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Abstract

The classical Pareto distribution is a positively skewed and right heavy-tailed lifetime distribu-
tion having many applications in various fields of science and social science. In this work, via the
logarithmic transformed method, a new three-parameter lifetime distribution, an extension of clas-
sical Pareto distribution is generated. The different structural properties of the new distribution are
studied. The model parameters are estimated by the method of maximum likelihood and Bayesian
procedure. When all the three parameters of the distribution are unknown, the Bayes estimators
cannot be obtained in a closed form, and hence, the Lindley’s approximation under squared error
loss function is used to compute the Bayes estimators. A Monte Carlo simulation study is also con-
ducted to compare the performance of these estimators using mean square error. The application
of the new distribution for modeling earthquake insurance and reliability data are illustrated using
two real data sets.

Keywords: Bayes estimators; Classical Pareto distribution; Heavy-tailed distribution; Lindley’s
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2 A.S. Aniyan and D. George

1. Introduction

The classical Pareto (Pareto-I) distribution plays a crucial role in various fields such as actuarial
science, medical and biological sciences, economics, survival analysis, telecommunication, life
testing, hydrology and climatology (see Burroughs and Tebbens (2001), Newman (2005), Verma
and Betti (2006), Arnold (2008) and Chhetri et al. (2017)).

Moreover, being positively skewed, heavy right tailed and of decreasing hazard rate, this distribu-
tion can also be additionally used for modeling data sets of higher insurance claims and failure
times generated from various products and mechanisms. For example, infant mortality and ma-
chine life cycles which possess more flexible behavior (see Chahkandi and Ganjali (2009)). Due
to its significance and greater versatility, various extensions and generalizations of the Pareto-I
distribution have been developed recently by many researchers with added flexibility, viz., Beta-
Pareto distribution (Akinsete et al. (2008)), Kumaraswamy Pareto distribution (Bourguignon et
al. (2013)), Kumaraswamy transmuted Pareto distribution (Chhetri et al. (2017)), transmuted new
Weibull-Pareto distribution (Tahir et al. (2018)), alpha-power Pareto distribution (Ihtisham et al.
(2019)), cubic transmuted Pareto distribution (Rahman et al. (2020)) and Pareto-Weibull distribu-
tion (Rana et al. (2020)).

In 2012, Pappas et al. introduced Logarithmic Transformed (LT) family of distributions and based
on their idea a good deal of work had been done later, such as (P-A-L) extended modified Weibull
distribution by Al-Zahrani et al. (2016), alpha logarithmic transformed generalized exponential
distribution by Dey et al. (2017), alpha logarithmic transformed Fréchet distribution by Dey et
al. (2019), modified logarithmic transformed inverse Lomax distribution by Almarashi (2021) and
logarithmic transformed Lomax distribution by Alotaibi et al. (2021).

In this paper, we introduce a new three-parameter extension of Pareto-I distribution with decreasing
failure rate namely, logarithmic transformed Pareto-I (LTPa-I) distribution and discuss its various
statistical properties. The objective of this paper is twofold: to derive the various statistical prop-
erties of the LTPa-I distribution and the parameter estimation of the model under classical and
Bayesian paradigms.

The article is composed of seven sections. The next section proposes the logarithmic transformed
Pareto-I (LTPa-I) distribution. In Section 3, some of its important mathematical and statistical
properties are derived. The model parameters are estimated by the method of maximum likelihood
and the Bayesian method of estimation in Section 4. A simulation study is conducted to compare
the performance of the proposed estimators in Section 5. In the penultimate section, two real-life
data sets are analyzed and the article is concluded in Section 7.

2. LTPa-I Distribution

Let X be a random variable from the Pareto-I distribution with PDF and CDF are given, respec-
tively, as
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g(x) =
τλτ

xτ+1
, λ, τ > 0, x ≥ λ,

and

G(x) = 1−
(
λ

x

)τ

, (1)

where λ and τ are the scale and shape parameters, respectively.

Here, we introduce the LTPa-I distribution following the idea of Pappas et al. (2012). The CDF
and PDF of the LT family of distributions are, respectively, defined as

F (x) = 1− log [ρ− (ρ− 1)G(x)]

log(ρ)
, ρ > 0, ρ ̸= 1, (2)

and

f(x) =
(ρ− 1)g(x)

log(ρ)[ρ− (ρ− 1)G(x)]
, ρ > 0, ρ ̸= 1, (3)

where G(x) and g(x) denote the CDF and PDF of a baseline distribution.

By inserting the CDF of the Pareto-I distribution, G(x) as the baseline CDF in Equations (2) and
(3), then the CDF and PDF of the LTPa-I distribution are, respectively, obtained as

F (x;α, τ, λ) = 1−
log[ρ− (ρ− 1)(1−

(
λ
x

)τ
)]

log(ρ)
, ρ, λ, τ > 0, x ≥ λ, ρ ̸= 1, (4)

and

f(x; ρ, τ, λ) =
(ρ− 1)τλτ )

xτ+1 log(ρ)[ρ− (ρ− 1)(1−
(
λ
x

)τ
)]
, ρ, λ, τ > 0, x ≥ λ, ρ ̸= 1, (5)

where ρ is an extra shape parameter.

When ρ → 1, LTPa-I reduces to Pareto-I distribution. Therefore, LTPa-I is considered as a gener-
alization of the Pareto-I distribution (see Appendix A).

