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Abstract 

In this study, we pay attention to a functional differential equation (FDE) of first order including 
N-variable delays.  We construct new sufficient conditions in relation to the Hyers-Ulam 
stability (HUS) and the generalized Hyers-Ulam-Rassias stability (GHURS) of the FDE of first 
order including N-variable delays. By using Banach contraction principle (BCP), Picard 
operator and Gronwall’s lemma, we confirm two new theorems with regard to the HUS and the 
GHURS. The results of this study are new, they extend and improve some earlier results of the 
HUS and the GHURS. 

Keywords:  HUS; Generalized HURS; FDE with delay; Fixed point; Banach contraction  
                        principle; Picard operator  

MSC 2020 No.: 39B82, 45G10, 45J05, 45M10 

 

1. Introduction 

Let us recall that S.M. Ulam was a prominent mathematician and physicist.  In 1940, S.M. Ulam 
posed his famous question in relation to approximate homomorphisms, which rise to a long-
lasting study of a field which we now call Ulam (or HU) stability and so on. Depending on that 
question, in numerous researches fields, many researchers, in particular mathematicians have 
extensively investigated the subjects on Ulam types stabilities, called the HUS, the HURS,  the 
GHURS, the semi-HUS, the semi-HURS, the semi-GHURS and so on (see the books of  Brzdȩk 
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et al. (2019), Castro and  Simões (2019), Jung (2003), Jung (2011), Tripathy (2021), Ulam 
(1964), and the papers of Akkouchi (2019), Biçer and Tunç (2017), Biçer and Tunç (2018), 
Castro and  Simões (2018), Chauhan et al. (2022), Ciplea  et al. (2023), Deep et al. (2020), 
Graef et al. (2023), Jung (2004), Jung (2006), Khan et al. (2018), Kucche and  Shikhare (2019),  
Li and Shen (2009), Lungu, Popa (2012), Miura et al. (2006), Onitsuka (2019), Otrocol  and  
Ilea (2013), Petru et al. (2011), Popa and Raşa (2011), Tunç and Biçer (2015),  Shah et al. 
(2022) and  Tunç and Tunç (2023)). In addition, a large list of references can also be found in 
these sources, which are not listed here.  
 
In the scientific sources mentioned above, the Ulam type stability problems of several kind of 
functional equations, FDEs, ODEs, PDEs, etc., have been extensively investigated by a large 
number of authors. Indeed, the Ulam type stabilities play a crucial role for equations where the 
exact solutions are not obtainable. Next, increasingly, the Ulam type stability problems emerge 
in biology, economics, etc., and unlikely places. In general, these kind problems can often be 
solved and commented using fundamental results of  fixed point theory in an elementary and 
mathematically honest manner; in particular, see the books of  Burton (2006), Jung (2003), Jung 
(2011), Tripathy (2021) and the papers of Graef et al. (2023),  Diaz and  Margolis (1968), and 
Tunç and Tunç (2023). In reality, fixed point theory and its main results can be used directly to 
study the Ulam type stability problems of functional equations, FDEs, ODEs, PDEs, etc., when 
solutions are being considered on a finite interval case, infinite intervals cases and so on. 
 
We should also state that the qualitative theory of FDEs including multiple constant and 
variable delays has received and is still receiving the considerable attentions of a lot of 
researchers (see the sources mentioned above and the recent literature).  In this paper, inspiring 
by the scientific works above, we will consider an FDE including N-variable delays. We will 
obtain two new theorems, which have new sufficient conditions on the HUS and the GHURS 
of the considered FDE. The method of the proofs is based on the BCP, Picard operator and 
Gronwall’s lemma. By the results of this paper, we aim to introduce new contributions to the 
theory of FDEs including several variable delays. Indeed, the outcomes of this paper are new, 
and they generalize and improve some the earlier relative results regarding the Ulam stabilities. 
Here, there is also an added benefit to studying stability by fixed point methods.  In addition to 
several types of Ulam stability, we can see several kind of other stabilities in sense of  
Lyapunov, Lyapunov-Krasowskii, Lyapunov–Razumikhin, etc. (see, for instance, Tunç (2021), 
Tunç (2023),  Tunç and Tunç (2021), Tunç and Tunç (2023), Tunç et al. (2021a), Tunç et al. 
(2021b), and so on). In this work, we will not discuss these topics. 
 
