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Abstract

In the present study, an SIS model is proposed and analyzed to study the effect of sanitation
effort in controlling the spread of carrier-dependent infectious diseases in a human habitat due
to environmental degradation. The dynamics of the model consist of six dependent variables, the
susceptible population density, infective population density, carrier population density, cumulative
density of environmental degradation and the density of sanitation effort applied on carrier popu-
lation and degraded environment. In the modeling process, the carrier population density and that
of sanitation effort are modeled logistically and the degradation of the environment is assumed to
be directly proportional to the population in the habitat. The analysis of the model is performed
by using the stability theory of differential equations and numerical simulations. The study of the
model shows that as the degradation of environment increases, the density of the carrier population
increases which ultimately increases the infective population. Further, the result shows that by ap-
plying suitable sanitation effort on the carrier population density and on the cumulative density of
environmental degradation, the carrier population density decreases and hence the infective pop-
ulation. Thus, it is very important to keep our environment clean by applying proper sanitation to
prevent the spread of carrier-dependent infectious diseases.
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1. Introduction

The spread of infectious diseases has caused tremendous harm to the human population. Several
efforts have been applied in controlling the spread of infectious diseases for decades. Success is
achieved in controlling some diseases, but several harmful diseases still persist in the human pop-
ulation. Various mathematical models have been proposed to identify the key parameters which
are responsible for the spread of infectious diseases (Harry and Kent (1961), Hsu and Zee (2004),
Keeling and Rohani (2008), Brauer and Castillo-Chavez (2012) and Dubey et al. (2013)). In par-
ticular, Hsu and Zee (2004) developed simple models for the global spread of infectious diseases;
they emphasize on human mobility via air travel and the variation of public health infrastructure
from region to region. They also derived formulas relating the total and peak number of infections
in two countries to the rate of travel between them and their respective epidemiological parame-
ters. In spite of several measures taken to control the spread of infectious diseases, it is found that
the diseases persist. It is also found that there must be some factors that significantly contribute
to the spread of diseases such as degraded environment, temperature and humidity, human-related
activities like lack of sanitation (McMichael et al. (2003)).

In developing countries, the poor environmental conditions have larger impact on the spread of
carrier-dependent infectious diseases. The environmental degradation (i.e., the deterioration of the
environment due to depletion of natural resources such as air, water and soil) is one of the largest
threats that are being looked at in the world today. It is caused due to increasing population rate,
economic growth and depletion of natural resources. One of the major components of environmen-
tal degradation is unsanitary living conditions in developing countries which give rise to certain
infectious diseases. Kumari and Sharma (2018) proposed a new type of epidemic model to study
the impact of environmental pollution on the spread of infectious diseases.

There are many infectious diseases in which infection is transmitted by direct human-to-human
contact, while there are some diseases which transmit indirectly through carriers such as flies,
ticks, mites, etc., present in the environment. The bacterial diseases such as typhoid fever, leprosy,
cholera, gastroenteritis, measles, dysentery, tuberculosis, diarrhea, etc., are transferred by these
carriers from the environment to susceptibles leading to faster spread of such diseases in human
population (Misra et al. (2012)). Some of these diseases like dysentery, gastroenteritis, cholera,
typhoid fever, etc., called water borne diseases, are spread by flies carrying the bacteria of these
diseases into the food and water of susceptible population. The diseases such as tuberculosis and
measles are spread by air borne carriers in the environment. The transmission of these infectious
diseases is further aggravated due to lack of sanitation leading to unhygienic environmental con-
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ditions in a habitat which provides a very conducive environment to these carriers to flourish. The
environment conducive to the growth of carrier population further helps in the spread of infectious
diseases (Ghosh et al. (2005), Ghosh et al. (2006), Naresh et al. (2008) and Naresh and Pandey
(2009)).

In particular, Naresh and Pandey (2009) modeled and analyzed the cumulative effect of ecological
factors in the habitat on the spread of tuberculosis (TB) in human population. They assumed that
the TB not only spread by direct contacts with infectives in the population but also indirectly by
bacteria which are emitted by infectives in the habitat. It is assumed further that bacteria survive
due to conducive ecological factors such as flower pots, plants, grasses, human clothes, etc., in the
habitat. The cumulative density of ecological factors in the habitat is assumed to be governed by a
population density dependent logistic model. Their analysis shows that as parameters governing the
conducive ecological factors in the habitat increase, the spread of TB increases. Also, the migration
of population from environmentally degraded region to a cleaner region plays a vital role in the
spread of infectious diseases as infected persons act as carrier of infection (Ghosh et al. (2005)).

