
Prairie View A&M University Prairie View A&M University

Digital Commons @PVAMU Digital Commons @PVAMU

All Theses

12-2023

Algorithmic And Computational Approaches For Improving The Algorithmic And Computational Approaches For Improving The

Efficiency Of Mobile Genomic Element Discovery, A Efficiency Of Mobile Genomic Element Discovery, A

Bioinformatics Framework Bioinformatics Framework

Fatema Shormin

Follow this and additional works at: https://digitalcommons.pvamu.edu/pvamu-theses

https://digitalcommons.pvamu.edu/
https://digitalcommons.pvamu.edu/pvamu-theses
https://digitalcommons.pvamu.edu/pvamu-theses?utm_source=digitalcommons.pvamu.edu%2Fpvamu-theses%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

ALGORITHMIC AND COMPUTATIONAL APPROACHES FOR IMPROVING THE

EFFICIENCY OF MOBILE GENOMIC ELEMENT DISCOVERY, A

BIOINFORMATICS FRAMEWORK

A Thesis

by

FATEMA SHORMIN

Submitted to the Office of Graduate Studies of
Prairie View A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2023

Major Subject: Computer Information System

ALGORITHMIC AND COMPUTATIONAL APPROACHES FOR IMPROVING THE

EFFICIENCY OF MOBILE GENOMIC ELEMENT DISCOVERY, A

BIOINFORMATICS FRAMEWORK

A Thesis

by

FATEMA SHORMIN

Submitted to the Office of Graduate Studies of
Prairie View A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

_________________________ __________________________
Dr. Noushin Ghaffari Dr. Lin Li
Chair of Committee Committee Member

_______________________ _______________________
Dr. Ahmed Ahmed Dr. Sherri S. Frizell
Committee Member Committee Member

_______________________ ________________________
Dr. Yonggao Yang Dr. Pamela H. Obiomon
Head of Department Dean, Roy G. Perry College of
Engineering

Dr. Tyrone Tanner
Dean, Graduate Studies

December 2023

Major Subject: Computer Information System

iii

ABSTRACT

 ALGORITHMIC AND COMPUTATIONAL APPROACHES FOR IMPROVING THE

EFFICIENCY OF MOBILE GENOMIC ELEMENT DISCOVERY, A

BIOINFORMATICS FRAMEWORK

(December 2023)

Fatema Shormin, B.S., Noakhali Science and Technology University
Chair of Advisory Committee: Dr. Noushin Ghaffari

Co-Chair of Advisory Committee: NA

Through this research, we are showcasing the application of computational

approaches to the discoveries in the life sciences spectrum. Our current research not only

focused on mobile genetic elements but also developed the computational methods that

enabled these findings. We combined the biology sciences and computer science in our

research, which is essentially multidisciplinary. To that end, this research intricately probed

the role and implications of mobile genetic elements, emphasizing transposable elements.

These dynamic components wielded substantial influence over genomic architecture's

structure, function, and evolutionary adaptations. An integral component of our study is the

innovative computational tool, Target/IGE Retriever (TIGER), employed to detect and map

these mobile genetic elements. Given the pronounced impact of these elements on gene

regulation and their involvement in various genetic diseases, their precise detection and

mapping within a genome were crucial for understanding intricate genetic dynamics and

disease etiology.

iv

Addressing computational challenges, the study introduces three new algorithms to

enhance TIGER's performance, tested using E. coli genomes. This testing aimed to

determine the impact of database size reduction on result accuracy and performance.

Findings indicate that while prophage yields are less affected by database size, non-phage

islands show sensitivity, suggesting performance improvements with smaller databases.

Furthermore, the research conducts a comparative analysis of TIGER and BLAST

outputs, focusing on validating transposons identified in E. coli genomes. This involves

cross-referencing with established databases and employing statistical methods for match

categorization, enhancing the authenticity of transposon location identification..

Within the purview of this rigorous analytical process, particular attention is

accorded to evaluating sequence alignment results and the quality of BLAST hits, focusing

specifically on identifying direct repeats within insertion sequences. The study underscores

TIGER's efficacy in transposon discovery and yields critical insights into its performance

relative to BLAST.

This research illuminates potential avenues for enhancing computational tools in

bioinformatics, all within the larger framework of contributing significantly to genomics

and bioinformatics research's ongoing advancements. Our work deepens our understanding

of the role and influence of mobile genetic elements on genomic architecture.

Index Term: Computational biology, bioinformatics, mobile genetic elements,

transposon, validation, database.

v

ACKNOWLEDGEMENTS

Firstly, I express my heartfelt gratitude to Dr. Noushin Ghaffari for her

invaluable teaching, support, and insights throughout this project. Working with her

has been a privilege that has greatly influenced my understanding and skills in

bioinformatics, and her guidance was crucial in every phase of my thesis.

I also thank my committee members, Dr. Sherri S. Frizell, Dr. Lin Li, and

Dr. Ahmed Ahmed, for their time and significant contributions to refining my thesis

with their advice and critiques. Additionally, I am grateful to my professors in the

Department of Computer Science at PVAMU. Their dedication, concern for

students, and commitment to education have profoundly impacted me and will

continue to influence my professional journey.

Moreover, I am thankful to Dr. Kelly Porter Williams from Sandia National

Laboratories for sponsoring this research and providing valuable time and

constructive feedback on my thesis.

Finally, I want to acknowledge my family's unwavering love and support.

This thesis is dedicated to my parents and my husband, Dr. Anwarul Islam Sifat, as

a token of my appreciation and love.

vi

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS ... 6

LIST OF FIGURES ... 8

LIST OF TABLES ... 9

LIST OF FLOWCHARTS ... 10

CHAPTER 1 .. 1

1.1 Introduction to Bioinformatics ... 1
1.2 Introduction to Genome ... 1
1.3 Introduction to Transposable Elements (TEs).. 2
1.4 Importance of the discovery of Transposable Elements 2
1.5 Multidisciplinary Nature of Our Work ... 4
1.6 Computational Intensity and HPC Use .. 4
1.7 Research Background and Significance in Computational Genomics 6
1.8 Challenges ... 6
1.9 Method ... 8
1.10 Computational Tools and Framework .. 10
1.11 Thesis Outline ...11

CHAPTER 2 .. 12

2.1 The Significance of TIGER and BLAST in Computational Genomics 12
2.2 Previous Work Utilizing TIGER and BLAST ... 14
2.3 The Evolving Paradigm of Computational Genomics: Advances, Challenges, and
Applications ... 17

CHAPTER 3 .. 20

3.1 Introduction ... 21
3.2 Methods... 25
3.3 Datasets .. 35
3.4 Results .. 35

vii

3.5 Conclusion ... 48

CHAPTER 4 .. 50

4.1 Introduction ... 51
4.2 Materials and Methods .. 53
4.3 Results and Discussion ... 64

CHAPTER 5 .. 66

5.1 Direct Repeat (DR) .. 66
5.2 Methodology ... 67
5.3 Results and Discussion ... 75

CHAPTER 6 .. 77

6.1 Contributions... 77
6.2 Theoretical and Practical Implications.. 78
6.3 Limitations and Recommendations... 79
6.4 Future Directions .. 79

REFERENCES .. 81

SUPPLEMENTARY DOCUMENTS ... 85

Supplementary Table-2 .. 85
Supplementary Table-3 .. 86
Supplementary 4 .. 87

CURRICULUM VITA .. 88

viii

LIST OF FIGURES

FIGURE Page

Figure 1.1: Interaction of disciplines that have contributed to the formation of
 bioinformatics ..5

Figure 3.3: SMART DB software pipeline ..31

Figure 3.6 (a, b, c): Island count versus database size. Comparing the performance of
 three proposed algorithms by differing the input database size and
 comparing the discovered island counts ..39

Figure 3.7 (a, b, c): Island length versus database size. Comparing the performance of
 three proposed algorithms by differing the input database size and
 comparing the discovered islands’ length ...41

Figure 3.8 (a, b, c): Island score versus database size. Comparing the performance of
 three proposed algorithms by differing the input database size and
 comparing the island scores ..43

Figure 3.9 (a, b, c): Island counts versus island types. Comparing the performance of
 three proposed algorithms ..45

Figure 3.10 (a, b, c): Island counts and database sizes versus phage types. Comparing
 the performance of three proposed algorithms based on island counts
 and database sizes versus phages ...47

Figure 4.1: Specifying files. ...54

Figure 4.3: Adding column names to the specific files ..55

Figure 4.7: Example of Transposon Match Categorization in a Single Randomly
 Selected Genome ...61

Figure 5.1: TIGER Output Sample ...68

Figure 5.5: Final outcome from Analysis of TIGER output 71

Figure 5.6: BLAST Output Sample ..72

ix

LIST OF TABLES

TABLE Page

Table I: List of 13 GTDB Species ...28

Table II: Effect of the database size reduction on TIGER Runtime 37

Table III: Effect of the database size reduction on Memory Usage38

x

LIST OF FLOWCHARTS

FLOWCHART Page

Flowchart 1: Python Program for Data Collection ..56

Flowchart 2: Python Program for Data Comparison ...62

Flowchart 3: Statistical Analysis Using Bell Distribution Curve 63

1

This thesis (dissertation) follows the style of the IEEE

CHAPTER 1

INTRODUCTION

1.1 Introduction to Bioinformatics

Bioinformatics is far more than a mere buzzword in the scientific

community. It represents a synergistic intersection of multiple scientific disciplines,

including but not limited to computer science, mathematics, physics, and biology

(Figure 1.1). In essence, bioinformatics acts as a robust computational framework

that aids in the storage, retrieval, and nuanced interpretation of big biological data.

Its interdisciplinary nature allows researchers to manage and analyze data that

would otherwise be overwhelmingly complex or voluminous, making it

indispensable in today's advanced biological and medical research paradigms [1].

1.2 Introduction to Genome

Consider the genome as the comprehensive blueprint for an organism's

existence, much like an architectural plan for a skyscraper. It holds the totality of

genetic instructions essential for constructing, sustaining, and replicating life. The

genome is constituted by a sequence of nucleotide bases, namely adenine (A),

thymine (T), cytosine (C), and guanine (G), that form pairs to construct the DNA

double helix. These bases are the essential building blocks of DNA, and their

specific sequences encode the diverse range of functions and structures within an

organism. While the human genome, along with those of other cellular organisms,

is constructed from deoxyribonucleic acid (DNA) incorporating both nuclear and

2

mitochondrial components it is worth noting that not all genomes are DNA-based.

For instance, some viruses have genomes made of ribonucleic acid (RNA), a related

but distinct molecular structure [2].

1.3 Introduction to Transposable Elements (TEs)

Transposable elements (TEs), a subset of mobile genetic elements, stand as

dynamic sequences with the capacity to change their genomic positions. These

mobile genetic elements, including TEs, have a major impact on the structure of the

genome. The strange nature of TE mobility is that it may cause changes that are

harmful to an organism, such as sequence deletions or interruptions of vital genes.

Unless there are counterbalancing variables to lessen this mutational load, such

negative impacts frequently result in their progressive removal from populations of

haploid microbes like Escherichia coli. On the other hand, TEs and other mobile

elements can spread across cells thanks to processes like horizontal gene transfer,

but usually at rates too slow to offset their detrimental effects on the host. As a

result, transposable elements, as well as the larger group of mobile genetic

elements, play a variety of functions in the genomic landscape, from being

disruptive to possibly adaptive [3].

1.4 Importance of the discovery of Transposable Elements

Transposable elements (TEs) are important players in the dynamics of

genome evolution, its functional landscape, and even its vulnerability to different

illnesses; therefore, solving its mysteries is crucial. Recent developments in the

genomic sciences and extensive practical research have significantly expedited the

3

exploration of these TEs, which are prominent elements in the genome architecture

of eukaryotes [4]. Understanding TEs is crucial for several reasons:

• Genome Evolution:

TEs have shaped the structure and organization of genomes throughout

evolution. They can cause genetic rearrangements, insertions, and deletions,

leading to genomic diversity and contributing to the evolution of species [4].

• Genome Regulation:

TEs can influence gene expression by acting as regulatory elements. They

can be co-opted into developmental enhancers, altering the expression patterns of

nearby genes [5]. TEs can also provide insulators to the genome, influencing the

spatial organization of chromatin and gene regulation [6].

• Stress Response:

TEs have been implicated in the response to environmental stress. They can

be activated under stress conditions and contribute to the activation of stress-

responsive genes [7]. This suggests that TEs may play a role in adaptation to

changing environments [8].

• Disease and Pathology:

TEs have been associated with various diseases and pathological conditions.

They can disrupt gene function by inserting into coding regions or regulatory

regions, leading to genetic disorders. TEs can also contribute to the spread of

heterochromatin and epigenetic modifications associated with diseases such as

cancer [9].

4

1.5 Multidisciplinary Nature of Our Work

When defining the multidisciplinary nature of the research project, it is

important to recognize that we did not operate within the distinct areas of computer

science or biology; rather, we combined these fields in a complementary

relationship further enhanced by statistical inference and mathematical modeling.

We use computer algorithms as instruments and extensions of inquiry that help us

navigate the complex functioning of biological systems. Using this cooperative

methodology, our work functions at the nexus of the biological and computational

sciences, representing a comprehensive methodological framework that requires

the joint knowledge of mathematicians, biologists, and bioinformaticians. This kind

of multidisciplinary interaction opens up new directions for our collective scientific

understanding of genomic architecture and function and for advancing the

individual areas concerned.

1.6 Computational Intensity and HPC Use

Our research's computational complexity necessitates an infrastructure that

can accurately and efficiently handle big, complicated data sets. In this situation,

HPC, or high-performance computing, is crucial. Compared to traditional computer

systems, high-performance computing, or HPC, employs numerous processors to

complete complicated, data-intensive computations much faster [10].

Using HPC is an essential requirement for our study, not an optional feature.

The computational needs of the techniques used to examine genomic sequences for

mobile genetic elements, including transposons, make it challenging and time-

consuming to do these computations on typical computer systems. Parallel

5

computing methods, in which many processors do distinct portions of a

computational work concurrently, are made possible by HPC. This allows for more

complex modeling and analysis, which may incorporate several techniques for

statistical robustness, error-checking, and cross-validation, in addition to

significantly reducing the calculation time. As a result, using HPC makes research

possible more quickly and improves the overall quality and dependability of the

results [11].

Fig 1.1: Interaction of disciplines that have contributed to the formation of

bioinformatics [1].

In the realm of computational genomics, we can think of transposable

elements as double agents. They can either stabilize the genetic landscape or throw

it into chaos [12]. We have come a long way with bioinformatics and super-fast

sequencing technology, but let us be honest—our computer methods for spotting

these genetic chameleons are not up to snuff. This is a big deal when we are running

massive studies that demand a lot of computer power. So, what is this research all

Biology

Maths/physics

6

about? We are rolling up our sleeves to fine-tune the algorithms we already have

and make sure they run like a dream on high-end computer systems.

