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Abstract

In engineering and mathematical physics, nonlinear evolutionary equations play an important role.
The Kawahara equation is one of the famous nonlinear evolution equations that appeared in the the-
ories of shallow water waves possessing surface tension, capillary-gravity waves and also magneto-
acoustic waves in a plasma. Another interesting aspect which has been observed in laboratory ex-
periments when nonlinear evolutionary PDEs are forced periodically from one end of undisturbed
stretch of the medium of propagation, the signal eventually becomes temporally periodic at each
spatial point. This observation has been confirmed mathematically in the context of Kortewg-de-
Vries (KdV) and Benjamin-Bona-Mahony (BBM) equations. In this paper we intend to show the
same results hold for the generalized fifth-order Kawahara equation on bounded domain in com-
bination with periodic boundary conditions numerically utilizing meshfree technique known as
radial basis function pseudo spectral (RBF-PS) approach.

Keywords: RBFs Meshless Methods; RBF-PS Method; Generalized Kawahara equation; Even-
tual periodicity
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2 H. Ullah Jan et al.

1. Introduction

In engineering and mathematical sciences such as solid state physics, plasma physics, chemical
physics, fluid dynamics, chemical kinematics, and geochemistry, nonlinear evolutionary equa-
tions play an important role (for more details, look into Ablowitz (1991), Jeffrey (1989), Hunter
(1988), Benney (1966), Benjamin (1972), Nagashima (1979), Bona (1981), Ganji (2007), Haghighi
(2013), Turkyilmazoglu (2010), Turkyilmazoglu (2018), Turkyilmazoglu (2022)). As an example,
the Kawahara equation, one of the famous nonlinear evolution equations, appeared in theories of
shallow water waves possessing surface tension (Kawahara (1972), Bridges (2002)). Various phys-
ical phenomena, such as plasma magneto-acoustic waves, water waves caused by capillary gravity
are described and represented by Kawahara as well as a modified version of the Kawahara equation,
respectively (Kawahara (1972), Hunter (1988)). KdV-Kawahara equation is a particular form of
Benney-Lin equation that accustomed to clarify the one-dimensional development in diverse media
of small but finite amplitude long waves fluid dynamics problems (see Benney (1966), Ak (2018),
Biswas (2008), Gazi (2019), Unal (202), Dacsciouglu (2021)). Although the most general solution
of the Kawahara equation is not available, the analytical solution for a special case in the form of
solitary waves is given in Yamamoto (1981). Different analytic and numerical methods including
the Tanh-function method (Yusufouglua (2008)), Adomain decomposition method (Kaya (2003)),
Sine-cosine method (Yusufouglub (2008)), Variational iteration method, Homotopy perturbation
method (Nagashima (1979), Jin (2009)), Crank-Nicolson differential quadrature algorithms (Ko-
rkmaz (2009)), Predictor corrector method (Djidjeli (1995)), Dual-petrov Galerkin method (Yuan
(2008)) and RBF collocation method (Haq (2011)) have been proposed for solving the Kawa-
hara type equations. It is worth mentioning that the standard mathematical models of integer-order
derivatives including nonlinear models do not work adequately in many cases. In the recent years,
fractional calculus has played a very important role in various fields such as mechanics, electricity,
chemistry, biology, economics, notably control theory signal, image processing and groundwater
problems. In the past several decades, the investigation of travelling-wave solutions for nonlinear
evolutionary equations has played an important role in the study of nonlinear physical phenomena.
An excellent literature of this can be found in fractional differentiation and integration operators
used for extensions of the diffusion and wave equations. The Homotopy decomposition method
(HDM) was recently applied to solve fractional modified Kawahara equation, fractional complex
transform approximate is used for time fractional Kawahara and modified Kawahara equations,
method based on the Jacobi elliptic functions for the fractional modified Kawahara equation has
been found in Ak (2018), Biazar (2021), Gazi (2019), Haghighi (2012).

Another interesting qualitative characteristic of some evolutionary equations disclosed experimen-
tally on solutions to initial-boundary-value problem (IBVPs) and is related to their large-time be-
haviour known as eventual time periodicity. A piston-type or paddle-type wave maker fitted at one
end of a channel in laboratory experiments show this attractive event. When the wavemaker peri-
odically oscillates with a period T0 > 0, it is observed that the amplitude of the wave becomes
periodic of the same period at each point along the channel after some time. This interesting phe-
nomena of eventual periodicity investigated by Bona and Wu (Bona (1981), Bona (1989)). Various
studies have previously addressed this important and interesting eventual periodic phenomena such
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as Burger-type equations, generalized equations for KdV, BBM, and its dissipating counterparts re-
spectively which include Burger-type term (for more details look at the references, Bona (2009),
Shen (2007),Usman (2007), Usman(2009), Al (2018), Uddin (2020), Uddin (2021), Jan (2021)
Uddin (2022a), Uddin (2022b), Hussain (2021), Jan (2022a), Jan (2022b)).

