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Abstract
Multidisciplinary design optimisation (MDO) is a methodology increasingly being used in the preliminary design of aircraft. 
To limit the computational cost of the procedure, it is generally based on coarse models, which do not accurately capture 
the internal deformation of details with a complex geometry. Therefore, it is not possible to apply constraints in these areas 
and designers are limited to a conservative pre-sizing of these parts, which are then kept fixed during the optimisation. In 
this paper we expose the limitations of this approach and present a novel methodology for the preliminary sizing of aircraft, 
based on global–local MDO. The commonly used coarse model is used together with finer local models, for the parts where 
additional accuracy is needed. The global–local analysis solves the internal deformation field with sufficient accuracy for the 
evaluation of local constraints. Furthermore, thanks to the formulation we introduce to compute the coupled sensitivities, 
the optimiser successfully finds a locally feasible design.

Keywords  Multidisciplinary optimisation · Global–local · Preliminary design · Coupled sensitivity analysis
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Aeroelasticity
f A
rigid

	� Rigid component of the aeroelastic 
load vector

C	� Aeroelastic stiffness matrix

Optimisation
f 	� Objective function
g	� Vector of constraints
t	� Vector of design variables

Global–local qualifier
⋅
G	� Quantity related to the global model
⋅
L	� Quantity related to the local model

Dof‑set qualifier
⋅a	� Quantity related to the interface local 

displacements
⋅o	� Quantity related to the inner local 

displacements

Glossary
MDO	� Multidisciplinary design optimisation
FEM	� Finite element method
FE	� Finite element
GFEM	� Global finite element model
DOF	� Degree of freedom
SBD	� Specified boundary displacements
SBSF	� Specified boundary stiffness/force
RF	� Reserve factor
SPC	� Single point constraint

1  Introduction

In the aerospace industry, multidisciplinary design optimi-
sation (MDO) is increasingly being used in the preliminary 
design of aircraft. After a phase known as conceptual design, 
in which multiple models are taken into account, MDO can 
be used to advance these concepts in parallel and discard the 
least promising ones. However the need to limit the com-
putational cost has lead to the use of coarse finite element 
(FE)-models with limited accuracy, which do not allow the 
evaluation of constraints of local details with complex geom-
etry. Only the successive detailed modelling of these local 
“non-regular areas” might reveal a local infeasibility of the 
found optimal design, which might result in costly delays in 
the product development cycle.

In the preliminary design of aircraft, coarse FE-mod-
els, commonly referred as Global Finite Element Models 
(GFEMs) [1], are used to capture overall stiffness, global 
loadpaths and internal loads of large portions of the struc-
ture, like a wingbox or even the entire aircraft. The compu-
tational cost of using more accurate FE-models in an opti-
misation procedure would be too high [2]. Thus, GFEMs 

are used, even if they do not always capture the internal 
deformation with a sufficient level of detail. This may lead 
to unfeasible detail designs of some parts or to over-con-
servative suboptimal designs [3]. This is particularly true 
for “non-regular areas” [4], i.e. components like stinger run-
outs, manholes and bulkheads.

To mitigate the problem, these parts are conservatively 
designed beforehand and kept fixed during the optimisa-
tion. Whenever this strategy fails to find a feasible solu-
tion, designers face a challenge to devise optimal solutions 
without violating design constraints. Modifications to the 
design of these components are necessary, which in the best 
case lead to a sub-optimal solution. But since these modi-
fications can significantly alter the global loadpaths, con-
straint violations are likely propagated and designers may 
be forced to modify the surrounding parts or to repeat the 
global optimisation, leading to a long iteration process and 
costly delays [5–7].

A possible solution to this problem is to consider the 
design of these “non-regular areas” during global optimi-
sation. A simple way of coupling a global analysis and a 
local analysis, based on a refined model, is to enforce the 
solution at interface. In the context of displacement based 
FE-analyses, this coupling is known as Specified Boundary 
Displacements (SBD). It can be enforced via a master–slave 
elimination procedure [8] or using a Lagrange multipliers 
formulation [9]. It is also possible to develop an iterative 
procedure to apply a global solution at the boundary of a 
local model and use the local solution to correct the global 
results, as in [10–12]. When combined with an interpola-
tion of the solution fields, this approach can be used with 
non-conforming meshes [13] and to couple solution fields 
obtained with different numerical methods [14].

Another famous approach is static condensation [15], also 
known as substructuring. In this case, the stiffness of one 
model is condensed, by computing the Schur complement 
of its stiffness matrix, and used for the solution of the other 
model. In the case of a static analysis, this results in an exact 
procedure.

A third coupling strategy, known as specified boundary 
stiffness/force (SBSF) and introduced in [16], combines 
SBD and static condensation, effectively specifying the solu-
tion further from the interface and condensing the part of the 
structure in-between.

Strategies have also been developed to efficiently update a 
coarse solution with a more detailed analysis as in [17, 18].

Despite the variety of global–local analysis strategies 
available, the global–local optimisation approaches are 
often based on a standard FE-analysis. Instead of integrat-
ing a global–local approach in the optimisation, the usual 
approach is to split the optimisation problem in two or more 
levels [19, 20]. The coupling between the two optimisa-
tion problems is realised by decomposing the optimisation 
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problem itself [21], by alternating between global and local 
optimisations [22] or by nesting the local optimisation in 
each iteration of the global procedure [23–29]. The coupling 
can also be relaxed by using response surfaces to coordinate 
two procedures running in parallel [30].