The corresponding survival, hazard rate, reverse hazard rate and cumulative hazard rate functions
can be represented as

S(x; ρ, τ, λ) =
log[ρ− (ρ− 1)(1−

(
λ
x

)τ
)]

log(ρ)
, (6)

h(x; ρ, τλ) =
(ρ− 1)τλτ

xτ+1 log[ρ− (ρ− 1)(1−
(
λ
x

)τ
)]
[
ρ− (ρ− 1)(1−

(
λ
x

)τ
)
] , (7)

ϕ(x; ρ, τ, λ) =
(ρ− 1)τλτ

xτ+1
[
ρ− (ρ− 1)(1−

(
λ
x

)τ
)
]
log
[
ρ
[
ρ− (ρ− 1)(1−

(
λ
x

)τ
)
]−1
] (8)
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4 A.S. Aniyan and D. George

and

H(x; ρ, τ, λ) = − ln

[
log[ρ− (ρ− 1)(1−

(
λ
x

)τ
)]

log(ρ)

]
. (9)

The Mills and the Odds ratios of the LTPa-I distribution are, respectively, given by

m(x; ρ, τ, λ) =
xτ+1 log[ρ− (ρ− 1)(1−

(
λ
x

)τ
)]
[
ρ− (ρ− 1)(1−

(
λ
x

)τ
)
]

(ρ− 1)τλτ
, and

O(x; ρ, τ, λ) =
xτ+1

[
ρ− (ρ− 1)(1−

(
λ
x

)τ
)
]
log
[
ρ
[
ρ− (ρ− 1)(1−

(
λ
x

)τ
)
]−1
]

(ρ− 1)τλτ
.

The behavior of the LTPa-I model is illustrated graphically by plotting the shape of PDF and hazard
rate function (hrf). Figure 1 and Figure 2 depict the PDF and hrf shapes of LTPa-I distribution
respectively. The PDF of LTPa-I distribution is reversed–J shape, right-skewed and decreasing
while hrf of LTPa-I distribution has decreasing shape. The decreasing failure rate (dfr) indicates an
improvement in the reliability of a certain system with time. The dfr phenomenon is characterized
by the terms “infant mortality” or “work hardening.” Thus, LTPa-I may be a good candidate to
analyze the data which possess dfr.

Figure 1. pdf plot of LTPa-I distribution with λ = 1 for various values of ρ and τ

Remark 2.1.

Dey et al. (2017) showed that the PDF of LT family has the following mixture representation,

f(x) =
∞∑
k=0

k∑
j=0

wk,jcj+1(x), (10)
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Figure 2. hrf plot of LTPa-I distribution with λ = 1 for various values of ρ and τ

where c(θ+1) = (θ + 1)g(x)G(θ+1)−1(x) is the exp-G PDF with positive power parameter θ and

wk,j =

(
k

j

)
(ρ− 1)j+1

(j + 1)(ρ+ 1)k+1 log(ρ)
.

Inserting the PDF and CDF of Pareto-I model in the above equation, we can express Equation (5)
as

f(x; ρ, τ, λ) =
∞∑
k=0

k∑
j=0

wk,j(j + 1)
τλτ

xτ+1

[
1−

(
λ

x

)τ]j

=
∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,mgP (x;λ, τ(m+ 1)), (11)

where

wk,j,m =

(
j

m

)
wk,j(−1)m(j + 1)

m+ 1
,

and gP (x;λ, τ(m+1)) is the PDF of Pareto-I distribution with parameters τ(m+1) and λ. Hence,
the LTPa-I density function can be expressed as a linear combination of Pareto-I distribution and
it is useful for finding various structural properties of the LTPa-I distribution.

3. Properties

This section investigates quantiles, ordinary and incomplete moments, moment generating function
and order statistics of LTPa-I distribution.

5
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6 A.S. Aniyan and D. George

3.1. Quantiles

The qth quantile xq, for 0 < q < 1, of the LTPa-I distribution is given by

xq = Q(q) =
λ[

1−
(

ρ−ρ1−q

ρ−1

)] 1

τ

=
λ(

ρ1−q−1
ρ−1

) 1

τ

, (12)

and hence, the median is

M =
λ(

ρ0.5−1
ρ−1

) 1

τ

.

In particular, the first and third quantiles, Q(1) and Q(3) can be obtained by substituting q = 0.25
and q = 0.75 in Equation (12) respectively.

Skewness and kurtosis of the LTPa-I distribution can be calculated using the following relations
defined respectively by Bowley (1920) and Moors (1988),

S =
Q(3)− 2Q(2) +Q(1)

Q(3)−Q(1)
, and

K =
Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
.

3.2. Moments

The sth ordinary moments of the LTPa-I distribution is defined by,

µ
′

s =
∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,m

∫ ∞

λ

xsgP (x;λ, τ(m+ 1))dx

=
∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,m
λsτ(m+ 1)

τ(m+ 1)− s
, s < τ. (13)

By using the Leibniz test, we can see that µ′

s is convergent when s < τ (see Appendix C).

The mean of LTPa-I distribution is

µ
′

1 =
∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,m
λτ(m+ 1)

τ(m+ 1)− 1
, τ > 1.

Also, from Equation (13),

µ
′

2 =
∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,m
λ2τ(m+ 1)

τ(m+ 1)− 2
,

6
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and hence, the variance is

V (X) =
∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,m
λ2τ(m+ 1)

τ(m+ 1)− 2
−

[
∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,m
λτ(m+ 1)

τ(m+ 1)− 1

]2
, τ > 2.