Many mathematical models are proposed by assuming that the diseases are transmitted from sus-
ceptible to infected individuals via direct person to person contacts (Ma and Li (2009)). For exam-
ple, Nthiiri et al. (2016) formulated a mathematical model to study the dynamics of typhoid fever
disease incorporating protection against infection. Their study shows that an increase in protection
leads to low disease prevalence in a population. Later on, it was discovered that that the diseases
also spread indirectly due to the carriers (e.g., flies, insects or other entities) present in the envi-
ronment (Toomey et al. (1947), Harry and Kent (1961), Gonzalez-Guzman (1989), Graczyk et al.
(2001), Shukla et al. (2011), Lanzas and Gröhn (2011) Misra et al. (2011) and Misra et al. (2012)).
In particular, Shukla et al. (2011) proposed a model with immigration for the spread of an infec-
tious disease with bacteria and carriers in the environment. They assumed that susceptibles get
infected directly by infectives as well as by their contacts with bacteria discharged by infectives in
the environment. They concluded that the spread of the infectious disease increases due to growth
of bacteria and carriers in the environment and disease becomes more endemic due to immigration.

A mathematical model was proposed assuming that the whole population is potentially aware of
the risk but only a certain proportion chooses to respond appropriately by trying to limit their
probability of becoming infectious or seeking treatment early (Kiss et al. (2010)). They conclude
from their model that the infection can be eradicated if the dissemination of information is fast. The
transmission of these infectious diseases further become worse due to lack of sanitation that leads
to unhygienic environmental conditions in a habitat which provides a very conducive environment
to these carriers to flourish. Inadequate sanitation is the primary cause of the spread of infectious
diseases. It produces more feces in the habitat which travel via food, flies, etc., to us and spread
various infectious diseases. About 79% of world’s population lack access to safe drinking water,
sanitary, etc., which cause infectious diseases. The use of unimproved sanitation, on-site sanitation
and disposal of human excreta are the main cause of the spread of diarrheal diseases in India.

To control the spread of infectious diseases, several measures such as vaccination, treatment and
awareness program among people are taken, but sanitation plays an important role in curtailing
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the infectious disease. Thus, in our study, we have applied two sanitation efforts: one in direct
proportion to carrier population, and the one in direct proportion to the environmental degradation.

2. Mathematical Model

In this section, a nonlinear mathematical model dealing with the spread of carrier dependent infec-
tious diseases due to environmental degradation is proposed. We consider the total human popula-
tion N(t) divided into two subclasses: the susceptibles X(t) and the infectives Y (t) at any time t.
The density of carrier population is denoted by C(t) at any time t in the environment Em(t) and
represents the density of environmental degradation at any time t. To control the spread of infec-
tious diseases, a suitable sanitation effort is applied to decrease carrier population and to clean the
degraded environment denoted by Fs1(t) and Fs2(t), respectively. In all the above variables, time t
is taken in months.

It is assumed that the interaction of susceptibles with infected individuals and carrier population
follows simple law of mass action so that susceptible population looses individuals on becoming
infected by direct contacts with infectives with a transmission rate coefficient β and indirectly by
carrier population present in the environment with a transmission rate coefficient λ. The susceptible
population, however, increases due to constant immigration with the rate A. The susceptible pop-
ulation is further increased due to recovery of infected individuals who again become susceptible
with a rate coefficient ν. The parameter α and d represents the disease-induced death rate and the
natural death rate, respectively. The density of carrier population is assumed to grow logistically.
The parameter s is the growth rate of carrier population density and s1 is the rate of decrease of
carrier population due to natural factors such that (s−s1) is the intrinsic growth rate of carrier pop-
ulation and L(s−s1)

s0
is its carrying capacity. Since the sanitation effort is applied to curb the carrier

population, it is assumed that the decrease in the carrier population density is in direct proportion to
the sanitation effort applied (i.e., s2CFs), where s2 denotes the depletion rate coefficient of carrier
population density due to sanitation effort applied. As the environmental degradation increases the
carrier population also increases, therefore, it is assumed that the carrier population density is in
direct proportion to the environmental degradation (i.e., s3CEm), where s3 denotes the increase in
carrier population density due to environmental degradation. The cumulative environmental degra-
dation conducive to the growth of the carrier population is assumed to be at constant rate Q0. The
parameter θ1 is the rate of increment of degradation of the environment due to human population-
related factors, θ2 and θ0 is the rate coefficient of depletion of environmental degradation due to
sanitation effort applied and some other factors, respectively.

The parameter ϕ is the rate of sanitation effort applied in direct proportion to the carrier population
density, ϕs

ϕ0
is the carrying capacity in the habitat, ϕ1 is the rate of decrease of sanitation effort

in proportion to carrier population density, the rate of sanitation effort applied and the rate of
decrease of sanitation effort due to some other factors are ξ1 and ξ2, respectively. The last equation
of the model system governs the logistic growth of sanitation effort with intrinsic growth rate
ψs and carrying capacity ψs

ψ0
. It is also assumed that the increase in sanitation effort applied to

clean the degraded environment is directly proportional to the environmental degradation (i.e.,
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ψEmFs), where ψ is the growth rate coefficient of sanitation effort due to increase in environment
degradation. The decrease in sanitation effort due to its consumption in fighting against the cleaning
the environment is considered in direct proportion to the environmental degradation (i.e., ψ1EmFs),
where ψ1 is its depletion rate coefficient. Further, ζ1 is the rate of sanitation effort applied and ζ2 is
the rate of decrease of sanitation effort due to some other factors.

