1) + f2 (θ,Ψ1) + f3 (θ,Ψ1)

≥ f1 (θ,Φ1) + f1u (θ,Φ1) (Ψ1 − Φ1)

+f2 (θ,Φ1) + [f2u (θ,Φ1) + ϕu (θ,Φ1)] (Ψ1 − Φ1)− [ϕ (θ,Ψ1)− ϕ (θ,Φ1)]

+f3 (θ,Φ1) + f3u (θ,Ψ1) (Ψ1 − Φ1)

= g (θ,Φ1,Ψ1; Ψ1) .

Therefore, Ψ1 and Φ1 are natural upper and lower solutions of (9). Then, there exists a unique
solution of (9) called Φ2, such that Φ1 (θ) ≤ Φ2 (θ) ≤ Ψ1 (θ) , θ ∈ T k. Similarly, we can see the
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following,

Φ∆
1 ≤ f1 (θ,Φ1) + f2 (θ,Φ1) + f3 (θ,Φ1)

≤ f1 (θ,Ψ1) + f1u (θ,Φ1) (Φ1 −Ψ1)

+f2 (θ,Ψ1) + [f2u (θ,Φ1) + ϕu (θ,Φ1)] (Φ1 −Ψ1)− [ϕ (θ,Φ1)− ϕ (θ,Ψ1)]

+f3 (θ,Ψ1) + f3u (θ,Ψ1) (Φ1 −Ψ1)

= G (θ,Φ1,Ψ1; Φ1) ,

and

Ψ∆
1 ≥ f1 (θ,Ψ1) + f2 (θ,Ψ1) + f3 (θ,Ψ1)

= G (θ,Φ1,Ψ1; Ψ1) .

So, Ψ1 and Φ1 are natural (LS) and (US) of (10). Then, there exists a unique solution of (10) called
Ψ2, such that Φ1 (θ) ≤ Ψ2 (θ) ≤ Ψ1 (θ) , θ ∈ T k. By similar steps, as in the previous work, we can
show Φ2 ≤ Ψ2. As a result, we get

Φ0 (θ) ≤ Φ1 (θ) ≤ Φ2 (θ) ≤ Ψ2 (θ) ≤ Ψ1 (θ) ≤ Ψ0 (θ) .

If this process is continued in this way, it can be obtain that

Φ0 (θ) ≤ Φ1 (θ) ≤ Φ2 (θ) ≤ ... ≤ Φn (θ) ≤ Ψn (θ) ≤ ... ≤ Ψ2 (θ) ≤ Ψ1 (θ) ≤ Ψ0 (θ) .

Here, the elements of the monotone sequences {Φn (θ)} and {Ψn (θ)} are the unique solutions of
the following linear IVPs,

Φ∆
n+1 = g (θ,Φn,Ψn; Φn+1) ,Φn+1 (0) = u0,

Ψ∆
n+1 = G (θ,Φn,Ψn; Ψn+1) ,Ψn+1 (0) = u0.

Since the sequences {Φn (θ)} and {Ψn (θ)} are uniformly bounded and equicontinuous, by Arzela-
Ascoli Theorem (Green and Valentine (1961)) it is easy to conclude that these sequences converge
to the unique solution of (1) uniformly. Now, we shall show that the convergence of the sequences
{Φn (θ)} and {Ψn (θ)} to the unique solution u (θ) of (1) is quadratic on T k. That is, we have to
show that

max
J

|u (θ)− Φn (θ)| ≤ kmax
J

|u (θ)− Φn (θ)|2 , k > 0,

where T k = J . To show, let us define

rn+1 (θ) = u (θ)− Φn+1 (θ) ≥ 0,

sn+1 (θ) = Ψn+1 (θ)− u (θ) ≥ 0.

Note that rn+1 (0) = 0 and sn+1 (0) = 0. Taking delta derivative to both sides and for convenience,
f2 (θ, u) + ϕ (θ, u) = F (θ, u) is taken and then may be obtained as,

r∆n+1 = u∆ − Φ∆
n+1

= [f1 (θ, u)− f1 (θ,Φn)] + [f3 (θ, u)− f3 (θ,Φn)]

+ [F (θ, u)− F (θ,Φn)]− [ϕ (θ, u)− ϕ (θ,Φn+1)]

+ [f1u (θ,Φn) + f3u (θ,Ψn) + Fu (θ,Φn)] ((u− Φn+1)− (u− Φn)) .