These methods are attractive in terms of computational 
cost, as they limit the size of both the analysis and the opti-
misation problems considered. Therefore they can be used 
to effectively exploit additional local design freedom at an 
acceptable computational cost, using gradient based as well 
as gradient free optimisation methods. Nevertheless, they are 
limited by the need to effectively couple the different levels, 
which can be challenging when local areas have a dramatic 
effect on the global loadpaths.

An exception to two-level optimization, in which 
global–local analysis is actually integrated in the optimisa-
tion procedure can be found in [31, 32]. The authors present 
an optimisation procedure, in which the analysis is solved 
using superelements to capture local behaviour. In this 
paper, to address the shortcomings of two-level approaches, 
we propose a similar methodology for the preliminary siz-
ing of aircraft structures, which ensures that the design of 
“non-regular areas” is feasible. Contrary to the strategies 
presented in [31, 32], our methodology does not require the 
complete partition in substructures of the whole structure 
and is based on coupled global–local semi-analytical sen-
sitivities. Our global–local MDO procedure is based on the 
use of separate FE-model for the local details to allow the 
accurate evaluation of local constraints. The global–local 
analysis methodology, based on Guyan condensation and 
SBD, was complemented with a novel derivation of the 
implied sensitivity analysis formulation, based on a semi-
analytic computation of the sensitivities. Since for the spe-
cific problem of “non-regular areas” the focus is on local 
feasibility, rather than the exploitation of additional local 
design freedom, the presented approach is based on mono-
lithic architecture, in contrast with common two-level opti-
mization approaches. Furthermore, we present a case study, 
in which we compare the proposed methodology with cur-
rent industry practice and highlight the inadequacies of the 
standard approach.

In Sect.  2, we present an integrated monolithic 
global–local multidisciplinary optimisation approach, based 
on static condensation, with a coupled global–local sensitiv-
ity analysis, in agreement with the formulation described by 
Sobieski et al. [33, 34]. This relies on semi-analytical sensi-
tivities, which is crucial for accuracy and cost-effectiveness 
[35, 36]. We implement this using Lagrange [37, 38], an 
in-house software developed by Airbus, which provides 
access to the required sensitivities. Nevertheless, the same 
approach could be implemented with other tools provided 
that sensitivities are computed. In Sect. 3, we discuss some 
implementation aspects and the verification examples. In 

Sect. 4, we present a simple example in which global opti-
misation and subsequent modifications of the local design 
alter the loadpaths enough to cause the violation of global 
constraints, despite an initially conservative local design. We 
then prove the effectiveness of the presented methodology 
in finding a feasible optimal design. Lastly, our conclusions 
are summarised in Sect. 5.

2 � Methodology

To address the challenge of insufficient level of detail 
in the GFEM for the early stage MDO, in our paper, we 
adopt a global–local design approach. In the following, a 
global–local multidisciplinary optimisation procedure is 
presented.

2.1 � Problem statement and proposed MDO 
architecture

2.1.1 � Optimisation problem

The underlying optimisation problem has the standard form:

where f  is a functional to be minimised, g are the con-
straints, t are the design variables and u is the solution of a 
multidisciplinary global–local analysis.

2.1.2 � Disciplines considered

The term multidisciplinary refers to the fact that several dif-
ferent disciplines will be considered [39–42]. Within the 
scope of this paper we consider two disciples: 

1.	 linear static analysis, and
2.	 static aeroelastic analysis.

These analyses are not coupled and can be solved indepen-
dently. Furthermore, for a given model multiple subcases 
will usually be considered, i.e. the model will in general be 
subject to different loadcases and boundary conditions to 
be separately solved. The solution to each subcase ui , which 
might be the result either of a linear static analysis or of a 
static aeroelastic analysis, will affect different constraints 
g(t, u(t)).

Therefore, by u we denote

(1)
{

find argmin tf (t)

such that g(t, u(t)) ≥ 0
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where each ui is the solution of a different subcase, cor-
responding to either one of the specified disciplines above.

2.1.3 � Global–local modelling

The term global–local refers to the fact that the structure is 
modelled using multiple FE models, as it will be described 
in Sect. 2.2. Because of the subdivision in multiple models 
the solution of the analyses and the computation of the sen-
sitivities require a special formulation detailed in Sects. 2.3 
and 2.4.

2.1.4 � Global–local MDO architecture

The approach is based on a monolithic multidisciplinary 
feasible architecture, therefore it is implemented as one opti-
misation procedure. In each optimisation iteration, the mul-
tidisciplinary global–local analysis is solved for u , the 
responses f  and g are evaluated and the sensitivities 

df

dt
 , 
dg

dt
 

are computed.
If the convergence criteria are not met, the optimiser uses 

the gradients 
df

dt
 , 
dg

dt
 to compute the design update and the 

procedure is repeated, as depicted in Fig. 1.