For convenience, we use X(t) = X, Y (t) = Y,C(t) = C,Em(t) = Em, Fs1(t) = Fs1 and
Fs2(t) = Fs2. The model is governed by the following system of nonlinear ordinary differential
equations:

dX

dt
= A− βXY − λCX − dX + νY,

dY

dt
= βXY + λCX − dY − αY − νY,

dC

dt
= sC − s0C

2

L
− s1C − s2CFs1 + s3CEm,

dEm
dt

= Q0 − θ0Em + θ1(A− dN)− θ2EmFs2,

dFs1
dt

= ϕCFs1 − ϕ0F
2
s1 − ϕ1CFs1 + ϕsFs1,

dFs2
dt

= ψEmFs2 − ψ0F
2
s2 − ψ1EmFs2 + ψsFs2.

(1)

where, ϕs= (ξ1 − ξ2) > 0 and ψs= (ζ1 − ζ2) > 0 and X(0) > 0, Y (0) ≥ 0, C(0) > 0, Em(0) > 0,
Fs1(0) > 0 and Fs2(0) > 0.

Since N = X + Y , the above model system (1) can be rewritten as follows,
dY

dt
= βY (N − Y ) + λC(N − Y )− (d+ α + ν)Y,

dN

dt
= A− dN − αY,

dC

dt
= sC − s0C

2

L
− s1C − s2CFs1 + s3CEm,

dEm
dt

= Q0 − θ0Em + θ1(A− dN)− θ2EmFs2,

dFs1
dt

= ϕCFs1 − ϕ0F
2
s1 − ϕ1CFs1 + ϕsFs1,

dFs2
dt

= ψEmFs2 − ψ0F
2
s2 − ψ1EmFs2 + ψsFs2.

(2)

2.1. Region of attraction

The region of attraction Ω for the system (2) is given by,

Ω={(Y,N,C, Em, Fs1, Fs2) ∈ R6
+, 0 ≤ Y ≤ A

α+d
, 0 < N ≤ A

d
, 0 ≤ C ≤ Cm,

0 ≤ Em ≤ Q0+θ1A
θ0

, 0 < Fs1 ≤ Fs1m, 0 < Fs2 ≤ Fs2m},
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which attracts all solutions starting in the positive octant, where,

Cm= L(s−s1)
s0

, Fs1m= (ϕ−ϕ1)Cm+ϕs

ϕ0
and Fs2m= (ψ−ψ1)(Q0+θ1A)+ψsθ0

ψ0θ0
.

Proof:

From system (2), we have,

dN

dt
= A− dN − αY,

=⇒ dN

dt
≤ A− dN,

=⇒ lim
t→∞

sup(N) ≤ A

d
.

Similarly, it can be obtained that
dN

dt
= A− dN − αY,

=⇒ dN

dt
≤ A− dN − αN, (since Y < N)

=⇒ lim
t→∞

sup(N) ≤ A

α + d
.

Further, it is noted that Y < N , and therefore, 0 < Y ≤ A
α+d

.

From the third equation of model system (2), we have,

dC

dt
≤ sC − s0C

2

L
− s1C.

From the theory of differential inequality (Lakshmikantham and Leela (1969)), we obtain

lim
t→∞

sup(C) ≤ L(s− s1)

s0
= Cm (say).

This implies that 0 ≤ C ≤ Cm for large t > 0.

Further, from the fourth equation of model system (2), we obtain

dEm
dt

≤ Q0 − θ0Em + θ1A,

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 18 [2023], Iss. 2, Art. 6

https://digitalcommons.pvamu.edu/aam/vol18/iss2/6



AAM: Intern. J., Vol. 18, Issue 2 (December 2023) 7

which implies

lim
t→∞

sup(Em) ≤
Q0 + θ1A

θ0
.

From the fifth equation of model system (2), we have

dFs1
dt

≤ (ϕ− ϕ1)CmFs1 − ϕ0F
2
s1 + ϕsFs1,

from which we get,

lim
t→∞

sup(Fs1) ≤
(ϕ− ϕ1)Cm + ϕs

ϕ0

= (Fs1m) (say).

Similarly, from the sixth equation of model system (2), we have

dFs2
dt

≤ (ψ − ψ1)
Q0 + θ1A

θ0
Fs2 − ψ0F

2
s2 + ψsFs2,

which gives,

lim
t→∞

sup(Fs2) ≤
(ψ − ψ1)(Q0 + θ1A) + ψsθ0

ψ0θ0
= (Fs2m) (say).

■

3. Equilibrium Analysis

In this section, the existence of equilibrium points of the model system (2) is being investigated
by equating right hand side of system (2) to zero. We obtain the following twelve non-negative
equilibria:

1.E0(0,
A
d
, 0, Q0

θ0
, 0, 0). This is a disease-free equilibrium and its existence is obvious. It implies that

in the absence of infection in the population, both directly through susceptible-infective interaction
and indirectly through carrier population present in the environment, no increased sanitation effort
is required to be applied. In such a case, the human population and environmental degradation will
always remain at its equilibrium A

d
and Q0

θ0
, respectively.