Meshfree methods are becoming more popular, emerging and interesting numerical techniques
due to its ability to solve those physical and engineering problems with no meshing or minimum
of meshing for which the traditionally used mesh-based methods are not suited like Finite volumes,
Finite differences, Finite elements, Moving least square, Element free galerkin, Point interpolation
method, Reproducing kernel particle method and Boundary element free method. RBFs methods
appears to be really consists and most prominent meshless methods among the family of meshless
methods while looking at the interpolation of multi dimensional scattered data and have received
recently a tremendous and considerable attention in scientific community because of its capac-
ity to achieve spectral accuracy, efficiency and high flexibility in solving complex PDEs, integral
equations and fractional equations in comparison to other advanced approaches (see, for exam-
ple, Belytschko (1996), Buhmann (2003), Fasshauer (2007)). The most commonly used kernel in
meshless techniques is the multi-quadric (MQ) kernel suggested by Hardy (1990) using radial basis
function to solve PDEs.

In the present work, we investigate the solution as well as the behavior of eventual periodicity
of solution to following model for generalized fifth order Kawahara equation alongwith specified
initial and boundary condition on bounded domain by using a radial basis function numerical
scheme known as RBF-PS meshless method.

2. Model of Generalized Kawahara type IBVPs equations

Consider the following generalized fifth order Kawahara equation along with specified initial and
boundary condition on bounded domain:

wt + αwx + (β + δw)wwx + γwxxx − µwxxxxx = 0, x ∈ [a, b], t ∈ (0, T ],
w(a, t) = ha(t), t ∈ (0, T ],

w(b, t) = wx(a, t) = wx(b, t) = wxx(b, t) = 0, t ∈ (0, T ],
w(x, 0) = w0(x), x ∈ [a, b],

(1)

where α, β, δ, γ and µ are known with boundary data ha(t) supposed to be periodic of period
T0 > 0 such that ha(t) = ha(t + T0) has asymptotic cycle of periodic behavior at any fixed point
in space, supposing amplitude of the boundary forcing term ha(t) is minimal. So the wave-maker
transfers energy from the left boundary (x = a, place that mounts the wave-maker) into a finite
channel while the channel at the right end (x = b is free and open).

In the model equation (1):
If α = δ = 0, then it is called Kawahara equation.
If α = β = 0, then it is called Modified Kawahara equation.
If δ = 0, then it is called KdV-Kawahara equation.

3
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3. RBF Pseudo-spectral technique description

Fasshauer combined RBF collocation approach to PS scheme known as RBF-PS scheme, and uti-
lized it to approximate 2D Helmholtz and Laplace models, and Allen-Cahn model with piecewise
boundary conditions (see Fasshauer (2005) and Fasshauer (2007)). This approach was utilized and
implemented by several authors to evaluate and solve various model PDEs (for example, see the
references Ferreira (2006), Ferreira (2007), Roque (2011), Uddin (2016), Uddin (2013), Nikan
(2019)). Here in this study we also use this approach for the solution and eventual periodicity of
model equation (1).

Assume ψj , j = 1, 2, ..., N , is a set of arbitrary smooth functions that are linearly independent and
serve as a foundation for the purposes of our investigation, and Ξ = {x1, x2, ..., xN}, be a series of
different points in domain Ω ⊂ Rd, d ≥ 1. Now, RBF approximation to unknown solution w of
model equation (1) takes the form as follows:

wh(x, t) =
N∑
j=1

λj(t)ψj(x), x ∈ Ξ, (2)

where h = hx,Ξsupx∈Ξmin1≤j≤N∥x − xj∥2. The following table, Table 1, lists some of the most
utilized radial basis functions (RBFs).