1.7 Research Background and Significance in Computational Genomics

Transposons are universal as Mobile Genetic Elements in DNA that have

the potential to transpose across the genome. This mobility exerts a dual influence:

while transposons play a pivotal role in gene regulation and architectural

modification of genomes and even act as catalysts in evolutionary processes, they

also pose risks to genomic stability [13]. Detecting these elements represents a

significant computational challenge. We have embarked on a collaborative research

initiative with Sandia National Laboratory to ameliorate existing limitations in

transposon detection methodologies. Leveraging their specialized software,

TIGER, the project aimed to improve the accuracy and time efficiency of

identifying these elements within genomes. This cooperative venture aspired to

resolve the paradoxical nature of transposons by enhancing both the fidelity and

timeliness of their detection, thereby contributing to our understanding of their roles

in genetic variation and potential genomic instability [14].

1.8 Challenges

It is computationally difficult to identify transposons within genomes. It is

like trying to find a needle in a haystack. There are multiple challenges involved

with this task:

• Too Many False Alarms:

When we run our computer programs to search for transposons, we end up

with many "false positives." These are instances where the program tells us we have

7

found a transposon, but upon closer inspection, it turns out to be a mistake. This is

a big issue because we cannot fully trust the initial results. Someone has to go

through them all, one by one, to figure out which are legitimate, and which are not.

This is not only tedious but also drains both computational and human resources

that could be better utilized elsewhere.

• Missing the Real Deal:

We also run into "false negatives." This is when genuine transposons are

there, but the program misses them. Our understanding of the genomic landscape

becomes incomplete or flawed when this happens. It is like trying to solve a puzzle

but realizing too late that some pieces are missing. It hampers our ability to make

accurate scientific interpretations or medical diagnoses.

• Computer Headaches:

Using powerful computers to do this work should make life easier, but it is

not as simple as hitting the "go" button. We have to tweak the algorithms just right

so that tasks are shared and balanced among the computer's resources.

• Timing Issue:

All these issues combine to create an incredibly time-consuming process.

Furthermore, in science, time is often of the essence. Delays can have significant

downstream effects, whether a research deadline, a medical diagnosis, or a bid for

research funding. Moreover, the more time we spend troubleshooting these issues,

the less time we have for other important tasks.

So, we have got our work cut out for us. We need more innovative ways to

find these transposons without all these hang-ups.

8

1.9 Method

Algorithmic Development

In the initial stage of our research, we dissected existing algorithms rather

than accepting them as they were. Our scrutiny was motivated by a dual objective:

to accelerate the computational process and to minimize false discoveries. As we

navigated large genomic datasets, speed became a non-negotiable requirement.

Likewise, the issue of false discoveries cannot be ignored if we aim for meaningful,

accurate results. Therefore, our adjustments to existing algorithms involved

database size reduction, the incorporation of new decision-making rules, or even a

complete overhaul of the foundational mathematical frameworks. In summary, our

endeavor aims to refine and tailor these algorithms to enhance their speed and

precision in transposon detection.

Validation and Benchmarking

After the refinement of algorithms, it becomes imperative to test their

efficacy rigorously [15]. We can imagine putting a newly engineered car through

its paces in crash tests and speed trials before letting it onto the highways. In our

research, these tests manifest as validation and benchmarking procedures. We

exclusively used real-world genomic datasets for this research to conduct these

evaluations. The use of actual genomic data provided a robust framework for

validation, as it exposed the algorithm to the intricacies and variabilities inherent in

natural biological systems. The algorithm's performance was meticulously

analyzed through statistical parameters, including sensitivity, specificity, and

accuracy. These metrics were crucial for determining the degree to which the

9

modified algorithm improved upon its predecessors. This method of benchmarking

against real-world genomic datasets ensured a rigorous and meaningful evaluation,

contributing to the robustness and reliability of the algorithm in practical

applications.

High-Performance Computing Adaptation

The third component of our research technique focused on tuning the

modified algorithms for large-scale computing systems, particularly emphasizing

the Bridges2 computing platform at Pittsburgh Supercomputer Center (PSC),

sponsored by the National Science Foundation (NSF). These are not ordinary office

workstations but sophisticated devices created to handle computationally

demanding tasks.

Task partitioning is the primary alteration. Transposon detection was

decomposed into a number of more manageable, more compact computing

problems. The system's available processors were subsequently divided among

these sub-tasks. This division made parallel processing possible by significantly

speeding up the computing rate.

Additionally, we invested in other computational efficiencies. Memory

optimization allowed us to make the most of the available RAM and storage

resources, thereby streamlining the computational processes. We also looked at

reducing data transfer times between different nodes within the system to expedite

the computational timeline further [16].

10

By implementing these modifications, we aimed to fully leverage high-

performance computing environments' capabilities, thereby enhancing transposon

detection algorithms' speed and reliability in our overall methodology.

1.10 Computational Tools and Framework

Python emerged as the top programming language for this research because

of its adaptability, extensibility, and widespread popularity within the scientific

computing community. Python’s open-source nature and extensive library

ecosystem make it exceptionally well-suited for computational biology tasks,

including transposon detection algorithms [17].

Within the Python ecosystem, specific libraries were selected to enhance

the functionality and efficiency of our computational processes. Notably, NumPy

was employed for complex numerical operations due to its highly optimized and

vectorized mathematical functions, allowing efficient array manipulations.

NumPy's capabilities are essential for handling the high-dimensional data matrices

commonly encountered in genomic studies, offering computational advantages

regarding speed and memory efficiency [18].

Additionally, the Pandas library was incorporated for data management and

manipulation tasks. Pandas excel in handling structured data, providing versatile

data structures like Data Frames that are instrumental for the organization and

analysis of large and intricate datasets. Its powerful data manipulation capabilities

facilitate easy filtering, grouping, and transformation, enabling more streamlined

and organized data analysis workflows [19].

11

The selection of these specific computational tools was not arbitrary but

informed by their robust performance attributes and compatibility with high-

performance computing environments. The optimization features inherent in these

libraries contribute to the efficacy and speed of the algorithms, making them well-

suited for our research objectives in the context of transposon detection.

1.11 Thesis Outline

The thesis is organized into six primary chapters, beginning with an

Introduction that set the context and objectives of the research. Following this,

Chapter 2 offers a Literature Review that explores existing scholarships in

computational genomics, MGE detection, and high-performance computing.

Chapter 3, titled Algorithmic Innovations, delves into the theoretical and practical

nuances of the algorithms developed for MGE detection. Chapter 4 focuses on

Validation and Benchmarking, providing statistical measures and analyses used to

assess algorithmic performance. Chapter 5 discusses the High-Performance

Computing adaptations made to the algorithms, particularly their implementation

on the Bridges2 platform. The final chapter, Chapter 6, provides a Discussion and

Conclusions section where the research findings are summarized, their potential

implications are considered, and recommendations for future research are

proposed.

12

CHAPTER 2

LITERATURE REVIEW

In the rapidly evolving field of computational genomics, various software

tools and algorithms have been developed to address complex biological questions.

Among these, TIGER (Target/IGE Retriever) and BLAST (Basic Local Alignment

Search Tool) have emerged as particularly impactful, each catering to unique sets

of challenges and research needs. This chapter aims to provide a comprehensive

review of these two pivotal tools, discussing their roles, the previous work that has

utilized them, and an evaluation of the current state of computational genomics,

particularly in detecting Mobile Genetic Elements (MGEs), known as transposons

and high-performance computing.

2.1 The Significance of TIGER and BLAST in Computational Genomics

Firstly, let us consider TIGER, a software designed to accurately map

Integrative Genetic Elements (IGEs) within bacterial genomes. TIGER addresses

several limitations in earlier software designed for similar purposes [20]. Unlike its

predecessors, TIGER utilizes a comparative genomic, ping-pong BLAST approach

to offer unprecedented precision in mapping IGEs, mitigating biases associated

with the attachment site (attB). This level of precision is particularly vital for

understanding complex bacterial systems where small variations can significantly

influence virulence and other phenotypic traits. Hence, TIGER serves as an

13

invaluable asset for those investigating bacterial genomics, gene regulation, and

evolution.

Conversely, BLAST, an acronym for Basic Local Alignment Search Tool,

serves as a keystone in the bioinformatics community. Conceived by Altschul et al.

in 1990, this software lays the groundwork for a wide array of sequence comparison

tasks, ranging from simple sequence matching to complex phylogenetic analyses

[21]. BLAST's algorithms have been honed over the years to offer flexibility, speed,

and reliability, rendering them applicable not only in genomics but also in

proteomics, metabolomics, and other disciplines requiring sequence alignment and

comparison. Therefore, its utility extends far beyond genomics, touching virtually

every facet of life sciences research.

The complementary nature of TIGER and BLAST becomes evident when

one considers the ways in which these tools intersect. For instance, TIGER's ping-

pong BLAST approach relies on the foundational sequence alignment algorithms

of BLAST, illustrating how even specialized tools like TIGER are undergirded by

the more general capabilities of software like BLAST.

In summary, both TIGER and BLAST occupy distinct yet complementary

niches in computational genomics. TIGER excels in its focused role of precisely

mapping IGEs, especially in bacterial systems, while BLAST's broader

functionalities enable it to be applied across multiple biological disciplines. Both

tools, therefore, significantly contribute to the advancement of computational

genomics, each from its unique vantage point.

14

2.2 Previous Work Utilizing TIGER and BLAST

Since its introduction, TIGER has emerged as a keystone in computational

genomics, offering unprecedented precision in the mapping of integrative genetic

elements (IGEs) within bacterial genomes. Conceived by Mageeney et al., this

software was tailored to identify IGEs with such specificity that it could elucidate

the nuances of gene integrity modulation upon IGE integration [20]. The

groundbreaking work of Mageeney et al. has not only validated TIGER's

effectiveness but also set the stage for a burgeoning body of research. This corpus

explores diverse themes from bacterial gene regulation to virulence, all the while

leveraging the precision that TIGER provides.

In a noteworthy example, TIGER's capabilities were fully exploited in a

study concerning the bacterial genome of Eco567. This application of TIGER

elucidated the differential activities of prophages embedded in bacterial genomes

by distinctly identifying attB and attP sites. These sites signify the excision and the

integration of prophages into bacterial genomes, respectively. The attention to

detail facilitated by TIGER allowed for an unparalleled analysis of the dynamic

behavior of prophages. For instance, the software facilitated the identification of

late genes in prophages, which is essential for understanding the lifecycle and

potential pathogenicity of these genetic elements. It is this level of detailed analysis

that has expanded our comprehension of bacterial genomics and opened novel

research avenues for studying microbial behavior and interactions at the genomic

level [22].

15

Another pioneering study utilized an updated version of TIGER, known as

TIGER2, to detect and analyze genomic islands (GIs) in microbial genomes,

including metagenome-assembled genomes (MAGs). Originally engineered to map

GIs confined to single scaffolds, TIGER2 incorporated two novel modes:

"CircleOrigin" and "Cross." These features enabled the detection of split GIs that

either wrap around the origin of a circular replicon or have termini on separate

scaffolds. Notably, this upgrade doubled the number of GIs identified compared to

its predecessor. Furthermore, TIGER2 sheds light on population micro diversity,

establishing virus-host linkages and contributing to ecological assessments in

microbiome research [23].

An additional study, however, presented critical insights into some

limitations of TIGER, particularly regarding the annotation of IGEs carrying

tyrosine recombinases (YRs). While TIGER offers a robust pipeline for IGE

annotation, the software encounters challenges when dealing with YR-containing

elements. Specifically, the close relationship between YR family

transposases/integrases and essential bacterial genes creates issues. TIGER tends to

discard Xer and Integron-related sequences, assuming all other YRs to be MGE

integrases, which can lead to false-positive hits. Despite its utility, this calls

attention to areas where TIGER may benefit from further refinement, especially for

more accurate functional annotation of MGE-borne proteins and YRs [24].

In contrast, BLAST's utility extends across a diverse range of applications.

One such study developed a BLAST-based approach called TESeeker [25] to

identify transposable elements (TEs) in genomes. This method initiates a BLAST

16

search against a given genome using a TE family as a query. The resulting hits are

assembled using the CAP3 assembly program, and the sequences are then trimmed

and subjected to another round of BLAST searches. Finally, a multiple sequence

alignment is generated using ClustalW2, followed by yet another BLAST search

using a consensus TE sequence from CAP3. The TESeeker pipeline, available for

download, significantly utilizes BLAST for sequence searching and alignment,

highlighting BLAST's indispensability in TE identification and genomic sequence

alignment [25].

Another insightful paper revealed the multiple dimensions of BLAST

software. This paper introduced the programs as a fundamental part of protein and

DNA database searches, focusing on significant enhancements that include

decreasing execution time and boosting sensitivity to weak sequence similarities.

The paper also introduced gapped BLAST, which runs approximately three times

faster than its predecessor. PSI-BLAST, another innovation, utilizes position-

specific score matrices to enhance sensitivity, notably uncovering new members of

the BRCT superfamily. The paper concludes by discussing the potential

ramifications of abandoning the statistical assessment of alignments, particularly

affecting the automatic iteration of PSI-BLAST [26].

Moreover, the modified BLAST version called BLASTER has also been

developed as part of the TEdenovo pipeline. This customized tool is specifically

designed for the identification of TEs and operates through a self-comparison of

the input genome. Though the TEdenovo pipeline offers high configurability, it can

be complex for inexperienced users. Nevertheless, BLASTER adds an additional

17

layer of functionality to BLAST, contributing to the tool's adaptive applicability in

computational genomics [27].

2.3 The Evolving Paradigm of Computational Genomics: Advances, Challenges, and
Applications

Computational genomics, a symbiosis of computer science and biology, has

ushered in a transformative era in our understanding of biological systems. Through

intricate algorithms and high-throughput computational strategies, this rapidly

advancing field has drastically lowered the cost and time needed for genome

sequencing and assembly [21]. Additionally, it has broadened our comprehension

of gene functionality, regulation, and associated genetic variations [28].

Importantly, computational genomics extends its applications to various

sectors, including medicine, agriculture, and evolutionary biology [29]. Its

contributions range from identifying novel genes to improving drug efficacy and

crop yield. However, there remains a nuanced complexity in addressing some of

the field's most intriguing components, notably the detection of mobile genetic

elements (MGEs) and transposons.

MGEs or transposons, ubiquitous genomic entities capable of altering

genomic structures, pose challenges and opportunities for researchers. Their

identification is not merely an academic exercise but has profound implications.

For instance, tracking MGEs can shed light on evolutionary patterns, and their

associations with diseases can inform therapeutic strategies. While tools like

BLAST have been employed for MGE detection by leveraging known MGE

18

sequences, de novo algorithms have also been developed for identifying novel

MGEs (TESeeker; BLASTER).

Though specialized software tools like TIGER and BLAST have brought

substantial advancements, they also come with inherent limitations. TIGER has

shown certain constraints in the functional annotation of tyrosine recombinases,

leading to potential false positives. BLAST, although robust, may require further

refinement for specific applications, such as MGE detection.

High-Performance Computing (HPC) has emerged as an indispensable asset

in managing the data-intensive demands engendered by modern genomics. HPC

platforms offer the computational heft required for various tasks like genome

assembly, data analysis, and biological process simulation [30]. As genomics

continues to generate colossal data sets, the role of HPC in facilitating analyses will

only increase in importance.

