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ARTICLE OPEN

An intercomparison of weather normalization of PM2.5

concentration using traditional statistical methods,
machine learning, and chemistry transport models
Huang Zheng 1,2, Shaofei Kong 1,2,3✉, Shixian Zhai4, Xiaoyun Sun5, Yi Cheng1, Liquan Yao1, Congbo Song 6, Zhonghua Zheng 7,
Zongbo Shi 8 and Roy M. Harrison 8,9✉

Traditional statistical methods (TSM) and machine learning (ML) methods have been widely used to separate the effects of
emissions and meteorology on air pollutant concentrations, while their performance compared to the chemistry transport model
has been less fully investigated. Using the Community Multiscale Air Quality Model (CMAQ) as a reference, a series of experiments
was conducted to comprehensively investigate the performance of TSM (e.g., multiple linear regression and Kolmogorov–Zurbenko
filter) and ML (e.g., random forest and extreme gradient boosting) approaches in quantifying the effects of emissions and
meteorology on the trends of fine particulate matter (PM2.5) during 2013−2017. Model performance evaluation metrics suggested
that the TSM and ML methods can explain the variations of PM2.5 with the highest performance from ML. The trends of PM2.5

showed insignificant differences (p > 0.05) for both the emission-related (PMEMI
2:5 ) and meteorology-related components between

TSM, ML, and CMAQ modeling results. PMEMI
2:5 estimated from ML showed the least difference to that from CMAQ. Considering the

medium computing resources and low model biases, the ML method is recommended for weather normalization of PM2.5.
Sensitivity analysis further suggested that the ML model with optimized hyperparameters and the exclusion of temporal variables
in weather normalization can further produce reasonable results in emission-related trends of PM2.5.

npj Climate and Atmospheric Science           (2023) 6:214 ; https://doi.org/10.1038/s41612-023-00536-7

INTRODUCTION
Air pollution is a major environmental issue faced by heavily
polluted regions around the world, including Central and South-
Eastern Asia1–3. Reducing the number of premature deaths caused
by air pollution has been identified as one of the United Nations’
Sustainable Development Goals4. The new air quality guideline set
by the World Health Organization has revised the annual
concentration of fine particulate matter (PM2.5) from 10 µgm−3

to 5 µgm−3 (ref.5), which requires further tightening of the
measures for air pollution prevention and control6. Long-term
observations of air pollutants capturing changes in air pollution
can be used to evaluate the effectiveness of air quality policies7–10.
The changes in air pollutant concentrations, however, are
impacted both by emissions11–13 and meteorological condi-
tions13–16. Using the observed air pollutant concentrations without
consideration of meteorological impacts to directly evaluate the
effectiveness of measures has been questioned17,18. Therefore,
assessing the effectiveness of air quality policies needs to
decouple the impacts of emissions and meteorology on air
pollutant variations.
Generally, there are three methods to estimate meteorology-

normalized air pollutant variations (Supplementary Table 1). One is
to use the chemistry transport models (CTMs) such as the Weather
Research and Forecasting Model-Community Multiscale Air Quality

Model (WRF-CMAQ) and GEOS-Chem (GC). Zhang et al.11 reported
that the decrease in PM2.5 in China was predominantly attributed
to anthropogenic emissions abatement during 2013–2017 using
WRF-CMAQ. With GEOS-Chem, Qiu et al.19 quantified the
emission-driven trends of PM2.5 and found a substantial reduction
of PM2.5 concentration in eastern and central China from 2013 to
2017. Due to the inherent assumptions, parameterizations, and
simplifications of processes in CTMs20,21, and large uncertainties in
emission inventories22,23, CTM outputs are subject to large
uncertainty24. One alternative method is the traditional statistical
method (TSM), such as multiple linear regression (MLR) and
Kolmogorov–Zurbenko (KZ) filter. The MLR is widely used to
separate the contributions of emissions and meteorology to
variations of PM2.5