3.3. Moment Generating Function

The moment generating function of LTPa-I distribution is found out using the mgf of Pareto-I
distribution (see Chotikapanich (2008)) and it is given by

MX(t) =
∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,m

∫ ∞

λ

etxgP (x;λ, τ(m+ 1))dx

=
∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,m(−tλ)τ(m+1)τ(m+ 1)Γ(−τ(m+ 1),−λt), t < 0. (14)

3.4. Incomplete Moments

The pth incomplete moment of the LTPa-I distribution is given by

ϕp(t) =
∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,m

∫ t

λ

xpgP (x;λ, τ(m+ 1))dx

=
∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,m
τ(m+ 1)λp

τ(m+ 1)− p

[
1−

(
λ

t

)τ(m+1)−p
]
, p < τ, (15)

thereby, the first incomplete moment, ϕ1(t), is

ϕ1(t) =
∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,m
τ(m+ 1)λ

τ(m+ 1)− 1

[
1−

(
λ

t

)τ(m+1)−1
]
. (16)

Some important applications of the first incomplete moment are mean deviations about the mean
or median and in calculating some inequality measures such as mean residual life (MRL), mean
inactivity time (MIT) and Lorenz and Bonferroni curves (see Gerstenkorn (1975) and Butler and
McDonald (1989)). Inequality measures has applications in many fields including life insurance,
economics, biomedical sciences and product quality control (see Aaberge (2000) and Giorgi and
Crescenzi (2001)).

The mean deviations about the mean, Dµ(x), and about the median, DM(x), of the LTPa-I model
can be expressed, respectively, as,

Dµ(x) =

∫ ∞

λ

|x− µ|f(x)dx = 2µF (µ)− 2ϕ1(µ), and

7
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8 A.S. Aniyan and D. George

DM(x) =

∫ ∞

λ

|x−M |f(x)dx = µ− 2ϕ1(M),

where F(.) is the cdf, µ is the mean, M is the median and ϕ1(.) is the first incomplete moment of
the LTPa-I distribution. These deviations can be used to measure the amount of scatteredness in a
population.

The MRL function ψX(t) of a component at time t or the life expectancy at the age t > 0 of a
LTPa-I random variable is given by,

ψX(t) =

(
1−

∑∞
k=0

∑k
j=0

∑j
m=0wk,j,m

τ(m+1)λ
τ(m+1)−1

[
1−

(
λ
t

)τ(m+1)−1
])

log(ρ)

log[ρ− (ρ− 1)(1−
(
λ
t

)τ
)]− t log(ρ)

. (17)

The mean inactivity time (MIT) of a lifetime random variable follows LTPa-I distribution is given
by

ψ
′

X(t) = t−

∑∞
k=0

∑k
j=0

∑j
m=0wk,j,m

τ(m+1)λ
τ(m+1)−1

[
1−

(
λ
t

)τ(m+1)−1
]

1− log[ρ−(ρ−1)(1−(λ

t )
τ
)]

log(ρ)

. (18)

Further, the Lorenz L(q) and Bonferroni B(q) curves are defined as

L(q) =
1

µ

∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,m
τ(m+ 1)λ

τ(m+ 1)− 1

[
1−

(
λ

xq

)τ(m+1)−1
]
,

and

B(q) =
1

qµ

∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,m
τ(m+ 1)λ

τ(m+ 1)− 1

[
1−

(
λ

xq

)τ(m+1)−1
]
, (19)

respectively, where xq can be computed numerically from Equation (12) for a given probability.

3.5. Order Statistics

Let X(1) ≤ X(2) ≤ .... ≤ X(n) denote the order statistics of a random sample X1, X2, .., Xn

from LTPa-I (ρ, τ, λ). According to Wilks (1948), the PDF and CDF of the jth order statistics are

8
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obtained, respectively, as

fX(j)
(x; ρ, τ, λ) =

n!

(j − 1)!(n− j)!

(ρ− 1)τλτ

xτ+1 log(ρ)[ρ− (ρ− 1)(1−
(
λ
x

)τ
)]

×

[
1−

log[ρ− (ρ− 1)(1−
(
λ
x

)τ
)]

log(ρ)

]j−1

×

[
log[ρ− (ρ− 1)(1−

(
λ
x

)τ
)]

log(ρ)

]n−j

=
n!

(j − 1)!(n− j)!

(ρ− 1)τλτ

xτ+1[ρ− (ρ− 1)(1−
(
λ
x

)τ
)]

×

[
1−

log[ρ− (ρ− 1)(1−
(
λ
x

)τ
)]

log(ρ)

]j−1 [
log[ρ− (ρ− 1)(1−

(
λ
x

)τ
)]
]n−j

(log ρ)n−j+1
,

and

FX(j)
(x; ρ, τ, λ) =

n∑
l=j

l∑
u=0

(−1)u
(
n

l

)(
l

u

)[
log[ρ− (ρ− 1)(1−

(
λ
x

)τ
)]

log(ρ)

]n−l+u

.

The PDF of the smallest order statistic, X(1) and the largest order statistic, X(n) are, respectively,
given by,

fX(1)
(x; ρ, τ, λ) =

n(ρ− 1)τλτ

xτ+1[ρ− (ρ− 1)(1−
(
λ
x

)τ
)]

×
[
log[ρ− (ρ− 1)(1−

(
λ
x

)τ
)]
]n−1

(log ρ)n
,

and

fX(n)
(x; ρ, τ, λ) =

n(ρ− 1)τλτ

xτ+1 log(ρ)[ρ− (ρ− 1)(1−
(
λ
x

)τ
)]

×

[
1−

log[ρ− (ρ− 1)(1−
(
λ
x

)τ
)]

log(ρ)

]n−1

.