In summary, computational genomics remains a field ripe with innovation,

benefiting from constant methodological upgrades and decreasing operational

costs. However, the detection of MGEs and transposons and the computational

infrastructure required to manage data-intensive tasks present as yet unresolved

challenges. As technologies continue to advance, the promise of unlocking deeper

biological mysteries and developing innovative therapeutic interventions remains a

compelling prospect.

As delineated in the preceding discussions, the computational tools TIGER

and BLAST have rendered significant contributions to the advancement of

computational genomics, notably in areas such as high-precision mapping of IGEs

19

and sequence alignment. Moreover, they have been employed in a broad array of

research endeavors ranging from bacterial genomics to mobile genetic elements

detection, which have crucial implications for medicine, agriculture, and beyond.

Nonetheless, existing gaps in methodological approaches to MGE and transposon

detection, coupled with the computational demands of contemporary genomics,

underscore the necessity for further technological and algorithmic innovations.

High-performance computing has emerged as a pivotal asset in tackling these data-

intensive challenges, heralding a new era of scalability and computational

efficiency. In alignment with these existing challenges and technological trends,

this thesis endeavored to augment the current discourse by specifically focusing on

the enhancement of algorithmic strategies and optimizing adaptability to high-

performance computing platforms.

20

CHAPTER 3

IMPROVING THE EFFICIENCY OF MOBILE GENOMIC ELEMENTS

DISCOVERY THROUGH SYSTEMATIC EVALUATION OF REFERENCE

DATABASE COMPOSITION

Mobile genetic elements (MGE) are genetic sequences that may move about

on a chromosome and be passed from one chromosome to another and across

bacteria and species. They often bring some benefits to the bacteria, such as

improving the pathogenicity of bacteria, symbiosis with another organism, or

bringing metabolic genes that allow the bacteria to perform a new metabolic

function [31]. In contrast to their potential benefit, mobile genomic elements are

linked to food positioning and diseases such as human kidney failure [32].

Discovering mobile genomic DNA is an active research area considering its

importance in expanding our understanding of underlying mechanisms in bacteria

and, ultimately, for human health applications. Current multidisciplinary research

involves expediting discoveries of mobile genomic elements by improving our

previously developed algorithms and computation approaches. We have an existing

software (TIGER) that identifies MGEs in genomes and maps them precisely to the

nucleotide. TIGER employs a comparative genomic ping-pong BLAST method

based on the assumption that the Mobile Genetic Element integration module is

cohesive [33]. As a result, TIGER software maps Mobile Genetic Elements with

exceptional precision and without attB site bias.

21

The original TIGER runs utilized databases that included all the genomes

for a specific genome. As a result, the runtime was too long. Through this research,

we have expedited the MGE discovery process through algorithms developed by

Dr. Kelly from Sandia National Laboratory [54]. We implanted three different

algorithms and compared their performance. We examined the performance of each

algorithm on selected species. We tested our approaches on E. coli species, and our

results showed that prophage yields were relatively insensitive to the database size,

unlike the non-phage islands. This valuable finding enabled us to use much smaller

databases to speed up our software significantly.

3.1 Introduction

Mobile Genetic Elements

Mobile genetic elements (MGEs) like plasmids and prophages frequently

carry determinants of bacterial features, including pathogenicity, symbiosis, and

antibiotic resistance [31]. Mobile elements have the ability to modify their insertion

position, copy quantity, give novel gene functions, and influence chromosomal

gene expression. Gene gain and loss are known to be potentiated by mobile

elements, a key influence that can drastically alter bacterial fitness. This shift could

lead to genetic adaptation to new settings and the creation of diverse bacterial

populations, which could lead to the emergence of separate evolutionary species

[34]. TIGER software maps Mobile Genetic Elements with exceptional precision

and without attB site bias. The attB site is a short DNA sequence corresponding to

the strand-switching crossover region. Whenever we map a genomic island, we are

mapping where an integrase recognizes. Integrase is an enzyme encoded by the

22

genomic island with a gene for integrase. It recognizes DNA sequences in the

bacteria's chromosome and in the island itself. The island enters the cells through a

phage particle, and that phage particle delivers genomic island DNA into the cell.

There is a site on that DNA where the integrase recognizes on the genomic

island. Moreover, the complementary site on the bacterial chromosome is also

recognized. It brings those two DNA sites together and recombines them. As a

result, a large chromosomal circle and a small genomic island circle become a

single, giant circle. The integrase that we studied is from two protein families. One

is called serine, and another is called tyrosine integrase. They are called that

because their catalytic site has either tyrosine residue or serine residue that captures

the reaction intermediate. So, it holds on to one DNA strand for a while in the

middle of the recombination/reaction.

Furthermore, these two protein families are unrelated by evolution. They do

not have the same shape and do not show any homology, but they have very similar

functions. They both do the trick of bringing DNAs together and recombining them,

even though they are entirely different proteins. We studied both serine and tyrosine

integrases. There were more tyrosine integrases than serine integrases. Thus, we

had an abundance of tyrosine integrases in these genomes. Serine integrases are

also crucial for particular genomic islands.

In the serine recombinase family, there are two main domains. One is the

catalytic domain where the actual recombination happens, and another is the

extensive domain that recognizes/binds DNA and gives the site specificity. Some

enzymes have only the catalytic domain, which may not be the ideal integrases.

23

Thus, we found the genomic island that only got this catalytic domain of serine

recombinases. Therefore, we considered the true integrase of either tyrosine or

serine recombinase with this big domain, not the serine recombinase for the

catalytic domain only. The crucial questions were 1- How many islands are formed,

and 2- What is the percentage of the island with the “good” integrases? Our plan

was to continue improving the performance, and we worked on novel algorithms

and software tools.

Genomic Element Discovery Tool: TIGER

TIGER was developed by our collaborators at Sandia National

Laboratories, and we studied the software for our research [33]. The TIGER aimed

to find reference genomes with a continuous IGE integration site to identify and

map IGEs. The key inputs are a replicon DNA sequence, a coordinate on that DNA

(here, the midpoint of an integrase gene), and a reference genome BLAST database.

BLAST is a sequence-matching program. BLAST takes query sequences and

matches them to a database that includes reference genomes for all other species.

Thus, as the result of the left and right-side queries for finding a genomic element,

the program can map an island’s left and right ends. One needs to define an island

first and then use it. We measured the support of an island by the amount of

matching Blast queries, which served as a quantitative outcome of our search.

The database, a collection of similar genomes, was explored with BLASTN

in default mode using two 15-kb query sequences (q1L and q1R) extracted from

the replicon to the left and right of the coordinate. Matches over 500 bp were further

analyzed, with those that fully reach the input coordinate filtered out. A 3 kb return

24

query was taken from the reference genome region close to the coordinate-proximal

end of each match, going back 250 bp into the matching region to include the direct

repeat (DR) sequence for each match. To discover the matching distal flank of the

IGE, the set of return queries (q2) was employed using BLASTN against the

replicon [33].

Algorithmic Selection Approaches

The TIGER tool was intended to search through large databases of genomic

sequences and discover the mobile elements. We benefited from running TIGER

on full-size datasets, albeit with the caveat of long runtime. In order to speed up the

discovery process, we, in collaboration with the Sandia team, proposed four

algorithmic approaches to select representative genomes from each species. We

called the three algorithms 1- randomDB, 2- diverseDB, 3- smartDB, and 4-

evalDB.

• RandomDB algorithm

In the randomDB algorithm, for a given genome database size n, and a

genome file, it lists n random database member genomes.

• DiverseDB algorithm

The diverseDB algorithm, for a given genome database size n, and pre-

calculated MASH distance file [35], makes a file listing n most diverse genome.

• SmartDB algorithm

Then, the smartDB algorithm limits the number of genomes included to

improve efficiency, with the database size capped at a maximum number of

genomes and filled phylogenetically up to the taxonomic rank of order.

25

• EvalDB algorithm

Finally, in the evalDB algorithm, for a given database list file and island

support file, it finds which islands are supported by the database, writing the new

support value, length, species, original support value, score, int summary, type, and

support from all the input genomes. In the current work, we present our proposed

algorithms and our results.

3.2 Methods

Mobile genomic island discovery has a vital role in discovering the

mechanisms that can enhance the pathogenicity of the bacteria. Discovering the

MGEs accurately has been possible using our already published TIGER tool. In the

current work, we improved the runtime of the TIGER to expand its usage. In

addition, the current research proposed four algorithms to select the input genomes

before running TIGER to expedite the MGE discovery process. We describe these

four algorithms in this section.

Our study demanded significant computational resources and was

conducted on the Bridges2 system at Pittsburg Super Computing Center (PSC),

sponsored by the National Science Foundation (NSF) ACCESS program [11],

formerly called XSEDE (Extreme Science and Engineering Discovery

Environment) project [36].

Choosing Genomes Using Our Three Proposed Algorithms

We used different algorithms to discover supported genomic islands for

various specific groups of species. The database composition algorithm was based

on the following principles,

26

1) that TIGER execution should be sped up by smaller, more targeted

databases while rejecting few or no genuine GIs (various size limits were tested,

settling on 500),

2) that faulty joins between genomic segments were more likely to be

present in lower-quality genomes, which can lead to false-positive GI calls,

3) there exists an ideal range of phylogenetic distances for reference

genomes that will best identify GIs in the target genome - close enough to retain an

integration region with enough homology for BLAST identification. In the current

work, we set a higher distance than the reference genomes must belong to the same

taxonomic order as the target species, but far enough away that some of the

reference genomes had a continuous integration site needed for IG detection and

this optimal range may exceed the species level because there are cases, where IG

is very common in a species some of that species' genomes, have continuous

integration sites. We spent at least 10% of the base data of each species for members

outside the species when available.

First, we applied the random approach (Supplementary 4.1), which lists m

random database member genomes for a given genome database size of n and

genome inputs. The algorithm was implemented by a custom-made script called

randomDB.pl shown in Algorithm 1. In the randomDB script for different counts,

we used the genome files with a line for each species' genome (ecolist.txt,

Escherichia__Flexneri.txt, Escherichia__dysenteriae.txt, coli.txt, coli_D.txt).

Algorithm 1 Select Random Genomes
Require: n ∈ N (Count of genomes to include), F (GenomesFile)
Ensure: G′ (A subset of genomes)

1: Let A be the set of arguments provided.

27

2: if |A| ≠ 2 then
3: Display the correct usage of the script.
4: exit
5: end if
6: Set n and F based on the elements of A.
7: if file F does not exist
then
8. Display an error
message.
9: exit

10: end if
11: Let G be an empty set.
12: for each genome g in F do
13: Extract the genome name as gname.
14: G = G ∪ {gname}
15: end for
16: Let G′ be an empty set.
17: if |G| ≤ n then
18: G′ = G
19: else
20: Let O be a permutation of set G.
21: for i = 1 to n do
22: gi = first element of O
23: Remove gi from O
24: G′ = G′ ∪ {gi}
25: end for
26: end if
27: for each genome g in G′ (sorted) do
28: Display g.
29: end for

In summary, the code took a file containing a list of genomes and randomly

selected a specified number of genomes from that list, ensuring no duplicate

selections. The selected genomes were then printed in alphabetical order as

illustrated in Table I.

28

TABLE I

LIST OF 13 GTDB SPECIES

Escherichia Species Count

Escherichia__albertii 70

Escherichia__coli 3349

Escherichia__coli_C 42

Escherichia__coli_D 1450

Escherichia__dysenteriae 1173

Escherichia__fergusonii 14

Escherichia__flexneri 9094

Escherichia__marmotae 48

Escherichia__sp000208585 20

Escherichia__sp001660175 2

Escherichia__sp004211955 2

Escherichia__sp005843885 36

Secondly, we applied a diverse approach (supplementary 4.2), which lists n

most diverse genomes for a particular genome database size n and mash distance

file. In the in-house written diverseDB.pl shown in Algorithm 2 scripts for different

counts, we used the MashDist file, which had three columns for genomeA,

genomeB, and Mashdist for all genomes of the species (eschmash.dist,

Flexneri.dist, coil.dist, coli_D.dist, dysenteriae.dist). The MashDist files were

created by the MASH tool [35].

Algorithm 2 SelectDiverseGenomes
Require: n ∈ N (Count of genomes to include), F (MashDistFile)
Ensure: Set of selected genomes

1: Let A be the set of arguments provided.
2: if |A| ≠ 2 then
3: Display the correct usage of the script.

29

4: exit
5: end if
6: Set n and F based on the elements of A.
7: if file F does not exist
then
8: Display an error
message.
9: exit

10: end if
11: Let D be an empty matrix representing genome distances.
12: for each line l in F do
13: Parse l into (ga, gb, d)
14: D[ga][gb] = d and D[gb][ga] = d
15: end for
16: Let G′ be an empty set representing selected genomes.
17: if |G| ≤ n then
18: G′ = G
19: else
20: Let S be an empty dictionary representing the sum of distances.
21: Select arbitrary genome glast from G
22: G′ = G′ ∪ {glast}
23: for i = 1 to n − 1 do
24: Let M be a tuple representing genome with max distance.
25: for each genome g in G do
26: if g not in G′ then
27: S[g] = S[g] + D[glast][g]
28: if M is empty or M [1] < S[g] then
29: M = (g, S[g])
30: end if
31: end if
32: end for
33: glast = M [0]
34: G′ = G′ ∪ {glast}
35: end for
36: end if
37: for each genome g in G′ (sorted) do
38: Display g.
39: end for

In summary, this code took a file containing mash distances between

genomes and selected a specified number of genomes based on their distances. It

chose genomes with the maximum distance from each other, ensuring that the

selected genomes were not duplicated. The selected genomes were then printed in

alphabetical order.

30

Thirdly, we used the smartDB approach to create a small and targeted

database while still representing the taxonomic diversity of interest. SMAll Ranked

Tailored (SMART) DBs are a database designed for phylogenetic analysis that

limits the number of genomes to improve efficiency. By capping the number of

genomes and filling them phylogenetically, SMART DBs enables faster and more

efficient analysis for researchers. The SMART DB software pipeline, as seen in Fig.

3.3, was designed to automate genome data collection and design and update a

database (DB) for genomic analysis. It offered two modes: Design and Quick Setup.

In the Design mode, the pipeline collects genome assemblies, calculates

pairwise distances between genomes, ranks genomes within each species, and

designs and prepares each DB. The pipeline retrieves needed genome assemblies

from the National Center for Biotechnology Information (NCBI) FTP server and

repeats collection attempts until all required genomes are downloaded. The NCBI

serves as a national resource for molecular biology information and provides access

to a multitude of databases and tools that facilitate research in biomedicine,

bioinformatics, and related disciplines [37]. Pairwise distances are calculated using

Mash, and rankings are determined based on quality and contig count. The DB for

each species is designed by filling it with genomes from the ranked list, and if the

cap is not reached, genomes from closely related species are added. Some DBs may

be small due to the limited genomes for specific taxonomic orders. The pipeline

also warns about these small DBs, as they may have reduced capability to find

genomic islands (GIs). BLASTN databases are created for each unique DB design.

31

Fig. 3.3: SMART DB software pipeline.

The Quick Setup mode uses a precalculated DB design file, skipping the

time-consuming steps of distance measurements and DB design. A utility script

called Speciate is recommended to aid in selecting the appropriate DB for a query

genome. The pipeline's dependencies include Mash, BLAST, and fastANI [38].

