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ABSTRACT 

 ALGORITHMIC AND COMPUTATIONAL APPROACHES FOR IMPROVING THE 

EFFICIENCY OF MOBILE GENOMIC ELEMENT DISCOVERY, A 

BIOINFORMATICS FRAMEWORK 

(December 2023) 

Fatema Shormin, B.S., Noakhali Science and Technology University 
Chair of Advisory Committee: Dr. Noushin Ghaffari 

Co-Chair of Advisory Committee: NA 
 

Through this research, we are showcasing the application of computational 

approaches to the discoveries in the life sciences spectrum. Our current research not only 

focused on mobile genetic elements but also developed the computational methods that 

enabled these findings. We combined the biology sciences and computer science in our 

research, which is essentially multidisciplinary. To that end, this research intricately probed 

the role and implications of mobile genetic elements, emphasizing transposable elements. 

These dynamic components wielded substantial influence over genomic architecture's 

structure, function, and evolutionary adaptations. An integral component of our study is the 

innovative computational tool, Target/IGE Retriever (TIGER), employed to detect and map 

these mobile genetic elements. Given the pronounced impact of these elements on gene 

regulation and their involvement in various genetic diseases, their precise detection and 

mapping within a genome were crucial for understanding intricate genetic dynamics and 

disease etiology. 
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Addressing computational challenges, the study introduces three new algorithms to 

enhance TIGER's performance, tested using E. coli genomes. This testing aimed to 

determine the impact of database size reduction on result accuracy and performance. 

Findings indicate that while prophage yields are less affected by database size, non-phage 

islands show sensitivity, suggesting performance improvements with smaller databases. 

Furthermore, the research conducts a comparative analysis of TIGER and BLAST 

outputs, focusing on validating transposons identified in E. coli genomes. This involves 

cross-referencing with established databases and employing statistical methods for match 

categorization, enhancing the authenticity of transposon location identification.. 

Within the purview of this rigorous analytical process, particular attention is 

accorded to evaluating sequence alignment results and the quality of BLAST hits, focusing 

specifically on identifying direct repeats within insertion sequences. The study underscores 

TIGER's efficacy in transposon discovery and yields critical insights into its performance 

relative to BLAST. 

This research illuminates potential avenues for enhancing computational tools in 

bioinformatics, all within the larger framework of contributing significantly to genomics 

and bioinformatics research's ongoing advancements. Our work deepens our understanding 

of the role and influence of mobile genetic elements on genomic architecture.  

Index Term: Computational biology, bioinformatics, mobile genetic elements, 

transposon, validation, database.  
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This thesis (dissertation) follows the style of the IEEE 

CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction to Bioinformatics 

Bioinformatics is far more than a mere buzzword in the scientific 

community. It represents a synergistic intersection of multiple scientific disciplines, 

including but not limited to computer science, mathematics, physics, and biology 

(Figure 1.1). In essence, bioinformatics acts as a robust computational framework 

that aids in the storage, retrieval, and nuanced interpretation of big biological data. 

Its interdisciplinary nature allows researchers to manage and analyze data that 

would otherwise be overwhelmingly complex or voluminous, making it 

indispensable in today's advanced biological and medical research paradigms [1]. 

1.2 Introduction to Genome 

Consider the genome as the comprehensive blueprint for an organism's 

existence, much like an architectural plan for a skyscraper. It holds the totality of 

genetic instructions essential for constructing, sustaining, and replicating life. The 

genome is constituted by a sequence of nucleotide bases, namely adenine (A), 

thymine (T), cytosine (C), and guanine (G), that form pairs to construct the DNA 

double helix. These bases are the essential building blocks of DNA, and their 

specific sequences encode the diverse range of functions and structures within an 

organism. While the human genome, along with those of other cellular organisms, 

is constructed from deoxyribonucleic acid (DNA) incorporating both nuclear and 
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mitochondrial components it is worth noting that not all genomes are DNA-based. 

For instance, some viruses have genomes made of ribonucleic acid (RNA), a related 

but distinct molecular structure [2]. 

1.3 Introduction to Transposable Elements (TEs) 

Transposable elements (TEs), a subset of mobile genetic elements, stand as 

dynamic sequences with the capacity to change their genomic positions. These 

mobile genetic elements, including TEs, have a major impact on the structure of the 

genome. The strange nature of TE mobility is that it may cause changes that are 

harmful to an organism, such as sequence deletions or interruptions of vital genes. 

Unless there are counterbalancing variables to lessen this mutational load, such 

negative impacts frequently result in their progressive removal from populations of 

haploid microbes like Escherichia coli. On the other hand, TEs and other mobile 

elements can spread across cells thanks to processes like horizontal gene transfer, 

but usually at rates too slow to offset their detrimental effects on the host. As a 

result, transposable elements, as well as the larger group of mobile genetic 

elements, play a variety of functions in the genomic landscape, from being 

disruptive to possibly adaptive [3]. 

1.4 Importance of the discovery of Transposable Elements 

Transposable elements (TEs) are important players in the dynamics of 

genome evolution, its functional landscape, and even its vulnerability to different 

illnesses; therefore, solving its mysteries is crucial. Recent developments in the 

genomic sciences and extensive practical research have significantly expedited the 
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exploration of these TEs, which are prominent elements in the genome architecture 

of eukaryotes [4]. Understanding TEs is crucial for several reasons: 

• Genome Evolution:  

TEs have shaped the structure and organization of genomes throughout 

evolution. They can cause genetic rearrangements, insertions, and deletions, 

leading to genomic diversity and contributing to the evolution of species [4]. 

• Genome Regulation:  

TEs can influence gene expression by acting as regulatory elements. They 

can be co-opted into developmental enhancers, altering the expression patterns of 

nearby genes  [5]. TEs can also provide insulators to the genome, influencing the 

spatial organization of chromatin and gene regulation [6]. 

• Stress Response:  

TEs have been implicated in the response to environmental stress. They can 

be activated under stress conditions and contribute to the activation of stress-

responsive genes [7]. This suggests that TEs may play a role in adaptation to 

changing environments [8]. 

• Disease and Pathology:  

TEs have been associated with various diseases and pathological conditions. 

They can disrupt gene function by inserting into coding regions or regulatory 

regions, leading to genetic disorders. TEs can also contribute to the spread of 

heterochromatin and epigenetic modifications associated with diseases such as 

cancer [9]. 
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1.5 Multidisciplinary Nature of Our Work 

When defining the multidisciplinary nature of the research project, it is 

important to recognize that we did not operate within the distinct areas of computer 

science or biology; rather, we combined these fields in a complementary 

relationship further enhanced by statistical inference and mathematical modeling. 

We use computer algorithms as instruments and extensions of inquiry that help us 

navigate the complex functioning of biological systems. Using this cooperative 

methodology, our work functions at the nexus of the biological and computational 

sciences, representing a comprehensive methodological framework that requires 

the joint knowledge of mathematicians, biologists, and bioinformaticians. This kind 

of multidisciplinary interaction opens up new directions for our collective scientific 

understanding of genomic architecture and function and for advancing the 

individual areas concerned. 

1.6 Computational Intensity and HPC Use 

Our research's computational complexity necessitates an infrastructure that 

can accurately and efficiently handle big, complicated data sets. In this situation, 

HPC, or high-performance computing, is crucial. Compared to traditional computer 

systems, high-performance computing, or HPC, employs numerous processors to 

complete complicated, data-intensive computations much faster [10].  

Using HPC is an essential requirement for our study, not an optional feature. 

The computational needs of the techniques used to examine genomic sequences for 

mobile genetic elements, including transposons, make it challenging and time-

consuming to do these computations on typical computer systems. Parallel 
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computing methods, in which many processors do distinct portions of a 

computational work concurrently, are made possible by HPC. This allows for more 

complex modeling and analysis, which may incorporate several techniques for 

statistical robustness, error-checking, and cross-validation, in addition to 

significantly reducing the calculation time. As a result, using HPC makes research 

possible more quickly and improves the overall quality and dependability of the 

results [11]. 

 

Fig 1.1: Interaction of disciplines that have contributed to the formation of 

bioinformatics [1]. 

 

In the realm of computational genomics, we can think of transposable 

elements as double agents. They can either stabilize the genetic landscape or throw 

it into chaos [12]. We have come a long way with bioinformatics and super-fast 

sequencing technology, but let us be honest—our computer methods for spotting 

these genetic chameleons are not up to snuff. This is a big deal when we are running 

massive studies that demand a lot of computer power. So, what is this research all 

Biology 

Maths/physics 
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about? We are rolling up our sleeves to fine-tune the algorithms we already have 

and make sure they run like a dream on high-end computer systems. 

1.7 Research Background and Significance in Computational Genomics 

Transposons are universal as Mobile Genetic Elements in DNA that have 

the potential to transpose across the genome. This mobility exerts a dual influence: 

while transposons play a pivotal role in gene regulation and architectural 

modification of genomes and even act as catalysts in evolutionary processes, they 

also pose risks to genomic stability [13]. Detecting these elements represents a 

significant computational challenge. We have embarked on a collaborative research 

initiative with Sandia National Laboratory to ameliorate existing limitations in 

transposon detection methodologies. Leveraging their specialized software, 

TIGER, the project aimed to improve the accuracy and time efficiency of 

identifying these elements within genomes. This cooperative venture aspired to 

resolve the paradoxical nature of transposons by enhancing both the fidelity and 

timeliness of their detection, thereby contributing to our understanding of their roles 

in genetic variation and potential genomic instability [14]. 

1.8 Challenges 

It is computationally difficult to identify transposons within genomes. It is 

like trying to find a needle in a haystack. There are multiple challenges involved 

with this task: 

• Too Many False Alarms:  

When we run our computer programs to search for transposons, we end up 

with many "false positives." These are instances where the program tells us we have 
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found a transposon, but upon closer inspection, it turns out to be a mistake. This is 

a big issue because we cannot fully trust the initial results. Someone has to go 

through them all, one by one, to figure out which are legitimate, and which are not. 

This is not only tedious but also drains both computational and human resources 

that could be better utilized elsewhere. 

• Missing the Real Deal:  

We also run into "false negatives." This is when genuine transposons are 

there, but the program misses them. Our understanding of the genomic landscape 

becomes incomplete or flawed when this happens. It is like trying to solve a puzzle 

but realizing too late that some pieces are missing. It hampers our ability to make 

accurate scientific interpretations or medical diagnoses. 

• Computer Headaches:  

Using powerful computers to do this work should make life easier, but it is 

not as simple as hitting the "go" button. We have to tweak the algorithms just right 

so that tasks are shared and balanced among the computer's resources. 

• Timing Issue:  

All these issues combine to create an incredibly time-consuming process. 

Furthermore, in science, time is often of the essence. Delays can have significant 

downstream effects, whether a research deadline, a medical diagnosis, or a bid for 

research funding. Moreover, the more time we spend troubleshooting these issues, 

the less time we have for other important tasks. 

So, we have got our work cut out for us. We need more innovative ways to 

find these transposons without all these hang-ups. 
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1.9 Method 

Algorithmic Development 

In the initial stage of our research, we dissected existing algorithms rather 

than accepting them as they were. Our scrutiny was motivated by a dual objective: 

to accelerate the computational process and to minimize false discoveries. As we 

navigated large genomic datasets, speed became a non-negotiable requirement. 

Likewise, the issue of false discoveries cannot be ignored if we aim for meaningful, 

accurate results. Therefore, our adjustments to existing algorithms involved 

database size reduction, the incorporation of new decision-making rules, or even a 

complete overhaul of the foundational mathematical frameworks. In summary, our 

endeavor aims to refine and tailor these algorithms to enhance their speed and 

precision in transposon detection. 

Validation and Benchmarking 

After the refinement of algorithms, it becomes imperative to test their 

efficacy rigorously [15]. We can imagine putting a newly engineered car through 

its paces in crash tests and speed trials before letting it onto the highways. In our 

research, these tests manifest as validation and benchmarking procedures. We 

exclusively used real-world genomic datasets for this research to conduct these 

evaluations. The use of actual genomic data provided a robust framework for 

validation, as it exposed the algorithm to the intricacies and variabilities inherent in 

natural biological systems. The algorithm's performance was meticulously 

analyzed through statistical parameters, including sensitivity, specificity, and 

accuracy. These metrics were crucial for determining the degree to which the 
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modified algorithm improved upon its predecessors. This method of benchmarking 

against real-world genomic datasets ensured a rigorous and meaningful evaluation, 

contributing to the robustness and reliability of the algorithm in practical 

applications. 