25–27 and ozone (O3)28–30. The KZ filter
developed by Rao and Zurbenko (1994) was first used to detect
and track changes in O3 in the US31. Since then, the KZ filter has
been used in determining long-term trends of other air
pollutants32–34. The other method is machine-learning (ML), a
branch of statistical methods35. For instance, Grange et al.36

developed a method for weather normalization of inhalable
particulate matter (PM10) by random forest (RF). Since then, the
ML methods have been widely used especially during COVID-19
lockdowns37–39. Zheng et al.37 found substantial reductions in air
pollutant concentrations due to emission reductions during the
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lockdown period in Wuhan by the RF model. By the same method,
Shi et al.38 found abrupt but smaller-than-expected changes in
surface air pollutant concentrations during COVID-19 in 11 cities
globally. The ML methods are also used to assess the impacts of
clean air actions on air pollutants. For instance, Vu et al.40 used the
RF model to assess the impacts of clean air action on air pollutant
trends in Beijing between 2013 and 2017. Similarly, Dai et al.41

answered the question of whether the Three-Year Action Plan
improved the air quality in the Fenwei Plain of China by the RF
model. Despite the wide adoption of traditional statistical and ML
methods, the results from these two methods are always suspect
due to their shortcomings in not considering the physical and
chemical processes of air pollutants during their atmospheric
lifetime.
Due to the high demands in running CTMs (e.g., air pollutant

emission inventory, computer resources, and professional
researchers), the application of CMTs is limited. As an alternative,
TSM and ML have been widely used to normalize the weather on
air pollutants. It should be noted that none of the existing
methods is perfect in decoupling the impacts of emissions and
meteorology on air pollutant variations42. The performance and
comparability of different methods should therefore be assessed.
Intra-comparisons between TSM41–44 or intercomparisons
between TSM, ML, and CTMs40,45–47, however, are less
reported39,40. One of the biggest challenges is the lack of
simultaneous CTM results as a reference. The CTM simulations
always focus on the study period’s beginning and end year or
specific months within each year, while the TSM and ML make use
of the entire study period. Such differences in the study period

would introduce bias in intercomparison. If the performances and
bias of different methods in decoupling the impacts of emissions
and meteorology on air pollutant observations have been
investigated, it will enhance our confidence to use these methods.
The notable air quality improvement in China from 2013 to

2017 has been acknowledged11, which provides an opportunity to
assess the performances of different methods in separating PM2.5

variation drivers. The aims of this study are (1) assessing the
differences in model performance of TSM, ML, and CTM methods
in decoupling the impacts of meteorology and emissions on PM2.5

and (2) comparing the trends (including emission-related and
meteorology-related) of PM2.5 and the bias of trends from
statistical methods with the CTM result as a reference. The
resources needed in different methods and three key factors that
have impacts on weather normalization using the ML are
discussed finally. This study would be beneficial to select a
suitable method for investigating the long-term variations of
aerosol compositions.

RESULTS
Performances of different models to reproduce PM2.5
observation
Figure 1 shows the average values of statistical metrics between
the observed and predicted PM2.5 concentrations from different
methods (the method-specific statistical metrics are shown in
Supplementary Figs. 1–3). Overall, the metrics derived from the six
methods were averaged (mean value ± standard deviation and
hereafter) in the range of 0.55 ± 0.41 to 0.94 ± 0.04 for r,
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Fig. 1 Spatial distributions and boxplots of statistical metrics for model evaluation. a–c Spatial distributions in the average values of
Pearson correlation coefficient (r), normalized mean bias (NMB), and index of agreement (IOA) derived from six methods. d–f Boxplots of r,
NMB, and IOA for each method. The color and size of dots in the top panels are mapped to the mean values and standard deviations of
statistics calculated from the six methods. The gray (“criteria”) and black (“goal”) horizontal dashed lines in the bottom panels represent the
recommended benchmarks for model performance evaluation suggested by Emery et al.48. It should be noted that the hyperparameters for
RF and XGB are tuned here for model evaluation.

H. Zheng et al.

2

npj Climate and Atmospheric Science (2023)   214 Published in partnership with CECCR at King Abdulaziz University

1
2
3
4
5
6
7
8
9
0
()
:,;



16.2 ± 28.0% to 28.7 ± 44.6% for NMB, and 0.31 ± 0.60 to
0.83 ± 0.07 for index of agreement (IOA), respectively. It should
be noted that the temporal resolution of data to calculate the
statistics in Fig. 1 was monthly for CMAQ and GC, daily for MLR
and KZ, and hourly for RF and extreme gradient boosting (XGB). If
the temporal resolution of the data to calculate the statistical
metrics for KZ, MLR, RF, and XGB was scaled to monthly, the TSM
and ML showed even better performance to reproduce the
observations (Supplementary Fig. 4). For instance, r values
produced by MLR and RF significantly increased from 0.79 ± 0.04
to 0.85 ± 0.04 and 0.94 ± 0.02 to 1.0 ± 0.01, respectively, at the
0.001 level.
According to the “criteria” value of r greater than 0.4 and the