7

Çetin et al.: Generalized Quasilinearization Method for a Initial Value Problem

Published by Digital Commons @PVAMU, 2023
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Using the definition Φn, Ψn together with (C2) and applying the mean value theorem, we write

r∆n+1 = f1u (θ, a) rn − f1u (θ,Φn) rn + f1u (θ,Φn) rn+1

+Fu (θ, c) rn − Fu (θ,Φn) rn + Fu (θ,Φn) rn+1 − ϕu (θ, d) rn+1

+f3u (θ, e) rn − f3u (θ,Ψn) rn + f3u (θ,Ψn) rn+1

= rn [f1u (θ, a)− f1u (θ,Φn)] + f1u (θ,Φn) rn+1

+rn [Fu (θ, c)− Fu (θ,Φn)] + rn+1 [Fu (θ,Φn)− ϕu (θ, d)]

+rn [f3u (θ, e)− f3u (θ,Ψn)] + f3u (θ,Ψn) rn+1

≤ rn [f1u (θ, u)− f1u (θ,Φn)] + f1u (θ,Φn) rn+1

+rn [Fu (θ, u)− Fu (θ,Φn)] + rn+1 [Fu (θ,Φn)− ϕu (θ,Φn)]

+rn [f3u (θ, u)− f3u (θ,Ψn)] + f3u (θ,Ψn) rn+1

≤ rnf1uu (θ, b) (u− Φn) + f1u (θ,Φn) rn+1

+rnFuu (θ, d) (u− Φn) + rn+1 [Fu (θ,Φn)− ϕu (θ,Φn)]

+rnf3uu (θ, f1) (u−Ψn) + f3u (θ,Ψn) rn+1

= r2nf1uu (θ, b) + rn+1f1u (θ,Φn)

+r2n [Fuu (θ, d) + ϕuu (θ, d)] + rn+1Fu (θ,Φn)

−rnsnf3uu (θ, f1) + rn+1f3u (θ,Ψn) ,

where Φn < a < u, Φn < c < u, Φn+1 < d < u, Φn < e < u, Φn < b < u, Φn < d < u, u <
f < Ψn. Thus,

r∆n+1 ≤ r2n (N + L+B) + rn+1 (M +K + A)− rnsnC,

where |f1uu (θ, u)| ≤ N, |f1u (θ, u)| ≤ M, |f2uu (θ, u)| ≤ L, |f2u (θ, u)| ≤ K, |ϕuu (θ, u)| ≤
B, |f3uu (θ, u)| ≤ C, |f3u (θ, u)| ≤ A. If the Cauchy inequality is applied to the term pnqnC,
then we have

r∆n+1 ≤ r2n

(
N + L+B +

C

2

)
+ rn+1 (M +K + A) + s2n

C

2
,

which is linear in rn+1. Now, by using Gronwall’s inequality we get

0 ≤ rn+1 ≤
∫ θ

0

[
r2n

(
N + L+B +

C

2

)
+ s2n

C

2

]
e(M+K+A)(θ−s)∆s.

Therefore, one can see

max
J

|u− Φn+1| ≤
(
N + L+B +

C

2

)
e(M+K+A)θ

M +K + A
max

J
|u− Φn|2+

C

2

e(M+K+A)θ

M +K + A
max

J
|Ψn − u|2 .