2.2 � Modelling assumptions

In our approach we assume that the structure to be analysed 
requires two different levels of detail. For most of the struc-
ture a coarse modelling is deemed sufficient, while instead 
some parts of the model require a detailed representation 
of the geometry and a finer mesh. The structure is therefore 
represented with multiple models: one global model, which 
represents most of the structure using a coarse mesh, and 
multiple local models, used to represent detailed parts with 
a finer mesh. However, without loss of generality, in this 
paper we consider the case with only one local model. The 

(2)u =

⎡⎢⎢⎢⎣

u1
u2
⋮

un

⎤⎥⎥⎥⎦

global solution field uG can be partitioned in global internal 
solution z , and solution at the global interface i , while the 
local solution field uL is partitioned in local internal solution 
o , and solution at the local interface a.

We also assume that the structure is modelled following 
three main assumptions: (1) non-overlapping domains, (2) 
no local-local interfaces, and (3) conforming interfaces.

According to assumption (1) the global and local models 
do not overlap, so that no part of the structure is modelled 
twice. Hence the structure is partitioned in multiple models.

Based on the assumption (2) each local model is inter-
faced only with the global one, so that no local to local inter-
faces exist, as represented in Fig 2.

Lastly, according to assumption (3), the interface between 
global and local models is conforming. In practice, this 
means that for each FE-node at the interface of the global 
model, there is a matching FE-node at the interface of the 
local model, as represented in Fig 3. Whenever this is not 
the case, as long as global and local model share an inter-
face with the same geometry, the proposed approach can 
still be applied, by connecting non-matching meshes using 
connecting elements, such as RBE2 and RBE3 elements in 
NASTRAN notation.

Since global and local degrees of freedom (DOFs) match, 
a solution field u on the interface, defined by the global 
DOFs i , is represented on the local mesh by the same vector 

Fig. 1   The proposed global–local MDO procedure is based on a monolithic architecture

Fig. 2   The proposed global–local MDO procedure relies on non-
overlapping global–local models without local-local interfaces
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of local DOFs. The coupling at the boundary is formulated 
by simply matching the DOFs:

therefore the mapping between i and a is the identity matrix.
When considering a static aeroelasticity subcase, we 

will assume that it is sufficient to only interface the global 
degrees of freedom with the aeroelastic forces, while the 
local models deform as in a static analysis subcase. This is 
coherent with the reference procedure, in which the local 
model does not exist and the aeroelastic loads are injected 
at the global nodes.

We further assume that each design variable can be 
uniquely assigned to either the global or the local model. 
Therefore a design variable cannot be part of the global and 
the local model at the same time.

2.3 � Global–local analysis

A global–local analysis methodology suitable for the evalu-
ation of constraints on “non-regular areas” was developed. 
In the case of a linear static analysis, as well as in the case of 
a static aeroelastic analysis at global level, the global solu-
tion accounts for detailed local information thanks to the 
Guyan condensation of the non-regular areas [15]. By apply-
ing SBD [8, 9], the global solution is then used as bound-
ary condition for the solution of a local static analysis. This 
approach has the advantage to only solve a static analysis of 
the local model, which is deemed sufficient for the evaluation 
of local constraints, regardless of the global subcase. Moreo-
ver, since the local condensation must not be recomputed, 
whenever the local design variables are not modified, this 
strategy allows to further contain the computational cost. For 
all cases, in which accurate local models are needed not for 
the purpose of exploiting additional design freedom, but to 
avoid local infeasibility at a comparable computational cost, 
we consider the suggested approach to be more appropriate 

(3)i = a
then the two-level optimization approaches commonly found 
in the literature.

2.3.1 � Discrete equations for static analysis

In the case of a static analysis subcase, the discrete equa-
tion is:

where K is the stiffness matrix, p is the load vector and u is 
the vector of nodal displacements.

This holds for both the global:

and the local model:

Solving both, while enforcing the coupling at the interface 
defined in Eq. 3, is equivalent to solving:

which would be the system of a reference model, in which 
all degrees of freedom are considered at once and i = a is 
denoted as i (Fig. 4).

(4)
[
K
] [
u
]
=
[
p
]

(5)
[
Kzz Kzi

Kiz Kii

] [
z

i

]
=

[
pz
pi

]

(6)
[
Kaa Kao

Koa Koo

] [
a

o

]
=

[
pa
po

]

(7)
⎡⎢⎢⎣

Kzz Kzi ⋅

Kiz Kii + Kaa Kao

⋅ Koa Koo

⎤⎥⎥⎦

⎡⎢⎢⎣

z

i

o

⎤⎥⎥⎦
=

⎡⎢⎢⎣

pz
pi + pa
po

⎤⎥⎥⎦

Fig. 3   The proposed global–local MDO procedure relies on conform-
ing interfaces. Non-matching meshes can be adapted using connect-
ing elements like RBE2 and RBE3 Fig. 4   Modelling of a structure as a single FE-model (above) and 

using a global and a local model (below), respectively highlighted in 
blue and yellow
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2.3.2 � Discrete equations for static aeroelasticity

In the case of static aeroelasticity subcase, the discrete equa-
tion is:

where f A
rigid

 is the rigid part of the aeroelastic load vector and 
C is the aeroelastic stiffness matrix.