In the next section, we will present the main FDE to be studied in this paper, which include N-
variable delays. Here, we also give the essential information regarding the HUS and the 
GHURS  of the FDE,  Picard operator, Gronwall inequality and so on. In the coming section, 
Section 3, we start to prove the uniqueness, the HUS and the GHURS of the FDE by two 
theorems. Finally, Section 4 provides a descriptive conclusion of this paper. 
 

2. Preliminaries 

The reason to do this study has been inspired by the article of Otrocol and Ilea (2013).  We 
consider the below FDE of first order including N-multiple variable delays:  
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1
z ( ) ( , z( ), z( ( ))),  [ , ],

N

i i
i

t F t t g t t I a b
=

′ = ∈ =∑    (1)  

z( ) ( ),    [ , ],t t t a h aφ= ∈ −      (2) 

where 2([ , ] , ),  ([ , ],[ , ]),i iF C a b g C a b a h b∈ × ∈ −  ( ) ,ig t t≤ [ , ],t I a b∀ ∈ = ,  , ,a b h∈

0,h > and the inequalities in the following lines  

1
( ) ( , ( ), ( ( ))) ,  ,

N

i i
i

w t F t w t w g t t Iε
=

′ − ≤ ∈∑  (3) 

1
( ) ( , ( ), ( ( ))) ( ),  ,

N

i i
i

w t F t w t w g t t t Iψ
=

′ − ≤ ∈∑     (4) 

where ,ε ∈ 0,ε > and the function ψ  is defined at the following. 

In this work, we discuss the HUS, GHURS and the existence of the solutions of FDE (1). 
Now, we give some fundamental information which are needed in advance.  

The FDE (1) is said to be HU stable if there exists a positive constant C  such that for all 0ε >
and for every solution 1([ , ], )w C a h b∈ −   of the inequality (3) there exists a solution 

1([ , ], )z C a h b∈ −   of  the FDE (1) with ( ) ( )w t z t Cε− ≤  for [ , ].t a h b∈ −  
 
The FDE (1) is said to be GHUR stable with respect to the positive, nondecreasing continuous 
function : [ , ] ,r bψ +− →  [0, ),+ = ∞  if there exists a positive constant Cψ  such that for all 

0ε >  and for every solution 1([ , ], )w C a h b∈ −   of the inequality (4) there is a solution 
1([ , ], )z C a h b∈ −   of the FDE (1) with ( ) ( ) ,w t z t C ψε− ≤ [ , ].t a h b∈ −   

We observe that a function 1( , )w C I∈  is a solution of the inequality (3) if and only if there 
exists a function ( , )wq C I∈   depends on y  such that 

( ) , ,wq t t Iε≤ ∀ ∈                                                                                     (5) 

 
1

( ) ( , ( ), ( ( ))) ( ),  .
N

i i w
i

w t F t w t w g t q t t I
=

′ = + ∀ ∈∑                                       (6)  

We should state that similar arguments also hold for the inequality (4). 

Next, if 1( , )w C I∈   satisfies (3), then w  is a solution of the inequality in the following line: 
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1
( ) ( ) ( , ( ), ( ( ))) ( ) ,   .

t N

i i
ia

w t w a F t w t w g t ds t a t Iε
=

− − ≤ − ∀ ∈∑∫                       (7) 

If 1 (I, )w C∈   satisfies (4), then w  is a solution of the inequality in the following line: 

1
( ) ( ) ( , ( ), ( ( ))) ( ) , .

t tN

i i
ia a

w t w a F s w s w g s ds s ds t Iψ
=

− − ≤ ∀ ∈∑∫ ∫  

We suppose that ( , )X d  is a metric space. An operator A  from X  to X is called a Picard 
operator if there exist *x X∈  such that the following conditions hold: 

( 1)As { }*
A AF x=  with { }: ( ) .AF x X A x x= ∈ =  This is a fixed point set of ;A  

( 2)As  the sequence ( )0( )nA x satisfies ( )0( ) *,nA x x→   ,n∈    0 .x X∀ ∈  

Before giving the Ulam stabilities results of this work, we present two well-known lemmas 
from the database of present literature, which are used in the proofs of the main results.  
 