Table 1. Some of the most often used RBFs

Name of RBF ψ(r), (r ≥ 0), r = ∥x− xj∥2
Linear RBF-(LI) r

Gaussian RBF-(GA) e−(εr)2

Thin Plate Spline RBF-(TPS) r2βlog(r)

Multiquadric RBF-(MQ)
√
1 + (εr)2

Inverse Multiquadric RBF-(IMQ) 1√
1+(εr)2

Inverse Quadratic RBF-(IQ) 1
1+(εr)2

Where the parameter ε is well-known for being the RBF’s shape parameter, it is found experimen-
tally to any RBF and is used to modify the shape of functions. Now, collocating Equation (1) on
the grid points xi ∈ Ξ, we obtain,

wh(xi, t) =
N∑
j=1

λj(t)ψ(xi, xj), 1 ≤ i ≤ N. (3)

In matrix arrangement, the system outlined above is denoted as

w = Eλ, (4)

where entries of interpolation matrix E are found from ψ(xi, xj), 1 ≤ i, j ≤ N . The vector of
expansion coefficients has unique representation as λ = [λ1, λ2, ..., λN ]

T . Now differentiation of
w that is wx using Equation (4) is obtained by differentiating and re-evaluating the RBF function
at each position xi ∈ Ξ, 1 ≤ i ≤ N . Hence, we arrived at the matrix-vector representation

wx = Exλ, (5)

4
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where entries of matrix Ex are
d

dx
ψ(x, xj)x=xi

, 1 ≤ i, j ≤ N . Upon solution of Equations (4) and
(5) in terms of unknown values λ. The differentiation matrix is obtained in the form as under

wx = ExE
−1u = Hxw, (6)

where Hx = ExE
−1 is known as the differentiation matrix. It is also worth mentioning that this

matrix is dependent on invertibility of the matrix E. Also, keep in mind that the matrix E is always
invertible for separate collocation points. Thus, we are able to write in a similar manner

wxx = ExxE
−1w = Hxxw, (7)

where Hxx = ExxE
−1 containing form entries

d2

dx2
ψ(x, xj)x=xi

, 1 ≤ i, j ≤ N . In the same man-
ner, higher-order differentiation matrices can be constructed. The numerical approach for solving
equation (1) using the above differentiation matrices is shown below,

w′ + αHxw + (β + δ)wHxw + γHxxxw − µHxxxxxw = 0. (8)

This equation can be written in the following form as

w′ = −αHxw − (β + δ)wHxw − γHxxxw + µHxxxxxw. (9)

Equation (9) is represented by

w
′
= F(w). (10)

Now ODE solvers like ode45, ode113, ode23 can be utilized to solve the discretize ODE systems
Equation (10) in time. w0 is the initial solution. To address the stiffness of ODE system, each
effective ODE solver will choose an appropriate period of time ∆t to fix the stiffness of the ODE
system.

4. Numerical Results

In this section we use RBF-PS meshless scheme as described above for numerical solution of the
generalized fifth order Kawahara equation (1). The accuracy, efficiency and the success of this
scheme is tested in terms of L∞ and L2 error norms defined as

L∞ = ∥wex − wap∥∞ = max|wex
i − wap

i |, (11)

L2 = ∥wex − wap∥2 =

√√√√h
N∑
i=0

|wex
i − wap

i |2,

where h = (b− a)/N , and two invariants of motion I1 and I2 which are defined by

Ij =
1

j

∫ ∞

−∞
wjdx ≃ 1

j
h

N∑
i=1

wj
i , j = 1, 2. (12)

5
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Example 4.1.

In this problem, we consider the solution of equation (1) in the form below by Yamamato and
Takizawa (Yamamoto (1981)),

w(x, t) =
105

169
sech4[k(x− 36

169
t− x0)]. (13)

Initial condition and boundary conditions are chosen from the exact travelling wave solution given
in Equation (13) at time t = 0 and w(−20, t) = 0, w(30, t) = 0, respectively. The designed
programs are run up to time t = 25 with the following parameters x0 = 2,∆x = 1, N = 51,∆t =
0.01, x ∈ [−20, 30], t ∈ [0, 25], k = 0.5√

(13)
. We compute the solution for the choice of α = 0,

δ = 1 and β = 1, γ = 1, µ = 1. The time integration was carried out by the use of Runge-Kutta
of order four (RK-4) scheme. Travelling wave solution at different time level is shown in Figure 1
and the discrete root mean square error norm L2, maximum error norm L∞, two lowest conserved
quantities I1, I2 demonstrated at various times in Table 2, while the absolute error between the
approximate solution and exact solution for various space number of grid points are listed in Table
3.