4. Methods of Estimation

In this section, we consider the maximum likelihood and Bayesian estimation methods for estimat-
ing the unknown parameters of the LTPa-I distribution.

9
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10 A.S. Aniyan and D. George

4.1. Maximum Likelihood Method of Estimation

LetX1, X2, .., Xn be a random sample from the LTPa-I distribution with unknown parameter vector
θ = (ρ, τ, λ)′, then the likelihood function for θ is given by

L(x; θ) =
(ρ− 1)nτnλnτ∏n

i=1 x
τ+1
i (log ρ)n

∏n
i=1[ρ− (ρ− 1)(1−

(
λ
x

)τ
)]
. (20)

Then, the corresponding log-likelihood function reduces to

l(θ) = n log(ρ− 1) + n log τ + nτ log λ− n log(log ρ)

− (τ + 1)
n∑

i=1

log(xi)−
n∑

i=1

log

(
1 + (ρ− 1)

(
λ

xi

)τ)
. (21)

Since, x ∈ (λ,∞), the first order statistic X(1) provides the maximum likelihood estimator of λ.
Taking the partial derivatives of Equation (21) with respect ρ and τ , we get

∂l(θ)

∂ρ
=

n

ρ− 1
− n

ρ log ρ
− 1

(ρ− 1)

n∑
i=1

ei − 1

ei
, (22)

and

∂l(θ)

∂τ
=
n

τ
−

n∑
i=1

log(xi)− log τ
n∑

i=1

ei − 1

ei
, (23)

where ei = 1 + (ρ− 1)
(

λ
xi

)τ
.

The MLE’s of the parameters ρ and τ are obtained by equating Equations (22) and (23) to zero
and solve them simultaneously. But it is difficult to obtain their explicit solutions. In this situa-
tion, Newton-Raphson algorithm is used to obtain the desired MLE’s and are computed by using
MaxLik package (Henningsen and Toomet (2011)) in RStudio (RStudio Team (2022)).

4.2. Bayesian Estimation Method

Here, we discuss the Bayesian estimates of the unknown parameters of our model using the im-
proper prior (non-informative prior) as the priors for all the three parameters under squared error
loss function (SELF).

The joint prior distribution of ρ, τ and λ is written as

π(ρ, τ, λ) ∝ 1

ρτλ
, ρ, τ, λ > 0. (24)

10
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Then, based on Equations (20) and (24), the joint posterior distribution is given by,

π(ρ, τ, λ|x) = 1

K

(
1

αβλ

)(
(α− 1)nβnλnβ

logn(α)

)

×
n∏

i=1

 1

xβ+1
i

(
α− (α− 1)(1−

(
λ
xi

)β
)

)
 , (25)

where

K =

∫ ∞

0

∫ ∞

0

∫ ∞

0

(
1

αβλ

)(
(α− 1)nβnλnβ

logn(α)

)

×
n∏

i=1

 1

xβ+1
i

(
α− (α− 1)(1−

(
λ
xi

)β
)

)
 dρdτdλ.

The Bayes estimator of a function ω(ρ, τ, λ) under SELF is the posterior mean and is given by,

ω̂(ρ, τ, λ) =

∫∞
0

∫∞
0

∫∞
0
ω(ρ, τ, λ)L(ρ, τ, λ)× π(ρ, τ, λ)dρdτdλ∫∞

0

∫∞
0

∫∞
0
L(ρ, τ, λ)× π(ρ, τ, λ)dρdτdλ

. (26)

Here, it is observed that Equation (26) is not in a closed form. Hence, it is difficult to acquire the
Bayes estimators for each parameter. Therefore, we employ Lindley’s approximation technique to
derive the approximate Bayes estimators.

4.2.1. Lindley’s Approximation

The Bayes estimators in Equation (26) takes a ratio form of two integrals which cannot be ex-
pressed in an explicit form. Therefore, approximate Bayes estimators can be found out by a proce-
dure named Lindley’s approximation, which was proposed by Lindley (1980).

Now, the posterior expectation of a function ω(ρ, τ, λ) can be written as

I(x) = E(ω(ρ, τ, λ)|x) =
∫
ρ,τ,λ

ω(ρ, τ, λ)el(ρ,τ,λ)+δ(ρ,τ,λ)d(ρ, τ, λ)∫
ρ,τ,λ

el(ρ,τ,λ)+δ(ρ,τ,λ)d(ρ, τ, λ)
,

where ω(ρ, τ, λ) is a function of ρ, τ and λ only, l(ρ, τ, λ) is the log-likelihood and δ(ρ, τ, λ) =
log(π(ρ, τ, λ)).