High-Performance Computing Adaptation 

The third component of our research technique focused on tuning the 

modified algorithms for large-scale computing systems, particularly emphasizing 

the Bridges2 computing platform at Pittsburgh Supercomputer Center (PSC), 

sponsored by the National Science Foundation (NSF). These are not ordinary office 

workstations but sophisticated devices created to handle computationally 

demanding tasks. 

Task partitioning is the primary alteration. Transposon detection was 

decomposed into a number of more manageable, more compact computing 

problems. The system's available processors were subsequently divided among 

these sub-tasks. This division made parallel processing possible by significantly 

speeding up the computing rate. 

Additionally, we invested in other computational efficiencies. Memory 

optimization allowed us to make the most of the available RAM and storage 

resources, thereby streamlining the computational processes. We also looked at 

reducing data transfer times between different nodes within the system to expedite 

the computational timeline further [16]. 
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By implementing these modifications, we aimed to fully leverage high-

performance computing environments' capabilities, thereby enhancing transposon 

detection algorithms' speed and reliability in our overall methodology. 

1.10 Computational Tools and Framework 

Python emerged as the top programming language for this research because 

of its adaptability, extensibility, and widespread popularity within the scientific 

computing community. Python’s open-source nature and extensive library 

ecosystem make it exceptionally well-suited for computational biology tasks, 

including transposon detection algorithms [17]. 

Within the Python ecosystem, specific libraries were selected to enhance 

the functionality and efficiency of our computational processes. Notably, NumPy 

was employed for complex numerical operations due to its highly optimized and 

vectorized mathematical functions, allowing efficient array manipulations. 

NumPy's capabilities are essential for handling the high-dimensional data matrices 

commonly encountered in genomic studies, offering computational advantages 

regarding speed and memory efficiency [18]. 

Additionally, the Pandas library was incorporated for data management and 

manipulation tasks. Pandas excel in handling structured data, providing versatile 

data structures like Data Frames that are instrumental for the organization and 

analysis of large and intricate datasets. Its powerful data manipulation capabilities 

facilitate easy filtering, grouping, and transformation, enabling more streamlined 

and organized data analysis workflows [19]. 
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The selection of these specific computational tools was not arbitrary but 

informed by their robust performance attributes and compatibility with high-

performance computing environments. The optimization features inherent in these 

libraries contribute to the efficacy and speed of the algorithms, making them well-

suited for our research objectives in the context of transposon detection. 

1.11 Thesis Outline 

The thesis is organized into six primary chapters, beginning with an 

Introduction that set the context and objectives of the research. Following this, 

Chapter 2 offers a Literature Review that explores existing scholarships in 

computational genomics, MGE detection, and high-performance computing. 

Chapter 3, titled Algorithmic Innovations, delves into the theoretical and practical 

nuances of the algorithms developed for MGE detection. Chapter 4 focuses on 

Validation and Benchmarking, providing statistical measures and analyses used to 

assess algorithmic performance. Chapter 5 discusses the High-Performance 

Computing adaptations made to the algorithms, particularly their implementation 

on the Bridges2 platform. The final chapter, Chapter 6, provides a Discussion and 

Conclusions section where the research findings are summarized, their potential 

implications are considered, and recommendations for future research are 

proposed. 
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CHAPTER 2 

LITERATURE REVIEW 

 

In the rapidly evolving field of computational genomics, various software 

tools and algorithms have been developed to address complex biological questions. 

Among these, TIGER (Target/IGE Retriever) and BLAST (Basic Local Alignment 

Search Tool) have emerged as particularly impactful, each catering to unique sets 

of challenges and research needs. This chapter aims to provide a comprehensive 

review of these two pivotal tools, discussing their roles, the previous work that has 

utilized them, and an evaluation of the current state of computational genomics, 

particularly in detecting Mobile Genetic Elements (MGEs), known as transposons 

and high-performance computing. 

2.1 The Significance of TIGER and BLAST in Computational Genomics 

Firstly, let us consider TIGER, a software designed to accurately map 

Integrative Genetic Elements (IGEs) within bacterial genomes. TIGER addresses 

several limitations in earlier software designed for similar purposes [20]. Unlike its 

predecessors, TIGER utilizes a comparative genomic, ping-pong BLAST approach 

to offer unprecedented precision in mapping IGEs, mitigating biases associated 

with the attachment site (attB). This level of precision is particularly vital for 

understanding complex bacterial systems where small variations can significantly 

influence virulence and other phenotypic traits. Hence, TIGER serves as an 
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invaluable asset for those investigating bacterial genomics, gene regulation, and 

evolution. 

Conversely, BLAST, an acronym for Basic Local Alignment Search Tool, 

serves as a keystone in the bioinformatics community. Conceived by Altschul et al. 

in 1990, this software lays the groundwork for a wide array of sequence comparison 

tasks, ranging from simple sequence matching to complex phylogenetic analyses 

[21]. BLAST's algorithms have been honed over the years to offer flexibility, speed, 

and reliability, rendering them applicable not only in genomics but also in 

proteomics, metabolomics, and other disciplines requiring sequence alignment and 

comparison. Therefore, its utility extends far beyond genomics, touching virtually 

every facet of life sciences research. 

The complementary nature of TIGER and BLAST becomes evident when 

one considers the ways in which these tools intersect. For instance, TIGER's ping-

pong BLAST approach relies on the foundational sequence alignment algorithms 

of BLAST, illustrating how even specialized tools like TIGER are undergirded by 

the more general capabilities of software like BLAST. 

In summary, both TIGER and BLAST occupy distinct yet complementary 

niches in computational genomics. TIGER excels in its focused role of precisely 

mapping IGEs, especially in bacterial systems, while BLAST's broader 

functionalities enable it to be applied across multiple biological disciplines. Both 

tools, therefore, significantly contribute to the advancement of computational 

genomics, each from its unique vantage point. 
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2.2 Previous Work Utilizing TIGER and BLAST 

Since its introduction, TIGER has emerged as a keystone in computational 

genomics, offering unprecedented precision in the mapping of integrative genetic 

elements (IGEs) within bacterial genomes. Conceived by Mageeney et al., this 

software was tailored to identify IGEs with such specificity that it could elucidate 

the nuances of gene integrity modulation upon IGE integration [20]. The 

groundbreaking work of Mageeney et al. has not only validated TIGER's 

effectiveness but also set the stage for a burgeoning body of research. This corpus 

explores diverse themes from bacterial gene regulation to virulence, all the while 

leveraging the precision that TIGER provides. 

In a noteworthy example, TIGER's capabilities were fully exploited in a 

study concerning the bacterial genome of Eco567. This application of TIGER 

elucidated the differential activities of prophages embedded in bacterial genomes 

by distinctly identifying attB and attP sites. These sites signify the excision and the 

integration of prophages into bacterial genomes, respectively. The attention to 

detail facilitated by TIGER allowed for an unparalleled analysis of the dynamic 

behavior of prophages. For instance, the software facilitated the identification of 

late genes in prophages, which is essential for understanding the lifecycle and 

potential pathogenicity of these genetic elements. It is this level of detailed analysis 

that has expanded our comprehension of bacterial genomics and opened novel 

research avenues for studying microbial behavior and interactions at the genomic 

level [22]. 
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Another pioneering study utilized an updated version of TIGER, known as 

TIGER2, to detect and analyze genomic islands (GIs) in microbial genomes, 

including metagenome-assembled genomes (MAGs). Originally engineered to map 

GIs confined to single scaffolds, TIGER2 incorporated two novel modes: 

"CircleOrigin" and "Cross." These features enabled the detection of split GIs that 

either wrap around the origin of a circular replicon or have termini on separate 

scaffolds. Notably, this upgrade doubled the number of GIs identified compared to 

its predecessor. Furthermore, TIGER2 sheds light on population micro diversity, 

establishing virus-host linkages and contributing to ecological assessments in 

microbiome research [23]. 

An additional study, however, presented critical insights into some 

limitations of TIGER, particularly regarding the annotation of IGEs carrying 

tyrosine recombinases (YRs). While TIGER offers a robust pipeline for IGE 

annotation, the software encounters challenges when dealing with YR-containing 

elements. Specifically, the close relationship between YR family 

transposases/integrases and essential bacterial genes creates issues. TIGER tends to 

discard Xer and Integron-related sequences, assuming all other YRs to be MGE 

integrases, which can lead to false-positive hits. Despite its utility, this calls 

attention to areas where TIGER may benefit from further refinement, especially for 

more accurate functional annotation of MGE-borne proteins and YRs [24]. 

In contrast, BLAST's utility extends across a diverse range of applications. 

One such study developed a BLAST-based approach called TESeeker [25] to 

identify transposable elements (TEs) in genomes. This method initiates a BLAST 
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search against a given genome using a TE family as a query. The resulting hits are 

assembled using the CAP3 assembly program, and the sequences are then trimmed 

and subjected to another round of BLAST searches. Finally, a multiple sequence 

alignment is generated using ClustalW2, followed by yet another BLAST search 

using a consensus TE sequence from CAP3. The TESeeker pipeline, available for 

download, significantly utilizes BLAST for sequence searching and alignment, 

highlighting BLAST's indispensability in TE identification and genomic sequence 

alignment [25]. 

Another insightful paper revealed the multiple dimensions of BLAST 

software. This paper introduced the programs as a fundamental part of protein and 

DNA database searches, focusing on significant enhancements that include 

decreasing execution time and boosting sensitivity to weak sequence similarities. 

The paper also introduced gapped BLAST, which runs approximately three times 

faster than its predecessor. PSI-BLAST, another innovation, utilizes position-

specific score matrices to enhance sensitivity, notably uncovering new members of 

the BRCT superfamily. The paper concludes by discussing the potential 

ramifications of abandoning the statistical assessment of alignments, particularly 

affecting the automatic iteration of PSI-BLAST [26]. 

Moreover, the modified BLAST version called BLASTER has also been 

developed as part of the TEdenovo pipeline. This customized tool is specifically 

designed for the identification of TEs and operates through a self-comparison of 

the input genome. Though the TEdenovo pipeline offers high configurability, it can 

be complex for inexperienced users. Nevertheless, BLASTER adds an additional 
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layer of functionality to BLAST, contributing to the tool's adaptive applicability in 

computational genomics [27]. 

2.3 The Evolving Paradigm of Computational Genomics: Advances, Challenges, and 
Applications 

Computational genomics, a symbiosis of computer science and biology, has 

ushered in a transformative era in our understanding of biological systems. Through 

intricate algorithms and high-throughput computational strategies, this rapidly 

advancing field has drastically lowered the cost and time needed for genome 

sequencing and assembly [21]. Additionally, it has broadened our comprehension 

of gene functionality, regulation, and associated genetic variations [28]. 

Importantly, computational genomics extends its applications to various 

sectors, including medicine, agriculture, and evolutionary biology [29]. Its 

contributions range from identifying novel genes to improving drug efficacy and 

crop yield. However, there remains a nuanced complexity in addressing some of 

the field's most intriguing components, notably the detection of mobile genetic 

elements (MGEs) and transposons. 

MGEs or transposons, ubiquitous genomic entities capable of altering 

genomic structures, pose challenges and opportunities for researchers. Their 

identification is not merely an academic exercise but has profound implications. 

For instance, tracking MGEs can shed light on evolutionary patterns, and their 

associations with diseases can inform therapeutic strategies. While tools like 

BLAST have been employed for MGE detection by leveraging known MGE 
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sequences, de novo algorithms have also been developed for identifying novel 

MGEs (TESeeker; BLASTER). 

Though specialized software tools like TIGER and BLAST have brought 

substantial advancements, they also come with inherent limitations. TIGER has 

shown certain constraints in the functional annotation of tyrosine recombinases, 

leading to potential false positives. BLAST, although robust, may require further 

refinement for specific applications, such as MGE detection. 

High-Performance Computing (HPC) has emerged as an indispensable asset 

in managing the data-intensive demands engendered by modern genomics. HPC 

platforms offer the computational heft required for various tasks like genome 

assembly, data analysis, and biological process simulation [30]. As genomics 

continues to generate colossal data sets, the role of HPC in facilitating analyses will 

only increase in importance. 

In summary, computational genomics remains a field ripe with innovation, 

benefiting from constant methodological upgrades and decreasing operational 

costs. However, the detection of MGEs and transposons and the computational 

infrastructure required to manage data-intensive tasks present as yet unresolved 

challenges. As technologies continue to advance, the promise of unlocking deeper 

biological mysteries and developing innovative therapeutic interventions remains a 

compelling prospect. 