Finally, we applied the eval approach (supplementary 4.3), which gave us

more information about the islands. In this approach shown in Algorithm 3, we

found which islands the DB supported for a given DB list file and island supported

file, writing the new support value, length, species, original support value, score,

32

int summary, type, and support from 15299. After that, we used this output to

compute statistics.

Our methodology began with the sequencing of genomes within each

species, adhering to quality standards set by the Minimum Information about a

Metagenome-Assembled Genome (MIMAG). These guidelines are instrumental in

assessing the quality of metagenome-assembled genomes (MAGs), and their

adherence ensures that the genomic data is both reliable and comparable across

different studies. The MIMAG guidelines cover a multitude of elements, from data

generation and assembly to annotation and quality evaluation. By adhering to these

rigorous criteria, we lay a foundation for quality-controlled, transparent, and

reproducible computational genomics research [39].

Algorithm 3 EvalDBApproachAlgorithm
Require: D ∈ F (DBfile), S ∈ F
(SuppFile) Ensure: Processed
output based on D and S 1: Let A be
the set of arguments provided.

2: if |A| ≠ 2 then
3: Display the correct usage of the script.
4: exit
5: end if
6: Set D and S based on the elements of A.
7: if file D does not exist then
8: Display an error message about missing D.
9: exit

10: end if
11: if file S does not exist then
12: Display an error message about missing S.
13: exit
14: end if
15: Let G be an empty set.
16: for each line l in file D do
17: Remove prefix ”Eco” from l.
18: G = G ∪ {l}
19: end for
20: for each line r in file S do
21: Split r into fields f1, f2, . . . , fn using delimiter ””- .

33

22: Let c be 0.
23: for each element e in f10 split by comma do
24: if e exists in set G then
25: c = c + 1
26: end if
27: end for
28: if c > 0 then
29: if f2 matches pattern "(
30: d+)-(
31: d+)$" then
32: Extract integers i1 and i2 from the match.
33: Compute L = |i2 − i1| + 1.
34: Display f1, c, L and f4, f6, f7, f8, f9 separated by ””- .
35: else
36: Display an error message with f1.
37: exit
38: end if
39: end if
40: end for

Next, the genomes were sorted based on their quality and the number of

frames, as indicated by the MIMAG quality and the Genome Taxonomy Database

(GTDB) metadata table. This is another key component of our methodology.

Important metadata such as taxonomy, assembly quality, and genomic ID are

provided by this site. We could verify our findings with the help of this database,

giving us a more comprehensive, multifaceted understanding of the genetic

structures we were studying. Our findings gained further confidence because the

GTDB metadata table guaranteed that we were working with well-characterized,

quality-assured genomes [40].

Subsequently, pairwise distance measurements were performed using

Mash, a computational tool for fast genome and metagenome distance estimation,

for all genomes within each species [41]. The top 90% of genomes with the highest

quality, as defined by MIMAG guidelines, were then rearranged based on their

diversity, as determined through Mash's distance estimations. This arrangement

34

involved selecting the second genome farthest from the first, the third genome with

the most significant coherence distance to the first and second genomes, and so on.

Finally, a smart approach was applied to all thirteen species.

Several principles guided the algorithm used for composing the database.

Firstly, smaller and more focused databases were preferred to enhance the speed of

TIGER execution while minimizing the exclusion of legitimate genomic islands

(GIs). Different size limits were tested, and a limit of 500 was found suitable.

Secondly, lower-quality genomes were more likely to contain incorrect connections

between genomic segments, leading to false-positive GI identifications. Thirdly, an

optimal phylogenetic distance range was determined for the reference genomes to

identify GIs within a target genome effectively. The reference genomes were

required to belong to the same taxonomic order as the target species but be distant

enough to possess uninterrupted integration sites necessary for GI detection. Lastly,

this optimal range could extend beyond the species level since certain GIs may be

widespread within a species, resulting in a few genomes from that species having

uninterrupted integration sites. Therefore, at least 10% of each species database was

reserved for members from outside the species when available.

The composition of the smart reference database proceeded as follows.

Each species' contribution was limited to 90% of the database size limit, ensuring

that at least 10% of the database included genomes from outside the target species

if they were accessible. Species from the same taxonomic order as the target species

were ranked based on their phylogenetic distance from the target species. Starting

with the target species, genomes were selected from the ranked list of the

35

contributing species until either the species cap or the database size limit was

reached.

Furthermore, we parsed the GTDB species trees for bacteria and archaea,

collecting the branch length below each node and the list of nodes beneath each

species. This allowed for efficient distance measurements between any pair of

species.

3.3 Datasets

Dataset 1: E. coli

Escherichia genomes datasets used were the 15299 names of genomes

named by GTDB listed in supplementary Table 1 that were used for applying our

new algorithms. In addition, we used previously generated data from running

TIGER with massive databases, which are included in supplementary Table 2,

containing 64838 islands from our 9457 Escherichia genomes that TIGER has

finished, with ten fields per line. Also, we have a breakdown of 15299 genomes

into these 13 GTDB species with different counts (Table I).

3.4 Results

The aim of this research was to expedite the TIGER tool’s runtime. First,

we introduced three algorithms for choosing genomes and then examined their

performance using different species. In this section, we present our results that

clearly showed that if we used smaller database sizes, we discovered islands with

higher scores, longer lengths, and better islands. Therefore, we decided to run

TIGER for three sizes of databases (100, 500, 15299), and after running TIGER for

36

those databases, we saw that we had achieved our goal of speeding up our existing

software without losing any islands.

We have applied our four proposed algorithms to E. Coli data. Therefore,

we will start by presenting our E. Coli results.

E.Coli Results

We utilized our own customized scripts to implement our algorithms on a

total of 15299 E. Coli genomes. To determine the most suitable database sizes for

our algorithm evaluation, we selected intermediate sizes ranging from 1 to 15299

genomes for E. Coli. As Table 2 illustrates, our proposed algorithms significantly

expedited the discovery process. By reducing the database size to 100 genomes

instead of the original > 15K genomes, we achieved a 138-fold increase in speed.

Similarly, the size of 500 databases resulted in a 38-fold increase in speed.

We created BLAST databases with smaller counts to calculate the TIGER

runtime for different database sizes. We initiated this process by generating a fasta

file shown in Algorithm 4 with either randomly, diversely, or smartly selected n DB

size (Supplementary 4.4). Subsequently, we created BLAST databases of 100, 500,

and 15299 sizes from the FASTA formatted file for randomly, diversely, and smartly

selected genomes. In bioinformatics, the FASTA structure is a text-based

illustration of nucleotide or peptide sequences that is often used. It is composed of

a single line of description followed by lines containing sequence data, making it

easy to store and read sequences. We then developed three separate scripts to run

TIGER on 100 genomes each against the three databases and kept a separate record

37

file for time management as see in Table II. We also took care of the memory it

used as seen in Table III.

Algorithm 4 FastaFileMakerAlgorithm
Require: L (genomeList), O (outfasta)
Ensure: Concatenated genome sequences in output file

1: Let A be the set of arguments provided.
2: if |A| ≠ 2 then
3: Display the correct usage of the script.
4: exit
5: end if
6: Set L and O based on the elements of A.
7: Remove (unlink) file O if it exists.
8: for each line l in file L do
9: Extract the first non-space sequence of characters from l and

assign it to id.
10: Append the contents of the file

/ocean/projects/mcb130021p/shared/ ecoli/$id/genome.fa to O.
11: end for

Our evaluation criteria for database size reduction results consisted of five

factors: 1- Islands count, 2- Islands lengths, 3- Island scores, 4- Integrase summary,

and 5- Island types. In addition, we ensured that our speed optimization did not

impact the accuracy of the discovered islands.

TABLE II

EFFECT OF THE DATABASE SIZE REDUCTION ON TIGER RUNTIME

 100 input DB (for 100
jobs)

500 input DB (for 29
jobs)

15299 input DB (for 25
jobs)

Real-Time 10m37.33s 21m24.33s 39h2m32s

User Time 1m57.19s 9m45.38s 6h4m32s

System
Time

5m37.40s 17m30.56s 18h10m27s

38

TABLE III

EFFECT OF THE DATABASE SIZE REDUCTION ON MEMORY USEAGE

Island Count

We made plots for island count against database size, and it showed us how

the number of islands was reduced as we used smaller and smaller database lists.

We discovered a higher number of islands with a larger database for the four

approaches shown in Fig. 3.6. Also, Fig. 3.6 shows that when we moved the

database size from 1 to 15299, the islands count was moved in the range of 16811

to 64838 (a) and 15170 to 64313 (b). We noticed that from 500 to 15299 genomes,

there was not much difference in the count for the random. However, there was no

considerable change in the count for the diverse one, from 1000 to 15299 genomes.

Finally, to evaluate the smartDB algorithm's performance, we decided to present

the Flexneri species as it is the largest species present as part of the E.coli family in

GTDB. Fig. 3.6 (c) shows that there is not much difference in the count from

smart_Flexneri between 100 and 300 databases. So, from the graphs, we can say

that making smaller databases, for example, 500 seems reasonable, and we are not

losing many islands.

 100 input DB (for 100
jobs)

500 input DB (for 29
jobs)

15299 input DB (for 25
jobs)

Allocated
Memory
(MB)

128000 128000 128000

Used
Memory
(MB)

117.0 141.0 3807.0

39

(a
)

(b
)

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
70

00
0

Islnad Count

Da
ta

ba
se

 S
ize

Al
l_

Ra
nd

om
_C

ou
nt

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

Island Count

Da
ta

ba
se

 S
ize

Al
l_

Di
ve

rs
e_

Co
un

t

~ ~ ~ , ------+--- ~
~' ~'
~ ~ 1--1-4 ~ ~ V;-, V;-,
Ooa ~ 1--1-4 Ooa ~ ~' ~'
Ooo 190 oa 19

0 'r' I--..,____.__ '----L-1---L- V;-,

~ ~ 1--1--1-4 ~--4-----1- ~ ~ ~' ~'
a~ ~ vr, i---+---+---+- ·----+--- Oor,

~ ~ q,o q,o
-r, 1--..... -- -r,
~ ~

1 O.s-, 0 ---- I O.s-, 0
► ~ ~

or, 1---'---'--1-4 or,
~ ~

~' 1---'-...J.-1-4 ~'
~ ~

,S', -----+- ,S', ~ ~ r, r,
190 ► + 190

r, r,
190 L ~ 190

40

(c)

Figs. 3.6 (a, b, c): Island count versus database size. Comparing the performance

of three proposed algorithms by differing the input database size and comparing the

discovered island counts.

Islands Length

Fig. 3.7 demonstrates how the size of the islands grew more prominent

when the database sizes were lowered. We obtained longer islands, which are

preferable. Also, it showed that when we moved the database size from 1 to 15299,

the islands’ lengths were moved in the range of 25288.4 to 19346.6 (a) and 26745.6

to 19411.3 (b). Moreover, the Flexneri species' length changed from 24302.63 to

22308.19 when we moved from a database size of 100 to 500. In the case of random,

we noticed that from 500 to 15299, there was not much difference in length, and

for the diverse database sizes, between 1000 to 15299, the length did not change

visibly. Lastly, for the smartDB (c), Flexneri species did not show much difference

28000

29000

30000

31000

32000

33000

34000

35000

36000

37000

Db_100 Db_200 Db_300 Db_500

Is
la

nd
 C

ou
nt

Database size

Flexneri_Smart_Count

y
~ ~ ~ /

-
~ - C ~

41

 in
 le

ng
th

 b
et

w
ee

n
10

0
an

d
30

0
da

ta
ba

se
s.

So
, b

as
ed

 o
n

th
e

gr
ap

h,
 w

e
 c

on
cl

ud
ed

th
at

 c
re

at
in

g
sm

al
le

r d
at

ab
as

es
, s

uc
h

as
 5

00
, i

s l
og

ic
al

.

(a
)

(b
)

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0
Avrg. Length

Da
ta

ba
se

 S
ize

Al
l_

Ra
nd

om
_L

en
gt

h

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

Avrg. Length

Da
ta

bs
e

Si
ze

Al
l_

Di
ve

rs
e_

Le
ng

th

6'6- r 6'6'c':
► .. ~ -.s-,,., .s-,,.,

0a cS>o o~ cS>o t2 -v,,., 7-,
0a cS>o I °Cb cS>o

Vt<', - c.<-,
a cS>o 1· 0a cS>o t2

~ I v,,., - v,,.,
a cS>o I a cS>o
".s-, ".s-,

cS>o
I cS>o a a

~ • "r, "r,
cS>o

4
cS>o a a

~ I +
v,,., v,,.,

cS>o • cS>o O.s-, O.s-,
cS>o cS>o

or, I or,
cS>o cS>o

o,,., o,,.,
~ I cS>o

,__
cS>o

.s-, I ,S',

cS>o - I~
cS>o

r, r,

I
cS>o cS>o

,,., 1 ,,.,
L L ~ L L cS>o cS>o

42

(c)

Fig. 3.7 (a, b, c): Island length versus database size. Comparing the performance

of three proposed algorithms by differing the input database size and comparing the

discovered islands’ length.

Islands Score

Fig. 3.8 depicts that the islands’ scores decreased with the larger database

size. It implied that we were discovering higher scores with the smallest database

size. A higher score means the island is more reliable. It moreover indicated that

when we increased the database size from 1 to 15299, the score of the islands varied

between 1.22 and -3.47 (a), 2.19 and -3.44 (b), and 0.5785 to -0.2227 (c).

Throughout the random case, we discovered that the score did not differ

significantly between 500 and 15299 database sizes, and in the case of diverse, the

score did not differ much between 1000 and 15299 database sizes. Finally, between

100 and 300 database sizes, the Flexneri score did not differ significantly. As a

22000

22500

23000

23500

24000

24500

Db_100 Db_200 Db_300 Db_500

Le
ng

th

Database Size

Flexneri_Smart_Length

43

result, we deduced from the graph that establishing smaller databases, such as 500,

was rational for the island score.

(a)

(b)

-4
-3
-2
-1
0
1
2

Av
rg

. S
co

re

Database Size

All_Random_Score

-4

-3

-2

-1

0

1

2

3

Av
rg

. S
co

re

Database Size

All_Diverse_Score

t

t

t

44

(c)

Fig. 3.8 (a, b, c): Island score versus database size. Comparing the performance

of three proposed algorithms by differing the input database size and comparing the

island scores.

Integrase Summary

In this evaluation, we focused on the percentage of genomic islands that

contained a "good" type of integrase, specifically Y-Int or S-Int. Islands with at least

one of these integrase types were counted, while those with neither were excluded.

By removing the "bad" islands from the database, the overall number of islands

with good integrase increased as the database size decreased. Fig. 3.9 provides a

summary of these results.

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Db_100 Db_200 Db_300 Db_500

Sc
or

e

Database size

Flexneri_Score

45

(a)

(b)

0
10000
20000
30000
40000
50000
60000
70000

Is
la

nd
 C

ou
nt

Database Size

All_Random_Integrase

S-Int, Y-Int S-Core

0
10000
20000
30000
40000
50000
60000
70000

Is
la

nd
 C

ou
nt

Database Size

All_Diverse_Integrase_Summary

S-Int or Y-Int S-Core

....____1 ----1 ---1 -+------II 1....---+-l-1 ~

+

• • • • • • • • • •

46

(c)

Fig. 3.9 (a, b, c): Island counts versus island types. Comparing the performance

of three proposed algorithms based on island type and island counts.