Lemma 2.1.  

Let , ([ , ], )f p C a b +∈   such that the function f  is increasing. If ([ , ], )x C a b +∈   satisfies 
the inequality 

 ( ) ( ) ( ) ( ) ,  ,
b

a

x t f t x s p s ds a t b≤ + ≤ ≤∫  

then  

( ) ( ) exp ( ) ,   ,
b

a

x t f t p s ds a t b
 

≤ ≤ ≤ 
 
∫  

(Rus (2009)). 

Lemma 2.2.  

Suppose that ( ), ,X d ≤  is  an ordered metric space and :A X X→  is  an increasing Picard 

operator with * .A AF x=  Then, for ,  ( )x X x A x∈ ≤ requires that *
Ax x≤ , while  ( )x A x≥  

requires that *
Ax x≥ .  

 

3. Ulam stabilities 

Before stating the new HUS result, let the conditions in the following lines hold: 
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(C1) 2([ , ] , ),  ([ , ],[ , ]),  ( ) ,i i iF C a b g C a b a h b g t t∈ × ∈ − ≤   1, 2,..., ,i N=  

  0,  [ , ];h t I a b> ∀ ∈ =  

(C2) there exist constants 
1 2

0,  0,..., 0
NF F FL L L> > > with   

{ }
11 1 2 1 1 2 1 1 2 2( , , ) ( , , ) ,FF t u u F t v v L u v u v− ≤ − + −  

{ }
22 1 3 2 1 3 1 1 3 3( , , ) ( , , ) ,FF t u u F t v v L u v u v− ≤ − + −  

… 

{ }1 1 1 1 1 1 1 1( , , ) ( , , ) ,
NN N N N F N NF t u u F t v v L u v u v+ + + +− ≤ − + −   

 1 1 1 1[ , ],  , , , ,i it a b u u v v+ +∀ ∈ ∀ ∈    1, 2,..., .i N=  

Theorem 3.1.  

Let ( 1)C and ( 2)C hold. If ( )
1

2( ) 1
i

N

F
i

b a L
=

− <∑ ,  then the following ideas hold true: 

01  ) the  IVP  (1), (2) has a unique solution in 1([ , ], ) ([ , ], )C a h b C a b− ∩  ; 

02 ) the FDE (1) is the HU stable. 

Proof: 

01 )  Firstly, we can observe that under condition (C1), the IVP (1), (2) can be converted to  

1

( ),    ,
( )

( ) ( , ( ), ( ( ))) ,   .
t N

i i
ia

t a h t a
z t

t F s z s z g s ds a t b

φ

φ
=

− ≤ ≤
=  + ≤ ≤


∑∫
 

Letting ([ , ], )X C a h b= −   as the Banach space with Chebyshev norm, we define the 
operator :FB X X→ by   

1

( ),    ,
( )( )

( ) ( , ( ), ( ( ))) ,    .
t N

F
i i

ia

t a h t a
B z t

t F s z s z g s ds a t b

φ

φ
=

− ≤ ≤
=  + ≤ ≤


∑∫
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Our idea is that  FB  is a Picard operator. Then, by virtue of the conditions of Theorem 3.1, we 

will show that the operator FB  is a contraction on ,X  which is Banach space with respect to 

the Chebyshev norm .
C

. Next, it is clear that FB  has a fixed point because of the contraction 

principle. Then, we derive   

 
( )( ) ( )( ) 0,   , ([ , ], ).F FB z t B w t z w C a h b− = ∈ −    

Next, for any ,t I∈ we follow that  

1 1
( )( ) ( )( ) ( , ( ), ( ( ))) ( , ( ), ( ( )))