Figure 1. The formed oscillatory waves at different time level corresponding Example 4.1 are seen here in this figure

Table 2. Error norms and conserved quantities corresponding to Example 4.1

Method t L2 × 103 L∞ × 103 I1 I2
RBF-PS Method 0 0.0000 0.0000 5.85650 1.27250

5 9.4305× 10−2 4.6924× 10−2 5.85636 1.27250
15 1.5391× 10−1 5.9294× 10−2 5.85631 1.27250
25 1.6776× 10−1 4.7386× 10−2 5.85644 1.27250

CDQ (Korkmaz (2009)) 0 0.000 0.000 5.97357 1.27250
5 0.151 0.043 5.97372 1.27250
15 0.156 0.049 5.97364 1.27250
25 0.159 0.076 5.97350 1.27250

PDQ (Korkmaz (2009)) 0 0.000 0.000 5.97357 1.27250
5 1.986 0.921 5.97060 1.27250
15 2.543 1.045 5.97014 1.27250
25 2.851 0.863 5.97353 1.27250
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Table 3. Approximate and Exact solution with Absolute Error corresponding to Example 4.1

x Approximate Solution Exact Solution Absolute Error
−20 0.0000 2.7421× 10−5 2.7421× 10−5

−19 4.2361× 10−5 4.7649× 10−5 5.2881× 10−6

−18 8.4251× 10−5 8.2745× 10−5 1.5058× 10−6

−17 1.4201× 10−4 1.4356× 10−4 1.5508× 10−6

−16 2.4351× 10−4 2.4879× 10−4 5.2789× 10−6

−15 4.2729× 10−4 4.3047× 10−4 3.1740× 10−6

0 4.3742× 10−1 4.3741× 10−1 8.6904× 10−6

10 5.2848× 10−1 5.2847× 10−1 6.2847× 10−6

15 1.1486× 10−2 1.1481× 10−2 4.8174× 10−2

20 8.0249× 10−4 7.9794× 10−4 4.5492× 10−6

25 4.0306× 10−5 5.1201× 10−5 1.0894× 10−5

30 0.0000 3.2190× 10−6 3.2190× 10−6

Example 4.2.

Consider Equation (1) with parameters α = β = 0 and δ = γ = µ = 1, alongwith analytical
solitary wave solution (Wazwaz (2007)) given by

u(x, t) = D sech2[k(x−Bt)], (14)

where D = −3√
10

, B = 4
25

and k = 1
2

√
1
5
, the initial and boundary conditions are extracted from

the exact solution equation (14). Calculation are carried out by taking [a, b] = [−30, 30], with
N = 61, ∆t = 0.01, MQC = 3.5. Results at t = 0, 5, 15, 25 can be seen in Table 4 and Figure 2,
respectively.

Table 4. Error norms and Conserved quantities corresponding to Example 4.2

Method t L2 L∞ I1 I2
RBF-PS Method 0 0.0000 0.0000 −8.48526 2.68328

5 1.9712× 10−4 1.0329× 10−4 −8.48553 2.68328
15 2.8386× 10−4 8.3509× 10−5 −8.48544 2.68328
25 3.7397× 10−4 8.3513× 10−5 −8.48547 2.68328

RBF-MOL (bibi (2011)) 0 0.0000 0.0000 -8.48525 2.68328
5 6.1995×10−5 1.7896×10−4 -8.48524 2.68317
15 1.0717×10−4 2.7337×10−4 -8.48487 2.68296
25 1.2130×10−4 3.4855×10−4 -8.48464 2.68275

RBF-FD (Jan (2021)) 0 0.0000 0.0000 -8.34616 2.63929
5 4.9580×10−4 9.4940×10−4 -8.34743 2.63929
15 1.0017×10−3 2.6235×10−3 -8.34357 2.63930
25 2.8298×10−3 5.9075×10−3 -8.33515 2.63931
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x
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-0.4
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0

0.2

T=0

T=5

T=15

T=25

Figure 2. Solitary wave solution corresponding to Example 4.2 contrasted with exact solution equation (14) (solid lines
represent exact solution, whereas ”.” represents numerical solution)

5. Eventual periodicity

Now, we will show the outcomes of our investigation for eventual periodicity of generalized fifth
order Kawahara model equation (1) in graphical form along with appropriate boundary data ha(t).
The initial data w0 is not necessarily necessary in eventual periodicity, so we take it zero. For each
problem the amplitudes w(x, t) produced in six graphs at particular points in domain. N indicates
total domain points. The X and Y axes are representative in these graphs of time t and amplitude
w respectively. The last graph shows the amplitude remains zero in every problem.

5.1. Eventual periodicity of Kawahara equation

We compute the solutions of model equation (1) for Kawahara equation with parameters α = 0,
β = 1, δ = 0, γ = 0.027 and µ = 10−3. The amplitudes w(x, t) for this model is shown in six
plots in Figure 3 at given specific points, viz., x = −19.5, −17.5, −7.5, 5.0, 17.5 and 30.0 in the
domain [−20, 30] and in a time domain [0, 5]. The plots in Figure 3 clearly confirm the subsequent
periodic behavior of the solution in the specified domain at these particular positions.