Since we have assumed that only the global model shares 
an interface with the aeroelastic forces, the discrete equation 
of the global model is:

while instead for the local model the discrete equation is 
again the same as given in Eq. 6.

As for the case of a static analysis, under the assumption 
of direct displacement coupling at the interface (Eq. 3), it is 
possible to assemble a system of equations for a reference 
model (Fig. 4) representing the entire structure:

(8)
[
K
] [
u
]
=
[
p
]
+ f A

rigid
+ C

[
u
]

(9)
[
Kzz Kzi

Kiz Kii

] [
z

i

]
=

[
pz
pi

]
+ f A

rigid
+ C

[
z

i

]

2.3.3 � On the solution approach

The global–local analysis proposed does not require any 
iterative procedure and is instead based on three steps: (i) 
condensation of the local model, depicted in Fig. 5a, (ii) 
global solution, depicted in Fig. 5b, and (iii) local solution, 
depicted in Fig. 5c

The static condensation of the local model reduces the 
system in Eq. 6 to:

In the second step, the local condensed information is added 
to the global model:

(10)

⎡⎢⎢⎣

Kzz Kzi ⋅

Kiz Kii + Kaa Kao

⋅ Koa Koo

⎤
⎥⎥⎦

⎡
⎢⎢⎣

z

i

o

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

pz
pi + pa
po

⎤
⎥⎥⎦
+

⎡⎢⎢⎣

f A
rigid

⋅

⎤
⎥⎥⎦
+

⎡
⎢⎢⎢⎣

C

�
z

i

�

⋅

⎤⎥⎥⎥⎦

(11)
[
Kaa − KaoK

−1
oo
Koa

]
i =

[
pa − KaoK

−1
oo
po
]

(12)K†

aa
i = p†

a

Fig. 5   Global–local analysis 
steps

(a) Static condensation of the local model

(b) Solution of the global model with local contributions

(c) Solution of the local model with global solution as boundary condition
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In the case of a static analysis subcase, the global system 
(Eq. 5) with the local contributions becomes:

While instead, in the case of a static aeroelasticity subcase 
(Eq. 9), the system is given by:

With the condensed local contributions, the global solution 
can then be computed by solving either Eq. 15 or Eq. 16 for 

uG =

[
z

i

]
.

Lastly, the global solution (i) is applied as a Dirichlet 
boundary condition at the interface of the local model:

With this, the local system becomes solvable and o can be 
computed.

2.4 � Global–local sensitivity analysis

2.4.1 � Objective and constraints evaluation

In this paper we consider a single objective function for the 
MDO, where we optimise the mass of the aircraft, but the 
methodology could be extended to other objectives as well, 
e.g. range. Since we have assumed that local and global 
model do not overlap, the mass of the whole structure is 
the sum of the mass of the global model and the mass of the 
local model:

The constraint vector can be assembled by joining global and 
local constraint vectors:

In this paper, only strength constraints will be considered, 
but the methodology presented is applicable also to other 
relevant types, like buckling and flutter constraints.

(13)
[
Kzz Kzi

Kiz Kii

]
→

[
Kzz Kzi

Kiz Kii + K†
aa

]

(14)
[
pz
pi

]
→

[
pz

pi + p†
a

]

(15)
[
Kzz Kzi

Kiz Kii + K†
aa

] [
z

i

]
=

[
pz

pi + p†
a

]

(16)
[
Kzz Kzi

Kiz Kii + K†
aa

] [
z

i

]
=

[
pz

pi + p†
a

]
+ f A

rigid
+ C

[
z

i

]

(17)Kooo = po − Koaī

(18)f = f G + f L

(19)g =

[
gG

gL

]

2.4.2 � Sensitivities of objective and constraints

When computing the sensitivities, the design variables can 
be divided in global tG and local tL . In the case of the objec-
tive function:

and since the mass of a model does not depend on the design 
variables of other models:

Thus, the sensitivity of the objective function is obtained 
by assembling independent contributions from the global 
and the local model. The global–local formulation does not 
require any special treatment.

As for the constraints vector, computing the deriva-
tive with respect to global and local design variables one 
obtains:

Within the off-diagonal sub-blocks, the terms du
L

dtG
 and du

G

dtL
 

represent the coupling between global and local sensitivities. 
The next section explains how these can be computed.

(20)
df

dt
=

[
df

dtG

df

dtL

]

(21)
df

dt
=

[
df G

dtG

df L

dtL

]

(22)
dg

dt
=

[
dgG

dtG
dgG

dtL
dgL

dtG
dgL

dtL

]

(23)=

[
�gG

�tG
+

�gG

�uG
duG

dtG
�gG

�uG
duG

dtL
�gL

�uL
duL

dtG
�gL

�tL
+

�gL

�uL
duL

dtL

]

Fig. 6   Computation of solution field sensitivities: global and local 
models require the sensitivities of coupling contributions
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2.5 � Coupled sensitivities of the solution field

The computation of du
L

dtG
 and du

G

dtL
 requires an exchange of 

information between the global and the local model. As 
shown in Fig. 6, this information is based on the coupling 
between the models. The global model requires the deriva-
tive of the condensed contributions with respect to tL to com-
pute du

G

dtL
 . The local model requires the derivative of the 

global solution field with respect to tG to compute du
L

dtG
.