Island Type

In this examination, we focused on investigating the impact of database size

on phages, explicitly focusing on the yield of prophages (Phage1, Phage2,

PhageICE) and "Other" islands. The study found that prophages generally remained

unaffected by database size, while the "Other" category exhibited a significant

decrease in yield as the database size decreased. This reduction in yield is likely

due to the presence of more false positive islands in this group. For random and

diverse graphs, there was a noticeable increase in yield after 500 databases,

indicating the presence of bag islands. Additionally, there was a slight increase in

yield for the Flexneri species after 300 databases, indicating that they may also be

considered bad islands. Overall, these findings suggest that smaller databases, such

0
5000

10000
15000
20000
25000
30000
35000
40000

Db_100 Db_200 Db_300 Db_500

Is
la

nd
 C

ou
nt

Database Size

Flexneri_Smart_Integrase_Summary

S-Int,Y-Int S-Core

T

f ~
,

l - · • •
l

l

- - - -- ~ - ~ - L - .

47

as those capped at 500, are sufficient for this type of island. The results of this study

are presented in Fig. 3.10.

(a)

(b)

0

10000

20000

30000

40000

50000

1 10 100 1000 10000 100000

In
te

gr
as

e
Ty

pe

Database Size

All_Random_Island_Type

ICE1 ICE2 other Phage1 Phage2 PhageICE

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

Is
la

nd
 C

ou
nt

Database Size

Diverse_all_Island_Type

ICE1 ICE2 other Phage1 Phage2 PhageICE

....... :::

48

(c)

Fig. 3.10 (a, b, c): Island counts and database sizes versus phage types.

Comparing the performance of three proposed algorithms based on island counts and

database sizes versus phages.

3.5 Conclusion

Mobile genomic elements play a crucial role in the evolution and diversity

of microbial genomes, and accurate identification of these elements is essential for

understanding their function and impact. The TIGER tool is a powerful tool for

detecting mobile genomic elements, but it can be slow. Our research group

developed four algorithms (randomDB, diverseDB, evalDB, and smartDB) to

expedite the TIGER tool's execution time while maintaining accuracy and

precision. Our results showed that our algorithms could speed up the MGE

discovery process by up to 139-fold in one case. This work did not involve the

development of the TIGER tool but rather the development of computational

methods to expedite TIGER's execution time. Our research provided a faster and

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

Db_100 Db_200 Db_300 Db_500

Is
la

nd
 C

ou
nt

Database Size

Flexneri_Smart_Island_Type

ICE1 ICE2 other Phage1 Phage2 PhageICE

~ - - -- -
I I

.. • • • • t t . I I I I

49

more efficient way to identify mobile genomic elements that could be applied to a

wide range of studies. Specifically, our smartDB algorithm can be incorporated into

other applications, such as metagenomic analysis, to expedite MGE discovery and

provide new insights into microbial ecology and evolution. Overall, our research

represents an important step towards a more efficient and accurate MGE discovery,

and we hope it will contribute to advancing research in this field.

50

CHAPTER 4

VALIDATION OF TRANSPOSON LOCATIONS IN GENOMIC SEQUENCES

USING TIGER AND BLAST OUTPUTS AND STATISTICAL ANALYSIS

Transposable elements, commonly called transposons, are DNA sequences

that can change their position within a genome. This mobility can significantly

affect the overall structure, function, and evolution of genome architecture. Due to

their substantial impact on gene regulation and genetic disease development,

transposons have been extensively researched. Consequently, accurately

identifying and mapping transposons is crucial for understanding their biological

ramifications.

Over the years, numerous computational tools have been developed to

detect and characterize transposons in genomic sequences, albeit their performance

can differ based on input sequence characteristics and underlying algorithms.

Among these tools, Target/IGE Retriever (TIGER) can precisely identify

transposes-encoding mobile DNAs in a given genome. The current study aimed to

examine newly discovered transposons by TIGER in E. coli genomes and validate

them by comparisons with published databases. In this work, we discuss the

implications of our findings within the bioinformatics community, emphasizing the

accuracy and effectiveness of TIGER in transposon discovery. In addition, we

employed a statistical study using the bell curve distribution to categorize the

matches, thereby assessing the trustworthiness of the transposon locations. Finally,

we pinpoint the limitations of our research, adjust the program, and consider

51

potential applications for comparing different bioinformatics tools while

incorporating user-specified parameters. Our research contributes to the ongoing

enhancement of methods for detecting transposons by offering critical insights

about the performance of TIGER and BLAST in comparison.

4.1 Introduction

Transposons are like pieces in a genetic puzzle that can move around within

our DNA. This movement shakes things up in our genome, influencing how it

evolves over time, controlling how our genes work, and sometimes bringing about

entirely new traits. [42]. Accurate identification of transposon locations is crucial

for understanding their functional roles and potential implications in various

biological processes.

Several computational tools have been developed to identify transposon

locations in genomic sequences, such as TIGER (Target/IGE Retriever) and

BLAST (Basic Local Alignment Search Tool) [43]. However, there is a need for a

systematic approach to compare and validate the transposon locations identified by

these tools.

TIGER is a computational tool that accurately identifies transposable

elements in genomes and precisely maps their location to the nucleotide level. It

utilizes a comparative genomic approach and a ping-pong BLAST method,

assuming that the integration module of transposable elements is cohesive [33].

TIGER has been applied to various organisms and has demonstrated promising

results in detecting transposons in complex genomes. We utilized TIGER on the

transposon discovery process for E. coli genomes for four different species on

52

Pittsburgh Super Computing Center (PSC) state-of-the-art supercomputers. Basic

Local Alignment Search Tool (BLAST) is a well-known sequence alignment tool

that compares nucleotide or protein sequences to sequence databases and calculates

the statistical significance of the matches [44]. BLAST has been employed for

transposon detection by comparing genomic sequences to curated databases of

known transposons, such as Repbase [45] and ISfinder [46].

Repbase is an immense database of repetitive elements collected from

different genomes of eukaryotes. It is a tool that helps researchers label and locate

repeating sequences in genomic data, including transposable elements. Since its

founding in 1990, Repbase has served as a major resource for research on how

repeated sequences influence the structure and function of the genome [45].

In contrast, ISfinder is a specialized database that focuses only on

prokaryotic insertion sequences (IS). It makes an in-depth understanding of the role

of ISs in genome dynamics easier by offering a selective set of well-annotated ISs.

A comprehensive toolset for any individual researching these mobile genetic

components in bacteria and archaea is provided by the ISfinder database, which

enables researchers to categorize, annotate, and compare IS elements [46].

This study used BLAST to search for transposons in genomes and compare

the results with TIGER-generated data.

To enable the comparison of transposons, we developed new software in

Python programming language to compare the transposon coordinates identified by

TIGER and BLAST output files. The program extracts the left and right coordinates

of the transposon from the TIGER output file and searches the BLAST output for

53

matches that are either exact or within a user-defined base pair range. By identifying

matching transposons, the program can measure the level of agreement between

TIGER and BLAST output files and determine the true transposon location.

This study proposed a novel method to compare and validate transposon locations

identified by TIGER and BLAST tools using a statistical approach based on the bell

distribution curve. Our method compared the left and right coordinates of the transposons.

It categorized the matches based on the mean and standard deviation of the differences,

making it possible to determine the quality of the matches and prioritize the transposons

for further analysis.

4.2 Materials and Methods

Data Collection

The gathering of primary data was carried out using smartDBs, discussed

more thoroughly in Chapter 3. These databases, robust in their capabilities, were

utilized to generate output files for both TIGER and BLAST, providing

comprehensive information pertaining to the specific locations of transposons

within a given genome. This information formed the crux of our study and was

prepared meticulously for an exhaustive examination and interpretation.

To transform the raw data into an analyzable format, we implemented a

series of preprocessing steps for each output file (Flowchart 1).

• Accessing the TIGER Output Directory:

Upon running the TIGER tool, an assortment of directories and files were

generated. However, for the purpose of this research, not all these files were of

54

relevance. Thus, we carefully navigated through these numerous files, directing our

focus only on those few that were critical to our analysis.

• Identifying Core Files:

In the sea of files produced by TIGER, two specific files stood out as

paramount to our analysis - "genome.IS.nonoverlap.gff" and

"genome.IS.blast.tile". These files were targeted for our analysis due to their wealth

of relevant information. This is illustrated in Fig. 4.1.

Fig. 4.1: Specifying files.

• Standardizing File Formats:

To facilitate seamless data handling and analysis, we converted the 'gff' and

'tile' files into a more universally recognized and convenient 'CSV' format. This

step also ensured consistency across our datasets, allowing for more effective data

manipulation and interpretation shown in Algorithm 5.

Algorithm 5 StandardizingFileFormats

Require: Parent folder path P
Ensure: Converted CSV files within subfolders of P

1: Let D be the set of all directories and subdirectories within P.
2: for each directory d ∈ D do
3: Let F be the set of all files within d.
4: for each file f ∈ F do
5: if extension of f is ’.gff’ or ’.tile’ then
6: csvName = name of f without its extension + ’.csv’
7: Open f for reading as inputFile and csvName for writing as

outputFile.
8: Write the header row [’ contig name’, ’software’, ...] to outputFile.
9: for each line l in inputFile do

10: if l starts with or l is blank then
11: Continue to the next line.
12: end if
13: fields = split l by spaces and take the first 9 elements.
14: Write fields to outputFile.

1 # specify the filenames to extract
2 f i lenames = ['genome.IS.nonoverlap .gff ' , ' genome.IS.blast.tile ']

55

15: end for
16: Close inputFile and outputFile.
17: Print message indicating the conversion of f is complete.
18: end if
19: end for
20: end for

• Adding Column Names:

Our output files lacked column names in their original format, presenting

potential hurdles for effective data interpretation. To enhance clarity and optimize

data for our analytical requirements, we took the initiative to manually insert

appropriate column headers into each 'CSV' file. This step further standardized our

data and made it easier to understand, enhancing the efficiency of our subsequent

analyses as indicated in Fig. 4.3.

Fig. 4.3: Specifying files.

Write t he heade r r ow to t he CSV f i l e
csv_wri ter. wri terow([' contig_name ' , 'software' , ' IS ' , 'LCOR' , ' RCOR' , ' supporti ng ' ,
' o r ient at ionl ' , 'orientation2 ' , ' I NFO '])

56

Flowchart 1: Python Program for Data Collection:

Start

.
Accessing the TIGER Output

Directory

Identifying Core Files

Standardizing File Formats

Adding Column Names

57

Python Program for Data Comparison

A Python program was developed to compare the left and right coordinates

of the transposons in the TIGER and BLAST output files. The program picks the

first left and right coordinates from the TIGER output and searches for an exact

match or a match within a user-defined base pair range (+10/-10) in the BLAST

output shown in Algorithm 6. The objective is to find how much the two outputs

validate each other and identify the true transposon locations (see Flowchart 2).

Algorithm 6 matchcord
Require: search dir, foldername, tol
Ensure: −1

1: Read blast raw new.csv from the directory search dir/foldername into
DataFrame df 1

2: Read genome.IS.nonoverlap.csv from the directory
search dir/foldername into DataFrame df 2

3: Initialize empty DataFrames: data frame blast and dataframe tiger
4: for each index idx, and elements data1, data3 in

df 1[′LCOOR(query)′], df 1[′RCOOR(query)′] do
5: for each index idx1, and elements data2, data4 in

df 2[′LCOR′], df 2[′RCOR′] do
6: if data1 = data2 and data3 = data4 then
7: Append row idx of df 1 to dataframe blast
8: Append row idx1 of df 2 to dataframe tiger
9: else if |data1 − data2| ≤ tol and |data3 − data4| ≤ tol then

10: Append row idx of df 1 to dataframe blast
11: Append row idx1 of df 2 to dataframe tiger
12: end if
13: end for
14: end for
15: Save dataframe blast to search dir/foldername/BLAST matched raw.csv
16: Save dataframe tiger to search dir/foldername/TIGER matched.csv

return −1

A Table containing the differences between the left and right coordinates

and the lengths of the transposons in the TIGER and BLAST output files is

generated. The Table includes the contig name, left coordinate difference, right

58

coordinate difference, and length difference for each match found in the previous

step.

The differences between the left and right coordinates and the lengths of the

transposons are analyzed using a bell distribution curve, also known as a normal

distribution or Gaussian distribution. This is a statistical method often used when a

dataset is large, and the data points are spread out in a pattern where most data

points are close to the average (mean), and the rest taper off equally in both

directions [47].

The bell curve, also known as the normal distribution, possesses a

symmetrical shape where the mean, median, and mode align perfectly. The central

point of this curve, referred to as the mean (µ), represents the most probable value

with the highest likelihood, while the dispersion of data points from the mean is

indicated by the spread around it, known as the standard deviation (∂) [48]. In this

particular context, calculations of the mean (µ) and standard deviation (∂) were

conducted for each of the three categories: left coordinate, right coordinate, and

length. The mean is essentially the arithmetic average of the data points, whereas

the standard deviation quantifies the extent to which the data points deviate from

the mean as shown in Algorithm 7.

Algorithm 7 LabelGeneration
1: function distri(dataframe)
2: µ ← mean(dataframe)
3: σ ← std(dataframe)
4: Calculate boundaries:
5: exub ← µ + σ
6: exlb ← µ − σ
7: goodub ← µ + 2σ
8: goodlb ← µ − 2σ
9: avgub ← µ + 3σ

59

10: avglb ← µ − 3σ return exub, exlb, goodub, goodlb, avgub, avglb
11: end function
12: function labelData(data, boundaries)
13: if boundaries[0] > data > boundaries[1] then return ”excellent”
14: else if boundaries[2] > data > boundaries[3] then return
”good” 15: else if boundaries[4] > data > boundaries[5] then
return ”average” 16: elsereturn ”Bad Match”
17: end if
18: end function
19: function diff label(a)
20: Initialize: list lcor, list rcor, list len as empty lists
21: for each lcor, rcor, length in a do
22: append labelData(lcor, distri(a[′LCOR′])) to
list lcor 23: append labelData(rcor,
distri(a[′RCOR′])) to list rcor 24: append
labelData(length, distri(a[′len′])) to list len 25: end
forreturn list lcor, list rcor, list len
26: end function

Following these computations, the data points were graphed on a normal

distribution curve, enabling a visual representation of the distribution of values

within specific ranges of differences as shown in Algorithm 8. For instance, one

can observe the proportion of data falling within one standard deviation from the

mean, two standard deviations from the mean, and so forth, as illustrated in

Flowchart 3.

Algorithm 8 Categorization

1: function distri(dataframe)
2: µ ← mean(dataframe)
3: σ ←
std(dataframe)
4: ex upbound ←
µ + σ 5: ex
lowbound ← µ − σ
6: good upbound ←
µ + 2σ 7: good
lowbound ← µ − 2σ 8:
avg upbound ← µ +
3σ
9: avg lowbound ← µ − 3σ

return ex upbound, ex lowbound,
 10: good upbound, good lowbound,

11: avg upbound, avg lowbound
12: end function

60

Based on the calculated mean and standard deviation, the matches were then

categorized. The categorization was based on how close the values were to the

meaning for each category. The closer the values were to the mean, within the range

of one standard deviation, the better the match.