As delineated in the preceding discussions, the computational tools TIGER 

and BLAST have rendered significant contributions to the advancement of 

computational genomics, notably in areas such as high-precision mapping of IGEs 
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and sequence alignment. Moreover, they have been employed in a broad array of 

research endeavors ranging from bacterial genomics to mobile genetic elements 

detection, which have crucial implications for medicine, agriculture, and beyond. 

Nonetheless, existing gaps in methodological approaches to MGE and transposon 

detection, coupled with the computational demands of contemporary genomics, 

underscore the necessity for further technological and algorithmic innovations. 

High-performance computing has emerged as a pivotal asset in tackling these data-

intensive challenges, heralding a new era of scalability and computational 

efficiency. In alignment with these existing challenges and technological trends, 

this thesis endeavored to augment the current discourse by specifically focusing on 

the enhancement of algorithmic strategies and optimizing adaptability to high-

performance computing platforms. 
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CHAPTER 3 

IMPROVING THE EFFICIENCY OF MOBILE GENOMIC ELEMENTS 

DISCOVERY THROUGH SYSTEMATIC EVALUATION OF REFERENCE 

DATABASE COMPOSITION 

 

Mobile genetic elements (MGE) are genetic sequences that may move about 

on a chromosome and be passed from one chromosome to another and across 

bacteria and species. They often bring some benefits to the bacteria, such as 

improving the pathogenicity of bacteria, symbiosis with another organism, or 

bringing metabolic genes that allow the bacteria to perform a new metabolic 

function [31]. In contrast to their potential benefit, mobile genomic elements are 

linked to food positioning and diseases such as human kidney failure [32]. 

Discovering mobile genomic DNA is an active research area considering its 

importance in expanding our understanding of underlying mechanisms in bacteria 

and, ultimately, for human health applications. Current multidisciplinary research 

involves expediting discoveries of mobile genomic elements by improving our 

previously developed algorithms and computation approaches. We have an existing 

software (TIGER) that identifies MGEs in genomes and maps them precisely to the 

nucleotide. TIGER employs a comparative genomic ping-pong BLAST method 

based on the assumption that the Mobile Genetic Element integration module is 

cohesive [33]. As a result, TIGER software maps Mobile Genetic Elements with 

exceptional precision and without attB site bias.  
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The original TIGER runs utilized databases that included all the genomes 

for a specific genome. As a result, the runtime was too long. Through this research, 

we have expedited the MGE discovery process through algorithms developed by 

Dr. Kelly from Sandia National Laboratory [54]. We implanted three different 

algorithms and compared their performance. We examined the performance of each 

algorithm on selected species. We tested our approaches on E. coli species, and our 

results showed that prophage yields were relatively insensitive to the database size, 

unlike the non-phage islands. This valuable finding enabled us to use much smaller 

databases to speed up our software significantly. 

3.1 Introduction 

Mobile Genetic Elements 

Mobile genetic elements (MGEs) like plasmids and prophages frequently 

carry determinants of bacterial features, including pathogenicity, symbiosis, and 

antibiotic resistance [31]. Mobile elements have the ability to modify their insertion 

position, copy quantity, give novel gene functions, and influence chromosomal 

gene expression. Gene gain and loss are known to be potentiated by mobile 

elements, a key influence that can drastically alter bacterial fitness. This shift could 

lead to genetic adaptation to new settings and the creation of diverse bacterial 

populations, which could lead to the emergence of separate evolutionary species 

[34]. TIGER software maps Mobile Genetic Elements with exceptional precision 

and without attB site bias. The attB site is a short DNA sequence corresponding to 

the strand-switching crossover region. Whenever we map a genomic island, we are 

mapping where an integrase recognizes. Integrase is an enzyme encoded by the 
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genomic island with a gene for integrase. It recognizes DNA sequences in the 

bacteria's chromosome and in the island itself. The island enters the cells through a 

phage particle, and that phage particle delivers genomic island DNA into the cell.  

There is a site on that DNA where the integrase recognizes on the genomic 

island. Moreover, the complementary site on the bacterial chromosome is also 

recognized. It brings those two DNA sites together and recombines them. As a 

result, a large chromosomal circle and a small genomic island circle become a 

single, giant circle. The integrase that we studied is from two protein families. One 

is called serine, and another is called tyrosine integrase. They are called that 

because their catalytic site has either tyrosine residue or serine residue that captures 

the reaction intermediate. So, it holds on to one DNA strand for a while in the 

middle of the recombination/reaction. 

Furthermore, these two protein families are unrelated by evolution. They do 

not have the same shape and do not show any homology, but they have very similar 

functions. They both do the trick of bringing DNAs together and recombining them, 

even though they are entirely different proteins. We studied both serine and tyrosine 

integrases. There were more tyrosine integrases than serine integrases. Thus, we 

had an abundance of tyrosine integrases in these genomes. Serine integrases are 

also crucial for particular genomic islands. 

In the serine recombinase family, there are two main domains. One is the 

catalytic domain where the actual recombination happens, and another is the 

extensive domain that recognizes/binds DNA and gives the site specificity. Some 

enzymes have only the catalytic domain, which may not be the ideal integrases. 
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Thus, we found the genomic island that only got this catalytic domain of serine 

recombinases. Therefore, we considered the true integrase of either tyrosine or 

serine recombinase with this big domain, not the serine recombinase for the 

catalytic domain only. The crucial questions were 1- How many islands are formed, 

and 2- What is the percentage of the island with the “good” integrases? Our plan 

was to continue improving the performance, and we  worked on novel algorithms 

and software tools. 

Genomic Element Discovery Tool: TIGER 

TIGER was developed by our collaborators at Sandia National 

Laboratories, and we studied the software for our research [33]. The TIGER aimed 

to find reference genomes with a continuous IGE integration site to identify and 

map IGEs. The key inputs are a replicon DNA sequence, a coordinate on that DNA 

(here, the midpoint of an integrase gene), and a reference genome BLAST database. 

BLAST is a sequence-matching program. BLAST takes query sequences and 

matches them to a database that includes reference genomes for all other species. 

Thus, as the result of the left and right-side queries for finding a genomic element, 

the program can map an island’s left and right ends. One needs to define an island 

first and then use it. We measured the support of an island by the amount of 

matching Blast queries, which served as a quantitative outcome of our search. 

The database, a collection of similar genomes, was explored with BLASTN 

in default mode using two 15-kb query sequences (q1L and q1R) extracted from 

the replicon to the left and right of the coordinate. Matches over 500 bp were further 

analyzed, with those that fully reach the input coordinate filtered out. A 3 kb return 
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query was taken from the reference genome region close to the coordinate-proximal 

end of each match, going back 250 bp into the matching region to include the direct 

repeat (DR) sequence for each match. To discover the matching distal flank of the 

IGE, the set of return queries (q2) was employed using BLASTN against the 

replicon [33]. 

Algorithmic Selection Approaches 

The TIGER tool was intended to search through large databases of genomic 

sequences and discover the mobile elements. We  benefited from running TIGER 

on full-size datasets, albeit with the caveat of long runtime. In order to speed up the 

discovery process, we, in collaboration with the Sandia team, proposed four 

algorithmic approaches to select representative genomes from each species. We 

called the three algorithms 1- randomDB, 2- diverseDB, 3- smartDB, and 4- 

evalDB.  

• RandomDB algorithm  

In the randomDB algorithm, for a given genome database size n, and a 

genome file, it lists n random database member genomes.  

• DiverseDB algorithm 

The diverseDB algorithm, for a given genome database size n, and pre-

calculated MASH distance file [35], makes a file listing n most diverse genome.  

• SmartDB algorithm 

Then, the smartDB algorithm limits the number of genomes included to 

improve efficiency, with the database size capped at a maximum number of 

genomes and filled phylogenetically up to the taxonomic rank of order. 
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• EvalDB algorithm 

Finally, in the evalDB algorithm, for a given database list file and island 

support file, it finds which islands are supported by the database, writing the new 

support value, length, species, original support value, score, int summary, type, and 

support from all the input genomes. In the current work, we present our proposed 

algorithms and our results. 

3.2 Methods 

Mobile genomic island discovery has a vital role in discovering the 

mechanisms that can enhance the pathogenicity of the bacteria. Discovering the 

MGEs accurately has been possible using our already published TIGER tool. In the 

current work, we improved the runtime of the TIGER to expand its usage. In 

addition, the current research proposed four algorithms to select the input genomes 

before running TIGER to expedite the MGE discovery process. We describe these 

four algorithms in this section.  

Our study demanded significant computational resources and was 

conducted on the Bridges2 system at Pittsburg Super Computing Center (PSC), 

sponsored by the National Science Foundation (NSF) ACCESS program [11], 

formerly called XSEDE (Extreme Science and Engineering Discovery 

Environment) project [36]. 

Choosing Genomes Using Our Three Proposed Algorithms 

We used different algorithms to discover supported genomic islands for 

various specific groups of species. The database composition algorithm was based 

on the following principles,  



26 
 

 

1) that TIGER execution should be sped up by smaller, more targeted 

databases while rejecting few or no genuine GIs (various size limits were tested, 

settling on 500),  

2) that faulty joins between genomic segments were more likely to be 

present in lower-quality genomes, which can lead to false-positive GI calls,  

3) there exists an ideal range of phylogenetic distances for reference 

genomes that will best identify GIs in the target genome - close enough to retain an 

integration region with enough homology for BLAST identification. In the current 

work, we set a higher distance than the reference genomes must belong to the same 

taxonomic order as the target species, but far enough away that some of the 

reference genomes had a continuous integration site needed for IG detection and 

this optimal range may exceed the species level because there are cases, where IG 

is very common in a species some of that species' genomes, have continuous 

integration sites. We spent at least 10% of the base data of each species for members 

outside the species when available. 

First, we applied the random approach (Supplementary 4.1), which lists m 

random database member genomes for a given genome database size of n and 

genome inputs. The algorithm was implemented by a custom-made script called 

randomDB.pl shown in Algorithm 1. In the randomDB script for different counts, 

we  used the genome files with a line for each species' genome (ecolist.txt, 

Escherichia__Flexneri.txt, Escherichia__dysenteriae.txt, coli.txt, coli_D.txt). 
 

Algorithm 1 Select Random Genomes 
Require: n ∈ N (Count of genomes to include), F (GenomesFile) 
Ensure: G′ (A subset of genomes) 

1: Let A be the set of arguments provided. 
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2:  if  |A| ≠ 2 then 
3:   Display the correct usage of the script. 
4: exit 
5: end if 
6: Set n and F based on the elements of A. 
7: if file F does not exist 
then  
8. Display an error 
message.  
9:  exit 

10: end if 
11: Let G be an empty set. 
12: for each genome g in F do 
13: Extract the genome name as gname. 
14:   G = G ∪ {gname} 
15: end for 
16: Let G′ be an empty set. 
17: if |G| ≤ n then 
18:   G′ = G 
19: else 
20: Let O be a permutation of set G. 
21: for i = 1 to n do 
22: gi = first element of O 
23: Remove gi from O 
24: G′ = G′ ∪ {gi} 
25: end for 
26: end if 
27: for each genome g in G′ (sorted) do 
28: Display g. 
29: end for 

 

In summary, the code took a file containing a list of genomes and randomly 

selected a specified number of genomes from that list, ensuring no duplicate 

selections. The selected genomes were then printed in alphabetical order as 

illustrated in Table I. 
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TABLE I 

LIST OF 13 GTDB SPECIES 

Escherichia Species Count 

Escherichia__albertii 70 

Escherichia__coli 3349 

Escherichia__coli_C 42 

Escherichia__coli_D 1450 

Escherichia__dysenteriae 1173 

Escherichia__fergusonii 14 

Escherichia__flexneri 9094 

Escherichia__marmotae 48 

Escherichia__sp000208585 20 

Escherichia__sp001660175 2 

Escherichia__sp004211955 2 

Escherichia__sp005843885 36 

 

Secondly, we applied a diverse approach (supplementary 4.2), which lists n 

most diverse genomes for a particular genome database size n and mash distance 

file. In the in-house written diverseDB.pl shown in Algorithm 2 scripts for different 

counts, we used the MashDist file, which had three columns for genomeA, 

genomeB, and Mashdist for all genomes of the species (eschmash.dist, 

Flexneri.dist, coil.dist, coli_D.dist, dysenteriae.dist). The MashDist files were 

created by the MASH tool [35]. 
 