According to Lindley (1980), the above equation can be approximately written as:

I(x) = ω(ρ̂, τ̂ , λ̂) + (ω̂1v̂1 + ω̂2v̂2 + ω̂3v̂3 + v̂4 + v̂5)

+ 0.5[Â(ω̂1σ̂11 + ω̂2σ̂12 + ω̂3σ̂13) + B̂(ω̂1σ̂21 + ω̂2σ̂22 + ω̂3σ̂23)

+ Ĉ(ω̂1σ̂31 + ω̂2σ̂32 + ω̂3σ̂33)], (27)
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where ρ̂, τ̂ and λ̂ are the MLE’s of ρ, τ and λ, respectively,

v̂i = δ̂1σi1 + δ̂2σi2 + δ̂3σi3, for i = 1, 2 and 3,

v̂4 = ω̂12σ̂12 + ω̂13σ̂13 + ω̂23σ̂23,

v̂5 = 0.5(ω̂11σ̂11 + ω̂22σ̂22 + ω̂33σ̂33),

Â = σ̂11l̂111 + 2σ̂12l̂121 + 2σ̂13l̂131 + 2σ̂23l̂231 + σ̂22l̂221 + σ̂33l̂331,

B̂ = σ̂11l̂112 + 2σ̂12l̂122 + 2σ̂13l̂132 + 2σ̂23l̂232 + σ̂22l̂222 + σ̂33l̂332, and

Ĉ = σ̂11l̂113 + 2σ̂12l̂123 + 2σ̂13l̂133 + 2σ̂23l̂233 + σ̂22l̂223 + σ̂33l̂333.

Subscripts 1, 2 and 3 on the R. H. S. of the above equations denote ρ, τ and λ, respectively:

δ̂i =
∂δ

∂θi
and ω̂i =

∂ω

∂θi
, for i = 1, 2, 3, θ1 = ρ, θ2 = τ and θ3 = λ,

ω̂ij =
∂2ω(θ1, θ2, θ3)

∂θi∂θj
, for i, j = 1, 2, 3,

l̂ij =
∂2l(θ1, θ2, θ3)

∂θi∂θj
, for i, j = 1, 2, 3,

l̂ijk =
∂3l(θ1, θ2, θ3)

∂θi∂θj∂θk
, for i, j = 1, 2, 3, and

σ̂ij =
−1

Lij

, for i, j = 1, 2, 3.

Using Equation (4.5), δ(ρ, τ, λ) can be written as

δ(ρ, τ, λ) = − log ρ− log τ − log λ, (28)

and then we obtain

δ̂1 =
−1

ρ̂
, δ̂2 =

−1

τ̂
and δ̂3 =

−1

λ̂
.

Other quantities are obtained as follows:

l̂11 =
−n

(ρ̂− 1)2
+
n(1 + log ρ̂)

ρ̂2 log2(ρ̂)
+

n∑
i=1

(
λ̂
xi

)2τ̂
ê2i

,

l̂12 = l̂21 = −
n∑

i=1

log
(

λ̂
xi

)(
λ̂
xi

)τ̂
ê2i

,

l̂13 = l̂31 = −
n∑

i=1

τ̂
(

λ̂
xi

)τ̂
λ̂ê2i

,

l̂22 =
−n
τ̂ 2

−
n∑

i=1

log2
(

λ̂
xi

)
(êi − 1)

ê2i
,
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l̂23 = l̂32 =
n

λ̂
−

n∑
i=1

τ̂ log
(

λ̂
xi

)
(êi − 1) + êi

λ̂ê2i
,

l̂33 =
−nτ̂
λ̂2

+
n∑

i=1

τ̂(êi − 1)(êi − τ̂)

λ̂2ê2i
,

l̂111 =
2n

(ρ̂− 1)3
− n(2 log2(ρ̂) + 3 log ρ̂+ 2)

ρ̂3 log3(ρ̂)
−

n∑
i=1

2
(

λ̂
xi

)3τ̂
ê3i

,

l̂112 = l̂121 = l̂211 =
n∑

i=1

2 log
(

λ̂
xi

)(
λ̂
xi

)2τ̂
ê3i

,

l̂113 = l̂131 = l̂311 =
n∑

i=1

2τ̂
(

λ̂
xi

)2τ̂
λ̂ê3i

,

l̂123 =
n∑

i=1

(
λ̂
xi

)τ̂
[τ̂ log

(
λ̂
xi

)
(êi − 2)− êi]

λ̂ê3i
,

l̂221 =
n∑

i=1

log2
(

λ̂
xi

)(
λ̂
xi

)τ̂
(êi − 2)

ê3i
,

l̂222 =
n∑

i=1

log3
(

λ̂
xi

)
(êi − 1)(êi − 2)

ê3i
,

l̂223 =
n∑

i=1

(êi − 1) log
(

λ̂
xi

)
[(êi − 2)τ̂ log

(
λ̂
xi

)
− 2êi]

λ̂ê3i
,

l̂133 =
n∑

i=1

τ̂
(

λ̂
xi

)τ̂
[(τ̂ + 1)(êi − 1)− τ̂ + 1]

λ̂2ê3i
,

l̂233 =
n∑

i=1

1

λ̂2ê3i
(êi − 1)[((τ̂ 2 + τ̂)(êi − 1)− τ̂ 2 + τ̂) log

(
λ̂

xi

)
+ (êi − 1)2 + 2(1− τ̂)(êi − 1)− 2τ̂ + 1], and

l̂333 = −
n∑

i=1

τ̂(êi − 1)[2(êi − 1)2 − (τ̂ 2 + 3τ̂ − 4)(êi − 1) + τ̂ 2 − 3τ̂ + 2]

λ̂3ê3i
,

where êi = 1 + (ρ̂− 1)
(

λ̂
xi

)τ̂
.

If ω(ρ, τ, λ) = ρ, then ω̂1 = 1, ω̂11 = ω̂12 = ω̂13 = 0 so that v4 and v5 = 0.