“goal” value of NMB within ±30% for 24-h averaged PM2.5

evaluation48, the MLR and KZ methods achieved acceptable
performance in all cities. Most cities (71 of 74 sites for MLR) were
close to the “goal” of evaluation with r greater than 0.7 and NMB
within ±10% for statistical models. Similarly, the level of accuracy
for RF and XGB models was considered to be close to the best a
model can be expected to achieve. For that the r and NMB values
calculated from hourly resolution data even fulfill the threshold of
“goal” (Fig. 1d, e), not to mention the values calculated from daily
data. r and NMB values for CMAQ and GC models calculated from
monthly data meet the “criteria” of model evaluation for 47 and 63
cities, respectively. If the temporal resolution of data for CTM
evaluation was changed to daily, the performances of CMAQ and
GC would decline.
In terms of different methods to reproduce PM2.5 variations, the

ML methods showed higher r and IOA values, with lower RMSE

values. The CTM, however, showed lower r and IOA values and
higher RMSE compared to TSM and ML (Fig. 1d, f). For instance,
the IOA values from different methods ranked as XGB
(0.97 ± 0.01) > RF (0.96 ± 0.01) > KZ (0.76 ± 0.04) > MLR
(0.74 ± 0.04) > GC (0.62 ± 0.19) > CMAQ (0.54 ± 0.26). A literature
review in Supplementary Table 1 also showed a better perfor-
mance of TSM and ML than CTM in reproducing the air pollutant
concentrations. For instance, the correlation coefficient of the
linear regression between the monthly observations and simula-
tions of PM2.5 showed a higher value for the RF (r2= 0.99) model
than CMAQ (r2= 0 .82) in Beijing40. These statistical metrics for
MLR, KZ, RF, and XGB models indicated that TSM and ML can
capture the spatial-temporal variations of PM2.5 in this study.

Comparison in trends of PM2.5 from different methods
Supplementary Fig. 5 shows the time series of scaled PM2.5

concentrations derived from the six methods. Generally, all of the
74 cities showed a decreasing trend of PM2.5 with contributions from
both emission-related and meteorology-related trends (Fig. 2). The
trends of 74 cities were averaged as −11.8 ± 2.69 µgm−3

yr−1 ~−0.37 ± 0.36 µgm−3 yr−1 for PMOBS
2:5 , −10.3 ± 2.66 µgm−3

yr−1 ~−0.27 ± 0.93 µgm−3 yr−1 for PMEMI
2:5 , and −2.03 ± 0.80 µgm−3

yr−1 ~ 0.33 ± 1.20 µgm−3 yr−1 for PMMET
2:5 , respectively, from six

methods. The high standard deviation of trends suggested the
spatial heterogeneity in PM2.5 reduction during 2013–2017 in China
(Supplementary Table 2). The high standard deviation of mean trends
for PM2:5 in Fig. 2a–c was also related to the model differences
(Supplementary Fig. 6). PMOBS

2:5 calculated from CTMs had an
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Fig. 2 Spatial distributions and boxplots of PM2.5 trends from different methods. a–c Spatial distributions in the average values of trends
for PM2.5 observation (PMOBS

2:5 ), emission-related PM2.5 (PM
EMI
2:5 ), and meteorology-related PM2.5 (PM

MET
2:5 ) derived from six methods. d–f Boxplots

of PMOBS
2:5 , PM

EMI
2:5 , and PMMET

2:5 trends for each method. The meteorological conditions resampling strategy for the RF and XGB was from Grange
et al.36. The color and size of dots in the top panels are mapped to the mean values and standard deviations of trends calculated from six
methods. The marks in the bottom panels represent the differences between the two paired methods and the NS., and * mean the differences
are not significant and significant at 0.05 levels.
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insignificant (p> 0.05) difference between CMAQ and GC. Similarly,
PMOBS

2:5 calculated from TSM (e.g., KZ and MLR) showed no statistical
difference, and the same result for the ML (RF vs. XGB)
(Supplementary Fig. 7). The trends of PMOBS

2:5 from CTM, TSM, and
ML, however, showed significant differences. The trend of PMOBS

2:5
derived from CMAQ (−4.09 ± 2.44 µgm−3 yr−1) was significantly
higher (less negative) than MLR (−4.97 ± 2.87 µgm−3 yr−1), RF
(−5.23 ± 2.96 µgm−3 yr−1), and XGB (−5.23 ± 2.96 µgm−3 yr−1) at
the 0.05 level (Fig. 2d). For PMEMI

2:5 (Fig. 2e), the intra-comparison of
trends within CTM, TSM, and ML showed no differences (p> 0.05).
Intercomparison of PMEMI