2. E1(Y ,N, 0, Em, 0, 0). This is a carrier-free equilibrium without sanitation effort. It implies that
in the absence of carrier population in the system, no sanitation effort is required. However, the
disease still persists in the population due to direct interaction of susceptibles with infectives and
remains at its equilibrium Y with human population and environmental degradation maintained
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at its reduced equilibrium N and Em, respectively, where, N = A−αY
d

, Em = Q0+θ1αY
θ0

, Y =
βA−d(d+α+ν)

β(α+d)
which exists if βA > d(d+ α + ν).

3. E2(0,
A
d
, 0, Q0

θ0
, ϕs

ϕ0
, 0). This is also disease-free equilibrium with no carriers, the existence of

which is obvious, where N=A
d

, Em=Q0

θ0
and Fs1=ϕs

ϕ0
. It implies that since no carrier population is

present in the system and disease also does not persist, the human population and environmental
degradation will remain at their equilibrium. Moreover, in the absence of carrier population, the
sanitation effort is neither consumed in fight against carrier population nor it increases due to
growth of carrier population and hence it remains at its natural level.

4. E3(0, N, 0, Em, 0, F s2). As above, this is also disease-free equilibrium with no carriers, the

existence of which is obvious, where N = A
d

, Em =
−(θ0ψ0+θ2ψs)+

√
(θ0ψ0+θ2ψs)2+4θ2Q0ψ0(ψ−ψ1)

2θ2(ψ−ψ1)

and F s2 = (ψ−ψ1)Em+ψs

ψ0
. It implies that since no carrier population is present in the system and

disease also does not persist, the human population and environmental degradation will remain at
their equilibrium. In the absence of carrier population, degradation of environment remains at its
equilibrium and hence the sanitation effort is neither consumed in cleaning the environment nor it
increases due to degradation of environment and hence it remains at its natural level F s2.

5. E4(Ỹ , Ñ , C̃, Ẽm, 0, 0). This is sanitation-free equilibrium. It implies that in the absence of san-
itation effort, the persistence of disease is higher, and hence, the human population and environ-
mental degradation remains at their reduced equilibrium Ñ and Ẽm with carrier population at its
carrying capacity C̃. Its existence is discussed in Section 3.1.

6. E5(
˜̃Y, ˜̃N, 0, ˜̃Em,

˜̃Fs1, 0). In this equilibrium carrier population is not present, thus, infective
population, human population, environmental degradation and sanitation effort applied to con-
trol carrier population remains at their equilibrium point with ˜̃Y = βA−d(d+α+ν)

β(α+d)
(which exists if

βA > d(d+ α + ν)), ˜̃N = A−αY
d

, ˜̃Em = Q0+θ1αY
θ0

and ˜̃Fs1 =
ϕs

ϕ0
.

7.E6(Ẏ , Ṅ , 0, Ėm, 0, Ḟs2). In this equilibrium carrier population is not present, thus, infective pop-
ulation, human population and environmental degradation remains at their equilibrium point with
Ẏ = βA−d(d+α+ν)

β(α+d)
which exists if βA > d(d+ α + ν), Ṅ = A−αY

d
and

Ėm =
−(θ0ψ0+θ2ψs)+

√
(θ0ψ0+θ2ψs)2+4θ2(ψ−ψ1)(Q0ψ0+θ1αψ0Y )

2θ2(ψ−ψ1)
. Due to the absence of carrier population

the degradation of environment remains at its equilibrium Ėm, and therefore, sanitation effort ap-
plied to control the degradation of environment also remains at its equilibrium Ḟs2 =

(ψ−ψ1)Em+ψs

ψ0
.

8. E7(0, N̈ , 0, Ëm, F̈s1, F̈s2). This equilibrium is free from infective population and carrier popu-
lation. Thus, human population, environmental degradation and both sanitation effort applied are

at equilibrium given by N̈ = A
d

, Ëm =
−(θ0ψ0+θ2ψs)+

√
(θ0ψ0+θ2ψs)2+4θ2Q0ψ0(ψ−ψ1)

2θ2(ψ−ψ1)
, F̈s1 = ϕs

ϕ0
and

F̈s2 =
(ψ−ψ1)Em+ψs

ψ0
.

9. E8(
...
Y ,

...
N,

...
C,

...
Em,

...
F s1, 0). This equilibrium is free from sanitation effort applied to control
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degradation of environment. Its existence is discussed in Section 3.2.

10. E9(Ŷ , N̂ , Ĉ, Êm, 0, F̂s2). This equilibrium is free from sanitation effort applied to control car-
rier population. Its existence is discussed in Section 3.3.

11. E10(Y̊ , N̊ , 0, E̊m, F̊s1, F̊s2). This equilibrium is free from carrier population, thus, infective
population, human population, environmental degradation and both the sanitation efforts applied
remains at their equilibrium point with N̊ = A−αY

d
, Y̊ = βA−d(d+α+ν)

β(α+d)
which exists if βA > d(d+

α+ν), F̊s1 = ϕs

ϕ0
, F̊s2 =

(ψ−ψ1)Em+ψs

ψ0
and E̊m =

−(θ0ψ0+θ2ψs)+
√

(θ0ψ0+θ2ψs)2+4θ2(ψ−ψ1)(Q0ψ0+θ1αψ0Y )

2θ2(ψ−ψ1)
.