5.2. Eventual periodicity of Modified-Kawahara equation

We compute the solutions of model equation (1), for Modified-Kawahara equation using parame-
ters α = 0, β = 0, δ = 1, γ = 0.08 and µ = 10−3. The amplitudes u(x, t) for this model is shown
in six plots in Figure 4 at given specific points, viz., x = −29.4, −27.0, −15.0, 0.0, 15.0 and 30.0
in the domain [−30, 30] and in a time domain [0, 5]. The plots in Figure 4 clearly confirm that again
we discovered the design of eventual periodicity in solution w(x, t) at all selected positions in the
specified domain at these particular positions.
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Figure 3. Eventual periodicity of Kawahara equation using x = −19.5, −17.5, −7.5, 5.0, 17.5 and 30.0 ∈ [−20, 30],
N = 100, ∆t = 0.01, T = 5, using parameters α = 0, β = 1, δ = 0, γ = 0.027 and µ = 10−3 and
ha(t) = 0.1 sin(2πt)

5.3. Eventual periodicity of KdV-Kawahara equation

Finally we compute the solutions of model equation (1), for KdV-Kawahara equation with param-
eters α = 0.4, β = 1.5, δ = 0, γ = 4 and µ = 10−3. The amplitudes u(x, t) for this model is
shown in six plots in Figure 5 at given particular points, viz., x = 2, 10, 50, 100, 150 and 200 in
the domain [0, 200] and in a time domain [0, 5]. We noticed that the pattern of eventual periodicity
at these particular positions in domain is still remained as shown in the plots of Figure 5.

6. Conclusion

In the present work, RBF-PS meshless method is investigated for the approximation of solution and
for numerically approximating the eventual periodicity of Kawahara type PDEs model equations.
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Figure 4. Eventual periodicity of Modified-Kawahara equation for x = −29.4, −27.0, −15.0, 0.0, 15.0 and 30.0 ∈
[−30, 30], N = 100, ∆t = 0.01, T = 5, using parameters α = 0, β = 0, δ = 1, γ = 0.08 and µ = 10−3

and ha(t) = 0.1 sin(2πt)

To show how good and accurate the present numerical scheme, we computed some error norms
and invariants of the model by solving some examples and compared the results of the present
method with the available methods in the literature. For execution of temporal variable in the given
model equation, Runge-Kutta (RK-4) time steeping approach is utilized. The RBF-PS method has
been found to be very accurate and suited to approximate many complicated mechanical problem
with ease and accuracy.

Acknowledgment:

All the authors are thankful to the anonymous reviewers for their constructive comments, and also
very thankful to the Founders and Founding Editors-in-Chief Professor Dr. Aliakbar Montazer

10

Applications and Applied Mathematics: An International Journal (AAM), Vol. 18 [2023], Iss. 2, Art. 8

https://digitalcommons.pvamu.edu/aam/vol18/iss2/8



AAM: Intern. J., Vol. 18, Issue 2 (December 2023) 11

Time
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
m

pl
itu

de

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

u(x,t) at x = 2.0

Time
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
m

pl
itu

de

#10-3

-6

-4

-2

0

2

4

6

8

u(x,t) at x = 10.0

Time
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
m

pl
itu

de

#10-3

-6

-4

-2

0

2

4

6

u(x,t) at x = 50.0

Time
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
m

pl
itu

de

#10-3

-3

-2

-1

0

1

2

3

4

u(x,t) at x = 100.0

Time
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
m

pl
itu

de

#10-3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

u(x,t) at x = 150.0

Time
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
m

pl
itu

de

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u(x,t) at x = 200.0

Figure 5. Eventual periodicity of KdV-Kawahara equation for x = 2, 10, 50, 100, 150 and 200 ∈ [0, 200], N = 100,
∆t = 0.01, T = 5 with parameters α = 0.4, β = 1.5, δ = 0, γ = 4 and µ = 10−3 and ha(t) = 0.1 sin(2πt)
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Yusufoğlu, E. and Bekir, A. (2008). Symbolic computation and new families of exact travelling
solutions for the Kawahara and modified Kawahara equations, Computers & Mathematics

14

Applications and Applied Mathematics: An International Journal (AAM), Vol. 18 [2023], Iss. 2, Art. 8

https://digitalcommons.pvamu.edu/aam/vol18/iss2/8



AAM: Intern. J., Vol. 18, Issue 2 (December 2023) 15

with Application, Vol. 55, No. 6, pp. 1113–1121.
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