2.5.1 � Coupled sensitivity of the global solution field

The term du
G

dtL
 represents the sensitivity of the global solution 

field with respect to local design variables. The global solu-
tion field can be the solution of a static analysis or of a static 
aeroelastic analysis.

In the case of static analysis, uG is the solution of the 
linear system defined in Eq. 15.

The term du
G

dtL
 can be obtained by computing the deriva-

tive of all terms in Eq. 15 with respect to tL . Using the fact 
that the components of the global stiffness matrix ( Kzz,Kzi , 
Kiz and Kii ), as well as the components of the global load 
vector ( pz and pi ) do not depend on the local design varia-
bles, it follows that:

If instead uG is the solution of a static aeroelasticity analysis, 
then the system being solved is the one defined in Eq. 16.

Since neither the matrix of aerodynamic coefficients C 
nor the rigid part of the aeroelastic load vector f A

rigid
 depend 

on the local design variables, deriving Eq. 16 with respect 
to tL yields:

(24)KG du
G

dtL
=

dpG

dtL
−

dKG

dtL
uG

(25)KG du
G

dtL
=

[
dpz

dtL

dpi

dtL
+

dp†
a

dtL

]
−

[
dKzz

dtL

dKzi

dtL

dKiz

dtL

dKii

dtL
+

dK†
aa

dtL

][
z

i

]

(26)KG du
G

dtL
=

[
⋅

dp†
a

dtL
−

dK†
aa

dtL
i

]

(27)KGuG = pG + f A
rigid

+ CuG

(28)dKG

dtL
uG + KG du

G

dtL
=

dpG

dtL
+

df A
rigid

dtL
+

dC

dtL
uG + C

duG

dtL

where the static part of the pseudo-load vector can be simpli-
fied as in the static analysis case:

yielding:

Finally, 
dp†

a

dtL
 and 

dK†
aa

dtL
 must be computed. By deriving K†

aa
 

and p†
a
 as defined in Eq. 11:

will lead to1:

and

2.5.2 � Coupled sensitivity of the local solution field

The remaining coupled sensitivity of the solution field to 
be computed is:

To get da
dtG

 , one must exploit the coupling relationship 
defined in Eq. 3.

(29)KG du
G

dtL
=

dpG

dtL
−

dKG

dtL
uG + C

duG

dtL

(30)dPG

dtL
=

dpG

dtL
−

dKG

dtL
uG

(31)=

[
⋅

dp†
a

dtL
−

dK†
aa

dtL
i

]

(32)KG du
G

dtL
=

[
⋅

dp†
a

dtL
−

dK†
aa

dtL
i

]
+ C

duG

dtL
.

(33)p†
a
= pa − KaoK

−1
oo
po

(34)K†

aa
= Kaa − KaoK

−1
oo
Koa

(35)

dp†
a

dt
=
dpa

dt
−

dKao

dt
K−1
oo
po

+ KaoK
−1
oo

dKoo

dt
K−1
oo
po − KaoK

−1
oo

dpo

dt

(36)

dK†
aa

dt
=
dKaa

dt
−

dKao

dt
K−1
oo
Koa

+ KaoK
−1
oo

dKoo

dt
K−1
oo
Koa − KaoK

−1
oo

dKoa

dt
.

(37)
duL

dtG
=

[
da

dtG
do

dtG

]
.

1  The derivative of an inverse matrix can be computed as 
dA

−1

dt
= −A−1 dA

dt
A
−1.
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It follows that:

where da
di

 cancels out because it is the identity matrix.
do

dtG
 is computed by deriving the discrete equation of the 

local model, for which only static analysis is considered, i.e. 
Eq 17. Since neither the components of the local stiffness 
matrix nor those of the local load vector are directly influ-
enced by the global design variables, it follows that:

3 � Implementation

3.1 � Implementation strategy

The implementation is based on Lagrange, a software devel-
oped at Airbus Defense and Space for constrained gradi-
ent-based multidisciplinary design optimisation. Lagrange 
implements its own linear FE-solver and computes semi-
analytic sensitivities. It is designed to work with one FE-
model defined in one input file, but this limitation can be 
overcome, by using the Lagrange/Python API, which con-
trols the analysis or optimisation procedure and provides 
access to the internal data.

(38)
da

dtG
=

da

di

di

dtG
=

di

dtG

(39)
dKoo

dtG
o + Koo

do

dtG
=

dpo

dtG
−

dKoa

dtG
i − Koa

di

dtG

(40)
do

dtG
= −K−1

oo
Koa

di

dtG
.

The global–local approach is implemented by extending 
Lagrange through its Python interface. Multiple Lagrange 
instances are created: 

1.	 an instance with the input file of the global model 
(LAGRANGE.global),

2.	 an instance for each local model (LAGRANGE.local) and
3.	 an instance for the optimiser, with a dummy input file 

(LAGRANGE.optimiser).