12. E11(Y
∗, N∗, C∗, E∗

m, F
∗
s1, F

∗
s2). This is endemic equilibrium.

3.1. Existence of E4(Ỹ , Ñ , C̃, Ẽm, 0, 0)

The value of Ỹ , Ñ , C̃ and Ẽm is obtained by solving the following set of algebraic equations,

(N − Y )(βY + λC)− (d+ α + ν)Y = 0, (3)

A− dN − αY = 0, (4)

(s− s1)− s0
C

L
+ s3Em = 0, (5)

Q0 − θ0Em + θ1αY = 0. (6)

From Equation (4), (5) and (6) we have,

Ñ = A−αY
d

, C̃ = L((s−s1)+s3Em)
s0

and Ẽm = Q0+θ1Y
θ0

.

Now, using the above values of Ñ , C̃ and Ẽm in Equation (3) we have,

a1Ỹ
2 − a2Ỹ − a3 = 0. (7)

where,

a1 = β(α + d) + λLθ1αs3(α+d)
θ0s0

> 0,
a2 = (βA− d(d+ α + ν)) + λALθ1αs3

θ0s0
− λL(α+d)

θ0s0
((s− s1) + s3Q0), and

a3 =
λAL
θ0s0

((s− s1) + s3Q0) > 0.

a1 and a3 are always positive. Hence, from Equation (7), Ỹ has at least one positive root by
Descartes’s Rule of Signs.

From the value of Ỹ , we can find the value of Ñ , Ẽm and C̃.
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3.2. Existence of E8(
...
Y ,

...
N,

...
C,

...
Em,

...
F s1, 0)

The values of
...
Y ,

...
N ,

...
C ,

...
Em and

...
F s1 are obtained by solving the following set of algebraic

equations,

βY (N − Y ) + λC(N − Y )− (d+ α + ν)Y = 0, (8)

A− dN − αY = 0, (9)

(s− s1)−
s0C

L
− s2Fs1 + s3Em = 0, (10)

Q0 − θ0Em + θ1(A− dN) = 0, (11)

(ϕ− ϕ1)C − ϕ0Fs1 + ϕs = 0. (12)

From Equations (9), (11) and (12), respectively, we have,
...
N =

A− αY

d
, (13)

...
Em =

Q0 + θ1αY

θ0
, (14)

...
F s1 =

(ϕ− ϕ1)C + ϕs
ϕ0

. (15)

Now, using Equation (12) in Equation (11) we have,
...
C =

L(θ0(ϕ0(s− s1)− s2ϕs) + s3ϕ0(Q0 + θ1αY ))

θ0(ϕ0s0 + s2L(ϕ− ϕ1)
. (16)

Now, using the value of
...
C from Equation (16) in Equation (8) we have,

p1
...
Y

2 − p2
...
Y − p3 = 0. (17)

where,

p1 = β(α + d) + λLθ1α(α+d)
θ0(ϕ0s0+s2L(ϕ−ϕ1))

> 0,

p2 = βA− d(d+ α + ν) + λALθ1α
θ0(ϕ0s0+s2L(ϕ−ϕ1)

− λL(α+d)(θ0(ϕ0(s−s1)−s2ϕs)+s3ϕ0Q0)
θ0(ϕ0s0+s2L(ϕ−ϕ1))

, and

p3 =
λAL(θ0(ϕ0(s−s1)−s2ϕs)
θ0(ϕ0s0+s2L(ϕ−ϕ1))

> 0,

since p1 > 0 and p3 > 0. Thus, by using Descartes’s Rule of Signs, it is found that
...
Y has at least

one positive root. From the value of
...
Y ,s we can find the value of

...
N ,

...
C ,

...
Em and

...
Fs1.
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3.3. Existence of E9(Ŷ , N̂ , Ĉ, Êm, 0, F̂s2)

The values of Ŷ , N̂ , Ĉ, Êm and F̂s2 are obtained by solving the following set of algebraic equations,

βY (N − Y ) + λC(N − Y )− (d+ α + ν)Y = 0, (18)

A− dN − αY = 0, (19)

(s− s1)−
s0C

L
+ s3Em = 0, (20)

Q0 − θ0Em + θ1(A− dN)− θ2EmFs2 = 0, (21)

(ψ − ψ1)Em − ψ0Fs2 + ψs = 0. (22)

From Equations (19), (20) and (22), respectively, we have,

N =
A− αY

d
, (23)

C =
L((s− s1) + s3Em)

s0
, (24)

Fs2 =
(ψ − ψ1)Em + ψs

ψ0

. (25)

Using the value of Fs2 from Equation (25) in Equation (21) we get,

θ2(ψ − ψ1)E
2
m + (θ0ψ0 + θ2ψs)Em − (Q0ψ0 + θ1ψ0αY ) = 0. (26)

From Equation (18) we have

F (Y ) = β(α + d)Y 2 − (βA− d(d+ α + ν))Y + λ(α + d)CY − λAC = 0, (27)

F (0) = −λAC < 0, and

F ( A
(α+d)

) = Ad(d+α+ν)
α+d

> 0,

F ′(Y ) = β(α + d)Y + λAC
Y

− λ(A− (α + d)Y ) dC
dY

,

since, dC
dY

= Ls3θ1αψ0

s0(2θ2(ψ−ψ1)Em+(θ0ψ0+θ2ψs))
> 0.