t tN N

F F i i i i
i ia a

B z t B w t F s z s z g s ds F s w s w g s ds
= =

− = −∑ ∑∫ ∫  

1 1 1 1( , ( ), ( ( ))) ( , ( ), ( ( )))
t

a

F s z s z g s F s w s w g s ds≤ −∫  

2 2 2 2( , ( ), ( ( ))) ( , ( ), ( ( )))
t

a

F s z s z g s F s w s w g s ds+ −∫  

... ( , ( ), ( ( ))) ( , ( ), ( ( )))
t

N N N N
a

F s z s z g s F s w s w g s ds+ + −∫  

1 1 1( )(max ( ) ( ) max ( ( )) ( ( )) )F a s b a s b
L b a z s w s z g s w g s

≤ ≤ ≤ ≤
≤ − − + −   

2 2 2( ) (max ( ) ( ) max ( ( )) ( ( )) )F a s b a s b
b a L z s w s z g s w g s

≤ ≤ ≤ ≤
+ − − + −  

... ( ) (max ( ) ( ) max ( ( )) ( ( )) )
NF N Na s b a s b

b a L z s w s z g s w g s
≤ ≤ ≤ ≤

+ + − − + −  

1 2
( )( ... )

NF F Fb a L L L= − + + + max ( ) ( )
a s b

z s w s
≤ ≤

−  

1 1 1( ) max ( ( )) ( ( ))F a s b
L b a z g s w g s

≤ ≤
+ − −  

2 2 2( ) max ( ( )) ( ( ))F a s b
L b a z g s w g s

≤ ≤
+ − −  

... ( ) max ( ( )) ( ( )) .
NF N Na s b

L b a z g s w g s
≤ ≤

+ + − −  

Hence, we see that 

( )
1

( )( ) ( )( ) 2( ) ,
i

N

F F FC C
i

B z t B w t b a L z w
=

− ≤ − −∑ , ([ , ], ).z w C a h b∈ −   
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Since  

( )
1

2( ) 1
i

N

F
i

b a L
=

− <∑ ,  

then the operator FB  is a contraction on the set X . Hence, the operator FB  includes a fixed 
point, which is a solution of the IVP (1), (2). 

 
02 ) Let 1([ , ], ) ([ , ], )w C a h b C a b∈ − ∩   be a solution of the inequality (3).  

Let 1([ , ], ) ([ , ], )z C a h b C a b∈ − ∩   represent the unique solution of the problem in the 
following lines: 

1
( ) ( , ( ), ( ( ))),   ,

N

i i
i

z t F t z t z g t a t b
=

′ = ≤ ≤∑   

( ) ( ),   .z t w t a h t a= − ≤ ≤  

From (C1), by the integration we can write 

1

( ),   ,
( )

( ) ( , ( ), ( ( ))) ,   .
t N

i i
ia

w t a h t a
z t

w a F s z s z g s ds a t b
=

− ≤ ≤
=  + ≤ ≤


∑∫
 

According to the (7), we see that  

1
( ) ( ) ( , ( ), ( ( ))) ( ) ,  .

t N

i i
ia

w t w a F s w s w g s ds t a a t bε
=

− − ≤ − ≤ ≤∑∫  

Clearly, we have  

( ) ( ) 0,w t z t− = .a h t a− ≤ ≤  

For ,a t b≤ ≤  we can write 

1
( ) ( ) ( ) ( ) ( , ( ), ( ( )))

t N

i i
ia

w t z t w t w a F s w s w g s ds
=

− ≤ − − ∑∫  

[ ]
1

( , ( ), ( ( ))) ( , ( ), ( ( )))
t N

i i i i
ia

F s w s w g s F s z s z g s ds
=

+ −∑∫  

1 1 1 1( ) ( , ( ), ( ( ))) ( , ( ), ( ( )))
t

a

t a F s w s w g s F s z s z g s dsε≤ − + −∫  

7
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2 2 2 2( , ( ), ( ( ))) ( , ( ), ( ( )))
t