Algorithm 2 SelectDiverseGenomes 
Require: n ∈ N (Count of genomes to include), F (MashDistFile) 
Ensure: Set of selected genomes 

1: Let A be the set of arguments provided. 
2:  if  |A| ≠ 2 then 
3:   Display the correct usage of the script. 
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4: exit 
5: end if 
6: Set n and F based on the elements of A. 
7: if file F does not exist 
then  
8:  Display an error 
message.  
9:  exit 

10: end if 
11: Let D be an empty matrix representing genome distances. 
12: for each line l in F do 
13: Parse l into (ga, gb, d) 
14: D[ga][gb] = d and D[gb][ga] = d 
15: end for 
16: Let G′ be an empty set representing selected genomes. 
17: if |G| ≤ n then 
18:   G′ = G 
19: else 
20: Let S be an empty dictionary representing the sum of distances. 
21: Select arbitrary genome glast from G 
22: G′ = G′ ∪ {glast} 
23: for i = 1 to n − 1 do 
24: Let M be a tuple representing genome with max distance. 
25: for each genome g in G do 
26: if g not in G′ then 
27: S[g] = S[g] + D[glast][g] 
28: if M is empty or M [1] < S[g] then 
29: M = (g, S[g]) 
30: end if 
31: end if 
32: end for 
33: glast = M [0] 
34: G′ = G′ ∪ {glast} 
35: end for 
36: end if 
37: for each genome g in G′ (sorted) do 
38: Display g. 
39: end for 

 

In summary, this code took a file containing mash distances between 

genomes and selected a specified number of genomes based on their distances. It 

chose genomes with the maximum distance from each other, ensuring that the 

selected genomes were not duplicated. The selected genomes were then printed in 

alphabetical order. 
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Thirdly, we used the smartDB approach to create a small and targeted 

database while still representing the taxonomic diversity of interest. SMAll Ranked 

Tailored (SMART) DBs are a database designed for phylogenetic analysis that 

limits the number of genomes to improve efficiency. By capping the number of 

genomes and filling them phylogenetically, SMART DBs enables faster and more 

efficient analysis for researchers. The SMART DB software pipeline, as seen in Fig. 

3.3, was designed to automate genome data collection and design and update a 

database (DB) for genomic analysis. It offered two modes: Design and Quick Setup. 

In the Design mode, the pipeline collects genome assemblies, calculates 

pairwise distances between genomes, ranks genomes within each species, and 

designs and prepares each DB. The pipeline retrieves needed genome assemblies 

from the National Center for Biotechnology Information (NCBI) FTP server and 

repeats collection attempts until all required genomes are downloaded. The NCBI 

serves as a national resource for molecular biology information and provides access 

to a multitude of databases and tools that facilitate research in biomedicine, 

bioinformatics, and related disciplines [37]. Pairwise distances are calculated using 

Mash, and rankings are determined based on quality and contig count. The DB for 

each species is designed by filling it with genomes from the ranked list, and if the 

cap is not reached, genomes from closely related species are added. Some DBs may 

be small due to the limited genomes for specific taxonomic orders. The pipeline 

also warns about these small DBs, as they may have reduced capability to find 

genomic islands (GIs). BLASTN databases are created for each unique DB design. 
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Fig. 3.3: SMART DB software pipeline. 

 

The Quick Setup mode uses a precalculated DB design file, skipping the 

time-consuming steps of distance measurements and DB design. A utility script 

called Speciate is recommended to aid in selecting the appropriate DB for a query 

genome. The pipeline's dependencies include Mash, BLAST, and fastANI [38]. 

Finally, we applied the eval approach (supplementary 4.3), which gave us 

more information about the islands. In this approach shown in Algorithm 3, we 

found which islands the DB supported for a given DB list file and island supported 

file, writing the new support value, length, species, original support value, score, 
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int summary, type, and support from 15299. After that, we used this output to 

compute statistics. 

Our methodology began with the sequencing of genomes within each 

species, adhering to quality standards set by the Minimum Information about a 

Metagenome-Assembled Genome (MIMAG). These guidelines are instrumental in 

assessing the quality of metagenome-assembled genomes (MAGs), and their 

adherence ensures that the genomic data is both reliable and comparable across 

different studies. The MIMAG guidelines cover a multitude of elements, from data 

generation and assembly to annotation and quality evaluation. By adhering to these 

rigorous criteria, we lay a foundation for quality-controlled, transparent, and 

reproducible computational genomics research [39].  

 
 

Algorithm 3 EvalDBApproachAlgorithm 
Require: D ∈ F (DBfile), S ∈ F 
(SuppFile) Ensure: Processed 
output based on D and S 1: Let A be 
the set of arguments provided. 

2:  if  |A| ≠ 2 then 
3: Display the correct usage of the script. 
4: exit 
5: end if 
6: Set D and S based on the elements of A. 
7: if file D does not exist then 
8: Display an error message about missing D. 
9: exit 

10: end if 
11: if file S does not exist then 
12: Display an error message about missing S. 
13: exit 
14: end if 
15: Let G be an empty set. 
16: for each line l in file D do 
17: Remove prefix ”Eco” from l. 
18: G = G ∪ {l} 
19: end for 
20: for each line r in file S do 
21: Split r into fields f1, f2, . . . , fn using delimiter ””- . 
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22: Let c be 0. 
23: for each element e in f10 split by comma do 
24: if e exists in set G then 
25: c = c + 1 
26: end if 
27: end for 
28: if c > 0 then 
29: if f2 matches pattern "( 
30: d+)-( 
31: d+)$" then 
32: Extract integers i1 and i2 from the match. 
33: Compute L = |i2 − i1| + 1. 
34: Display f1, c, L and f4, f6, f7, f8, f9 separated by ””- . 
35: else 
36: Display an error message with f1. 
37: exit 
38: end if 
39: end if 
40: end for 

 
Next, the genomes were sorted based on their quality and the number of 

frames, as indicated by the MIMAG quality and the Genome Taxonomy Database 

(GTDB) metadata table. This is another key component of our methodology. 

Important metadata such as taxonomy, assembly quality, and genomic ID are 

provided by this site. We could verify our findings with the help of this database, 

giving us a more comprehensive, multifaceted understanding of the genetic 

structures we were studying. Our findings gained further confidence because the 

GTDB metadata table guaranteed that we were working with well-characterized, 

quality-assured genomes [40]. 

Subsequently, pairwise distance measurements were performed using 

Mash, a computational tool for fast genome and metagenome distance estimation, 

for all genomes within each species [41]. The top 90% of genomes with the highest 

quality, as defined by MIMAG guidelines, were then rearranged based on their 

diversity, as determined through Mash's distance estimations. This arrangement 
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involved selecting the second genome farthest from the first, the third genome with 

the most significant coherence distance to the first and second genomes, and so on. 

Finally, a smart approach was applied to all thirteen species. 

Several principles guided the algorithm used for composing the database. 

Firstly, smaller and more focused databases were preferred to enhance the speed of 

TIGER execution while minimizing the exclusion of legitimate genomic islands 

(GIs). Different size limits were tested, and a limit of 500 was found suitable. 

Secondly, lower-quality genomes were more likely to contain incorrect connections 

between genomic segments, leading to false-positive GI identifications. Thirdly, an 

optimal phylogenetic distance range was determined for the reference genomes to 

identify GIs within a target genome effectively. The reference genomes were 

required to belong to the same taxonomic order as the target species but be distant 

enough to possess uninterrupted integration sites necessary for GI detection. Lastly, 

this optimal range could extend beyond the species level since certain GIs may be 

widespread within a species, resulting in a few genomes from that species having 

uninterrupted integration sites. Therefore, at least 10% of each species database was 

reserved for members from outside the species when available. 

The composition of the smart reference database proceeded as follows. 

Each species' contribution was limited to 90% of the database size limit, ensuring 

that at least 10% of the database included genomes from outside the target species 

if they were accessible. Species from the same taxonomic order as the target species 

were ranked based on their phylogenetic distance from the target species. Starting 

with the target species, genomes were selected from the ranked list of the 
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contributing species until either the species cap or the database size limit was 

reached. 

Furthermore, we parsed the GTDB species trees for bacteria and archaea, 

collecting the branch length below each node and the list of nodes beneath each 

species. This allowed for efficient distance measurements between any pair of 

species. 

3.3 Datasets 

Dataset 1: E. coli 

Escherichia genomes datasets used were the 15299 names of genomes 

named by GTDB listed in supplementary Table 1 that were used for applying our 

new algorithms. In addition, we used previously generated data from running 

TIGER with massive databases, which are included in supplementary Table 2, 

containing 64838 islands from our 9457 Escherichia genomes that TIGER has 

finished, with ten fields per line. Also, we have a breakdown of 15299 genomes 

into these 13 GTDB species with different counts (Table I). 

3.4 Results 

The aim of this research was to expedite the TIGER tool’s runtime. First, 

we introduced three algorithms for choosing genomes and then examined their 

performance using different species. In this section, we present our results that 

clearly showed that if we used smaller database sizes, we discovered islands with 

higher scores, longer lengths, and better islands. Therefore, we decided to run 

TIGER for three sizes of databases (100, 500, 15299), and after running TIGER for 
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those databases, we saw that we had achieved our goal of speeding up our existing 

software without losing any islands.  

We have applied our four proposed algorithms to E. Coli data. Therefore, 

we will start by presenting our E. Coli results. 

E.Coli Results 

We utilized our own customized scripts to implement our algorithms on a 

total of 15299 E. Coli genomes. To determine the most suitable database sizes for 

our algorithm evaluation, we selected intermediate sizes ranging from 1 to 15299 

genomes for E. Coli. As Table 2 illustrates, our proposed algorithms significantly 

expedited the discovery process. By reducing the database size to 100 genomes 

instead of the original > 15K genomes, we achieved a 138-fold increase in speed. 

Similarly, the size of 500 databases resulted in a 38-fold increase in speed.  

We created BLAST databases with smaller counts to calculate the TIGER 

runtime for different database sizes. We initiated this process by generating a fasta 

file shown in Algorithm 4 with either randomly, diversely, or smartly selected n DB 

size (Supplementary 4.4). Subsequently, we created BLAST databases of 100, 500, 

and 15299 sizes from the FASTA formatted file for randomly, diversely, and smartly 

selected genomes. In bioinformatics, the FASTA structure is a text-based 

illustration of nucleotide or peptide sequences that is often used. It is composed of 

a single line of description followed by lines containing sequence data, making it 

easy to store and read sequences. We then developed three separate scripts to run 

TIGER on 100 genomes each against the three databases and kept a separate record 
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file for time management as see in Table II. We also took care of the memory it 

used as seen in Table III.  

 

Algorithm 4 FastaFileMakerAlgorithm 
Require: L (genomeList), O (outfasta) 
Ensure: Concatenated genome sequences in output file 

1: Let A be the set of arguments provided. 
2:  if  |A| ≠ 2 then 
3: Display the correct usage of the script. 
4: exit 
5: end if 
6: Set L and O based on the elements of A. 
7: Remove (unlink) file O if it exists. 
8: for each line l in file L do 
9:  Extract the first non-space sequence of characters from l and 

assign it to id. 
10:  Append the contents of the file 

/ocean/projects/mcb130021p/shared/ ecoli/$id/genome.fa to O. 
11: end for 

 

Our evaluation criteria for database size reduction results consisted of five 

factors: 1- Islands count, 2- Islands lengths, 3- Island scores, 4- Integrase summary, 

and 5- Island types. In addition, we ensured that our speed optimization did not 

impact the accuracy of the discovered islands. 

TABLE II 

EFFECT OF THE DATABASE SIZE REDUCTION ON TIGER RUNTIME 

 

 

 

   100 input DB (for 100 
jobs) 

500 input DB  (for 29 
jobs) 

15299 input DB (for 25 
jobs) 

Real-Time 10m37.33s 21m24.33s 39h2m32s 

User Time 1m57.19s 9m45.38s 6h4m32s 

System 
Time  

5m37.40s 17m30.56s 18h10m27s 
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TABLE III 

EFFECT OF THE DATABASE SIZE REDUCTION ON MEMORY USEAGE 

 
Island Count 

We made plots for island count against database size, and it showed us how 

the number of islands was reduced as we used smaller and smaller database lists. 