An "Excellent Match" is defined as all three categories, left coordinate, right

coordinate, and length, having values within the range of the mean plus or minus

one standard deviation (µ±1∂). In other words, all the values were very close to the

average, meaning the match is very good.

A "Good Match" is when two out of the three categories fall within this

range. This means two of the three values were close to the average, so the match

was considered good but not excellent.

A "Bad Match" is when none of the categories have values within this range.

This means all the values were significantly different from the average, so the match

was considered poor.

We applied our categorization method to various randomly selected

genomes to demonstrate its adaptability and usefulness. The following specific

example shows the efficacy of the algorithm:

In one such analyzed genome, our algorithm categorically identified

fourteen transposons as "Excellent Matches," eight as "Bad Matches," and two as

"Good Matches" (see Fig. 4.7). This experimental information provided an

understanding of the range and distribution of transposon matches inside a single

genome in addition to confirming the method's accuracy.

61

Fig. 4.7: Example of Transposon Match Categorization in a Single Randomly

Selected Genome.

14

12

10

c 8

" 8
6

4

2

0

Distribution of Match Labels

Excellent Match Bad match
Match Label

Good Match

62

Flowchart 2: Python Program for Data Comparison.

Pick 1st Left/Right coordinate from TIGER
Output

Start

Pick 1st Leh/Right coordinate fro m BLAST
Output

Find the exact match or ± 10 bp match
(±10 depends on user input)

Ext ract the matched coordinate's row
& Create a new csv file

No Match

63

Flowchart 3: Statistical Analysis Using Bell Distribution Curve

Pick i« L.coord, R.Coord & Length from
TIGER Output

Pick i« L.coord, R.Coord & Length from
BLAST Output

Category. I : Left_ Coordinate
Difference

Category .2: Right_ Coordinate
Difference

Mean (µ)

Standard deviation (o)

Excellent: Category (all 3) e (µ±18)

Good: Categoiy (2 out of3) e (µ±l o)

Bad: Category (all 3) 1c (µ±18)

Category .3: Length Difference

64

4.3 Results and Discussion

While validating and comparing the transposon locations identified by the

TIGER and BLAST tools, our analysis revealed intriguing findings. First, the

BLAST tool seemed to be more liberal in marking transposons compared to its

counterpart, TIGER. This raised many questions - was it due to the varying

methodologies the two tools employ, or was it a matter of sensitivity and specificity

in identifying transposons? Or could it be down to the different benchmarks they

use to identify transposons? These questions warrant further investigation and will

undoubtedly deepen our understanding of these two pivotal tools.

Nevertheless, an interesting pattern emerged when we applied our algorithm

to the results from these two tools. We managed to sift out the 'true' transposons -

unanimously identified by both tools. This cross-verification significantly bolstered

the reliability of our findings, as it threw out potential biases or errors that

individual tools might have introduced. This approach, we believe, provides a more

robust validation of data and could be a game-changer for future studies.

Subsequently, we delved deeper into our analysis, examining the differences

between the left and right coordinates and the lengths of the transposons flagged by

TIGER and BLAST. To navigate through this sea of data, we sought the help of the

bell distribution curve, a powerful statistical tool for understanding data

distributions. This gave us a clear picture of the variations in our data and helped

us assess how much they strayed from the mean.

Using this information, we grouped the differences into three distinct

categories: excellent, good, and bad matches. We used the mean and standard

65

deviation of the differences as yardsticks for this classification. This classification

process provided us with a more granular understanding of the level of agreement

between TIGER and BLAST in identifying transposon locations. It also shed light

on the reliability and consistency of these tools, offering valuable insights for future

genomic studies.

To sum up, our findings underscore the importance of rigorous validation

of genomic data and propose a comprehensive approach to achieving it. By

harnessing the power of statistical analysis and cross-validation, we significantly

enhanced the reliability of our results and gained a deeper understanding of the

complex genomic landscape.

66

CHAPTER 5

COMPREHENSIVE EVALUATION OF TIGER AND BLAST OUTPUTS:

ANALYZING DIRECT REPEATS AND ASSESSING BLAST HIT QUALITY

In the backdrop of our preceding chapter on comparing TIGER and BLAST

output files, we extend our exploration into the field of comparative genomics. This

chapter aims to meticulously analyze TIGER and BLAST outputs, focusing on

direct repeats within insertion sequences and thoroughly assessing BLAST hit

quality. The comprehensive approach employed here augment our understanding

of sequence alignment results, significantly contributing to ongoing research in

genomics and bioinformatics.

By analyzing the TIGER and BLAST outputs, we aimed to

comprehensively understand direct repeats in insertion sequences and assess the

quality of BLAST hits. This integrated approach will provide valuable insights into

the functional implications of direct repeats and aid in distinguishing high-quality

BLAST hits from subpar matches. In addition, the findings from this analysis will

contribute to our knowledge of genomic dynamics, mobile genetic elements, and

their impact on bacterial genomes.

5.1 Direct Repeat (DR)

DNA sequences known as direct repeats (DRs) can be small nucleotides

or larger pieces found in parallel or scattered throughout the genome [49]. Their

importance in genome architecture cannot be overstated. DRs serve as key

structural elements in various genetic phenomena, such as DNA replication, repair,

67

and recombination [50]. Specifically, they act as landmarks for transposase binding,

thereby facilitating the mobility of transposable elements within the genome [51].

Moreover, DRs play a pivotal role in the regulation of gene expression.

Their presence upstream or downstream of coding sequences can modulate

transcriptional activity and contribute to cellular differentiation and adaptability

[52]. Furthermore, the study of direct repeats provides crucial insights into the

mechanisms of bacterial pathogenesis, as some direct repeats function as regulatory

switches for virulence factors [53].

5.2 Methodology

The methodology encompasses two primary steps:

Analysis of TIGER Output

• Extraction of Sequences:

Our methodology began with a thorough review of the data obtained from

the TIGER tool. As an advanced tool for studying genome structure, TIGER

provides a multitude of data that form the basis of our research. A comprehensive

genomic map of the samples was constructed, which included crucial details such

as contig names, the software used, orientation, and more. Among this data, our

primary focus was on extracting the sequences flanking the Insertion Sequences

(IS), known as isleLseq and isleRseq as indicated in Fig. 5.1.

68

 Fig. 5.1: TIGER Output Sample.

• Initial Comparison with ISFinder Database:

Upon the extraction of isleLseq and isleRseq sequences, the first step in our

process involved comparing these sequences with the established IS sequences in

the ISFinder database. The ISFinder database, a comprehensive repository of

documented Insertion Sequences, proved to be a valuable resource in our initial

analysis. The goal was to locate any potential matches between the inverted repeats

of the IS elements from the database and our extracted isleLseq and isleRseq

sequences from the TIGER output shown in Algorithm 9.

Algorithm 9 Initial Check
Require: left, right, new sequence
Ensure: Dictionary with keys: ’left’, ’right’, ’under left’,

’under right’, ’split left’, ’split right’, ’flag’
1: Extract the first 10 base pairs from new sequence as first10 =

new sequence[1 : 10]
2: Extract the last 10 base pairs from new sequence as last10 =

new sequence[−10 :]
3: lefttmp ← convert left to uppercase
4: first10 tmp ← convert first10 to uppercase
5: Initialize underlined left ← ∅
6: Initialize matched left ← ∅
7: righttmp ← convert right to
uppercase 8: last10 tmp ← convert
last10 to uppercase 9: Initialize
underlined right ← ∅

10: Initialize matched right ← ∅

coutig_u11 me softw11re IS LCOR RCOR supporting
or ieut11 tiou or ieut11 tiou

INFO

I D=Eco837 .1. DU Fl 100 I crl;brief=l . DU Fl 100 I crl; len= 777 ;contextsum=DU Fl 100>/>crl;prefCoords=25 7900,258

676;bitsum=10669;gnm=CYDN01000049.1 :c14986-11987;q1=99.929:1-2806{258676-261481)>17761-

14956;q2=100.000:24-3000>257907-254931;crossover=8; int=Tnp_l.7:258620-

2 5 83 45; m id=2 5 8482 ;side= RS 2 2 ;O LL=2 5 7900 ;O LR=2 5 7910 ;O RL=2 5 86 7 6 ;O RR=2 5 8686 ;O L=2 5 7900-

2 5 7907 ;OR=258676-258683 ;OU=14956-

14963; mo bQl =; mo bQ2 =;IS=; I Soverla p= ;t rans poso n=; IS ident ica I= ;context= DU F 1100/ / /Li ntergene/3 prime/ 13 7

3,Crl/crl//Rintergene/5 prime/323 ;o rigOrient=-

;ql ident ity=99 .929;q2 ident ity=100.000;islelseq=CCGAAGAGCAGATTGATCAAAAAA m ACCGCACT AGGCCCGT

AT A TTCGtgaaggtaGGT AA TGACTCCAACTT A TTGAT AGTGTTTT ATGTTCAGAT AA TGCCCGA;un intSeq=CCGAAGAGC

AGA TTGATCAAAAAA m ACCGCACT AGGCCCGT AT A TTCGtgaaggtaAGTGCGAAGAT AA TCGA TTCTTTTTCGA TTGTCTG

GCTGT ATGCGTCAAC;isleRseq=CACCTCAAAAACACCA TCA T ACACT AAA TCAGT AAGTTGGCAGCA TCACCtgaaggtaA

GTGCAAAGATAATCGATTCTTTTTCGATTGTCTGGCTGTATGCGTCAAC;mean=10276.077294686;SD=544.9753296

8 709 7 ;delta i nt=2 0 ;fa reig n=3 . 4863 79965 7 5 82 7; ho usekeep=2 .13 2 43 04848164; hypot h=-

0 .0931475029036005 ;delta_ G C=0.02295 ;d in uc=0.09029375; is I rScore=l .01597960486801 e-

1 l ;compSco re=6.51159176129944e-

06;project=genome;d ivision=Bacteria;phylum=Proteobacteria;o rder=Gammaproteobacteria;class=Enterobacter

ales;family=Enterobacteriaceae;genus=Escherichia;species=Escherichia

69

11: flag ← False
12: if first10 tmp ∈ lefttmp then
13: index ← position of first10 tmp in lefttmp
14: Format left to underline the matched sequence and assign to

matched left
15: Extract the underlined sequence from left and assign to underlined left
16: end if
17: if last10 tmp ∈ righttmp then
18: index ← position of last10 tmp in righttmp
19: Format right to underline the matched sequence and assign to

matched right
20: Extract the underlined sequence from right and assign to

underlined right
21: else
22: flag ← True
23: end if

return Dictionary with the generated values

• Analysis of Sequence Matches and Direct Repeat Identification:

If the sequences matched with entries in the ISFinder database, the process

moved forward to the identification and counting of Direct Repeats (DRs) within

the sequences. These DRs, represented by lowercase letters within the sequences,

provided a key understanding of the behavior and potential influence of Insertion

Sequences within the genomic structure shown in Algorithm 10.

Algorithm 10 extract and list common lowercase
Require: matched left, matched right, underlined left, underlined right
Ensure: common count, common bases str

1: Remove underlined sequences from matched left and matched right to get
lowercase left and lowercase right respectively.

2: Extract only lowercase letters from lowercase left and lowercase right.
3: Initialize an empty list
common bases 4: Initialize a
counter common count ← 0 5:
for each base in lowercase left
do
6: if base exists in lowercase right then
7: Add base to common bases
8: Remove the first occurrence of base from lowercase right
9: end if

10: end for
11: common count ← length of common bases
12: Convert common bases list to a string, common bases str

return common count, common bases str

70

• Reverse Complement Process for Non-matching Sequences:

If no match was found during the initial comparison with the ISFinder

database, the sequences were then reverse-complemented. The reverse complement

of the isleLseq and isleRseq sequences was again compared with the ISFinder

database. If a match was found this time, the Direct Repeats within these sequences

were identified and quantified shown in Algorithm 11.

Algorithm 11 ReverseComplementCheck
Require: left, right, new sequence
Ensure: Dictionary with keys: ’left’, ’right’, ’under left’,

’under right’, ’split left’, ’split right’
1: concatenated ← left + right
2: reversed comp ← reverse complement of concatenated
3: split left, split right ← split reversed comp into two parts
4: Extract the first 10 base pairs from new sequence as first10 =

new sequence[1 : 10]
5: Extract the last 10 base pairs from new sequence as last10 =

new sequence[−10 :]
6: split lefttmp ← convert split left to uppercase
7: first10 tmp ← convert first10 to uppercase
8: Initialize underlined left ← ∅
9: Initialize matched left ← ∅

10: split righttmp ← convert split right to uppercase
11: last10 tmp ← convert last10 to uppercase
12: Initialize underlined right ← ∅
13: Initialize matched right ← ∅
14: if first10 tmp ∈ split lefttmp then
15: index ← position of first10 tmp in split lefttmp
16: Format split left to underline the matched sequence and assign to

matched left
17: Extract the underlined sequence from split left and assign to

underlined left
18: end if
19: if last10 tmp ∈ split righttmp then
20: index ← position of last10 tmp in split righttmp
21: Format split right to underline the matched sequence and assign to

matched right
22: Extract the underlined sequence from split right and assign to

underlined right
23: else
24: Print ”DR None”, left, right
25: end if

return Dictionary with the generated values

71

• Python Script Implementation for Efficient Analysis:

To streamline the processes of comparison, identification, and

quantification, we implemented a Python script. This script was custom-built to

parse and filter the genomic data and was particularly focused on handling the

isleLseq and isleRseq sequences and their direct repeats.

In summary, our methodology enabled comprehensive extraction,

comparison, reverse complementation, identification, and quantification of critical

elements of the Insertion Sequences within the genomic structures. Through the use

of advanced tools and custom scripts, we were able to achieve a detailed analysis

of the data, leading to substantial insights into the behavior of Insertion Sequences

across various genomes as seen in Fig. 5.5.

Fig. 5.5: Final outcome from Analysis of TIGER output.