Additional information regarding the optimisation, such as 
design variables t  and constraints gi , is separately defined 
for the global and the local model in the corresponding 
input files. A Python script acts as a intermediary between 
Lagrange instances. The main information exchanges are 
summarised in Figs. 7 and 8. Figure 7 represents a sequence 
diagram of the analysis step. This step involves a global 
instance a local instance and a Python script. The three 
operations of condensation, global and local solution are 
depicted as white boxes, while instead the arrows represent 
the information exchange between the instances. At the end 
of the procedure z o and i are all available at Python level. 
Figure 8 represents a sequence diagram for the evaluation 
of objective, constraints and their sensitivities. Most infor-
mation can be obtained from the global and local instances 
without any special treatment, while instead the computa-
tion of cross-sensitivities must account for the global–local 
information exchange and is computed at Python level. Once 
all the information is available, it can be provided to the 
optimiser.

3.2 � Verification example

In this section, the approach is verified by comparing 
the results obtained with the presented approach against 
the results obtained with a standard Lagrange [37]. The 
global–local analysis is compared against a single model 
representation of the same mesh. The solution fields com-
puted with both approaches should match exactly. Similarly 
the designs obtained in each iteration of a global–local opti-
misation run can be compared with those obtained with a 
single model. Since the sensitivities should be the same the 
optimiser must follow the same path in the design space. 
Two models are considered a simple plate, in which the local 
model consists of a single element, and a plate with a finer 
local model, in which the internal degrees of freedom are 
actually condensed.

3.2.1 � Coarse plate model

The structural model consists of three quadrilateral and 
one triangular shell element with 6 DOFs (CQUAD4 and 

Fig. 7   Sequence diagram of the global–local analysis
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CTRIA3 in NASTRAN notation) for a total of 54 DOFS, 
represented in Fig. 9a. In the global–local representation 
of the same structure, the middle plate, shown in yellow, 
is assigned to the local model, as represented in Fig. 9b. 
The remaining part of the structure, represented in blue, is 
assigned to the global model.

In both representations, one single point constraint (SPC) 
fully constrains the freedom of the right end of the plate. The 
same three subcases are defined for both models, a static 
analysis and two static aeroelastic analyses.

The aerodynamic model, shared by the reference and the 
global–local models, consists of three panels, which overlap 
the structural quadrilateral elements exactly, as represented 
in Fig. 10.

The optimisation problem associated to this model 
defines the thickness of each element as a design variable, 
which leads to four design variables in total.

The structure must be sized for minimal weight, which 
can be computed as:

where �i is the material density and Vi is the volume of each 
element i, computed as area times thickness.

Furthermore, the structure is subject to 12 strength con-
straints defined as 𝜎actual < 𝜎allowable . With the following defi-
nition of reserve factor (RF):

(41)m =
∑
i

�iVi =
∑
i

�itiAi

Fig. 8   Sequence diagram of the global–local sensitivity analysis

Fig. 9   Alternative represen-
tations of the “coarse plate 
model”

(a) Reference “coarse plate model”. (b) Global-local “coarse plate model”.
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and the following definition of constraints:

(42)RF =
�allowable

�actual

(43)g = 1 −
1

RF
= 1 −

�applied

�allowable

a constraint violation is implied by RF < 1 or equivalently 
g < 0.

3.2.2 � Coarse plate model analysis and optimisation results

The results of the global–local procedure match exactly 
those of the standard FE-solution of the whole model 
(Fig.  11). This is because for this particular model the 
global–local representation is such that the local model does 
not have any internal degree of freedom. In this simple case, 
the element stiffness matrix is identical to the condensed 
one and does not introduce any numerical error. Thus, as 
expected, the global solution (Eqs. 15–16) is identical to the 
solution of the whole model (Eqs. 7–10).

The optimised design obtained with the two approaches 
is the same. As it can be seen in Fig. 12 objective and maxi-
mum constraints violation follow the same optimisation 
history.Fig. 10   Aerodynamic model used in “coarse plate model”

(a) Static subcase 1 (b) Aeroelastic subcase 21 (c) Aeroelastic subcase 22

Fig. 11   Results of the analyses. Each subfigure compares a different subcase with the displacement field of the reference approach represented 
above and the global–local solution below

Fig. 12   Histories of the “coarse 
plate model” optimisation

(a) Objective optimisation history. (b) Maximum constraint violation opti-
misation history.
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3.2.3 � Fine plate model

In the fine version of the model everything remains the 
same, except for the quadrilateral element in the middle, 
which is splitted into two, as represented in Fig. 13a.

In the global–local representation, the local model consists 
of two quadrilateral elements, as represented in Fig. 13b. The 
optimisation problem is equivalent to the one of the coarse 
case, the objective remains mass minimisation, but since two 
quadrilateral elements have replaced a single element, two 
strength constraints must be specified instead of one. The 
local design variable is still only one and specifies the thick-
ness of two elements. The global model remains unchanged. 
Therefore in total the model has 66 DOFs, 4 design variables 
and 15 constraints.

3.2.4 � Fine plate model analysis and optimisation results

As the internal degrees of freedom of the local model are 
condensed, a negligible numerical error is introduced.

Taking the solution of Lagrange u as a reference, we 
measure the absolute and relative error of the solution uGL 
of the global–local approach as:

We then consider the L2 and infinity norm:

(44)eabs =
|||u

GL − u
|||

(45)erel =
||||
uGL − u

u

||||.