2:5 also showed insignificant (p> 0.05)
differences between CMAQ (− 3.98 ± 2.19 µgm−3 yr−1), KZ
(−3.29 ± 2.30 µgm−3 yr−1), MLR (−3.84 ± 2.54 µgm−3 yr−1), RF
(−4.84 ± 2.79 µgm−3 yr−1), and XGB (−4.80 ± 2.78 µgm−3 yr−1). For
PMMET

2:5 (Fig. 2f), trends from CTM and ML showed insignificant
differences while the trends from TSM were significantly lower than
the other methods. No significant differences between the trends in
PMEMI

2:5 from TSM, ML, and CMAQ models suggesting the lack of
physical-chemical mechanisms was not important at least in revealing
the emission-related trends of PM2.5 on the national scale by the TSM
and ML.

Contributions of emission and meteorology to PM2.5 trend by
different methods
Using the scatterplot between PMEMI

2:5 , PMMET
2:5 , and PMOBS

2:5 , the
relative contributions of emissions and meteorology to the
variations of PM2.5 were quantified (Supplementary Fig. 8). A
contribution of PMEMI

2:5 to PMOBS
2:5 less than 100% indicates that the

inter-annual variations of meteorology contribute to the reduction
of PM2.5. On the contrary, a percentage of PMEMI

2:5 greater than
100% suggests the inter-annual variations of meteorology offset
the reduction of PM2.5 from emission variations. On the national
scale, the decrease in PM2.5 from 2013 to 2017 in China was
dominated by emission reductions with contributions of 78.9%
(KZ) ~90.5% (RF) according to the six modeling results (Supple-
mentary Table 3). The comparable results between TSM, ML, and
CTM suggested their ability to determine the dominant factor to
variations of PM2.5 at a large spatial scale.
The estimated contributions of emissions and meteorology to

variations in PM2.5 by different methods, however, showed a
regional difference (Supplementary Table 3). For instance, the
relative contributions of PMEMI

2:5 to PMOBS
2:5 calculated from CTM and

ML were higher than 100% in YRD, suggesting the negative role of
meteorology on PM2.5 reduction from 2013 to 2017 (Supplemen-
tary Fig. 6). The percentages of PMMET

2:5 to PMOBS
2:5 from TSM,

however, suggested the meteorology variations contributed to
the reduction of the observed PM2.5 in the YRD region, similar with
previous studies with CTM adopted in YRD49,50. The opposite role
of meteorology to the variation of PM2.5 derived from different
methods here and previous studies suggested that none of the
existing methods can perfectly decouple the effects of emissions
and meteorology on the trends of air pollutant concentrations.
The different methods demonstrated comparable results in
quantifying the influence of meteorological factors on PM2.5

variations at the national scale, whereas differences were
observed at a regional scale. Therefore, results from multiple
methods (linear/non-linear) should be cross-checked to carefully
evaluate the impacts of policies or interventions on regional air
pollutant concentrations.

Bias in trends of PM2.5 from different methods compared
to CMAQ
With an assumption that the emission constant sensitivity
simulation of a CTM (e.g., CMAQ in this study) produced a
conceptual minimum of estimation error19, the biases in trends
(defined as 100% × (1 – the slope of a linear regression between
CMAQ and other methods)) from the other five methods relative

to CMAQ were calculated (Supplementary Fig. 9). PMOBS
2:5 trends

calculated from KZ and MLR were underestimated by 7% and 3%,
while the trends from the other three methods were unbiased.
Compared to PMEMI

2:5 from CMAQ, trends from the other five
methods showed underestimation with KZ underestimated most
by 23%, followed by MLR (13%), XGB (3%), RF (2.8%), and GC
(2.4%). Trends of meteorology-related PM2.5 calculated from
statistical and machine learning methods were highly biased with
underestimation of 79%, 66%, 30%, and 28% for KZ, MLR, RF, and
XGB, respectively. The bias of PMMET

2:5 trend from GC, however, was
overestimated by 6%.
The higher biases in trends of PM2.5 from TSM were related to

the model performance to reproduce the relationship between
PM2.5 and meteorological variables. Specifically, PMEMI

2:5 was
calculated from the residuals of linear fitting models for KZ and
MLR methods (see Supplementary Methods for details), the higher
residual or lower slope of the fitting in KZ and MLR methods was,
the lower bias in PMEMI