We discovered a higher number of islands with a larger database for the four 

approaches shown in Fig. 3.6. Also, Fig. 3.6 shows that when we moved the 

database size from 1 to 15299, the islands count was moved in the range of 16811 

to 64838 (a) and 15170 to 64313 (b). We noticed that from 500 to 15299 genomes, 

there was not much difference in the count for the random. However, there was no 

considerable change in the count for the diverse one, from 1000 to 15299 genomes. 

Finally, to evaluate the smartDB algorithm's performance, we decided to present 

the Flexneri species as it is the largest species present as part of the E.coli family in 

GTDB. Fig. 3.6 (c) shows that there is not much difference in the count from 

smart_Flexneri between 100 and 300 databases. So, from the graphs, we can say 

that making smaller databases, for example, 500 seems reasonable, and we are not 

losing many islands. 

   100 input DB (for 100 
jobs) 

500 input DB  (for 29 
jobs) 

15299 input DB (for 25 
jobs) 

Allocated 
Memory 
(MB) 

128000 128000 128000 

Used 
Memory 
(MB) 

117.0 141.0 3807.0 
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(c) 

Figs. 3.6 (a, b, c): Island count versus database size. Comparing the performance 

of three proposed algorithms by differing the input database size and comparing the 

discovered island counts. 

 

Islands Length 

Fig. 3.7 demonstrates how the size of the islands grew more prominent 

when the database sizes were lowered. We obtained longer islands, which are 

preferable. Also, it showed that when we moved the database size from 1 to 15299, 

the islands’ lengths were moved in the range of 25288.4 to 19346.6 (a) and 26745.6 

to 19411.3 (b). Moreover, the Flexneri species' length changed from 24302.63 to 

22308.19 when we moved from a database size of 100 to 500. In the case of random, 

we noticed that from 500 to 15299, there was not much difference in length, and 

for the diverse database sizes, between 1000 to 15299, the length did not change 

visibly. Lastly, for the smartDB (c), Flexneri species did not show much difference 
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(c) 

Fig. 3.7 (a, b, c): Island length versus database size. Comparing the performance 

of three proposed algorithms by differing the input database size and comparing the 

discovered islands’ length. 

 

Islands Score 

Fig. 3.8 depicts that the islands’ scores decreased with the larger database 

size. It implied that we were discovering higher scores with the smallest database 

size. A higher score means the island is more reliable. It moreover indicated that 

when we increased the database size from 1 to 15299, the score of the islands varied 

between 1.22 and -3.47 (a), 2.19 and -3.44 (b), and 0.5785 to -0.2227 (c). 

Throughout the random case, we discovered that the score did not differ 

significantly between 500 and 15299 database sizes, and in the case of diverse, the 

score did not differ much between 1000 and 15299 database sizes. Finally, between 

100 and 300 database sizes, the  Flexneri score did not differ significantly. As a 

22000

22500

23000

23500

24000

24500

Db_100 Db_200 Db_300 Db_500

Le
ng

th

Database Size

Flexneri_Smart_Length



43 
 

 

result, we  deduced from the graph that establishing smaller databases, such as 500, 

was rational for the island score. 
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(c) 

Fig. 3.8 (a, b, c):  Island score versus database size. Comparing the performance 

of three proposed algorithms by differing the input database size and comparing the 

island scores. 

 

Integrase Summary 

In this evaluation, we focused on the percentage of genomic islands that 

contained a "good" type of integrase, specifically Y-Int or S-Int. Islands with at least 

one of these integrase types were counted, while those with neither were excluded. 

By removing the "bad" islands from the database, the overall number of islands 

with good integrase increased as the database size decreased. Fig. 3.9 provides a 

summary of these results. 
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(c) 

Fig. 3.9 (a, b, c):  Island counts versus island types. Comparing the performance 

of three proposed algorithms based on island type and island counts. 

 

Island Type 
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due to the presence of more false positive islands in this group. For random and 
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indicating the presence of bag islands. Additionally, there was a slight increase in 

yield for the Flexneri species after 300 databases, indicating that they may also be 

considered bad islands. Overall, these findings suggest that smaller databases, such 

0
5000

10000
15000
20000
25000
30000
35000
40000

Db_100 Db_200 Db_300 Db_500

Is
la

nd
 C

ou
nt

Database Size

Flexneri_Smart_Integrase_Summary

S-Int,Y-Int S-Core

T 

f ~ 
, 

----
l - · • • 
l 

l 

- - - -- ~ - ~ - L - . 



47 
 

 

as those capped at 500, are sufficient for this type of island. The results of this study 

are presented in Fig. 3.10. 
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(c) 

Fig. 3.10 (a, b, c): Island counts and database sizes versus phage types. 

Comparing the performance of three proposed algorithms based on island counts and 

database sizes versus phages. 

 

3.5 Conclusion 

Mobile genomic elements play a crucial role in the evolution and diversity 

of microbial genomes, and accurate identification of these elements is essential for 

understanding their function and impact. The TIGER tool is a powerful tool for 

detecting mobile genomic elements, but it can be slow. Our research group 

developed four algorithms (randomDB, diverseDB, evalDB, and smartDB) to 

expedite the TIGER tool's execution time while maintaining accuracy and 

precision. Our results showed that our algorithms could speed up the MGE 
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more efficient way to identify mobile genomic elements that could be applied to a 

wide range of studies. Specifically, our smartDB algorithm can be incorporated into 

other applications, such as metagenomic analysis, to expedite MGE discovery and 

provide new insights into microbial ecology and evolution. Overall, our research 

represents an important step towards a more efficient and accurate MGE discovery, 

and we hope it will contribute to advancing research in this field. 
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CHAPTER 4 

VALIDATION OF TRANSPOSON LOCATIONS IN GENOMIC SEQUENCES 

USING TIGER AND BLAST OUTPUTS AND STATISTICAL ANALYSIS 

 

Transposable elements, commonly called transposons, are DNA sequences 

that can change their position within a genome. This mobility can significantly 

affect the overall structure, function, and evolution of genome architecture. Due to 

their substantial impact on gene regulation and genetic disease development, 

transposons have been extensively researched. Consequently, accurately 

identifying and mapping transposons is crucial for understanding their biological 

ramifications. 

Over the years, numerous computational tools have been developed to 

detect and characterize transposons in genomic sequences, albeit their performance 

can differ based on input sequence characteristics and underlying algorithms. 

Among these tools, Target/IGE Retriever (TIGER) can precisely identify 

transposes-encoding mobile DNAs in a given genome. The current study aimed to 

examine newly discovered transposons by TIGER in E. coli genomes and validate 

them by comparisons with published databases. In this work, we  discuss the 

implications of our findings within the bioinformatics community, emphasizing the 

accuracy and effectiveness of TIGER in transposon discovery. In addition, we  

employed a statistical study using the bell curve distribution to categorize the 

matches, thereby assessing the trustworthiness of the transposon locations. Finally, 

we  pinpoint the limitations of our research, adjust the program, and consider 
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potential applications for comparing different bioinformatics tools while 

incorporating user-specified parameters. Our research contributes to the ongoing 

enhancement of methods for detecting transposons by offering critical insights 

about the performance of TIGER and BLAST in comparison. 

4.1 Introduction 

Transposons are like pieces in a genetic puzzle that can move around within 

our DNA. This movement shakes things up in our genome, influencing how it 

evolves over time, controlling how our genes work, and sometimes bringing about 

entirely new traits. [42]. Accurate identification of transposon locations is crucial 

for understanding their functional roles and potential implications in various 

biological processes. 

Several computational tools have been developed to identify transposon 

locations in genomic sequences, such as TIGER (Target/IGE Retriever) and 

BLAST (Basic Local Alignment Search Tool) [43]. However, there is a need for a 

systematic approach to compare and validate the transposon locations identified by 

these tools. 

TIGER is a computational tool that accurately identifies transposable 

elements in genomes and precisely maps their location to the nucleotide level. It 

utilizes a comparative genomic approach and a ping-pong BLAST method, 

assuming that the integration module of transposable elements is cohesive [33]. 

TIGER has been applied to various organisms and has demonstrated promising 

results in detecting transposons in complex genomes. We utilized TIGER on the 

transposon discovery process for E. coli genomes for four different species on 
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Pittsburgh Super Computing Center (PSC) state-of-the-art supercomputers. Basic 

Local Alignment Search Tool (BLAST) is a well-known sequence alignment tool 

that compares nucleotide or protein sequences to sequence databases and calculates 

the statistical significance of the matches [44]. BLAST has been employed for 

transposon detection by comparing genomic sequences to curated databases of 

known transposons, such as Repbase [45] and ISfinder [46].  

Repbase is an immense database of repetitive elements collected from 

different genomes of eukaryotes. It is a tool that helps researchers label and locate 

repeating sequences in genomic data, including transposable elements. Since its 

founding in 1990, Repbase has served as a major resource for research on how 

repeated sequences influence the structure and function of the genome [45]. 

In contrast, ISfinder is a specialized database that focuses only on 

prokaryotic insertion sequences (IS). It makes an in-depth understanding of the role 

of ISs in genome dynamics easier by offering a selective set of well-annotated ISs. 

A comprehensive toolset for any individual researching these mobile genetic 

components in bacteria and archaea is provided by the ISfinder database, which 

enables researchers to categorize, annotate, and compare IS elements [46]. 

This study  used BLAST to search for transposons in genomes and compare 

the results with TIGER-generated data. 

To enable the comparison of transposons, we developed new software in 

Python programming language to compare the transposon coordinates identified by 

TIGER and BLAST output files. The program extracts the left and right coordinates 

of the transposon from the TIGER output file and searches the BLAST output for 
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matches that are either exact or within a user-defined base pair range. By identifying 

matching transposons, the program can measure the level of agreement between 

TIGER and BLAST output files and determine the true transposon location. 

This study proposed a novel method to compare and validate transposon locations 

identified by TIGER and BLAST tools using a statistical approach based on the bell 

distribution curve. Our method compared the left and right coordinates of the transposons. 

It categorized the matches based on the mean and standard deviation of the differences, 

making it possible to determine the quality of the matches and prioritize the transposons 

for further analysis. 

4.2 Materials and Methods 

Data Collection 

The gathering of primary data was carried out using smartDBs, discussed 

more thoroughly in Chapter 3. These databases, robust in their capabilities, were 

utilized to generate output files for both TIGER and BLAST, providing 

comprehensive information pertaining to the specific locations of transposons 

within a given genome. This information formed the crux of our study and was 

prepared meticulously for an exhaustive examination and interpretation. 

To transform the raw data into an analyzable format, we implemented a 

series of preprocessing steps for each output file (Flowchart 1). 

• Accessing the TIGER Output Directory: 

Upon running the TIGER tool, an assortment of directories and files were 

generated. However, for the purpose of this research, not all these files were of 
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relevance. Thus, we carefully navigated through these numerous files, directing our 

focus only on those few that were critical to our analysis. 

• Identifying Core Files: 

In the sea of files produced by TIGER, two specific files stood out as 

paramount to our analysis - "genome.IS.nonoverlap.gff" and 

"genome.IS.blast.tile". These files were targeted for our analysis due to their wealth 

of relevant information. This is illustrated in Fig. 4.1. 

 

Fig. 4.1: Specifying files. 

• Standardizing File Formats: 

To facilitate seamless data handling and analysis, we converted the 'gff' and 

'tile' files into a more universally recognized and convenient 'CSV' format. This 

step also ensured consistency across our datasets, allowing for more effective data 

manipulation and interpretation shown in Algorithm 5. 

Algorithm 5 StandardizingFileFormats 
 

Require: Parent folder path P 
Ensure: Converted CSV files within subfolders of P 

1: Let D be the set of all directories and subdirectories within P. 
2: for each directory d ∈ D do 
3: Let F be the set of all files within d. 
4: for each file f ∈ F do 
5: if extension of f is ’.gff’ or ’.tile’ then 
6: csvName = name of f without its extension + ’.csv’ 
7: Open f for reading as inputFile and csvName for writing as 

outputFile. 
8: Write the header row [’ contig name’, ’software’, ...] to outputFile. 
9: for each line l in inputFile do 

10: if l starts with or l is blank then 
11: Continue to the next line. 
12: end if 
13: fields = split l by spaces and take the first 9 elements. 
14: Write fields to outputFile. 