(46)‖e‖2 =
n�
i=1

e2
i

Fig. 13   Alternative representa-
tions of the “fine plate model”

(a) Reference “fine plate model”. (b) Global-local “fine plate model”.

(a) Static subcase 1 (b) Aeroelastic subcase 21 (c) Aeroelastic subcase 22

Fig. 14   Results of the analyses. Each subfigure compares a different subcase with the displacement field of the reference approach represented 
above and the global–local solution below

Table 1   Error metrics for the 
analysis results

Static subcase 1 Aeroelastic subcase 21 Aeroelastic subcase 22

‖e
abs
‖
2

5.645012692136167e−11 6.078302988969095e−13 7.340777309186518e−13
‖e

abs
‖∞ 3.4370728485555446e−11 3.685385330243207e−13 4.4517167729907214e−13

‖e
rel
‖
2

1.4072971447235977e−10 1.7433733694079674e−10 1.651233318075694e−10
‖e

rel
‖∞ 1.0503878946723948e−10 1.641989571689684e−10 1.5412887799856613e−10
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As it can be seen from Table 1, the results are not exact, but 
the error is quite close to machine precision.

Figure 14 shows visual comparison of the displacement 
fields computed with the reference and the global–local 
approach.

The numerical error due to the condensation of the local 
model had a negligible effect on the optimisation results. 
As for the coarse model, the two approaches yield the same 
optimal design and the same optimisation history as shown 
in Fig. 15.

4 � Case study

4.1 � Model and optimisation problem

In the following, we consider a metallic wingbox, with an 
inspection hole in the upper skin, as an example of a “non-
regular area”.

Four different subcases and two disciplines are consid-
ered. Three subcases are static analyses, named “gust-up”, 
“landing” and “manoeuvre”. The fourth subcase is a static 

(47)‖e‖∞ = max(e1,… , en)
aeroelastic analysis representing a steady flight at Mach 0.3 
with a dynamic pressure of 2.800 kPa and an angle of attack 
of 5.000◦.

The optimisation problem is set up to minimise the mass 
of the structure, as defined in Eq. 41, subject to strength 
constraints, as defined in Eq. 43, by modifying one local 
design variable and 158 global ones.

Two modelling strategies can be used to analyse the 
structure. One, represented in Fig. 16a, is based on a coarse 
model, which does not capture the geometry of the hole, but 
uses equivalent material properties to match the stiffness 
properties of the local area. The other one, represented in 
Fig. 16b uses a sufficiently fine model to accurately capture 
the deformation of the “non-regular area”, combined with a 
coarse model for the remainder of the structure. Depending 
on modelling used, the number of constraints and degrees of 
freedom changes. In the coarse modelling case, the structure 
has 3234 global and 72 local degrees of freedom, is subject 
to 2956 global constraints and 24 local constraints. In the 
fine modelling case, the structure has 1902 local degrees of 
freedom instead of 72 and is subject to 1108 local constraints 
instead of 24.

In the following, two optimisation runs are compared. 
One, based on the coarse model, is performed by standard 

Fig. 15   Histories of the “fine 
plate model” optimisation

(a) Objective optimisation history. (b) Maximum constraint violation opti-
misation history.

(a) Coarse model of the wingbox. (b) Global local model of the wingbox.

Fig. 16   Coarse and global–local representations of the wingbox 
model. In the coarse model, the non-regular area is modelled with 
degraded material properties so that its overall stiffness is equivalent 
to that of the global–local representation. In the global–local repre-

sentation, separate global (blue) and local (yellow) models are used. 
The local model presents a finer mesh and a more accurate represen-
tation of the geometry



	 Engineering with Computers

1 3

Lagrange and represents the current way of working. Therein 
the critical area (local model) is fixed and unconstrained, but 
sized to be initially locally feasible including a design factor 
of 1.3 (minimum RF = 1.3) to account for later load path 
changes. The other one, based on the global–local represen-
tation, follows the application of the global–local approach, 
which allows to define local design variables and constraints.

Figure  17 shows the thickness distribution of the initial 
design. The displacement fields computed for this design can 
be applied at the boundary of a refined local model to check 
for local constraints violations. As demonstrated by Fig. 18, 
which shows the value of minimum RF, the design is locally 
feasible: any constraints violation would be highlighted in 

Fig. 17   Initial thickness distribution. The scale used in the legend is 
logarithmic

Fig. 18   Initial minimum RF distribution. The initial design is feasible and the local design is conservative, as it can be seen from the green col-
our which represents a RF larger than 1.3

Fig. 19   Minimum RF of Lagrange optimum. The global design on the left is feasible, but when the local model is analysed in detail after the 
optimisation the unfeasiblity, highlighted in red, is revealed

Fig. 20   Minimum RF of 
global–local optimum. The 
design is feasible
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red, dark blue represents a RF larger than 1.1 and green rep-
resents a RF larger than 1.3. The fact that the local model is 
entirely above this threshold proves not only that the design 
is feasible, but also that a conservative design factor provides 
a margin for changes of the surrounding structure.

4.2 � Feasibility of results

The optimal design found by the Lagrange optimisation 
procedure, while keeping the local fixed and unconstrained, 
as currently done during optimisation, leads to an unfeasi-
ble design as depicted in Fig. 19. This despite the fact that 
the local structure was conservatively sized with an initial 
reserve factor of 1.3.