Thus, F ′(Y ) > 0 if (β(α + d)Y + λAC
Y

) > (λ(A− (α + d)Y ) dC
dY

).

Thus, we can find one positive root of Ŷ , and hence, the values of N̂ , Ĉ, Êm and F̂s2 can be
obtained.
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3.4. Existence of E11(Y
∗, N∗, C∗, E∗

m, F ∗
s1, F

∗
s2)

We prove the existence of equilibrium by setting right hand side of equations in the model (2) to
zero and by solving the resulting algebraic equations, as given below,

βY (N − Y ) + λC(N − Y )− (d+ α + ν)Y = 0, (28)

A− dN − αY = 0, (29)

sC − s0C
2

L
− s1C − s2CFs1 + s3CEm = 0, (30)

Q0 − θ0Em + θ1(A− dN)− θ2EmFs2 = 0, (31)

ϕCFs1 − ϕ0F
2
s1 − ϕ1CFs1 + ϕsFs1 = 0, (32)

ψEmFs2 − ψ0F
2
s2 − ψ1EmFs2 + ψsFs2 = 0. (33)

From Equations (29), (32) and (33) we have,

N =
A− αY

d
, (34)

Fs1 =
(ϕ− ϕ1)C + ϕs

ϕ0

, (35)

Fs2 =
(ψ − ψ1)Em + ψs

ψ0

. (36)

Using Equation (35) in Equation (30)

C =
L(ϕ0(s− s1)− s2ϕs) + s3ϕ0Em

s0ϕ0 + s2L(ϕ− ϕ1)
. (37)

Using Equation (36) in Equation (31) we have,

θ2(ψ − ψ1)E
2
m + (θ0ψ0 + θ2ψs)Em − (Q0ψ0 + θ1ψ0(A− dN)) = 0. (38)

From Equation (28) we have

F (Y ) = β(α + d)Y 2 − (βA− d(d+ α + ν))Y + λ(α + d)CY − λAC = 0, (39)

F (0) = −λAC < 0, and

F ( A
(α+d)

) = Ad(d+α+ν)
α+d

> 0,

F ′(Y ) = β(α + d)Y + λAC
Y

− λ(A− (α + d)Y ) dC
dY

,

since, dC
dY

= Ls3ϕ0θ1αψ0

(s0ϕ0+s2L(ϕ−ϕ1))(2θ2(ψ−ψ1)Em+(θ0ψ0+θ2ψs))
> 0.
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Thus, F ′(Y ) > 0 if (β(α + d)Y + λAC
Y

) > (λ(A− (α + d)Y ) dC
dY

).

Thus, we can find one positive root of Y ∗, and hence, the values of N∗, C∗, E∗
m,F ∗

s1 and F ∗
s2 can be

obtained.

4. Stability Analysis

The stability behavior of equilibrium points E0 − E11 is presented here. The stability behavior
of Ei, (i = 0 − 10) is analyzed by Jacobian matrix method and of E11 is analyzed by Lyapunov
method.

Theorem 4.1.

The equilibria Ei, (i = 0− 10) are unstable and the endemic equilibrium E11 is locally asymptot-
ically stable provided the following condition is satisfied,

s2Lλ
2(N∗ − Y ∗)2 <

2

3
s0(ϕ− ϕ1)F

∗
s1

(
βY ∗ +

λC∗N∗

Y ∗

)
, (40)

s23θ2L(ϕ− ϕ1)E
∗
mF

∗
s1 <

4

9
s0s2(ψ − ψ1)(θ0 + θ2F

∗
s2)F

∗
s2, (41)

αθ21d(ψ − ψ1)F
∗
s2 <

2

3
θ2E

∗
m(βY

∗ + λC∗)(θ0 + θ2F
∗
s2). (42)

Proof:

The general variational matrix M of the model (2) is as follows,

M =



A βY + λC λ(N − Y ) 0 0 0
−α −d 0 0 0 0

0 0 B 0 −s2C 0
0 −θ1d 0 −θ0 − θ2Fs 0 −θ2Em
0 0 (ϕ− ϕ1)Fs1 0 (ϕ− ϕ1)C − 2ϕ0Fs1 + ϕs 0

0 0 0 (ψ − ψ1)Fs2 0 C

 ,

where, A = βN − 2βY − λC − (d + α + ν), B = (s − s1) − 2s0C
L

− s2Fs1 + s3Em and
C = (ψ − ψ1)Em − 2ψ0Fs2 + ψs.

The variational matrix Mi, (i = 0− 10) of model (2) corresponding to equilibria Ei, (i = 0− 10)
are found having positive roots, and therefore, the equilibria Ei, (i = 0− 10) are unstable.