2:5 yielded (Supplementary Fig. 10a, b). The
higher model performance of the KZ filter compared to MLR (e.g., r
values of 0.85 ± 0.05 for the KZ filter vs. 0.79 ± 0.04 for MLR) in
reproducing the relationship between meteorological variables
and PM2.5 can explain the larger bias in emission-related trend of
PM2.5 from KZ filter. A sensitivity study using the RF instead of the
MLR model to build the relationship between the baseline
component of PM2.5 and meteorological factors in the KZ method
further indicated a higher bias from fitting by the RF model, which
showed higher slope and low residuals (Supplementary Fig. 10c).
The lower biases in PM2.5 trends from ML methods were possibly
related to the inclusion of temporal variables (proxies of emission)
in model training. The sensitivity analysis of bias in PMEMI

2:5 from the
RF model showed a larger bias from the model without the
temporal variables included in model training (Supplementary
Fig. 10d).
The biases of different methods were also related to the

inherent uncertainties of CMAQ, which originated from uncertain-
ties in air pollutant emission inventories and incomplete physical-
chemical mechanisms. For instance, using the results from TSM
and ML methods as the references, the higher biases of PMEMI

2:5 and
PMMET

2:5 were produced for CTM (Supplementary Fig. 11). Addition-
ally, these statistical methods assume that the variation of air
pollutant is a linear sum of meteorological and emission
changes18,42. Therefore, the influence of meteorological and
emission changes on air pollutants can be cleanly separated from
each other19. The impacts of meteorological variation may not be
distinguishable from air pollutant trends driven by emission
changes, due to their interactions19. Nevertheless, the ML
methods perform robustly in getting the weather-normalized
trends of PM2.5 compared to TSM. Similar findings were also
reported from previous studies, e.g., the widely used MLR did not
perform well in correcting for emission-related and meteorology-
related trends of air pollutants19.

DISCUSSION
The required input datasets, advantages, disadvantages, biases in
trends, and scopes of applications for different methods are
summarized in Table 1. Compared to CTMs, the superiority of TSM
and ML in weather normalization of air pollutants is less in
required input datasets and their higher running speed with fewer
computational resources (see Supplementary Note 1 and Supple-
mentary Fig. 12 for details). The fewer required sources for
running TSM and ML means that these methods can be run on
personal computers, indicating their wide potential applications.
Although TSM and ML have disadvantages in considering
physical-chemical processes in their applications, these limitations
are not significant in capturing the trend of PM2.5 as shown above.
Among the TSM and ML, the TSM has to address assumptions
such as sample normality, homoscedasticity, independence, strict
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adherence to parametric requirements, and interaction effects
among variables51. The ML is non-parametric and has the critical
advantage of not needing to address many of the assumptions
required for statistical methods36. Considering the application
conditions, the balance between model performance and required
resources, and their biases in normalizing the impacts of weather
on PM2.5, machine learning methods are recommended.
To better apply ML methods in the weather normalization of air

pollutants, three influencing factors have been discussed in this
study. Parameter setting is crucial in the ML methods to achieve
optimal learning capacity during the training process and to
achieve the best prediction performance during the testing
stage39,52. The reported papers usually adopt the fixed parameters
for the RF model training10,36–38,40,53. As shown in Fig. 3a, r and
IOA calculated from the RF model with parameters tuned
significantly increased compared to the RF model without
parameters tuned. Trends of PMOBS

2:5 and PMEMI
2:5 from the tuned

and untuned RF models showed insignificant differences, while
the trends of PMMET

2:5 showed a significant difference with a higher
reduction rate from the tuned RF model (Fig. 3b). Compared to the
results from CMAQ, the tuned RF model can reduce the bias of
PMEMI

2:5 trend by 9% from 12% to 3% (Fig. 3c). The bias in
meteorology-related PM2.5 trend for the tuned RF model also
reduced by 12% from 41% to 29% compared to the untuned RF
model (Supplementary Fig. 13). The bias in RF model with GC as a
reference also verified the improvement of weather normalization
of PM2.5 by the tuned RF model (Supplementary Fig. 13).
Therefore, the parameters for the ML methods are recommended
to be optimized before application.
The meteorology resampling strategies adopted by the ML also

influence the weather normalization result54. The widely reported
meteorology resampling strategies include the method developed
by Grange et al.36 and Vu et al.40 (denoted as “G” and “V”,
respectively, and hereafter). These two strategies have a shortage
of comparing the trends from the CTMs. The meteorological
factors in a CTM sensitivity simulation are fixed at a specific year
while the meteorological variables in methods G and V are
randomly sampled from the entire study period. We developed a
resampling strategy (denoted as the “M” method hereafter, see
Supplementary Note 2 for details), which resampled the
meteorological variables from the year that was used for the
sensitive simulation for CTM, e.g., 2017 in this study. As shown in
Fig. 4a, changes in PMEMI