1 # specify the filenames to extract 
2 f i lenames = [ 'genome.IS.nonoverlap .gff ' , ' genome.IS.blast.tile ' ] 
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15: end for 
16: Close inputFile and outputFile. 
17: Print message indicating the conversion of f is complete. 
18: end if 
19: end for 
20: end for 

 

• Adding Column Names: 

Our output files lacked column names in their original format, presenting 

potential hurdles for effective data interpretation. To enhance clarity and optimize 

data for our analytical requirements, we took the initiative to manually insert 

appropriate column headers into each 'CSV' file. This step further standardized our 

data and made it easier to understand, enhancing the efficiency of our subsequent 

analyses as indicated in Fig. 4.3. 

 

Fig. 4.3: Specifying files. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# Write t he heade r r ow to t he CSV f i l e 
csv_wri ter. wri terow( [ ' contig_name ' , 'software' , ' IS ' , 'LCOR' , ' RCOR' , ' supporti ng ' , 
' o r ient at ionl ' , 'orientation2 ' , ' I NFO ' ] ) 
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Flowchart 1: Python Program for Data Collection: 
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Python Program for Data Comparison 

A Python program was developed to compare the left and right coordinates 

of the transposons in the TIGER and BLAST output files. The program picks the 

first left and right coordinates from the TIGER output and searches for an exact 

match or a match within a user-defined base pair range (+10/-10) in the BLAST 

output shown in Algorithm 6. The objective is to find how much the two outputs 

validate each other and identify the true transposon locations (see Flowchart 2). 

 
 

Algorithm 6 matchcord 
Require: search dir, foldername, tol 
Ensure: −1 

1: Read blast raw new.csv from the directory search dir/foldername into 
DataFrame df 1 

2: Read genome.IS.nonoverlap.csv from the directory 
search dir/foldername into DataFrame df 2 

3: Initialize empty DataFrames: data frame blast and dataframe tiger 
4: for each index idx, and elements data1, data3 in 

df 1[′LCOOR(query)′], df 1[′RCOOR(query)′] do 
5: for each index idx1, and elements data2, data4 in 

df 2[′LCOR′], df 2[′RCOR′] do 
6: if data1 = data2 and data3 = data4 then 
7: Append row idx of df 1 to dataframe blast 
8: Append row idx1 of df 2 to dataframe tiger 
9: else if |data1 − data2| ≤ tol and |data3 − data4| ≤ tol then 

10: Append row idx of df 1 to dataframe blast 
11: Append row idx1 of df 2 to dataframe tiger 
12: end if 
13: end for 
14: end for 
15: Save dataframe blast to search dir/foldername/BLAST matched raw.csv 
16: Save dataframe tiger to search dir/foldername/TIGER matched.csv 

return −1 
 

A Table containing the differences between the left and right coordinates 

and the lengths of the transposons in the TIGER and BLAST output files is 

generated. The Table includes the contig name, left coordinate difference, right 
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coordinate difference, and length difference for each match found in the previous 

step. 

The differences between the left and right coordinates and the lengths of the 

transposons are analyzed using a bell distribution curve, also known as a normal 

distribution or Gaussian distribution. This is a statistical method often used when a 

dataset is large, and the data points are spread out in a pattern where most data 

points are close to the average (mean), and the rest taper off equally in both 

directions [47].  

The bell curve, also known as the normal distribution, possesses a 

symmetrical shape where the mean, median, and mode align perfectly. The central 

point of this curve, referred to as the mean (µ), represents the most probable value 

with the highest likelihood, while the dispersion of data points from the mean is 

indicated by the spread around it, known as the standard deviation (∂) [48]. In this 

particular context, calculations of the mean (µ) and standard deviation (∂) were 

conducted for each of the three categories: left coordinate, right coordinate, and 

length. The mean is essentially the arithmetic average of the data points, whereas 

the standard deviation quantifies the extent to which the data points deviate from 

the mean as shown in Algorithm 7. 
 

Algorithm 7 LabelGeneration 
1: function distri(dataframe) 
2: µ ← mean(dataframe) 
3: σ ← std(dataframe) 
4: Calculate boundaries: 
5: exub ← µ + σ 
6: exlb ← µ − σ 
7: goodub ← µ + 2σ 
8: goodlb ← µ − 2σ 
9: avgub ← µ + 3σ 
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10: avglb ← µ − 3σ return exub, exlb, goodub, goodlb, avgub, avglb 
11: end function 
12: function labelData(data, boundaries) 
13: if boundaries[0] > data > boundaries[1] then return ”excellent” 
14: else if boundaries[2] > data > boundaries[3] then return 
”good” 15: else if boundaries[4] > data > boundaries[5] then 
return ”average” 16: elsereturn ”Bad Match” 
17: end if 
18: end function 
19: function diff label(a) 
20: Initialize: list lcor, list rcor, list len as empty lists 
21: for each lcor, rcor, length in a do 
22:  append labelData(lcor, distri(a[′LCOR′])) to 
list lcor 23:  append labelData(rcor, 
distri(a[′RCOR′])) to list rcor 24:  append 
labelData(length, distri(a[′len′])) to list len 25: end 
forreturn list lcor, list rcor, list len 
26: end function 

 

Following these computations, the data points were graphed on a normal 

distribution curve, enabling a visual representation of the distribution of values 

within specific ranges of differences as shown in Algorithm 8. For instance, one 

can observe the proportion of data falling within one standard deviation from the 

mean, two standard deviations from the mean, and so forth, as illustrated in 

Flowchart 3. 

Algorithm 8 Categorization 
 

1: function distri(dataframe) 
2: µ ← mean(dataframe) 
3:  σ ← 
std(dataframe) 
4:  ex upbound ← 
µ + σ 5:   ex 
lowbound ← µ − σ 
6:  good upbound ← 
µ + 2σ 7:  good 
lowbound ← µ − 2σ 8:   
avg upbound ← µ + 
3σ 
9:   avg lowbound ← µ − 3σ 

return ex upbound, ex lowbound, 
                    10: good upbound, good lowbound, 

11: avg upbound, avg lowbound 
12: end function 
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Based on the calculated mean and standard deviation, the matches were then 

categorized. The categorization was based on how close the values were to the 

meaning for each category. The closer the values were to the mean, within the range 

of one standard deviation, the better the match. 

An "Excellent Match" is defined as all three categories, left coordinate, right 

coordinate, and length, having values within the range of the mean plus or minus 

one standard deviation (µ±1∂). In other words, all the values were very close to the 

average, meaning the match is very good. 

A "Good Match" is when two out of the three categories fall within this 

range. This means two of the three values were close to the average, so the match 

was considered good but not excellent. 

A "Bad Match" is when none of the categories have values within this range. 

This means all the values were significantly different from the average, so the match 

was considered poor. 

We applied our categorization method to various randomly selected 

genomes to demonstrate its adaptability and usefulness. The following specific 

example shows the efficacy of the algorithm: 

In one such analyzed genome, our algorithm categorically identified 

fourteen transposons as "Excellent Matches," eight as "Bad Matches," and two as 

"Good Matches" (see Fig. 4.7). This experimental information provided an 

understanding of the range and distribution of transposon matches inside a single 

genome in addition to confirming the method's accuracy. 
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Fig. 4.7: Example of Transposon Match Categorization in a Single Randomly 

Selected Genome. 
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Flowchart 2: Python Program for Data Comparison. 
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Flowchart 3: Statistical Analysis Using Bell Distribution Curve 
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4.3 Results and Discussion 

While validating and comparing the transposon locations identified by the 

TIGER and BLAST tools, our analysis revealed intriguing findings. First, the 

BLAST tool seemed to be more liberal in marking transposons compared to its 

counterpart, TIGER. This raised many questions - was it due to the varying 

methodologies the two tools employ, or was it a matter of sensitivity and specificity 

in identifying transposons? Or could it be down to the different benchmarks they 

use to identify transposons? These questions warrant further investigation and will 

undoubtedly deepen our understanding of these two pivotal tools. 

Nevertheless, an interesting pattern emerged when we applied our algorithm 

to the results from these two tools. We managed to sift out the 'true' transposons - 

unanimously identified by both tools. This cross-verification significantly bolstered 

the reliability of our findings, as it threw out potential biases or errors that 

individual tools might have introduced. This approach, we believe, provides a more 

robust validation of data and could be a game-changer for future studies. 

Subsequently, we delved deeper into our analysis, examining the differences 

between the left and right coordinates and the lengths of the transposons flagged by 

TIGER and BLAST. To navigate through this sea of data, we sought the help of the 

bell distribution curve, a powerful statistical tool for understanding data 

distributions. This gave us a clear picture of the variations in our data and helped 

us assess how much they strayed from the mean. 

Using this information, we grouped the differences into three distinct 

categories: excellent, good, and bad matches. We used the mean and standard 
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deviation of the differences as yardsticks for this classification. This classification 

process provided us with a more granular understanding of the level of agreement 

between TIGER and BLAST in identifying transposon locations. It also shed light 

on the reliability and consistency of these tools, offering valuable insights for future 

genomic studies. 

To sum up, our findings underscore the importance of rigorous validation 

of genomic data and propose a comprehensive approach to achieving it. By 

harnessing the power of statistical analysis and cross-validation, we  significantly 

enhanced the reliability of our results and gained a deeper understanding of the 

complex genomic landscape. 
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CHAPTER 5 

COMPREHENSIVE EVALUATION OF TIGER AND BLAST OUTPUTS: 

ANALYZING DIRECT REPEATS AND ASSESSING BLAST HIT QUALITY 

 

In the backdrop of our preceding chapter on comparing TIGER and BLAST 

output files, we extend our exploration into the field of comparative genomics. This 

chapter aims to meticulously analyze TIGER and BLAST outputs, focusing on 

direct repeats within insertion sequences and thoroughly assessing BLAST hit 

quality. The comprehensive approach employed here  augment our understanding 

of sequence alignment results, significantly contributing to ongoing research in 

genomics and bioinformatics. 

By analyzing the TIGER and BLAST outputs, we aimed to 

comprehensively understand direct repeats in insertion sequences and assess the 

quality of BLAST hits. This integrated approach will provide valuable insights into 

the functional implications of direct repeats and aid in distinguishing high-quality 

BLAST hits from subpar matches. In addition, the findings from this analysis will 

contribute to our knowledge of genomic dynamics, mobile genetic elements, and 

their impact on bacterial genomes. 

5.1 Direct Repeat (DR) 

DNA sequences known as direct repeats (DRs) can be small nucleotides 

or larger pieces found in parallel or scattered throughout the genome [49]. Their 

importance in genome architecture cannot be overstated. DRs serve as key 

structural elements in various genetic phenomena, such as DNA replication, repair, 
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and recombination [50]. Specifically, they act as landmarks for transposase binding, 

thereby facilitating the mobility of transposable elements within the genome [51]. 

Moreover, DRs play a pivotal role in the regulation of gene expression. 

Their presence upstream or downstream of coding sequences can modulate 

transcriptional activity and contribute to cellular differentiation and adaptability 

[52]. Furthermore, the study of direct repeats provides crucial insights into the 

mechanisms of bacterial pathogenesis, as some direct repeats function as regulatory 

switches for virulence factors [53]. 

5.2 Methodology 

The methodology encompasses two primary steps: 

Analysis of TIGER Output 

• Extraction of Sequences: 

Our methodology began with a thorough review of the data obtained from 

the TIGER tool. As an advanced tool for studying genome structure, TIGER 

provides a multitude of data that form the basis of our research. A comprehensive 

genomic map of the samples was constructed, which included crucial details such 

as contig names, the software used, orientation, and more. Among this data, our 

primary focus was on extracting the sequences flanking the Insertion Sequences 

(IS), known as isleLseq and isleRseq as indicated in Fig. 5.1. 
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             Fig. 5.1:  TIGER Output Sample. 

 

• Initial Comparison with ISFinder Database: 

Upon the extraction of isleLseq and isleRseq sequences, the first step in our 

process involved comparing these sequences with the established IS sequences in 

the ISFinder database. The ISFinder database, a comprehensive repository of 

documented Insertion Sequences, proved to be a valuable resource in our initial 

analysis. The goal was to locate any potential matches between the inverted repeats 

of the IS elements from the database and our extracted isleLseq and isleRseq 

sequences from the TIGER output shown in Algorithm 9. 