Similarly, we can obtain ω̂2 = ω̂3 = 1 and ω̂22 = ω̂23 = ω̂33 = 0.
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Thus, the approximate Bayesian estimators of θ = (ρ, τ, λ) under SELF that we obtained are

ρ̂BS = ρ̂+ v̂1 + 0.5(σ̂11Â+ σ̂21B̂ + σ̂31Ĉ),

τ̂BS = β̂ + v̂2 + 0.5(σ̂12Â+ σ̂22B̂ + σ̂32Ĉ), and

λ̂BS = λ̂+ v̂3 + 0.5(σ̂13Â+ σ̂23B̂ + σ̂33Ĉ).

5. Simulation Study

A Monte Carlo simulation study is implemented to evaluate the performance of the proposed esti-
mators of the parameters for the LTPa-I distribution. A comparison between MLE’s and Bayesian
estimators are also made on the basis of their MSEs. All the computations were performed in R
software (R Core Team (2022)). 1000 random samples of sizes n = (20, 50, 100, 200) are gener-
ated from the LTPa-I model for λ = (1, 2), τ = (0.5, 2.5) and ρ = (0.5, 2.5). The average values
of estimates and their corresponding MSEs are reported in Tables 3 through 6 (in Appendix D).

It is evident that for both the method of estimations, the MSEs decreases with increasing sample
size which exhibits the consistency property of all the estimates. It is also revealed that for all the
parameters except λ, Bayes estimators outperform ML estimators, in terms of their smaller MSEs.

6. Applications

In this section, we analyse two datasets for illustrating the applicability and flexibility of the LTPa-I
model and to compare the efficacy of different estimation approaches discussed in Section 4.

The first data set represents 29 observations on time to repair of a piece of construction equipment
in chronological order was initially reported by Fan and Fan (2015).

Almarashi (2021) analyzed this data set using a modified logarithmic transformed inverse Lomax
distribution and compared with inverse Weibull, alpha power inverse Lomax and alpha power
inverse Weibull distributions. According to him, among them the modified logarithmic transformed
inverse Lomax distribution is a better model for this data. We also fit our model to this data set and
compare the results with modified logarithmic transformed inverse Lomax whose PDF is given by

MLTIL : f(x; ρ, τ, λ) =
(ρ− 1)τλx−2

(
1 + λ

x

)−(τ+1)

log(ρ)
[
ρ− (ρ− 1)

(
1 + λ

x

)−τ
] .

The second data set corresponds to 19 observations on the loss ratios (yearly data in billlion of
dollars) for earthquake insurance in California from the period 1971-1993 for the values larger
than zero taken from Jaffe and Russell (1996).

Ghitany et al. (2018) modeled this data set with generalized truncated log-gamma distribution and
it seems to be a better model. Here, we fit the proposed model LTPa-I to this data set and compare
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the results with generalized truncated log-gamma model with PDF given by

GLTG : f(x; ρ, τ, λ) =
τ ρ

λΓρ

(x
λ

)−τ−1 (
log

x

λ

)ρ−1

.

The model comparison is done based on the four goodness of fit statistics: AIC (Akaike’s Infor-
mation criteria), BIC (Bayesian Information criteria), Kolmogorov–Smirnov (KS) statistic and its
associated p–value via maximum likelihood estimates. The model with the smallest AIC, BIC, KS
and the highest p-value is considered to be the best fit model for the given data sets. Table 1 lists
the values of MLEs, AIC, BIC, KS and its respective p-values of the fitted distributions for the data
sets 1 and 2. Plots of the fitted PDF of the LTPa-I distribution and other competitive distributions to
the data sets 1 and 2 are displayed in Figures 3 and 4 respectively. From Table 1, it can be observed
that the LTPa-I distribution yields better fit to both the data sets. The plots in Figures 3 and 4 also
supports the argument of the suitability of LTPa-I distribution to the data sets in terms of model
fitting.

Table 1. Parameter estimates and the goodness of fit statistics of both data sets

Data set Distribution Estimates AIC BIC KS p-value

Data 1 (n = 29) LTPa-I(ρ, τ, λ) (370.4763,1.1675,0.33) 209.1444 213.2463 0.0923 0.9657
MLTIL(ρ, τ, λ) (52.5769,41.521,0.0153) 215.0714 219.1733 0.0962 0.9513

Data 2 (n = 19) LTPa-I(ρ, τ, λ) (100.501,1.157,0.6) 134.5812 137.4145 0.1149 0.9388
GTLG(ρ, τ, λ) (7.401,1.845,0.1) 137.9738 140.8071 0.1488 0.7450

Figure 3. Fitted distributions for the data set 1.

Now, we compare the maximum likelihood and Bayesian estimation method by using the idea of
Pradhan and Kundu (2011) on the basis of KS statistic and its p-value. Table 2 reports the ML and
Bayes estimates, KS and its p-value for both the data sets. It can be noticed that for the considered
data sets, Bayes estimates gives a better fit in terms of smaller KS value and larger p-value. So,
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Figure 4. Fitted distributions for the data set 2.

we recommend to use the Bayes estimates to estimate the unknown parameters of the LTPa-I
distribution. The plots of the fitted pdfs for the proposed methods of estimation are displayed in
Figures 5 and 6 for both the data sets. These figures also validate the results in Table 2.