2:5 trends (calculated as PMEMI
2:5 trends from

different resampling strategies − PMEMI
2:5 trend from CMAQ)

showed insignificant differences among different strategies. The
biases in PMEMI

2:5 trends with different strategies were under-
estimated by 2.22% (V30) ~ 18.5% (M) compared to the CMAQ
reference result. The insignificant differences and low biases of
PMEMI

2:5 trends from different resampling strategies compared to
CMAQ indicated these strategies can both produce reasonable
emission-related trends of PM2.5. Unlike the insensitivity of
emission-related trends to different resampling strategies, the
meteorology-related PM2.5 trends were more sensitive to resam-
pling strategies (Fig. 4b). For instance, trends of PMMET

2:5 with G, V5,
and V30 strategies were lower than those from CMAQ with a bias
of 27.7%, 40.2%, and 45.8% respectively. Given the fact that the
insignificant differences, low bias of trends, easy and fast
calculation properties of the meteorology resampling strategy
developed by Grange et al.36, this strategy is recommended for
weather normalization of air pollutants.
The inclusion or exclusion of the temporal variables (e.g., Julian

day and the day of the week in this study) in the prediction
process should also be emphasized. Previous studies disagree with
each other in the inclusion of temporal variables. Grange et al.36

recommended the inclusion of temporal variables in weather
normalization, and similar research was reported elsewhere41,55,56.
In this strategy, meteorological variables and temporal variables
were randomly sampled and they were used to predict the PM2.5
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concentration. On the contrary, the exclusion of temporal
variables (randomly sampled meteorological variables and fixed
temporal variables) in weather normalization40,54 was also
adopted. Using the sensitive experiment with temporal variables
included (RF_wt) and not included (RF_nt), the impact of this
factor was discussed here. As shown in Fig. 5a, the variation of

PMEMI
2:5 from RF_wt was continuously decreased, while the time

series of PMEMI
2:5 from RF_nt showed periodic decreases from 2013

to 2017. The linear regression between PMEMI
2:5 trends from RF_wt

and CMAQ showed a slope approaching 1, which was higher than
the slope for fitting between RF_nt and CMAQ (Fig. 5b). This was
due to the time series of PMEMI

2:5 from RF_wt was more coincided
with CMAQ compared to that from RF_nt. The temporal variables
can be used as proxies for cyclical emission patterns8 and if the
temporal variables were randomly sampled in prediction, the
signal of emission variations was erased from the normalized time
series. As a result, the time series of RF_wt well revealed the long-
term emissions54 while the time series of RF_nt was able to
characterize the seasonal and long-term emission trends40,54. In
reality, air pollutant emissions have seasonal variations that arise
from energy consumption patterns (e.g., heating during the cold
season)33,57. Therefore, the results from the resampling strategy
with temporal variables excluded were more reasonable despite it
having a higher bias in trend of PMEMI

2:5 with CMAQ as a reference.
Traditional statistical methods and machine learning have been

widely used for weather normalization of primary and secondary
air pollutants (Supplementary Table 1). These methods may result
in different outcomes for the impacts of meteorology on air
pollutants vary with the properties of air pollutants19. Particularly,
separating and quantifying the effects of meteorology on O3 is
more challenging due to the complex interaction between
meteorology, emissions, and chemical formation58,59. With CTM
as a reference, the performance of TSM and ML in weather
normalization of other air pollutants should be investigated
before their application. With the successful reconstruction of air
pollutant datasets derived from satellites60–62, CTM63,64, and
ground observations63–65, the long-term and full-coverage
datasets are developed. Coupled with these open-accessed
datasets (e.g., the China High Air Pollutants (CHAP), Track Air
Pollution in China (TAP), and MERRA-2), ML method (e.g., RF and
XGB), and recommendations in this study (e.g., hyperparameters
tuning, meteorological condition resampling strategy, and exclu-
sion of temporal variables in resampling), evaluating the
effectiveness of air pollution prevention and climate change
response policies can be conducted at regional and national
scales. These potential evaluations contribute to solving air
pollution and fulfilling the United Nations’ Sustainable Develop-
ment Goals.
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METHODS
Data sources and preprocessing
Hourly ground observations of PM2.5 during 2013–2017 were from
the national air quality monitoring network established and
operated by China National Environmental Monitoring Center. 74
key cities (Supplementary Fig. 14) were selected in this study due
to their data availability from 2013 to 2017. Data quality control
was conducted according to previous studies34,66,67 (see Supple-
mentary Methods for details). Hourly values of meteorological
variables including temperature at 2 m (T2M), dewpoint at 2 m
(D2M), mean sea-level pressure (MSL), eastward and northward
wind components of wind at 10 m (U10, V10), total precipitation
(TP), boundary layer height (BLH), total cloud cover (TCC), and
surface downward solar radiation (SSR) were obtained from the
ERA-5 single-level pressure reanalysis datasets68. The relative
humidity (RH) was calculated with T2M and D2M69. The monthly
mean concentrations of PM2.5 from 2013 to 2017 by WRF-CMAQ
and GEOS-Chem were from Zhang et al.11 and Zhai et al.70,
respectively. More details about the input meteorology, emission
inventory, and simulation settings (base + sensitivity) by CTM can
be found in the references above. The methods for calculating the
emission-related and meteorology-related PM2.5 concentrations
from CTMs can be found in the Supplementary Methods.