 
 

Algorithm 9 Initial Check 
Require: left, right, new sequence 
Ensure: Dictionary with keys: ’left’, ’right’, ’under left’, 

’under right’, ’split left’, ’split right’, ’flag’ 
1: Extract the first 10 base pairs from new sequence as first10 = 

new sequence[1 : 10] 
2: Extract  the  last  10  base  pairs  from  new sequence as  last10 = 

new sequence[−10 :] 
3: lefttmp ← convert left to uppercase 
4: first10 tmp ← convert first10 to uppercase 
5: Initialize underlined left ← ∅ 
6: Initialize matched left ← ∅ 
7: righttmp ← convert right to 
uppercase 8: last10 tmp ← convert 
last10 to uppercase 9: Initialize 
underlined right ← ∅ 

10: Initialize matched right ← ∅ 

coutig_u11 me softw11re IS LCOR RCOR supporting 
or ieut11 tiou or ieut11 tiou 

INFO 

I D=Eco837 .1. DU Fl 100 I crl;brief=l . DU Fl 100 I crl; len= 777 ;contextsum=DU Fl 100>/>crl;prefCoords=25 7900,258 

676;bitsum=10669;gnm=CYDN01000049.1 :c14986-11987;q1=99.929:1-2806{258676-261481)>17761-

14956;q2=100.000:24-3000>257907-254931;crossover=8; int=Tnp_l.7:258620-

2 5 83 45; m id=2 5 8482 ;side= RS 2 2 ;O LL=2 5 7900 ;O LR=2 5 7910 ;O RL=2 5 86 7 6 ;O RR=2 5 8686 ;O L=2 5 7900-

2 5 7907 ;OR=258676-258683 ;OU=14956-

14963; mo bQl =; mo bQ2 =;IS=; I Soverla p= ;t rans poso n=; IS ident ica I= ;context= DU F 1100/ / /Li ntergene/3 prime/ 13 7 

3,Crl/crl//Rintergene/5 prime/323 ;o rigOrient=-

;ql ident ity=99 .929;q2 ident ity=100.000;islelseq=CCGAAGAGCAGATTGATCAAAAAA m ACCGCACT AGGCCCGT 

AT A TTCGtgaaggtaGGT AA TGACTCCAACTT A TTGAT AGTGTTTT ATGTTCAGAT AA TGCCCGA;un intSeq=CCGAAGAGC 

AGA TTGATCAAAAAA m ACCGCACT AGGCCCGT AT A TTCGtgaaggtaAGTGCGAAGAT AA TCGA TTCTTTTTCGA TTGTCTG 

GCTGT ATGCGTCAAC;isleRseq=CACCTCAAAAACACCA TCA T ACACT AAA TCAGT AAGTTGGCAGCA TCACCtgaaggtaA 

GTGCAAAGATAATCGATTCTTTTTCGATTGTCTGGCTGTATGCGTCAAC;mean=10276.077294686;SD=544.9753296 

8 709 7 ;delta i nt=2 0 ;fa reig n=3 . 4863 79965 7 5 82 7; ho usekeep=2 .13 2 43 04848164; hypot h=-

0 .0931475029036005 ;delta_ G C=0.02295 ;d in uc=0.09029375; is I rScore=l .01597960486801 e-

1 l ;compSco re=6.51159176129944e-

06;project=genome;d ivision=Bacteria;phylum=Proteobacteria;o rder=Gammaproteobacteria;class=Enterobacter 

ales;family=Enterobacteriaceae;genus=Escherichia;species=Escherichia 
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11: flag ← False 
12: if first10 tmp ∈ lefttmp then 
13: index ← position of first10 tmp in lefttmp 
14: Format left to underline the matched sequence and assign to 

matched left 
15: Extract the underlined sequence from left and assign to underlined left 
16: end if 
17: if last10 tmp ∈ righttmp then 
18: index ← position of last10 tmp in righttmp 
19: Format right to underline the matched sequence and assign to 

matched right 
20: Extract the underlined sequence from right and assign to 

underlined right 
21: else 
22: flag ← True 
23: end if 

return Dictionary with the generated values 
 

   

• Analysis of Sequence Matches and Direct Repeat Identification: 

If the sequences matched with entries in the ISFinder database, the process 

moved forward to the identification and counting of Direct Repeats (DRs) within 

the sequences. These DRs, represented by lowercase letters within the sequences, 

provided a key understanding of the behavior and potential influence of Insertion 

Sequences within the genomic structure shown in Algorithm 10. 
 

Algorithm 10 extract and list common lowercase 
Require: matched left, matched right, underlined left, underlined right 
Ensure: common count, common bases str 

1: Remove underlined sequences from matched left and matched right to get 
lowercase left and lowercase right respectively. 

2: Extract only lowercase letters from lowercase left and lowercase right. 
3: Initialize an empty list 
common bases 4: Initialize a 
counter common count ← 0 5: 
for each base in lowercase left 
do 
6: if base exists in lowercase right then 
7: Add base to common bases 
8: Remove the first occurrence of base from lowercase right 
9: end if 

10: end for 
11: common count ← length of common bases 
12: Convert common bases list to a string, common bases str 

return common count, common bases str 
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• Reverse Complement Process for Non-matching Sequences: 

If no match was found during the initial comparison with the ISFinder 

database, the sequences were then reverse-complemented. The reverse complement 

of the isleLseq and isleRseq sequences was again compared with the ISFinder 

database. If a match was found this time, the Direct Repeats within these sequences 

were identified and quantified shown in Algorithm 11. 

 
 

Algorithm 11 ReverseComplementCheck 
Require: left, right, new sequence 
Ensure: Dictionary with keys: ’left’, ’right’, ’under left’, 

’under right’, ’split left’, ’split right’ 
1: concatenated ← left + right 
2: reversed comp ← reverse complement of concatenated 
3: split left, split right ← split reversed comp into two parts 
4: Extract the first 10 base pairs from new sequence as first10 = 

new sequence[1 : 10] 
5: Extract  the  last  10  base  pairs  from  new sequence as  last10 = 

new sequence[−10 :] 
6: split lefttmp ← convert split left to uppercase 
7: first10 tmp ← convert first10 to uppercase 
8: Initialize underlined left ← ∅ 
9: Initialize matched left ← ∅ 

10: split righttmp ← convert split right to uppercase 
11: last10 tmp ← convert last10 to uppercase 
12: Initialize underlined right ← ∅ 
13: Initialize matched right ← ∅ 
14: if first10 tmp ∈ split lefttmp then 
15: index ← position of first10 tmp in split lefttmp 
16: Format split left to underline the matched sequence and assign to 

matched left 
17: Extract the  underlined  sequence from  split left and assign  to 

underlined left 
18: end if 
19: if last10 tmp ∈ split righttmp then 
20: index ← position of last10 tmp in split righttmp 
21: Format split right to underline the matched sequence and assign to 

matched right 
22: Extract the underlined sequence from split right and assign to 

underlined right 
23: else 
24: Print ”DR None”, left, right 
25: end if 

return Dictionary with the generated values 
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• Python Script Implementation for Efficient Analysis: 

To streamline the processes of comparison, identification, and 

quantification, we implemented a Python script. This script was custom-built to 

parse and filter the genomic data and was particularly focused on handling the 

isleLseq and isleRseq sequences and their direct repeats. 

In summary, our methodology enabled comprehensive extraction, 

comparison, reverse complementation, identification, and quantification of critical 

elements of the Insertion Sequences within the genomic structures. Through the use 

of advanced tools and custom scripts, we were able to achieve a detailed analysis 

of the data, leading to substantial insights into the behavior of Insertion Sequences 

across various genomes as seen in Fig. 5.5. 

 

Fig. 5.5: Final outcome from Analysis of TIGER output. 

 

 

 

A 8 CD EFG H j J KL MN O I P Q 

Un nilm• cont ig_n 
softwar• IS LCOR RCOR 

su pportin ori•ntilti 
INFO len isl• Lsaq isl•Rseq 

comm on_low•r 
Oparation_appli•d 

common_lower 

d: D , me onl 
IS_nam • 

case_count case_bases 

0 U00096.3 TIGER IS 15384 16734 249 - ID=Eco83/ 1350 IS186B ACGGAGG" ACGTTAAP 10 no_change gggagtatcc 

1 U00096.3 TIGER IS 257903 258680 489 + ID=Eco83'i 777 IS1F CCGAAGAC CACCTCAJ' 8 reverse_complemented taccttca 

2 U00096.3 TIGER IS 381256 382593 295 - ID=Eco83/ 1337 IS2 TGGTGCC<TCACTTAT reverse_complemented aattc 

3 U00096.3 TIGER IS 391707 392969 64 . ID=Eco83/ 1262 IS3 TT AACTCC CTGAGAGi reverse_complemented ate 

4 U00096.3 TIGER IS 574591 575790 91' ID=Eco83'i 1199 IS5 GGT AAACC GCTCCAGI 4 no_change ttag 

5 U00096.3 TIGER IS 608004 609354 S3' ID=Eco83/ 1350 IS186B TGAGTTT /l ACCGAGG• 10 no_change gggataatcc 

6 U00096.3 TIGER IS 687849 689048 214 - ID=Eco83'i 1199 IS5 AACAAACJTGAAATGJ no_change ctaa 

7 U00096.3 TIGER IS 1049773 1050550 431 - ID=Eco83/ 777 ISl F ATTTCACAAACCTCAJ' reverse_complemented gacaatacg 

8 U00096.3 TIGER IS 1094239 1095503 4 • ID=Eco83/ 1264 IS3 T AAGGTG( CTGAGAm reverse_complemented C 

9 U00096.3 TIGER IS 1294411 1295411 157 - ID=Eco83'i 1000 ISCro3 AAGCGAAJ CCCGTTA"T 10 reverse_complemented cccagaaggg 

10 U00096.3 TIGER IS 1299496 1300696 384 • ID=Eco83/ 1200 IS5 AATAATTGGAAATGA( no_change ctaa 

11 U00096.3 TIGER IS 1396041 1397241 346 - ID=Eco83'i 1200 IS5 CTCTGAAP GCTCCAGJ no_change ttag 

12 U00096.3 TIGER IS 1503161 1504910 67 - ID=Eco83/ 1749 IS609 CGGAGGO AACCGCGC reverse_complemented 

13 U00096.3 TIGER IS 1978498 1979275 383 + ID=Eco83/ 777 IS1F GATTTTCA CACCTCN reverse_complemented catttatg 

14 U00096.3 TIGER IS 2066156 2067356 155 + ID:Eco83'i 1200 IS5 AACTTGT /l GCTCCAGJ no_change ctag 

15 U00096.3 TIGER IS 2170169 2171430 421 - ID=Eco83/ 1261 IS3 CCAAAAAJ CTGAGAm reverse_complemented gtc 

16 U00096.3 TIGER IS 2288916 2290116 399 + ID=Eco83'i 1200 IS5 ATCAACT( GCTCCAGJ no_change ataa 

17 U00096.3 TIGER IS 2514270 2515620 337 + ID=Eco83/ 1350 IS186B TCTGCGT( ACCGAGGI 10 no_change ggataattcc 

18 U00096.3 TIGER IS 3186091 3187426 273 + ID=Eco83/ 1335 IS2 TTAAAATT GGGCTTG-1 no_change atgt 

19 U00096.3 TIGER IS 3365553 3366753 78 • ID=Eco83/ 1200 IS5 GTTAGCCJ GCTCCAGJ no_change ttag 

20 U00096.3 TIGER IS 3583423 3584200 290 • ID=Eco83/ 777 IS1F TACAAGAJTCGGGCA-, no_change gacattaaa 

21 U00096.3 TIGER IS 3652034 3653233 265 + ID=Eco83'i 1199 IS5 CAAGGm GCTCCAGI no_change ttag 

22 U00096.3 TIGER IS 3720631 3722079 2 - ID=Eco83/ 1448 IS150 GTATTCACATATTAG( reverse_complemented t 

23 U00096.3 TIGER IS 4498178 4499515 48 • ID=Eco83/ 1337 IS2 GGGTGAT<TGTAATG( no_change ccttg 
~• , .~~~~r ~ ~ • -r- ~~--~-~~·-·-
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Analysis of BLAST Output 

In this step, our focus shifted to the BLAST outputs indicated in Fig. 5.6. 

Extending from our initial comparison, we introduce two metrics, delta termini and 

delta internal, to quantify the quality of the hits. 

• Extraction of BLAST Output Information 

First, we  extracted the necessary information from the BLAST output, 

including the sequence's ID, the start and end points of the alignment on the query 

and subject sequences, and the length of the ideal match. 

 

Fig. 5.6:  BLAST Output Sample. 