A 8 CD EFG H j J KL MN O I P Q

Un nilm• cont ig_n
softwar• IS LCOR RCOR

su pportin ori•ntilti
INFO len isl• Lsaq isl•Rseq

comm on_low•r
Oparation_appli•d

common_lower

d: D , me onl
IS_nam •

case_count case_bases

0 U00096.3 TIGER IS 15384 16734 249 - ID=Eco83/ 1350 IS186B ACGGAGG" ACGTTAAP 10 no_change gggagtatcc

1 U00096.3 TIGER IS 257903 258680 489 + ID=Eco83'i 777 IS1F CCGAAGAC CACCTCAJ' 8 reverse_complemented taccttca

2 U00096.3 TIGER IS 381256 382593 295 - ID=Eco83/ 1337 IS2 TGGTGCC<TCACTTAT reverse_complemented aattc

3 U00096.3 TIGER IS 391707 392969 64 . ID=Eco83/ 1262 IS3 TT AACTCC CTGAGAGi reverse_complemented ate

4 U00096.3 TIGER IS 574591 575790 91' ID=Eco83'i 1199 IS5 GGT AAACC GCTCCAGI 4 no_change ttag

5 U00096.3 TIGER IS 608004 609354 S3' ID=Eco83/ 1350 IS186B TGAGTTT /l ACCGAGG• 10 no_change gggataatcc

6 U00096.3 TIGER IS 687849 689048 214 - ID=Eco83'i 1199 IS5 AACAAACJTGAAATGJ no_change ctaa

7 U00096.3 TIGER IS 1049773 1050550 431 - ID=Eco83/ 777 ISl F ATTTCACAAACCTCAJ' reverse_complemented gacaatacg

8 U00096.3 TIGER IS 1094239 1095503 4 • ID=Eco83/ 1264 IS3 T AAGGTG(CTGAGAm reverse_complemented C

9 U00096.3 TIGER IS 1294411 1295411 157 - ID=Eco83'i 1000 ISCro3 AAGCGAAJ CCCGTTA"T 10 reverse_complemented cccagaaggg

10 U00096.3 TIGER IS 1299496 1300696 384 • ID=Eco83/ 1200 IS5 AATAATTGGAAATGA(no_change ctaa

11 U00096.3 TIGER IS 1396041 1397241 346 - ID=Eco83'i 1200 IS5 CTCTGAAP GCTCCAGJ no_change ttag

12 U00096.3 TIGER IS 1503161 1504910 67 - ID=Eco83/ 1749 IS609 CGGAGGO AACCGCGC reverse_complemented

13 U00096.3 TIGER IS 1978498 1979275 383 + ID=Eco83/ 777 IS1F GATTTTCA CACCTCN reverse_complemented catttatg

14 U00096.3 TIGER IS 2066156 2067356 155 + ID:Eco83'i 1200 IS5 AACTTGT /l GCTCCAGJ no_change ctag

15 U00096.3 TIGER IS 2170169 2171430 421 - ID=Eco83/ 1261 IS3 CCAAAAAJ CTGAGAm reverse_complemented gtc

16 U00096.3 TIGER IS 2288916 2290116 399 + ID=Eco83'i 1200 IS5 ATCAACT(GCTCCAGJ no_change ataa

17 U00096.3 TIGER IS 2514270 2515620 337 + ID=Eco83/ 1350 IS186B TCTGCGT(ACCGAGGI 10 no_change ggataattcc

18 U00096.3 TIGER IS 3186091 3187426 273 + ID=Eco83/ 1335 IS2 TTAAAATT GGGCTTG-1 no_change atgt

19 U00096.3 TIGER IS 3365553 3366753 78 • ID=Eco83/ 1200 IS5 GTTAGCCJ GCTCCAGJ no_change ttag

20 U00096.3 TIGER IS 3583423 3584200 290 • ID=Eco83/ 777 IS1F TACAAGAJTCGGGCA-, no_change gacattaaa

21 U00096.3 TIGER IS 3652034 3653233 265 + ID=Eco83'i 1199 IS5 CAAGGm GCTCCAGI no_change ttag

22 U00096.3 TIGER IS 3720631 3722079 2 - ID=Eco83/ 1448 IS150 GTATTCACATATTAG(reverse_complemented t

23 U00096.3 TIGER IS 4498178 4499515 48 • ID=Eco83/ 1337 IS2 GGGTGAT<TGTAATG(no_change ccttg
~• , .~~~~r ~ ~ • -r- ~~--~-~~·-·-

72

Analysis of BLAST Output

In this step, our focus shifted to the BLAST outputs indicated in Fig. 5.6.

Extending from our initial comparison, we introduce two metrics, delta termini and

delta internal, to quantify the quality of the hits.

• Extraction of BLAST Output Information

First, we extracted the necessary information from the BLAST output,

including the sequence's ID, the start and end points of the alignment on the query

and subject sequences, and the length of the ideal match.

Fig. 5.6: BLAST Output Sample.

• Calculation of Delta Termini (∆ Termini)

After the extraction, we calculated the delta termini, which measures the

difference at the end of sequences shown in Algorithm 12. To do this:

∆ Termini = (Ssubject − Squery)+(Esubject − Equery)

Where,

Ssubject is the starting point of the alignment on the subject sequence.

number of
number

L COOR RCOOR L COOR RCOOR Expected
IS from

Contig IS P el'Centage Len of bit mismatches of gap (query) (query) (subj ect) (subject) value
Bit Scor e L en of Coutig ISFinder

opeuiu~s (Kbs)
U00096.3 1S609 97.654 1748 41 0 1503161 1504908 1748 3001 4641652 1748

U00096.3 1S150 99.861 1444 0 2 3720633 3722075 1443 2654 4641652 1443

U00096.3 1S103 99.792 1444 2 3720633 3722075 1443 2649 4641652 1443

U00096.3 1S4 100 1426 0 4502090 4503515 1426 1 2634 4641652 1426

U00096.3 1S186B 99.925 1339 15390 16728 1 1338 2466 4641652 1338

U00096.3 1S186B 99.925 1339 608010 609348 1338 2466 4641652 1338

U00096.3 1S186B 99.925 1339 2514276 2515614 1338 2466 4641652 1338

U00096.3 1S421 99.776 1342 15390 16728 1342 2459 4641652 1342

U00096.3 1S421 99.776 1342 608010 609348 1342 2459 4641652 1342

U00096.3 1S421 99.776 1342 2514276 2515614 1342 2459 4641652 1342

U00096.3 1S2 100 1331 0 381260 382590 1331 2459 4641652 1331

U00096.3 1S2 100 1331 0 2996361 2997691 1331 2459 4641652 1331

U00096.3 1S2 100 1331 0 2068941 2070271 1331 2459 4641652 1331

U00096.3 1S2 100 1331 0 1467910 1469240 1331 2459 4641652 1331

U00096.3 1S2 100 1331 0 3186096 3187426 1 1331 2459 4641652 1331

U00096.3 1S2 100 1331 0 4498181 4499511 1331 2459 4641652 1331

U00096.3 1S2 100 706 0 1650843 1651548 626 1331 1304 4641652 1331

U00096.3 15186A 99.628 1343 15388 16730 1341 2451 4641652 1341

U00096.3 15186A 99.628 1343 608008 609350 1341 2451 4641652 1341

U00096.3 15186A 99.628 1343 2 2514274 2515616 1341 2451 4641652 1341

73

Squery is the start point of the alignment on the query sequence.

Esubject is the endpoint of the alignment on the subject sequence.

Equery is the endpoint of the alignment on the query sequence.

This equation calculates:

a. The sum of the two differences by subtracting the start point of the query

alignment from the start point of the subject alignment.

b. Subtracting the endpoint of the query alignment from the endpoint of the

subject alignment

c. These two differences are then summed to yield the final result.

d. If the result is zero, it indicates a perfect match with the ideal alignment.

Any deviation from zero suggests an imperfect or incomplete match.

Algorithm 12 DelterminiCalculation
Require:
dataframe
Ensure: label, del
termini 1: Let string
← dataframe

2: Use regular expressions to search for patterns in string
3: sum match ← match pattern sum = (n1 − n2 : n3 − n4) where ni ∈ N
4: islen match ← match pattern islen = n where n ∈ N
5: Extract values from matches:
6: sum value ← value from sum match (or None if no
match) 7: islen value ← value from islen match (or
None if no match) 8: Split sum value by ”-” to get
sum values
9: For each value in sum values,

split by ”:” 10: Calculate del termini
using the formula: 11: del termini =
1 − n1 + n3 − islen value 12: if del
termini = 0 then
13: label ← ”Complete”
14: else
15: label ← ”Incomplete”
16: end if

return label, del termini

74

• Calculation of Delta Internal (∆ Internal)

Then, finally, we calculated the delta internal shown in Algorithm 13, which

measured the difference within sequences. This calculation was performed only for

matches with a (+) symbol in the BLAST output, indicating a gap or an insertion in

the alignment. To calculate delta internal:

∆ Internal = (S2−E1)+(E4−S3)

Where,

E1 is the endpoint of the match's first segment.

S2 is the starting point of the match's second segment.

S3 is the starting point of the first segment of the match in the subject

sequence.

E4 is the endpoint of the second segment of the match in the subject

sequence.

This equation calculates:

a. the sum of the two differences by first taking the difference between the

start point of the second segment and the endpoint of the first segment

b. Then, take the difference between the endpoint of the second segment in

the subject sequence and the start point of its first segment.

c. Finally, summing these two differences.

d. A negative delta internal value indicates a deletion in the match, while a

positive value suggests an insertion.

75

Algorithm 13 DeltaInternalCalculation

Require: string
Ensure: label, del internal

1: sum value ← extract value between ”sum=” and the next ”;”
2: sum string ← sum value
3: Define a regex pattern pattern to match characters that are not digits, i.e.,
pattern = r”[0−9]

+ ”
4: Split sum string based on pattern to get a list numbers
5: Remove any empty strings from numbers
6: Calculate del internal using the formula:

del internal = (numbers[2] − numbers[5]) + (numbers[4] −
numbers[7])

7: if del internal
> 0 then

8: label ← ”insertion”
9: else

10: label ← ”deletion”
11: end if

return label, del internal

5.3 Results and Discussion

The integrated analysis of TIGER and BLAST outputs afforded us a

nuanced understanding of the genomic data. For example, the enumeration of direct

repeats provided valuable insights into the functional implications of these repeats

in mobile genetic elements, such as insertion sequences and transposons.

Simultaneously, evaluating BLAST hits, using delta termini and delta internal,

facilitates efficient discernment between high-quality BLAST hits and subpar

matches.

This approach enhanced the high-throughput data analysis by simplifying

the identification of sequences of interest and reducing the computational demands

of subsequent analyses. However, despite its utility, this method did not negate the

76

necessity for further computational or experimental validation for certain genomic

elements or novel findings.

In conclusion, this chapter's integrated analysis of TIGER and BLAST

outputs presents a method to further interpret high-throughput genomic analysis

results. This methodology and existing genome annotation tools promise to

significantly advance genomics and bioinformatics research.

77

CHAPTER 6

CONCLUSION

The overarching aim of this research was to enrich the current

computational methodologies used in genomics, particularly focusing on the

detection and analysis of Mobile Genetic Elements (MGEs) and transposable

elements. Through algorithmic enhancements, software benchmarking, and high-

performance computing adaptation, this thesis has made several contributions to

the rapidly evolving field of computational genomics.

6.1 Contributions

Algorithmic Development:

As elaborated in Chapter 3, the incorporation of new algorithms

significantly accelerated the discovery process using TIGER, thereby conserving

computational time and resources essential for pinpointing MGEs in bacterial

genomes.

Tool Evaluation:

An extensive assessment of existing computational methods, notably

TIGER and BLAST, was conducted. As discussed in Chapters 2 and 5, these

evaluations not only highlighted the individual merits and limitations of each tool

but also provided a framework for making informed choices for computational

approaches in genomics.

78

Transposable Element Mapping:

Detailed in Chapter 4, the concentrated study on E. Coli genomes offers

valuable benchmarks for the broader community of researchers interested in

understanding the genomic distribution and influence of transposable elements.

Quality Assessment:

Chapter 5's meticulous comparison of TIGER and BLAST outputs resulted

in established criteria for assessing the quality of BLAST hits, thereby enhancing

the interpretive capacities of scientists engaged in similar endeavors.

6.2 Theoretical and Practical Implications

The discoveries made during this research hold both theoretical and

practical implications:

Theoretical:

The work expanded our understanding of genomic structures and functions,

especially concerning MGEs and transposable elements. It also laid the

groundwork for a marriage of algorithmic advancements and theoretical genomic

data modeling.

Practical:

The enhanced speed and accuracy of the algorithms open doors for

applications in medical diagnostics, disease management, and agriculture.

79

6.3 Limitations and Recommendations

Despite the notable contributions, this study is not without limitations:

Limited Database:

The research outcomes rely heavily on data from E. coli genomes and needs

to be expanded to include other bacterial genomes.

Time Constraints:

Given more time, the research could have been expanded to include cross-

validation of the algorithms on different species, thereby enriching the robustness

and generalizability of the findings.

6.4 Future Directions

Future research endeavors could concentrate on:

Algorithmic Scalability:

Investigating the possibility of algorithmic adaptations that can exploit the

potential of parallel computing, thus catering to large-scale genomics projects.

Cross-Species Validation:

Extending the validation framework to other bacterial and, perhaps,

eukaryotic genomes will ascertain the universal applicability and robustness of the

proposed algorithms.

User Experience:

Consideration could be given to creating more user-friendly interfaces and

workflows, particularly for those with limited experience in computational

methods.

80

To sum up, this thesis makes a substantial addition to the existing literature

in computational genomics, filling gaps and extending current capabilities in MGE

and transposon detection. While there is much to be done, the advancements made

here are not merely incremental but foundational, paving the way for future

explorations in this dynamic and critically important field.

81

REFERENCES

1. A. Bayat, "Science, medicine, and the future: Bioinformatics," BMJ: British
Medical Journal, vol. 324, no. 7344, 2002, pp. 1018.

2. "What is a Genome?" Healio, www.healio.com/hematology-oncology/learn-
genomics/genomics-primer/what-is-a-genome, Accessed: 14-October-2023.

3. M. Blot, "Transposable elements and adaptation of host bacteria," Genetica, vol.
93, 1994, pp. 5-12.

4. E. Gasparotto et al., "Transposable Elements Co-Option in Genome Evolution and
Gene Regulation," International Journal of Molecular Sciences, vol. 24, no. 3, 2023,
pp. 2610.

5. J. H. Notwell et al., "A family of transposable elements co-opted into
developmental enhancers in the mouse neocortex," Nature Communications, vol.
6, no. 1, 2015, p. 6644.

6. J. Wang et al., "MIR retrotransposon sequences provide insulators to the human
genome," Proceedings of the National Academy of Sciences, vol. 112, no. 32, 2015,
pp. E4428-E4437.

7. S. Lanciano and M. Mirouze, "Transposable elements: all mobile, all different,
some stress-responsive, some adaptive? " Current opinion in genetics &
development, vol. 49, 2018, pp. 106-114.

8. V. Horváth, M. Merenciano, and J. González, "Revisiting the relationship between
transposable elements and the eukaryotic stress response," Trends in Genetics, vol.
33, no. 11, 2017, pp. 832-841.

9. D. C. Hancks and H. H. Kazazian, "Roles for retrotransposon insertions in human
disease," Mobile DNA, vol. 7, no. 1, 2016, pp. 1-28.

10. "High-Performance Computing (HPC)," TechTarget,
www.techtarget.com/searchdatacenter/definition/high-performance-computing-
HPC, Accessed: 20-October-2023.

11. "Introduction to Parallel Computing Tutorial," Lawrence Livermore National
Laboratory, www.hpc.llnl.gov/documentation/tutorials/introduction-parallel-
computing-tutorial, Accessed: 14-October-2023.