a

F s w s w g s F s z s z g s ds+ −∫  

... ( , ( ), ( ( ))) ( , ( ), ( ( )))
t

N N N N
a

F s w s w g s F s z s z g s ds+ + −∫  

1 1 1 1( ) ( ) ( ) ( ( )) ( ( ))
t t

F F
a a

t a L w s z s ds L w g s z g s dsε≤ − + − + −∫ ∫   

2 2 2 2( ) ( ) ( ( )) ( ( ))
t t

F F
a a

L w s z s ds L w g s z g s ds+ − + −∫ ∫  

... ( ) ( ) ( ( )) ( ( ))
N N

t t

F F N N
a a

L w s z s ds L w g s z g s ds+ + − + −∫ ∫  

      

1
( ) ( ) ( )

i

tN

F
i a

t a L w s z s dsε
=

= − + −∑ ∫  

1
( ( )) ( ( )) .

i

tN

F i i
i a

L w g s z g s ds
=

+ −∑ ∫                                                   (8) 

By the virtue of   the inequality (8), for ([ , ], ),u C a h b +∈ −   we pay attention to  the operator

A from ([ , ], )C a h b +−  to ([ , ], ),C a h b +−   which is defined in the following lines by 

 

1 1

0,  ,
( )( )

( ) ( ) ( ( )) ,  .
i i

t tN N

F F i
i ia a

a h t a
A u t

t a L u s ds L u g s ds a t bε
= =

− ≤ ≤
=  − + + ≤ ≤


∑ ∑∫ ∫
  

We will prove that A  is a Picard operator. Hence, we first observe that A  is a contraction. 
For , ([ , ], )u v C a h b +∈ −   and ,a t b≤ ≤  we have 

1 1 1( )( ) ( )( ) ( ) ( ) ( ( )) ( ( ))
t

F
a

A u t A v t L u s v s u g s v g s ds− ≤  − + −  ∫  

2 2 2( ) ( ) ( ( )) ( ( ))
t

F
a

L u s v s u g s v g s ds+  − + −  ∫  

... ( ) ( ) ( ( )) ( ( ))
N

t

F N N
a

L u s v s u g s v g s ds+ +  − + −  ∫  

8
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( )1 1 1( ) max ( ) ( ) max ( ( )) ( ( ))F a s b a s b
L b a u s v s u g s v g s

≤ ≤ ≤ ≤
≤ − − + −  

( )2 2 2( ) max ( ) ( ) max ( ( )) ( ( ))F a s b a s b
L b a u s v s u g s v g s

≤ ≤ ≤ ≤
+ − − + −  

( )... ( ) max ( ) ( ) max ( ( )) ( ( ))
NF N Na s b a s b

L b a u s v s u g s v g s
≤ ≤ ≤ ≤

+ + − − + −  

( )
1

2( ) .
i

N

F
i

b a L u v
=

≤ − −∑   

As the next step, for all , ([ , ], ),u v C a h b +∈ −  it follows that  

( )
1

( )( ) ( )( ) 2( ) .
i

N

F
i

A u t A v t b a L u v
=

− ≤ − −∑   

Since ( )
1

2( ) 1
i

N

F
i

b a L u v
=

− − <∑ , A  is a contraction on ([ , ], )C a h b +−  . Employing the 

BCP, we conclude that A  is a Picard operator and { }*
AF u= . Then,  

( ) [ ]
1

* ( ) ( ) * ( ) * ( ( )) ,
i

tN

F i
i a

u t t a L u s u g s dsε
=

= − + +∑ ∫  .a t b≤ ≤                       (9) 

The solution *u  is increasing and ( *) 0.u ′ ≥  Therefore, we see that 

1* ( ( )) * ( ),..., * ( ( )) * ( ).Nu g t u t u g t u t≤ ≤                                                       (10) 

According to (9) and (10), we get   

( )
1

* ( ) 2 * ( ) .
i

tN

F
i a

u t a L u s dsε
=

 ≤ − +  
 
∑ ∫  

From Lemma 2.1, we obtain  

* ( ) ,   ,u t c a h t bε≤ − ≤ ≤  

where 

( )
1

( ) exp 2( ) .
i

N

F
i

c b a b a L
=

 = − −  
∑  

If u w z= − , ( ) ( )( ),u t A u t≤  then we obtain 

*( ) ( ),u t u t≤   

by Lemma 2.2.   