A positive-definite function is considered to establish the local stability of endemic equilibrium
E11,

U1 =
1

2
(m0y

2 +m1n
2 +m2c

2 +m3e
2
m +m4f

2
s1 +m5f

2
s2),
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where mi (i = 0, 1, 2, 3, 4, 5) are positive constants to be chosen appropriately and y, n, c, em, fs1,
fs2 are small perturbations about E11, defined as follows:

Y = Y ∗ + y,N = N∗ + n,C = C∗ + c, Em = E∗
m + em, Fs1 = F ∗

s1 + fs1, Fs2 = F ∗
s2 + fs2.

Differentiating the above equation with respect to “t′′ and using linearized system of model system
(2) around E11, we get,

dU1

dt
= −m0

(
βY ∗ +

λC∗N∗

Y ∗

)
y2 −m1dn

2 −m2
s0C

∗

L
c2 −m3(θ0 + θ2F

∗
s2)e

2
m

−m4ϕ0F
∗
s1f

2
s1 −m5ψ0F

∗
s2f

2
s2 + [m0(βY

∗ + λC∗)−m1α]ny +m0λ(N
∗ − Y ∗)cy

+m2s3C
∗emc+ [−m2s2C

∗ +m4(ϕ− ϕ1)F
∗
s1]cfs1 −m3θ1dnem

+ [−m3θ2E
∗
m +m5(ψ − ψ1)F

∗
s2]emfs2.

On choosing m0 = 1, m1=
βY ∗ + λC∗

α
, m2=

(ϕ−ϕ1)F ∗
s1

s2C∗ , m3=
(ψ−ψ1)F ∗

s2

θ2E∗
m

, m4 = 1 and m5 = 1, we

get
dU1

dt
to be negative definite showing that U1 is a Lyapunov’s function, and hence, E11 is locally

asymptotically stable provided the conditions (40), (41) and (42) are satisfied. ■

Theorem 4.2.

The endemic equilibrium E11 is nonlinearly asymptotically stable in the region Ω provided the
following conditions are satisfied:

4α

(
β +

λCm
Y ∗

)
< βd, (43)

s2(ϕ− ϕ1) <
4

3

s0ϕ0

L
, (44)

θ2

(
Q0 + θ1A

θ0

)
(ψ − ψ1) <

1

3
ψ0(θ0 + θ2F

∗
s2), (45)

αθ0θ
2
1d(ψ − ψ1) <

2

3
θ2

(
β +

λCm
Y ∗

)
(θ0 + θ2F

∗
s2)(Q0 + θ1A). (46)

Proof:

Consider the following positive-definite function to establish the nonlinear stability of endemic
equilibrium E11,

U2 = k0

(
Y − Y ∗ − Y ∗ ln

Y

Y ∗

)
+
k1
2
(N −N∗)2 + k2

(
C − C∗ − C∗ ln

C

C∗

)
+
k3
2
(Em − Em)

2 + k4

(
Fs1 − F ∗

s1 − F ∗
s1 ln

Fs1
F ∗
s1

)
+ k5

(
Fs2 − F ∗

s2 − F ∗
s2 ln

Fs2
F ∗
s2

)
,
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where ki (i = 0, 1, 2, 3, 4, 5) are positive constants to be chosen appropriately and y, n, c, em, fs1,
fs2 are small perturbations about E11, defined as follows:

Y = Y ∗ + y,N = N∗ + n,C = C∗ + c, Em = E∗
m + em, Fs1 = F ∗

s1 + fs1, Fs2 = F ∗
s2 + fs2.

Differentiating the above equation with respect to “t′′ and using linearized system of model system
(2) around E11, we get,

dU2

dt
= −k0

(
β +

λCN

Y Y ∗

)
(Y − Y ∗)2 − k1d(N −N∗)2 − k2

s0
L
(C − C∗)2

− k3(θ0 + θ2F
∗
s2)(Em − E∗

m)
2 − k4ϕ0(Fs1 − F ∗

s1)
2 − k5ψ0(Fs2 − F ∗

s2)
2

+ (k0

(
β +

λC

Y ∗

)
− k1α)(Y − Y ∗)(N −N∗) + k0λ

(
N∗ − Y ∗

Y ∗

)
(Y − Y ∗)(C − C∗)

+ (−k2s2 + k4(ϕ− ϕ1))(C − C∗)(Fs1 − F ∗
s1) + k2s3(C − C∗)(Em − E∗

m)

− k3θ1d(N −N∗)(Em − E∗
m) + (−k3θ2Em + k5(ψ − ψ1))(Em − E∗

m)(Fs2 − F ∗
s2).

On choosing k0 = 1, k1= 1
α
(β + λCm

Y ∗ ), k2=
(ϕ−ϕ1)
s2

, k3= (ψ−ψ1)θ0
θ2(Q0+θ1A)

, k4 = 1 and k5 = 1, we get
dU2

dt
to be negative definite showing that U2 is a Lyapunov’s function and hence E∗ is locally

asymptotically stable provided the conditions (43), (44), (45) and (46) are satisfied. ■

5. Numerical Simulation

We give here the numerical solution of the mathematical model system (2) to show the existence
of equilibrium values and to check the feasibility of stability conditions.