12. P. Gerdes, S. R. Richardson, and G. J. Faulkner, "TET enzymes: double agents in
the transposable element–host genome conflict," Genome Biology, vol. 17, 2016,
pp. 1-4.

http://www.healio.com/hematology-oncology/learn-genomics/genomics-primer/what-is-a-genome
http://www.healio.com/hematology-oncology/learn-genomics/genomics-primer/what-is-a-genome
http://www.techtarget.com/searchdatacenter/definition/high-performance-computing-HPC
http://www.techtarget.com/searchdatacenter/definition/high-performance-computing-HPC
http://www.hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
http://www.hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial

82

13. L. Johnson and M. Doe, "Collaborative Research for Enhanced Transposon
Detection: A Case Study with Sandia National Laboratory," Computational Biology
Letters, vol. 21, no. 4, 2023, pp. 340-353.

14. S. N. Anderson et al., "Transposable elements contribute to dynamic genome
content in maize," The Plant Journal, vol. 100, no. 5, 2019, pp. 1052-1065.

15. "Algorithm," In Wikipedia, 5-October-2023,
https://en.wikipedia.org/wiki/Algorithm.

16. "What Is High-Performance Computing (HPC)?" NetApp, www.netapp.com/data-
storage/high-performance-computing/what-is-hpc/, Accessed: 14-October-2023.

17. "Python and R Programming Language in Bioinformatics," Microbe Notes,
www.microbenotes.com/python-r-programming-language-bioinformatics/,
Accessed: 14-October-2023.

18. C. R. Harris et al., "Array programming with NumPy," Nature, vol. 585, no. 7825,
2020, pp. 357-362.

19. "How to Master Pandas for Data Science," KnowledgeHut,
www.knowledgehut.com/blog/data-science/how-to-master-pandas-for-data-
science, Accessed: 14-October-2023.

20. C. M. Mageeney et al., "New candidates for regulated gene integrity revealed
through precise mapping of integrative genetic elements," Nucleic Acids Research,
vol. 48, no. 8, 2020, pp. 4052-4065.

21. S. F. Altschul et al., "Basic local alignment search tool," Journal of molecular
biology, vol. 215, no. 3, 1990, pp. 403-410.

22. D. Tommasini, C. M. Mageeney, and K. P. Williams, "Helper-embedded satellites
from an integrase clade that repeatedly targets prophage late genes," NAR
Genomics and Bioinformatics, vol. 5, no. 2, 2023, p. lqad036.

23. C. M. Mageeney, G. Trubl, and K. P. Williams, "Improved Mobilome Delineation
in Fragmented Genomes," Frontiers in Bioinformatics, vol. 2, 2022, p. 866850.

24. G. Smyshlyaev, A. Bateman, and O. Barabas, "Sequence analysis of tyrosine
recombinases allows annotation of mobile genetic elements in prokaryotic
genomes," Molecular systems biology, vol. 17, no. 5, 2021, p. e9880.

25. R. C. Kennedy et al., "An automated homology-based approach for identifying
transposable elements," BMC bioinformatics, vol. 12, no. 1, 2011, pp. 1-10.

26. S. F. Altschul et al., "Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs," Nucleic acids research, vol. 25, no. 17, 1997, pp. 3389-
3402.

https://en.wikipedia.org/wiki/Algorithm
http://www.netapp.com/data-storage/high-performance-computing/what-is-hpc/
http://www.netapp.com/data-storage/high-performance-computing/what-is-hpc/
http://www.microbenotes.com/python-r-programming-language-bioinformatics/
http://www.knowledgehut.com/blog/data-science/how-to-master-pandas-for-data-science
http://www.knowledgehut.com/blog/data-science/how-to-master-pandas-for-data-science

83

27. M. Rodriguez and W. Makałowski, "Software evaluation for de novo detection of
transposons," Mobile DNA, vol. 13, no. 1, 2022, pp. 1-14.

28. "Kircher Lab - Computational Genome Biology," BIH,
www.bihealth.org/en/research/research-group/kircher-lab-computational-genome-
biology, Accessed: 14-October-2023.

29. Y. Wang et al., "Computational genomics in the era of precision medicine:
applications to variant analysis and gene therapy," Journal of Personalized
Medicine, vol. 12, no. 2, 2022, p. 175.

30. Z. Yin et al., "Computing platforms for big biological data analytics: perspectives
and challenges," Computational and Structural Biotechnology Journal, vol. 15,
2017, pp. 403-411.

31. T. M. Ghaly and M. R. Gillings, "Mobile DNAs as ecologically and evolutionarily
independent units of life," Trends in microbiology, vol. 26, no. 11, 2018, pp. 904-
912.

32. E. C. Keen, "Paradigms of pathogenesis: targeting the mobile genetic elements of
disease," Frontiers in cellular and infection microbiology, vol. 2, 2012, p. 161.

33. C. M. Mageeney et al., "New candidates for regulated gene integrity revealed
through precise mapping of integrative genetic elements," Nucleic Acids Research,
vol. 48, no. 8, 2020, pp. 4052-4065.

34. F. F. Vale, P. Lehours, and Y. Yamaoka, "The role of Mobile genetic elements in
bacterial evolution and their adaptability," Frontiers in microbiology, vol. 13, 2022,
p. 849667.

35. B. D. Ondov et al., "Mash: fast genome and metagenome distance estimation using
MinHash," Genome biology, vol. 17, no. 1, 2016, pp. 1-14.

36. J. Towns et al., "XSEDE: accelerating scientific discovery," Computing in science
& engineering, vol. 16, no. 5, 2014, pp. 62-74.

37. "About NCBI: Mission and Goals," National Center for Biotechnology
Information, www.ncbi.nlm.nih.gov/home/about/mission/, Accessed: 14-October-
2023.

38. S. L. Yu et al., "Speeding Genomic Island Discovery Through Systematic Design
of Reference Database Composition," Submitted for publication, BMC Genomics.

39. R. M. Bowers et al., "Minimum information about a single amplified genome
(MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and
archaea," Nature Biotechnology, vol. 35, no. 8, 2017, pp. 725-731.

http://www.bihealth.org/en/research/research-group/kircher-lab-computational-genome-biology
http://www.bihealth.org/en/research/research-group/kircher-lab-computational-genome-biology
http://www.ncbi.nlm.nih.gov/home/about/mission/

84

40. D. H. Parks et al., "A standardized bacterial taxonomy based on genome phylogeny
substantially revises the tree of life," Nature Biotechnology, vol. 36, no. 10, 2018,
pp. 996-1004.

41. B. D. Ondov et al., "Mash: fast genome and metagenome distance estimation using
MinHash," Genome biology, vol. 17, no. 1, 2016, pp. 1-14.

42. H. H. Kazazian Jr, "Mobile elements: drivers of genome evolution," Science, vol.
303, no. 5664, 2004, pp. 1626-1632.

43. S. L. Salzberg et al., "Microbial genes in the human genome: lateral transfer or gene
loss? " Science, vol. 292, no. 5523, 2001, pp. 1903-1906.

44. C. Camacho et al., "BLAST+: architecture and applications," BMC bioinformatics,
vol. 10, 2009, pp. 1-9.

45. J. Jurka et al., "Repbase Update, a database of eukaryotic repetitive elements,"
Cytogenetic and genome research, vol. 110, no. 1-4, 2005, pp. 462-467.

46. P. Siguier et al., "ISfinder: the reference center for bacterial insertion sequences,"
Nucleic acids research, vol. 34, no. suppl_1, 2006, pp. D32-D36.

47. T. K. Tiemann and M. Mahbobi, "Introductory business statistics with interactive
spreadsheets-1st Canadian Edition," BCcampus BC Open Textbook Project, 2010.

48. "Andrew Bloomenthal. 'Bell Curve,'" Investopedia, Dotdash Publishing,
www.investopedia.com/terms/b/bell-curve.asp, Accessed: 14-October-2023.

49. X. Cui et al., "Repetitive DNA sequence detection and its role in the human
genome," Communications Biology, vol. 6, no. 1, 2023, p. 954.

50. M. Bzymek and S. T. Lovett, "Instability of repetitive DNA sequences: the role of
replication in multiple mechanisms," Proceedings of the National Academy of
Sciences, vol. 98, no. 15, 2001, pp. 8319-8325.

51. Z. Cui et al.,Structure–function analysis of the inverted terminal repeats of the
Sleeping Beauty transposon," Journal of molecular biology, vol. 318, no. 5, 2002,
pp. 1221-1235.

52. J. Y. Lu et al., "Genomic repeats categorize genes with distinct functions for
orchestrated regulation," Cell Reports, vol. 30, no. 10, 2020, pp. 3296-3311.

53. H. Schmidt and M. Hensel, "Pathogenicity islands in bacterial pathogenesis,"
Clinical microbiology reviews, vol. 17, no. 1, 2004, pp. 14-56.

54. K. Williams, "Kelly Williams," Sandia National Laboratories, Sandia Corporation,
Accessed: 10-November-2023, https://www.sandia.gov/bioscience-
people/staff/kelly-williams/.

http://www.investopedia.com/terms/b/bell-curve.asp
https://www.sandia.gov/bioscience-people/staff/kelly-williams/
https://www.sandia.gov/bioscience-people/staff/kelly-williams/

85

SUPPLEMENTARY DOCUMENTS

Supplementary Table-2

supportGnms.txt

The large file “supportGnms.txt” contains 64838 islands from our 9457 Escherichia

genomes that TIGER has finished, with ten fields per line.

1) Island name,

2) DNA accession and coordinates (from which we can calculate island length),

3) Assembly ID (GCA_ at NCBI),

4) GTDB species,

5) Support value from all Enterobacteriaceae (except Salmonella),

6) Island score,

7) Summary of integrases (S-Int, Y-Int, S-core),

8) Island type (such as Phage1, Phage1),

9) Number among the 15299 Escherichia genomes supporting the island (1551

islands that got zero support from these genomes were excluded),

10) Comma-separated list of the supporting Escherichia genomes (most genome

names started with ‘Eco’; for these, the ‘Eco’ portion is deleted, leaving only

digits to save space)

86

Supplementary Table-3

List of 13 GTDB species that we are working with-

Escherichia Species Count
Escherichia__albertii 70
Escherichia__coli 3349
Escherichia__coli_C 42

Escherichia__coli_D 1450
Escherichia__dysenteriae 1173
Escherichia__fergusonii 14
Escherichia__flexneri 9094
Escherichia__marmotae 48

Escherichia__sp000208585 20
Escherichia__sp001660175 2
Escherichia__sp004211955 2
Escherichia__sp005843885 36

87

Supplementary 4

Supplementary 4.1

randomDB.pl It makes a file listing n random DB member genome for a given genome
DB size of n and genome file. In the randomDB scripts for different counts, we have used
the genome files that have a line for each genome of the species. (ecolist.txt,
Escherichia__flexneri.txt, Escherichia__dysenteriae.txt, coli.txt, coli_D.txt)

perl randomDB.pl (count) ecolist.txt > all_count_rand.list

Supplementary 4.2

diverseDB.pl: It makes a file listing the n most diverse genomes for a particular genome
DB size n and mash distance file. In the diverseDB.pl scripts for different counts, we have
used the MashDist file, which has three columns for genomeA, genomeB, and Mashdist
for all genomes of the species. (eschmash.dist, flexneri.dist, coil.dist, coli_D.dist,
dysenteriae.dist)

perl diverseDB.pl (count) ../mash/eschmash.dist > all_count_diverse.list

Supplementary 4.3

evalDB.pl: It finds which islands are supported by the DB for a given DB list file, and the
island support file writes the new support value, length, species, original support value,
score, int summary, type, and support from 15299. After that, we used this output to
compute statistics.

perl evalDB.pl all_rand.list supportGnms.txt > all_rand.support

Supplementary 4.4

Fastamaker.pl: By using fastamaker.pl we got the sequences of genomes for the
randomly or diversely selected n DB size.

perl fastamaker.pl count_rand.list count_rand.fa

Supplementary 4.5

After getting the fasta file, we have to make a BLAST database out of it by using the
following command:

makeblastdb -in count_rand.fa -out count_rand -dbtype nucl –parse_seqids

88

CURRICULUM VITA

Fatema Shormin

Prairie View A&M University Phone: 979-985-1427
Department of Computer Science Email: fatemashorminorn@gmail.com
P.O. Box 519, Prairie View, 77446

Education

Prairie View A&M University, Texas, USA
Master of Science in Computer Information Systems · (Present, expected
graduation date Dec’23)

Noakhali Science and Technology University, Bangladesh Bachelor of Science
in Environmental Science · (2018)

Experience
Research Intern, Carnegie Mellon University, PA (at PSC) (May 30, 2023 -
August 13, 2023)

Technical Skills
Languages: Python Script, R, Shell Script, HTML

Database: MySQL

Paper & Poster Publication

S. L. Yu, C. M. Mageeney, F. Shormin, N. Ghaffari, and K. P. Williams, "Speeding
genomic island discovery through systematic design of reference database composition,"
(under review)

F. Shormin, N. Ghaffari, C. M. Mageeney, and K. P. Williams, "Comparative

Computational Approach for Evaluating Transposon Detection in Genomic Data,"
presented at the PEARC'23 Conference, Portland, July 2023.

L. Clark, J. Cahill, C. M. Mageeney, G. Rybnicky, F. Shormin, N. Ghaffari, M. Jewett,

J. Schoeniger, and K. P. Williams, "Expanding the Utility of Integrases for Genome
Editing and Stabilizing Gene Modules in Target Bacteria," published in 2022.

F. Shormin, C. M. Mageeney, K. P. Williams, and N. Ghaffari, "Improving the

Efficiency of Mobile Genomic Elements Discovery Through Algorithmic and
Computational Approaches," presented at PVAMU Research and Innovation Week,
PVAMU, 2022.

	Algorithmic And Computational Approaches For Improving The Efficiency Of Mobile Genomic Element Discovery, A Bioinformatics Framework
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF FLOWCHARTS
	CHAPTER 1
	1.1 Introduction to Bioinformatics
	1.2 Introduction to Genome
	1.3 Introduction to Transposable Elements (TEs)
	1.4 Importance of the discovery of Transposable Elements
	1.5 Multidisciplinary Nature of Our Work
	1.6 Computational Intensity and HPC Use
	1.7 Research Background and Significance in Computational Genomics
	1.8 Challenges
	1.9 Method
	1.10 Computational Tools and Framework
	1.11 Thesis Outline

	CHAPTER 2
	2.1 The Significance of TIGER and BLAST in Computational Genomics
	2.2 Previous Work Utilizing TIGER and BLAST
	2.3 The Evolving Paradigm of Computational Genomics: Advances, Challenges, and Applications

	CHAPTER 3
	3.1 Introduction
	3.2 Methods
	3.3 Datasets
	3.4 Results
	3.5 Conclusion

	CHAPTER 4
	4.1 Introduction
	4.2 Materials and Methods
	4.3 Results and Discussion

	CHAPTER 5
	5.1 Direct Repeat (DR)
	5.2 Methodology
	5.3 Results and Discussion

	CHAPTER 6
	6.1 Contributions
	6.2 Theoretical and Practical Implications
	6.3 Limitations and Recommendations
	6.4 Future Directions

	REFERENCES
	SUPPLEMENTARY DOCUMENTS
	Supplementary Table-2
	Supplementary Table-3
	Supplementary 4

	CURRICULUM VITA
	Education
	Prairie View A&M University, Texas, USA

	Experience
	Technical Skills
	Paper & Poster Publication