9
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This means that A  is an increasing Picard operator. Next, we derive that  

( ) ( ) ,   .w t z t c a h t bε− ≤ − ≤ ≤   

Thus, it shows that the FDE (1) is HU stable.  

Now, before stating the next GHUR s result, we assume the following conditions meet: 

(C3) 2([ , ) , ),  ([ , ),[ , )),  ( ) ,i i iF C a g C a a h g t t∈ ∞ × ∈ ∞ − ∞ ≤    

1, 2,..., ,  0,  [ , );i N h t I a= > ∀ ∈ = ∞  

(C4)  there exist functions 
1 2

1,  ,..., ([ , ), )
NF F FL L L L a +∈ ∞   such that  

{ }
11 1 2 1 1 2 1 1 2 2( , , ) ( , , ) ( ) ,FF t u u F t v v L t u v u v− ≤ − + −  

{ }
22 1 3 2 1 3 1 1 3 3( , , ) ( , , ) ( ) ,FF t u u F t v v L t u v u v− ≤ − + −  

… 

{ }1 1 1 1 1 1( , , ) ( , , ) ( ) ,
NN N N N F N NF t u u F t v v L t u v u v+ +− ≤ − + −   

 1 1 1 1[ , ),  , , , ,i it a u u v v+ +∀ ∈ ∞ ∀ ∈    1, 2,..., .i N=  

(C5)  There is an increasing function  ([ , ))C aψ ∈ ∞  and there exists λ  be positive constant 

such that  ( ) ( )
t

a

s ds tψ λψ≤∫  for all .a t≤ < ∞  

 
Theorem 3.2.  

If ( 3) ( 5)C C−  hold, then the following results hold: 

03  ) the  IVP   (1), (2) has a unique solution in 1([ ], ), ) ([ , ), )C a h C a− ∞ ∩ ∞  ; 

04 ) The FDE  (1) is GHUR stable. 

 Proof:  

The steps in the proof of Theorem 3.1 are followed. Letting 

1([ ], ), ) ([ , ), ),w C a h C a∈ − ∞ ∩ ∞   

10
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as a solution of the inequality (4), we will show the FDE (1) has a unique solution in 
1([ ], ), ) ([ , ), )C a h C a− ∞ ∩ ∞  for all [ , )t a∈ ∞ .  

Denote the unique solution by 1([ ], ), ) ([ , ), )z C a h C a∈ − ∞ ∩ ∞   of the below IVP, 

1
( ) ( , z( ), z( ( ))),  [ , ),

N

i i
i

z t F t t g t t I a
=

′ = ∈ = ∞∑    

z( ) ( ),    .a w t a h t a= − ≤ ≤  

Hence, integrating the FDE above, we have  

1

( ),    [ , ],
( )

( ) ( , ( ), ( ( )) ,   [ , ).
t N

i i
ia

t t a h a
z t

t F s z s z g s ds t a

φ

φ
=

∈ −
=  + ∈ ∞


∑∫
 

From the integration of the (4) and the condition ( ) ( )
t

a

s ds tψ λψ≤∫  of Theorem 3, we obtain  

1
( ) ( ) ( , ( ), ( ( ))) ( ) ( ),  [ , ).

t tN

i i
ia a

w t w a F s w s w g s ds s ds t t aψ λψ
=

− − ≤ ≤ ∈ ∞∑∫ ∫  

It is clear that for all [ , ]t a h a∈ − , we have ( ) ( ) 0w t z t− = . Next, for [ , )t a∈ ∞ , we derive  