Weather normalization of PM2.5 by TSM and ML
To decouple the effects of meteorology on PM2.5 variations, two
traditional statistical methods (MLR, KZ) and machine learning
methods (RF and XGB) were adopted using the meteorological
variables mentioned above in each city. Specifically, the T2M, MSL,
U10, V10, RH, TP, BLH, TCC, and SSR were used to build the MLR
and KZ filter models. In addition to these meteorological variables,
time variables (Unix time: number of seconds since 1970-1-1,
Julian day: day of the year, day of the week) acted as emission
proxies8, and clusters of backward trajectories reaching each city
acted as transport indicator36,38 were also used in RF and XGB
models. For MLR and KZ model building, the daily averages of air
pollutants and meteorological variables were used, while the
hourly observations were used in RF and XGB models. A flow chart
to show the weather normalization of PM2.5 using different
methods is shown in Supplementary Fig. 15. The data process,
model building, and weather normalization are described below in
detail.

MLR. Following previous studies26,28,30 but with a little modifica-
tion, nine meteorological variables mentioned above were used to
establish the relationship between meteorological factors and
PM2.5, instead of employing a stepwise MLR to exclude less

important variables. The anomalies of meteorological conditions
and PM2.5 were obtained by moving the 5-year mean values of 50-
d moving averages from the 10-d mean time series and the
anomalies calculated by this method were deseasonalized but not
detrended. According to a previous study26, the 50-d moving
window was chosen here because the anomalies of PM2.5 and
other meteorological variables calculated in this manner were not
sensitive to the moving window (Supplementary Fig. 16). The
anomalies of PM2.5 and meteorological variables were finally used
to build the MLR model. The prediction of MLR was considered as
the meteorology-driven PM2.5 concentration and the residuals of
fitting were considered as the PM2.5 concentration attributed to
emission changes26,30. More details about MLR to separate the
meteorology and emission-related PM2.5 concentrations can be
found in Supplementary Methods.

KZ. The KZ filter (KZ(m, p)) uses different iteration times (p) and
moving averages of time width (m) to separate the time series of
air pollutant into different components, e.g., KZ(365, 3) to filter out
long-term component31,71,72, and KZ(15, 5) to get the baseline
component (seasonal + long-term components)33. To get the
long-term component of PM2.5 and its two subcomponents
including emission-related and meteorology-related, the baseline
components of PM2.5 and meteorological factors were used to
build the MLR model with PM2.5 as the dependent variable. The
emission-related concentration was obtained by KZ(365, 3) to the
residuals of MLR above. The meteorology-related concentration
was calculated as the difference between the long-term concen-
tration of PM2.5 and the emission-related concentration. More
details about KZ-MLR can be found in Supplementary Methods.