 

• Calculation of Delta Termini (∆ Termini) 

After the extraction, we  calculated the delta termini, which measures the 

difference at the end of sequences shown in Algorithm 12. To do this: 

∆ Termini = (Ssubject − Squery)+(Esubject − Equery) 

Where, 

Ssubject is the starting point of the alignment on the subject sequence. 

number of 
number 

L COOR RCOOR L COOR RCOOR Expected 
IS from 

Contig IS P el'Centage Len of bit mismatches of gap (query) (query) (subj ect) (subject) value 
Bit Scor e L en of Coutig ISFinder 

opeuiu~s (Kbs) 
U00096.3 1S609 97.654 1748 41 0 1503161 1504908 1748 3001 4641652 1748 

U00096.3 1S150 99.861 1444 0 2 3720633 3722075 1443 2654 4641652 1443 

U00096.3 1S103 99.792 1444 2 3720633 3722075 1443 2649 4641652 1443 

U00096.3 1S4 100 1426 0 4502090 4503515 1426 1 2634 4641652 1426 

U00096.3 1S186B 99.925 1339 15390 16728 1 1338 2466 4641652 1338 

U00096.3 1S186B 99.925 1339 608010 609348 1338 2466 4641652 1338 

U00096.3 1S186B 99.925 1339 2514276 2515614 1338 2466 4641652 1338 

U00096.3 1S421 99.776 1342 15390 16728 1342 2459 4641652 1342 

U00096.3 1S421 99.776 1342 608010 609348 1342 2459 4641652 1342 

U00096.3 1S421 99.776 1342 2514276 2515614 1342 2459 4641652 1342 

U00096.3 1S2 100 1331 0 381260 382590 1331 2459 4641652 1331 

U00096.3 1S2 100 1331 0 2996361 2997691 1331 2459 4641652 1331 

U00096.3 1S2 100 1331 0 2068941 2070271 1331 2459 4641652 1331 

U00096.3 1S2 100 1331 0 1467910 1469240 1331 2459 4641652 1331 

U00096.3 1S2 100 1331 0 3186096 3187426 1 1331 2459 4641652 1331 

U00096.3 1S2 100 1331 0 4498181 4499511 1331 2459 4641652 1331 

U00096.3 1S2 100 706 0 1650843 1651548 626 1331 1304 4641652 1331 

U00096.3 15186A 99.628 1343 15388 16730 1341 2451 4641652 1341 

U00096.3 15186A 99.628 1343 608008 609350 1341 2451 4641652 1341 

U00096.3 15186A 99.628 1343 2 2514274 2515616 1341 2451 4641652 1341 
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Squery is the start point of the alignment on the query sequence. 

Esubject is the endpoint of the alignment on the subject sequence. 

Equery is the endpoint of the alignment on the query sequence. 

This equation calculates: 

a. The sum of the two differences by subtracting the start point of the query 

alignment from the start point of the subject alignment. 

b. Subtracting the endpoint of the query alignment from the endpoint of the 

subject alignment 

c. These two differences are then summed to yield the final result. 

d. If the result is zero, it indicates a perfect match with the ideal alignment. 

Any deviation from zero suggests an imperfect or incomplete match. 

 
 

Algorithm 12 DelterminiCalculation 
Require: 
dataframe 
Ensure: label, del 
termini 1: Let string 
← dataframe 

2: Use regular expressions to search for patterns in string 
3: sum match ← match pattern sum = (n1 − n2 : n3 − n4) where ni ∈ N 
4: islen match ← match pattern islen = n where n ∈ N 
5: Extract values from matches: 
6: sum value ← value from sum match (or None if no 
match) 7: islen value ← value from islen match (or 
None if no match) 8: Split sum value by ”-” to get 
sum values 
9: For each value in sum values, 

split by ”:” 10: Calculate del termini 
using the formula: 11: del termini = 
1 − n1 + n3 − islen value 12: if del 
termini = 0 then 
13: label ← ”Complete” 
14: else 
15: label ← ”Incomplete” 
16: end if 

return label, del termini 
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• Calculation of Delta Internal (∆ Internal) 

Then, finally, we  calculated the delta internal shown in Algorithm 13, which 

measured the difference within sequences. This calculation was performed only for 

matches with a (+) symbol in the BLAST output, indicating a gap or an insertion in 

the alignment. To calculate delta internal: 

∆ Internal = (S2−E1)+(E4−S3) 

Where, 

E1 is the endpoint of the match's first segment. 

S2 is the starting point of the match's second segment. 

S3 is the starting point of the first segment of the match in the subject 

sequence. 

E4 is the endpoint of the second segment of the match in the subject 

sequence. 

This equation calculates: 

a. the sum of the two differences by first taking the difference between the 

start point of the second segment and the endpoint of the first segment 

b. Then, take the difference between the endpoint of the second segment in 

the subject sequence and the start point of its first segment. 

c. Finally, summing these two differences. 

d. A negative delta internal value indicates a deletion in the match, while a 

positive value suggests an insertion. 
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Algorithm 13 DeltaInternalCalculation 
 

Require: string 
Ensure: label, del internal 

1: sum value ← extract value between ”sum=” and the next ”;” 
2: sum string ← sum value 
3: Define a regex pattern pattern to match characters that are not digits, i.e., 
pattern = r”[0−9] 

+ ” 
4: Split sum string based on pattern to get a list numbers 
5: Remove any empty strings from numbers 
6: Calculate del internal using the formula: 

del internal = (numbers[2] − numbers[5]) + (numbers[4] − 
numbers[7]) 

7: if del internal 
> 0 then 

8: label ← ”insertion” 
9: else 

10: label ← ”deletion” 
11: end if 

return label, del internal 
 

 

5.3 Results and Discussion 

The integrated analysis of TIGER and BLAST outputs afforded us a 

nuanced understanding of the genomic data. For example, the enumeration of direct 

repeats provided valuable insights into the functional implications of these repeats 

in mobile genetic elements, such as insertion sequences and transposons. 

Simultaneously, evaluating BLAST hits, using delta termini and delta internal, 

facilitates efficient discernment between high-quality BLAST hits and subpar 

matches. 

This approach enhanced the high-throughput data analysis by simplifying 

the identification of sequences of interest and reducing the computational demands 

of subsequent analyses. However, despite its utility, this method did not negate the 
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necessity for further computational or experimental validation for certain genomic 

elements or novel findings. 

In conclusion, this chapter's integrated analysis of TIGER and BLAST 

outputs presents a method to further interpret high-throughput genomic analysis 

results. This methodology and existing genome annotation tools promise to 

significantly advance genomics and bioinformatics research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



77 
 

 

CHAPTER 6 

CONCLUSION 

 

The overarching aim of this research was to enrich the current 

computational methodologies used in genomics, particularly focusing on the 

detection and analysis of Mobile Genetic Elements (MGEs) and transposable 

elements. Through algorithmic enhancements, software benchmarking, and high-

performance computing adaptation, this thesis has made several contributions to 

the rapidly evolving field of computational genomics. 

6.1 Contributions 

Algorithmic Development:  

As elaborated in Chapter 3, the incorporation of new algorithms  

significantly accelerated the discovery process using TIGER, thereby conserving 

computational time and resources essential for pinpointing MGEs in bacterial 

genomes. 

Tool Evaluation:  

An extensive assessment of existing computational methods, notably 

TIGER and BLAST, was conducted. As discussed in Chapters 2 and 5, these 

evaluations not only highlighted the individual merits and limitations of each tool 

but also provided a framework for making informed choices for computational 

approaches in genomics. 
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Transposable Element Mapping:  

Detailed in Chapter 4, the concentrated study on E. Coli genomes offers 

valuable benchmarks for the broader community of researchers interested in 

understanding the genomic distribution and influence of transposable elements. 

Quality Assessment:  

Chapter 5's meticulous comparison of TIGER and BLAST outputs resulted 

in established criteria for assessing the quality of BLAST hits, thereby enhancing 

the interpretive capacities of scientists engaged in similar endeavors. 

6.2 Theoretical and Practical Implications 

The discoveries made during this research hold both theoretical and 

practical implications: 

Theoretical:  

The work expanded our understanding of genomic structures and functions, 

especially concerning MGEs and transposable elements. It also laid the 

groundwork for a marriage of algorithmic advancements and theoretical genomic 

data modeling. 

Practical:  

The enhanced speed and accuracy of the algorithms open doors for 

applications in medical diagnostics, disease management, and agriculture. 
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6.3 Limitations and Recommendations 

Despite the notable contributions, this study is not without limitations: 

Limited Database: 

The research outcomes rely heavily on data from E. coli genomes and needs 

to be expanded to include other bacterial genomes. 

Time Constraints:  

Given more time, the research could have been expanded to include cross-

validation of the algorithms on different species, thereby enriching the robustness 

and generalizability of the findings. 

6.4 Future Directions 

Future research endeavors could concentrate on: 

Algorithmic Scalability:  

Investigating the possibility of algorithmic adaptations that can exploit the 

potential of parallel computing, thus catering to large-scale genomics projects. 

Cross-Species Validation:  

Extending the validation framework to other bacterial and, perhaps, 

eukaryotic genomes will ascertain the universal applicability and robustness of the 

proposed algorithms. 

User Experience:  

Consideration could be given to creating more user-friendly interfaces and 

workflows, particularly for those with limited experience in computational 

methods. 
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To sum up, this thesis makes a substantial addition to the existing literature 

in computational genomics, filling gaps and extending current capabilities in MGE 

and transposon detection. While there is much to be done, the advancements made 

here are not merely incremental but foundational, paving the way for future 

explorations in this dynamic and critically important field. 
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SUPPLEMENTARY DOCUMENTS 

 

Supplementary Table-2 

supportGnms.txt 

The large file “supportGnms.txt” contains 64838 islands from our 9457 Escherichia 

genomes that TIGER has finished, with ten fields per line. 

1) Island name,  

2) DNA accession and coordinates (from which we can calculate island length),  

3) Assembly ID (GCA_ at NCBI),  

4) GTDB species,  

5) Support value from all Enterobacteriaceae (except Salmonella),  

6) Island score,  

7) Summary of integrases (S-Int, Y-Int, S-core),  

8) Island type (such as Phage1, Phage1),  

9) Number among the 15299 Escherichia genomes supporting the island (1551 

islands that got zero support from these genomes were excluded),  

10) Comma-separated list of the supporting Escherichia genomes (most genome 

names started with ‘Eco’; for these, the ‘Eco’ portion is deleted, leaving only 

digits to save space) 
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Supplementary Table-3  

List of 13 GTDB species that we are working with- 

 

Escherichia Species Count 
Escherichia__albertii 70 
Escherichia__coli 3349 
Escherichia__coli_C 42 

Escherichia__coli_D 1450 
Escherichia__dysenteriae 1173 
Escherichia__fergusonii 14 
Escherichia__flexneri 9094 
Escherichia__marmotae 48 

Escherichia__sp000208585 20 
Escherichia__sp001660175 2 
Escherichia__sp004211955 2 
Escherichia__sp005843885 36 
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Supplementary 4 

Supplementary  4.1 

randomDB.pl It makes a file listing n random DB member genome for a given genome 
DB size of n and genome file. In the randomDB scripts for different counts, we have used 
the genome files that have a line for each genome of the species. (ecolist.txt, 
Escherichia__flexneri.txt, Escherichia__dysenteriae.txt, coli.txt, coli_D.txt) 

perl randomDB.pl (count) ecolist.txt > all_count_rand.list 

 

Supplementary  4.2 

diverseDB.pl: It makes a file listing the n most diverse genomes for a particular genome 
DB size n and mash distance file. In the diverseDB.pl scripts for different counts, we have 
used the MashDist file, which has three columns for genomeA, genomeB, and Mashdist 
for all genomes of the species. (eschmash.dist, flexneri.dist, coil.dist, coli_D.dist, 
dysenteriae.dist) 

perl diverseDB.pl (count) ../mash/eschmash.dist > all_count_diverse.list 

 

Supplementary  4.3 

evalDB.pl: It finds which islands are supported by the DB for a given DB list file, and the 
island support file writes the new support value, length, species, original support value, 
score, int summary, type, and support from 15299. After that, we used this output to 
compute statistics. 

perl evalDB.pl all_rand.list supportGnms.txt > all_rand.support 

 

Supplementary  4.4 

Fastamaker.pl: By using fastamaker.pl we got the sequences of genomes for the 
randomly or diversely selected n DB size.  

perl fastamaker.pl count_rand.list count_rand.fa 

 

Supplementary  4.5 

After getting the fasta file, we have to make a BLAST database out of it by using the 
following command: 

makeblastdb -in count_rand.fa -out count_rand -dbtype nucl –parse_seqids 
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