1
( ) ( ) ( ) ( ) ( , ( ), ( ( ))

t N

i i
ia

w t z t w t w a F s w s w g s ds
=

− ≤ − − ∑∫  

 [ ]
1

( , ( ), ( ( ))) ( , ( ), ( ( )))
t N

i i i i
ia

F s w s w g s F s z s z g s ds
=

+ −∑∫  

1
( ) ( , ( ), ( ( ))) ( , ( ), ( ( )))

t N

i i i i
ia

t F s w s w g s F s z s z g s dsλφ
=

≤ + −∑∫  

1 1 1 1( ) ( ) ( ) ( ) ( ) ( ( )) ( ( ))
t t

F F
a a

t L s w s z s ds L s w g s z g s dsλφ≤ + − + −∫ ∫   

2 2 2 2( ) ( ) ( ) ( ) ( ( )) ( ( ))
t t

F F
a a

L s w s z s ds L s w g s z g s ds+ − + −∫ ∫  
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... ( ) ( ) ( ) ( ) ( ( )) ( ( )) .
N N

t t

F F N N
a a

L s w s z s ds L s w g s z g s ds+ + − + −∫ ∫
   
According to the above information, we conclude that      

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( )) ( ( )) .

i i

t tN N

F F i i
i ia a

w t z t t L s w s z s ds L s w g s z g s dsλψ
= =

− ≤ + − + −∑ ∑∫ ∫

Using the Gronwall lemma, we obtain  

( )
1

( ) ( ) ( ) exp 2 ( ) ( ),
i

N

F
i

w t z t t L s C tψλψ ψ
=

 − ≤ = 
 
∑  [ , ),t a∈ ∞  

where ( )
1

exp 2 ( ) .
i

N

F
i

C L sψ λ
=

 =  
 
∑ Therefore, the FDE  (1) is generalized Hyers-Ulam-Rassias 

stable. 

 

4. Numerical Applications 

Example 4.1.  

We consider the below FDE of first order including two multiple variable delays and the 
initial condition:  

2 2

1 1z ( ) , z( ), z , z( ), z , [0,1],
2 4
t tt F t t F t t t I

      
′ = + ∈ =      

      
    (11)  

0z(0) ,z=      (12) 

together with the inequalities in the following lines: 

2 2

1 2( ) , ( ), , ( ), ,
2 4
t tw t F t w t w F t w t w ε

      
′ − − ≤      

      
  

and    

2 2

1 2( ) , ( ), , ( ), ( ),
2 4
t tw t F t w t w F t w t w tψ

      
′ − − ≤      

      
[0,1],t ∈  
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where 2
1 2 1 2,  ([0,1] , ),  ,  ([0,1],[ ,1]),F F C g g C h∈ × ∈ − 

2

1 ( ) ,
2
tg t t= ≤

2

2 ( ) ,
4
tg t t= ≤

[0,1],t ∈  ,h∈ 0,h >  and ψ  is nondecreasing continuous function : [ ,1] ,rψ +− → 

[0, ).+ = ∞  Hence, depending on  the conditions of  Theorem 3.1,  the  IVP   (11), (12) has a 
unique solution in 1([ ,1], ) ([0,1], )C h C− ∩  and the FDE (11) is the HU stable provided that 

( )
2

1
2 1.

iF
i

L
=

<∑   

 

We should also note that similar studies can be done depending on the conditions of Theorem 
3.2 such that the FDE (11) has a unique solution in 1([ , ], ) ([0, ], )C h C− ∞ ∩ ∞  and the FDE 
(11) is GHUR stable. 

 

5. Conclusions 

This work deals with the uniqueness of solutions, the UHS and the GUHRS of a FDE of first 
order including N-variable delays. In the present work, two new results including the sufficient 
conditions in relation to these qualitative concepts for the considered FDE are constructed. The 
main techniques and basic results of the outcomes are the BCP, Picard operator, Gronwall’s 
lemma and so on. The outcomes of this paper have new inputs to qualitative theory of FDEs. 
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