Similarly, we get

s∆n+1 = Ψ∆
n+1 − u∆

= [f1 (θ,Ψn)− f1 (θ, u)] + f1u (θ,Φn) (Ψn+1 −Ψn)

+ [F (θ,Ψn)− F (θ, u)] + Fu (θ,Φn) (Ψn+1 −Ψn)− [ϕ (θ,Ψn+1)− ϕ (θ, u)]

+ [f3 (θ,Ψn)− f3 (θ, u)] + f3u (θ,Ψn) (Ψn+1 −Ψn) .
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By using the definition Φn, Ψn with the condition (C2) and by applying the mean value theorem,
we obtain

s∆n+1 = f1u (θ, a) sn + f1u (θ,Φn) (sn+1 − sn)

+Fu (θ, c) sn + Fu (θ,Φn) (sn+1 − sn)− ϕu (θ, d) sn+1

+f3u (θ, f1) sn + f3u (θ,Ψn) (sn+1 − sn)

= sn [f1u (θ, a)− f1u (θ,Φn)] + sn+1f1u (θ,Φn)

+sn [Fu (θ, c)− Fu (θ,Φn)] + sn+1 [Fu (θ,Φn)− ϕu (θ, d)]

+sn [f3u (θ, f1)− f3u (θ,Ψn)] + sn+1f3u (θ,Ψn)

≤ sn [f1u (θ,Ψn)− f1u (θ,Φn)] + sn+1f1u (θ,Φn)

+sn [Fu (θ,Ψn)− Fu (θ,Φn)] + sn+1 [Fu (θ,Φn)− ϕu (θ,Φn)]

+sn [f3u (θ, u)− f3u (θ,Ψn)] + sn+1f3u (θ,Ψn)

≤ s2nf1uu (θ, b) + rnsnf1uu (θ, b) + f1u (θ,Φn) sn+1

+s2nFuu (θ, e) + rnsnFuu (θ, e) + sn+1 [Fu (θ,Φn)− ϕu (θ,Φn)]

−s2nf3uu (θ, f3) + f3u (θ,Ψn) sn+1

= s2nf1uu (θ, b) + rnsnf1uu (θ, b) + f1u (θ,Φn) sn+1

+s2n [Fuu (θ, e) + ϕuu (θ, e)] + rnsn [Fuu (θ, e) + ϕuu (θ, e)] + sn+1Fu (θ,Φn)

−s2nf3uu (θ, f3) + f3u (θ,Ψn) sn+1,

where u < a < Ψn, u < c < Ψn, u < d < Ψn+1, u < f1 < Ψn, Φn < b < Ψn, Φn < e <
Ψn, u < h < Ψn. Hence,

s∆n+1 ≤ s2nN + rnsnN +Msn+1

+s2n [L+B] + rnsn [L+B] + sn+1K

−s2nC + Asn+1,

where |f1uu (θ, u)| ≤ N, |f1u (θ, u)| ≤ M, |f2uu (θ, u)| ≤ L, |f2u (θ, u)| ≤ K, |ϕuu (θ, u)| ≤
B, |f3uu (θ, u)| ≤ C, |f3u (θ, u)| ≤ A. If the Cauchy inequality is applied to the term rnsnC,
then we can obtain

s∆n+1 ≤
(
3N

2
+

3

2
(L+B)− C

)
s2n +

(
N

2
+

1

2
(L+B)

)
r2n + (M +K + A) sn+1,

which is linear in sn+1. When we apply the Gronwall’s inequality, then we have

0 ≤ sn+1 ≤
∫ θ

0

[(
3N

2
+

3

2
(L+B)− C

)
s2n +

(
N

2
+

1

2
(L+B)

)
r2n

]
e(M+K+A)(θ−s)∆s.

Similarly, one can write for sn+1. This yields the desired result

max
J

|Ψn+1 − u| ≤
(
3N

2
+

3

2
(L+B)− C

)
e(M+K+A)θ

M +K + A
max

J
|Ψn − u|2

+

(
N

2
+

1

2
(L+B)

)
e(M+K+A)θ

M +K + A
max

J
|u− Φn|2 .

These complete the proof of the theorem. ■
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In the particular case of Equation (1), we now give a theoretical example as the following.

Example 2.1.

For the particular case of the system (1), let us consider the dynamic initial value problem

u∆ = θ2 − θ

2
− θ3,

u (0) = 1, θ ∈ [0, 1] , (11)

where f1 (θ, u) = θ2, f2 (θ, u) = − θ
2
, f3 (θ, u) = −θ3 and ϕ (θ, u) = θ. Let

Φ0 (θ) = −1,Ψ0 (θ) = 1,

for all θ ∈ [0, 1] . It can be obtained that

Φ∆
0 = 0 ≤ f1 (θ,Φ0) + f2 (θ,Φ0) + f3 (θ,Φ0) =

5

2
,

Φ0 (0) = −1 ≤ u (0) = 1,

and

Ψ∆
0 = 0 ≥ f1 (θ,Ψ0) + f2 (θ,Ψ0) + f3 (θ,Ψ0) = −1

2
,

Ψ0 (0) = 1 ≥ u (0) = 1.