For this, we integrate the system (2) by fourth-order Runge-Kutta method using MATLAB with
the following set of parameter values:

A = 120, β = 0.0005, λ = 0.00002, ν = 0.2, d = 0.15, α = 0.03, s=0.4, s0=0.9, L=500,
s1=0.2, s2=0.0004, s3=0.0002, Q0=20, θ1 = 0.02, θ0 = 0.1, θ2 = 0.002, ϕ = 0.6, ϕ0 = 0.3,
ϕ1 = 0.005, ξ1=0.4, ξ2=0.004, ψ = 0.5, ψ0 = 0.26, ψ1 = 0.004, ζ1=0.3, ζ2=0.003.

The equilibrium values of endemic equilibrium are computed as,

Y ∗ = 64.490, N∗ = 787.102, C∗ = 83.419, Em = 84.307, Fs1=166.768, Fs2=161.975.

The eigenvalues corresponding to the variational matrix of endemic equilibrium are: −41.7862,
−0.7515, −0.0645, −0.1381, −0.2166, −49.9640.

Since all the eigenvalues are found to be negative, therefore, for the above set of parameter val-
ues the endemic equilibrium is locally asymptotically stable. The results of the model are displayed
graphically in Figures 1 through 12. From Figure 1, we see that the endemic equilibriumE∗ is non-
linearly asymptotically stable. This shows that for the given set of parameter values the curves of
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total human population (N), infective population (Y ) and carrier population density (C) approach
to the equilibrium points regardless of the initial values of N , Y and C.

The initial starts of all trajectories to reach the equilibrium point are given below:

(1) Y (0)= 100 N(0)= 450 C(0)= 200 Em(0)= 248 Fs1(0)= 250 Fs2(0)= 200,
(2) Y (0)= 150 N(0)= 500 C(0)= 250 Em(0)= 248 Fs1(0)= 250 Fs2(0)= 200,
(3) Y (0)= 200 N(0)= 550 C(0)= 300 Em(0)= 248 Fs1(0)= 250 Fs2(0)= 200,
(4) Y (0)= 250 N(0)= 600 C(0)= 350 Em(0)= 248 Fs1(0)= 250 Fs2(0)= 200.

Figure 2 shows the variation of the infective population with time t for distinct values of λ. It is seen
from the figure that with an increase in the value of λ, the infective population increases. Thus, to
control this increment in the indirect transmission of infectious disease due to the carrier population
density present in the conducive degraded environment, some suitable sanitation strategies should
be applied to clean our environment.

The decline of carrier population density present in the degraded environment and infective popu-
lation as a result of suitable sanitation effort applied is shown in Figure 3 and Figure 4, respectively,
with time t for distinct values of s2 (rate of depletion of carrier population due to sanitation effort
applied). It is seen in the figure that with an increase in the sanitation effort carrier population
decreases (Figure 3) which consequently decreases the infective population (Figure 4).

The decline of carrier population density present in the degraded environment and infective popu-
lation as a result of suitable sanitation effort applied is shown in Figure 7 and Figure 8, respectively,
with time t for distinct values of θ2 (rate of depletion of carrier population due to sanitation effort
applied). It is seen in the figure that with an increase in the sanitation effort carrier population
decreases (Figure 7) which consequently decreases the infective population (Figure 8).

The effect of sanitation effort on infective population and carrier population with time t is shown in
Figure 9 and 10, respectively, for different value of ϕ, the rate of sanitation effort applied in direct
proportion to the carrier population density. It is observed that with increase in the rate of sanitation
effort, the carrier population decreases (Figure 9). This decrease in the infective population is due to
decline in the population of carrier in the environment as a result of increasing the sanitation effort
(Figure 10). It is, therefore, speculated that the prevalence of infectious disease can be controlled
by minimizing the carrier population in the environment if sanitation effort is suitably applied.

The effect of sanitation effort is shown in Figure 11 and 12 on carrier population density and in-
fective population with time t, respectively, for different values of ψ, the rate of sanitation effort
applied in direct proportion to environmental degradation. It is found that by applying the suitable
sanitation effort, the degradation of the environment will decrease. This will make our environment
clean, and hence, the carriers which carry infected bacteria and virus from the degraded environ-
ment will decrease (Figure 11). This ultimately decreases the infective population (Figure 12).
Thus, to control the spread of infectious diseases due to carrier present in the conducive degraded
environment proper sanitation effort should be applied.
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Appendix: Figures

Figure 1. Variation of total human population with infective population and carrier population density
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Figure 2. Variation of infective population with time for distinct values of λ

Figure 3. Variation of carrier population density with time for distinct values of s2
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Figure 4. Variation of infective population with time for distinct values of s2

Figure 5. Variation of carrier population density with time for distinct values of s3
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Figure 6. Variation of infective population with time for distinct values of s3

Figure 7. Variation of carrier population density with time for distinct values of θ2
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Figure 8. Variation of infective population with time for distinct values of θ2

Figure 9. Variation of carrier population density with time for distinct values of ϕ
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Figure 10. Variation of infective population with time for distinct values of ϕ

Figure 11. Variation of carrier population density with time for distinct values of ψ
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Figure 12. Variation of infective population with time for distinct values of ψ
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