Table 2. ML, Bayes estimates and the goodness of fit statistics for both the data sets

Data set Method ρ τ λ KS p-value

Data 1 (n = 29) MLE 370.4763 1.1675 0.33 0.0923 0.9657
BS 372.3121 1.1629 0.3297 0.0909 0.9703

Data 2 (n = 19) MLE 100.501 1.157 0.6 0.1149 0.9388
BS 103.561 1.121 0.532 0.1134 0.9447

Figure 5. Fitted densities of the LTPa-I distribution using different estimators for data set 1
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Figure 6. Fitted densities of the LTPa-I distribution using different estimators for data set 2

7. Conclusion

In the present article, a new three parameter lifetime distribution with decreasing failure rate
namely, logarithmic transformed Pareto-I (LTPa-I) distribution, is introduced as a generalization of
Pareto-I distribution. Some statistical and mathematical properties of the LTPa-I model are derived.
The parameters of the distribution are estimated using MLE and Bayesian methods and the perfor-
mance of the estimators are validated and compared through a Monte Carlo simulation study. The
results show that the Bayes estimates through Lindley approximation technique outperforms the
MLEs in terms of smaller MSEs. The applications of the new LTPa-I distribution is demonstrated
with the help of two real data sets. Based on certain goodness of fit statistics, it is revealed that the
LTPa-I provides better fit than the other competitive distributions for these data sets. The real data
applications also show that Bayes estimates perform better than MLEs for both the data sets. In
this article, the LTPa-I distribution illustrates its flexibility in modeling insurance and failure data
sets. So, we can conclude that the LTPa-I distribution seems to be a competitive model even in
reliability and survival analysis.
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Appendix A: Proof of LTPa-I as a Generalization of Pareto-I

When ρ→ 1, the limits of the numerator and the denominator of Equation (5) are both zero, hence
we invoke L’Hopital’s rule to obtain

lim
ρ→1

f(x; ρ, τ, λ) = lim
ρ→1

(ρ− 1)τλτ

xτ+1 log(ρ)[ρ− (ρ− 1)(1−
(
λ
x

)τ
)]

= lim
ρ→1

τλτ

xτ+1

[
log(ρ)

(
λ
x

)τ
+

ρ−(ρ−1)(1−(λ

x)
τ
)

ρ

]
=

τλτ

xτ+1
,

which is the pdf of Pareto-I distribution.
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Similarly, we apply L’Hopital’s rule for Equation (4) and thereby,

lim
ρ→1

F (x; ρ, τ, λ) = lim
ρ→1

1−
log[ρ− (ρ− 1)(1−

(
λ
x

)τ
)]

log(ρ)

= 1− lim
ρ→1

ρ(1− (1−
(
λ
x

)τ
))

ρ− (ρ− 1)(1−
(
λ
x

)τ
)

= 1−
(
λ

x

)τ

which is the cdf of Pareto-I distribution.

Appendix B

• Mixture representation in Equation (11):

f(x; ρ, τ, λ) =
∞∑
k=0

k∑
j=0

wk,j(j + 1)
τλτ

xτ+1

[
1−

(
λ

x

)τ]j
.

Expanding the last term in R.H.S., we have

f(x; ρ, τ, λ) =
∞∑
k=0

k∑
j=0

j∑
m=0

(−1)mwk,j

(
j

m

)
(j + 1)

τλτ

xτ+1

(
λ

x

)mτ

=
∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,mgP (x;λ, τ(m+ 1)),

where wk,j,m =
(
j
m

)wk,j(−1)m(j+1)
m+1

.

• Moments:

The sth ordinary moments of the LTPa-I distribution is given by

µ
′

s =
∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,m

∫ ∞

λ

xsgP (x;λ, τ(m+ 1))dx

=
∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,m

∫ ∞

λ

xs
τ(m+ 1)λτ(m+1)

xτ(m+1)+1
dx

=
∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,mτ(m+ 1)λτ(m+1)

∫ ∞

λ

xs−τ(m+1)−1dx

=
∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,m
λsτ(m+ 1)

τ(m+ 1)− s
, s < τ.
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Appendix C: Convergence of the Moments in Equation (13)

µ
′

s =
∞∑
k=0

k∑
j=0

j∑
m=0

wk,j,m
λsτ(m+ 1)

τ(m+ 1)− s
, s < τ

=
∞∑
k=0

k∑
j=0

j∑
m=0

(−1)m
(
j

m

)
kj

(ρ− 1)j+1λsτ

(ρ+ 1)k+1 log(ρ)(τ(m+ 1)− s)
. (29)

By applying the constant multiplication rule,
∑
can = c

∑
an, Equation (7.1) can be rewritten as

µ
′

s =
∞∑
k=0

k∑
j=0

j k
j
(ρ− 1)j+1λsτ

log(ρ)(ρ+ 1)k+1

j∑
m=0

(−1)m

m

τ(m+ 1)− s
. (30)

Again as k → ∞, consider the last term of the R.H.S in Equation (7.2) become
∑∞

m=0

(−1)m

m

τ(m+1)−s

where
1

m

τ(m+1)−s
is positive and monotone decreasing.

Also, lim
m→∞

1

m

τ(m+1)−s
= 0.

Using the above results and by applying the Leibniz test, we have µ′

s converges when s < τ .