This implies that Φ0 and Ψ0 (LS) and (US) of natural type for (1). Consider the functions

Φ1 (θ) =
1

11

(
17e

−11θ

2 − 6
)
,

Φ1 (0) = 1,

and

Ψ1 (θ) =
1

3

(
2 + e

−3θ

2

)
,

Ψ1 (0) = 1.

Hence, we have

Φ0 (θ) ≤ Φ1 (θ) ≤ Ψ1 (θ) ≤ Ψ0 (θ) , θ ∈ [0, 1] .

Similarly, Φ2 (θ) and Ψ2 (θ) can be obtained and it can be continued like this. Then, all the con-
ditions of Theorem 3.1 are satisfied. Thus, we obtain the existence of monotone sequences which
converge uniformly to the unique solution of (1).

The models discussed in this example are directly related to real life. Especially, the equations
are very common for modeling problems in mechanical engineering, physical engineering, electric
and electronics engineering. In fact, the term for causal operators was adopted from the engineering
literature, and the theory these operators have is the powerful quality.
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3. Conclusion

We have applied the well-known quasilinearization method to a given nonlinear differential equa-
tions on time scale. It was seen that similar results were obtained, parallel to the results obtained by
applying this method for a nonlinear differential equation given by the classical derivative. Under
some conditions we have constructed monotone squences which converge uniformly and monoton-
ically to the unique solution of the original problem. The most important advantage of this method
is that each element of the monotone function sequence is the solution of linear differential equa-
tions. Also, it has been shown that the convergence is quadratic.

Acknowledgment:

The first author would like to thank TUBITAK (The Scientific and Technological Research Council
of Türkiye) for their financial supports during his PhD studies.

REFERENCES

Akın-Bohner, E. and Atici, F.M. (2005). A quasilinearization approach for two point nonlinear
boundary value problems on time scales, Rocky Mountain J. Math., Vol. 35, No. 1, pp. 19–45.

Atici, F.M. and Topal, S.G. (2005). The generalized quasilinearization method and three point
boundary value problems on time scales, Appl. Math. Lett., Vol. 18, No. 5, pp. 577–585.

Bohner, M. and Peterson, A. (2001). Dynamic Equations on Time Scales. An Introduction with
Applications, Birkhauser, Boston, Mass, USA.

Bohner, M. and Peterson, A. (Eds.) (2003). Advances in Dynamic Equations on Time Scales,
Birkhauser, Boston, Mass, USA.

Eloe, P. (2002). The method of quasilinearization and dynamic equations on compact measure
chains, J. Comput. Appl. Math., Vol. 141, pp. 159-167.

Green, J.W. and Valentine, F.A. (1961). On the Arzelà-Ascoli Theorem, Mathematics Magazine,
Vol. 34, No. 4, pp. 199-202.

Hilger, S. (1990). Analysis on measure chains—a unified approach to continuous and discrete
calculus, Results in Mathematics, Vol. 18, No. 1-2, pp. 18–56 .

Jankowski, T. (2007). The generalized quasilinearization for integro-differential equations of
Volterra type on time scales. Rocky Mountain J. Math., Vol. 37, No. 3, pp. 851–864.

Kaymakçalan, B. and Lawrence, B. (2003). Coupled solutions and monotone iterative techniques
for some nonlinear IVPs on time scales, Nonlinear Analysis: Real World Applications, Vol.
4, Issue 2, pp. 245–259.

Koleva, M.N. and Vulkov, L.G. (2013). Quasilinearization numerical scheme for fully nonlinear
parabolic problems with applications in models of mathematical finance, Mathematical and
Computer Modelling, Vol. 57, pp. 2564–2575.

11

Çetin et al.: Generalized Quasilinearization Method for a Initial Value Problem

Published by Digital Commons @PVAMU, 2023
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