Fig. 21   Comparison of initial 
and final designs

(a) Initial thickness distribution.

(b) Lagrange optimal thickness distribution.

(c) Global-local optimal thickness distribution.
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The optimal design found with the monolithic 
global–local optimisation procedure proposed in this paper, 
using local design variables and constraints, is feasible, as 
shown in Fig. 20, which depicts the distribution of minimum 
RF.

4.3 � Comparison of designs and histories

Figure  21 shows the initial design and the two opti-
mal designs. Starting from the same initial design, 
both approaches converge to a similar solution, but the 
global–local approach, thanks to the possibility of evalu-
ating local constraints and modifying the local design, 
finds a feasible solution by designing a thicker local 
model.

The optimal design found by the global–local strategy 
weighs 475.640 kg compared to the weight of 473.444 
kg of the unfeasible design obtained by the reference 
approach, as shown in Fig. 22.

4.4 � Correcting the local design

In the standard design procedure, if the optimised design 
was locally unfeasible, designers could attempt to resolve 
any constraint violation by manually modifying the design 
using their engineering judgement. This section will dem-
onstrate that such an approach is non-trivial, because opti-
mal designs are generally close to the border of the infea-
sible region and very sensitive to design changes.

By increasing the thickness of the local area from 
3.0 mm to 4.5 mm the weight of the structure becomes 
475.271 kg, while the local design is still unfeasible and 
the unfeasibility has propagated beyond the local model, 
as shown in Fig. 23. In particular the weight of the local 
area increases from 3.653 to 5.480 kg.

A second way to mitigate the infeasible design would be 
to further adjust the design factor for the fixed local model. 
However this would require either an iterative approach 
by alternately optimising and increasing the design factor, 
which would result in a prohibitive computational cost, or 
by initially choosing an even higher design factor, which 
would increase the mass even more and lead to a sub-
optimal result. For a model with multiple local areas, an 
estimation for the design factor proves to be even more 
challenging and disadvantageous.

Hence, the example demonstrates that the standard design 
approach fails to find optimal solutions that satisfy all the 
constrains, while the proposed global–local approach finds 
a locally feasible optimal design, overcoming the limitations 
of the standard procedure.

5 � Conclusions

In this paper we have shown that the solution found follow-
ing common industry practice can be infeasible, when MDO 
is used for the preliminary design of aircraft structures with 

Fig. 22   History comparison of the objective. The two optimisations 
follow a similar path. Coincidentally, the global–local approach satis-
fies the convergence criteria before the reference approach

Fig. 23   Increasing the thickness of the local model is not a viable 
way of correcting the design in Fig. 19. Before the local is sufficiently 
thick to become feasible, the additional loads attracted in that area 

cause elements in the surroundings to become unfeasible. This is 
often the case, since optimal designs are close to the boundaries of 
the feasible region in the design space
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“non-regular areas”. Furthermore, we introduced a novel 
approach to extend an existing MDO procedure, to consider 
local constraints defined in a separate refined model.

The reference approach is based on a coarse representa-
tion of the local model and does not consider local con-
straints during the optimisation. Choosing a conservative 
design for the local model, to be kept fixed during the opti-
misation procedure, as currently done, is not enough for the 
reference approach to find a locally feasible optimum, as 
shown in Sect. 4.2.

Furthermore, we have shown in Sect. 4.4 that the unfea-
sible design found with the standard approach cannot be 
easily fixed by adjusting the design of the local model. This 
is because optimal designs are generally sensitive to minor 
changes and likely to display unfeasibility elsewhere when 
modified.

Where the standard approach would fail, the presented 
global–local optimisation strategy allows to find a feasible 
design.

Our approach introduces a global–local coupling using 
static condensation, to consider detailed design of critical 
components for the optimisation in early design stages. 
Owing to the analytical derivation of a coupled sensitivity 
analysis, the approach is capable of accurately computing 
the coupled sensitivities of global and local constraints with 
respect to local and global design variables. It is therefore 
possible to consider local constraints as well as local design 
variables. By adopting a monolithic architecture the strong 
coupling between global and local disciplines is solved, 
maintaining multidisciplinary feasibility in each iteration. 
Compared to the two-level approaches found in the litera-
ture, the presented methodology is preferred, whenever the 
global–local coupling is strong and the focus is on local 
feasibility, rather than the exploitation of additional local 
design freedom.

The approach presented is based on the limiting assump-
tions presented in Sect.  2.2. In particular we assumed 
non-overlapping domains, conforming meshes, absence of 
local-local interfaces, a clear partition of design variables 
in global and local. Furthermore, we  only considered static 
analysis and static aeroelasticity as disciplines and weight 
as a possible objective.

Future work is needed to extend this approach to more 
disciplines, local-local interfaces and objectives other than 
weight. Future work will also have to address the compu-
tational cost of such an approach. We expect the presented 
methodology to prove most efficient in conjunction with an 
active set strategy, limitations to local design changes and by 
skipping the local solution and constraints evaluation steps 
for analyses like flutter or gust analyses, which are mainly 
concerned with the global behaviour.
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