Appendix D: Simulation Results

Table 3. Average values of estimates and the corresponding MSEs (in parentheses) for n = 20

λ τ ρ τ̂M ρ̂M λ̂M τ̂BS ρ̂BS λ̂BS

1 0.5 0.5 0.729 0.575 1.153 0.309 0.702 1.207
(0.221) (0.471) (0.035) (0.049) (0.317) (0.095)

2.5 0.664 2.755 1.120 0.409 3.071 1.134
(0.149) (1.756) (0.031) (0.011) (0.438) (0.045)

2.5 0.5 3.419 0.539 1.011 2.985 0.714 1.021
(1.439) (0.839) (0.024) (0.545) (0.632) (0.032)

2.5 3.405 2.458 1.063 2.824 2.564 1.068
(0.862) (1.459) (0.008) (0.209) (0.053) (0.008)

2 0.5 0.5 0.701 0.541 2.078 0.292 0.833 2.107
(0.144) (0.477) (0.045) (0.054) (0.235) (0.084)

2.5 0.614 2.453 2.115 0.369 3.154 2.125
(0.131) (1.302) (0.087) (0.019) (0.985) (0.158)

2.5 0.5 2.787 0.948 2.017 0.692 0.354 2.025
(1.677) (0.298) (0.052) (0.462) (0.151) (0.059)

2.5 2.981 3.014 2.036 2.318 3.338 2.044
(1.249) (1.236) (0.006) (0.123) (0.772) (0.007)
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Table 4. Average values of estimates and the corresponding MSEs (in parentheses) for n = 50

λ τ ρ τ̂M ρ̂M λ̂M τ̂BS ρ̂BS λ̂BS

1 0.5 0.5 0.546 0.692 1.029 0.475 0.677 1.058
(0.031) (0.497) (0.012) (0.007) (0.144) (0.043)

2.5 0.549 2.398 1.066 0.459 2.721 1.069
(0.041) (0.984) (0.029) (0.002) (0.106) (0.034)

2.5 0.5 2.714 0.571 1.016 1.917 0.644 1.017
(0.737) (0.758) (0.006) (0.333) (0.423) (0.009)

2.5 2.657 2.731 1.012 2.405 2.657 1.015
(0.230) (0.896) (0.003) (0.014) (0.129) (0.004)

2 0.5 0.5 0.543 0.623 2.056 0.413 0.783 2.071
(0.032) (0.432) (0.008) (0.008) (0.081) (0.009)

2.5 0.556 2.416 2.078 0.467 2.836 2.080
(0.051) (1.217) (0.007) (0.001) (0.116) (0.008)

2.5 0.5 2.664 0.634 2.011 2.644 0.589 2.017
(0.617) (0.284) (0.003) (0.041) (0.055) (0.005)

2.5 2.814 2.952 2.022 2.561 2.989 2.024
(0.314) (1.025) (0.001) (0.008) (0.351) (0.002)

Table 5. Average values of estimates and the corresponding MSEs (in parentheses) for n = 100

λ τ ρ τ̂M ρ̂M λ̂M τ̂BS ρ̂BS λ̂BS

1 0.5 0.5 0.521 0.571 1.014 0.459 0.638 1.013
(0.013) (0.392) (0.0004) (0.002) (0.019) (0.0004)

2.5 0.532 2.416 1.031 0.489 2.632 1.028
(0.014) (0.866) (0.002) (0.0001) (0.018) (0.001)

2.5 0.5 2.614 0.586 1.003 2.604 0.598 1.004
(0.329) (0.336) (0.0002) (0.003) (0.024) (0.0002)

2.5 2.603 2.610 1.009 2.483 2.666 1.011
(0.098) (0.342) (0.0003) (0.0008) (0.028) (0.0005)

2 0.5 0.5 0.512 0.588 2.029 0.450 0.659 2.027
(0.011) (0.182) (0.0007) (0.003) (0.026) (0.0005)

2.5 0.5234 2.493 2.066 0.480 2.719 2.064
(0.010) (1.223) (0.004) (0.0004) (0.048) (0.003)

2.5 0.5 2.571 0.603 2.006 2.422 0.565 2.011
(0.290) (0.247) (0.0007) (0.001) (0.021) (0.0001)

2.5 2.634 2.827 2.011 2.509 2.895 2.014
(0.147) (0.627) (0.0002) (0.0006) (0.157) (0.0005)
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Table 6. Average values of estimates and the corresponding MSEs (in parentheses) for n = 200

λ τ ρ τ̂M ρ̂M λ̂M τ̂BS ρ̂BS λ̂BS

1 0.5 0.5 0.507 0.541 1.007 0.477 0.561 1.005
(0.007) (0.076) (8.619× 10−5) (0.0005) (0.005) (8.607× 10−5)

2.5 0.504 2.734 1.016 0.483 2.560 1.014
(0.005) (0.459) (0.0005) (0.0003) (0.130) (0.0004)

2.5 0.5 2.544 0.549 1.001 2.510 0.543 1.009
(0.144) (0.088) (0.0003) (0.0003) (0.002) (0.0004)

2.5 2.560 2.604 1.003 2.469 2.633 1.012
(0.041) (0.318) (9.778× 10−5) (5.95× 10−5) (0.018) (0.0001)

2 0.5 0.5 0.505 0.550 2.014 0.475 0.581 2.012
(0.005) (0.073) (0.0004) (0.0006) (0.006) (0.0003)

2.5 0.507 2.602 2.033 0.486 2.522 2.032
(0.006) (0.398) (0.002) (1.974× 10−4) (0.049) (0.002)

2.5 0.5 2.522 0.533 2.003 2.513 0.532 2.013
(0.125) (0.067) (0.0001) (0.008) (0.010) (0.0001)

2.5 2.559 2.752 2.006 2.497 2.586 2.014
(0.049) (0.325) (9.068× 10−5) (6.869× 10−5) (0.082) (9.125× 10−5)
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