RF. The meteorological variables, time variables, and cluster of
trajectories mentioned above were used to build the RF model.
Before model training, the dataset was randomly divided into two
sub-datasets with a ratio of 7:3. 70% of the datasets were used to
build the model and the remaining 30% of datasets were used to
test the model. In line with previous studies36,38,53,73,74, the
settings below were used to train the RF model: the number of the
tree (ntree)= 300; the number of variables that may split at each
node (mtry)= 3; the minimum size of terminal nodes (min.node.-
size)= 5. In addition to the default settings for the RF model, these
parameters were also tuned by random search with 5-fold cross-
validation after 100 times evaluation. The 5-fold cross-validation
was used here to determine the optimal hyperparameter
combinations75,76. The search space consisted of ntree, mtry,
and min.node.size with their ranges of 10 ~ 1000, 1–13, and 1–13,
respectively. The results of tuned hyperparameters for the RF
model are provided in Supplementary Table 4. After the model
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training, the weather normalization in each observation was
conducted by randomly sampling the meteorological variables
from the meteorological data pool without replacement to predict
the concentration by 500 times (sensitive analysis of resampling
times on result is provided in Supplementary Methods and
Supplementary Fig. 17). The weather-normalized concentration
(emission-related concentration) for each observation was finally
calculated as the arithmetic mean of 500 predictions. The
meteorology-related PM2.5 concentration was then calculated as
the difference between observed air pollutant concentration and
emission-related concentration13,37,53,73.

XGB. Similar to weather normalization using RF, the XGB tree
model was used to build the relation between hourly air pollutant
concentrations and meteorological variables and other predictor
variables55. Three key parameters including the number of
gradient-boosted trees (nrounds), the maximum tree depth for
base learners (max_depth), and boosting learning rate (eta)77 were
optimized by random search with 5-fold cross-validation55,77. The
search space consisted of nrounds, max_depth, and eta with their
ranges of 10 to 1000, 1 to 13, and 0 to 1, respectively. The
terminator of the random search was chosen as 100 times
evaluation. Based on the performance of the 5-fold cross-
validation, the optimal hyperparameters were obtained in each
city (Supplementary Table 4). After tuning, these parameters were
used to train the XGB model. The trained XGB model was further
used for weather normalization with the same process as
described above in the RF model.

Experiment design. A series of calculations using different
methods mentioned above were conducted to compare the
performance of different methods in weather normalization of
PM2.5 (1# experiment in Table 2). To exclude the effects of the data
split process on machine learning, the same data was used in
model training and testing for RF and XGB models, e.g., the effects
of hyperparameter tuning on the RF model (2# experiment).
Additionally, the same trained model (e.g., XGB) was used in
discussing the meteorology resampling strategy on weather
normalization results (3# experiment). Finally, the 4# experiment

was designed to discuss the inclusion and exclusion of temporal
variables on weather normalization results by the RF model.

Trend calculation and statistical parameters
Using the methods mentioned above, PM2.5 observation (PMOBS

2:5 )
was decoupled into emission-related (PMEMI

2:5 ) and meteorology-
related (PMMET

2:5 ) concentrations. To make sure that the trends of
PM2.5 observation equaled the trends of PMEMI

2:5 and PMMET
2:5 from

2013 to 2017, the trends were calculated by linear regression
between annual values in PM2.5 concentrations and years33,34,78.
The slope of the linear regression equation was regarded as the
trend. To evaluate the model performances of different models to
reproduce the observations of PM2.5, several statistical parameters
including the Pearson correlation coefficient (r), normalized mean
bias (NMB), and IOA were used (see Supplementary Table 5 for
more details).

DATA AVAILABILITY
The PM2.5 dataset is available at https://quotsoft.net/air/ (last accessed: Oct. 2022)
and https://data.epmap.org/page/index (last accessed: Oct. 2022). The ERA-5 hourly
data on a single-level can be found at https://cds.climate.copernicus.eu/cdsapp#!/
home (last accessed: Oct. 2022). The WRF-CMAQ simulation can be downloaded via
http://meicmodel.org.cn/?page_id=1830&lang=en (last accessed: Oct. 2023). The
data used to visualize the figures is deposited on https://github.com/zh-cug/ML.

CODE AVAILABILITY
The code to download, process, and visualize data is available at https://github.com/
zh-cug/ML.
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Table 2. Experiment design and its purpose in this study.

Experiment Method Tunedb Experiment design Purpose

1# CMAQa Intercomparison of different methods

GC

KZ

MLR

RF Yes Gc

XGB Yes G

2# RF No G The effect of hyperparameter tuning on weather normalization result

RF Yes G

3# XGB Yes G The effect of meteorology resampling strategy on weather normalization result

XGB Yes V5d

XGB Yes V30e

XGB Yes Mf

4# RF Yes G with temporal variablesg The effect of the temporal variables on weather normalization result

RF Yes G without temporal variables

a Used as a reference to evaluate the bias of other methods.
b Designed for machine learning.
c–fDifferent meteorology resampling strategies. V5 and V30 represent the meteorological variables that are randomly sampled from 2013–2017 and
1988–2017, respectively. More details can be found in Supplementary Note 2.
gTemporal variables include Julian’s day and day of the week in this study.
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