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a b s t r a c t 

For nearly two decades, ocean carriers have been locked in an arms race for capacity, which has led to 

huge losses for many and even bankruptcy for some. We investigate the nature of this investment race 

by studying a long-term capacity investment problem in a duopoly under demand uncertainty. In our 

model, two firms make sequential capacity decisions, responding to each other’s current and future ca- 

pacity. We consider two types of strategies which differ in terms of how a firm considers the opponent’s 

future capacity in its own strategy: a proactive strategy where the firm assumes that the opponent will 

respond using a certain strategy, or a reactive strategy where the firm assumes that the opponent’s future 

capacity remains unchanged. In the proactive case, we allow the firm to have different assumptions on 

the opponent’s strategy, representing different amounts of information the firm has on the opponent. For 

each type of strategies, we derive the firm’s optimal decisions on both the timing and size of capacity 

adjustments, specified by an array of intervals for the optimal capacity in a given capacity space in each 

period. Using detailed data from the container shipping market (20 0 0–2015), we illustrate how to plan 

competitive capacity investments, following our model. By comparing the optimal decisions specified by 

our model with the reality, we show that the realized capacity decisions of the leading carriers, which 

were often questioned as irrational, are close to optimal, assuming these carriers follow proactive strate- 

gies. By revealing the underlying structures of different strategies, that is, the stayput intervals, we show 

how a specific strategy brings value to firms under competition. Based on our results, we provide prac- 

tical guidelines to carriers and firms which operate in a similar competitive market for implementing an 

effective com petitive capacity strategy. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Over the past two decades, we have observed a striking invest- 

ent race among ocean carriers for capacity. Since the launch of 

he first ultra large container vessel 1 in 2006, by 2015 the size of 

he largest container vessel increased by 24%. Between 2010 and 

017, the world fleet capacity in fully cellular containerships in- 

reased by over 56 . 9% . However, in stark contrast to the enormous

ncrease in fleet capacity, the shipping industry has had a difficult 

ide since the 2008 global recession [9] . The battle of survival for 
� Area: Production Management, Scheduling and Logistics. This manuscript was 

rocessed by Associate Editor Furini. 
∗ Corresponding author. 

E-mail address: xishu.li@lancaster.ac.uk (X. Li) . 
1 Container vessels are distinguished into seven major size categories and the cat- 

gory of ultra large container vessels includes container vessels with a capacity of 

4,501 TEU and higher [66] . 
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arriers can only be partially pinned on the recession or to buying 

oo many ships before the recession started, in anticipation of con- 

inued demand growth. The situation was drastically aggravated by 

ost-crisis investment cascades [33] . Except the first one, all ul- 

ra large container vessels were ordered after 2008. In 2011 alone, 

MA-CGM increased the capacity option of its three on-order ves- 

els (Marco Polo vessels) by 15 . 7% [18] , followed by Maersk’s $3.8 

illion investment in 20 Triple-E-class vessels, which led the size of 

he largest containership to instantly rise by another 14 . 2% [34] . In-

tead of boosting profit, these investments caused high volatility in 

reight rates and profit losses for many carriers [58–60] . Immedi- 

tely after CMA-CGM and Maersk had placed their orders, the spot 

ates in the Asia-Europe market hit rock bottom, dropping from an 

verage value of $1789 per TEU in 2010 to $450 per TEU in De- 

ember 2011 [41,59] . Consequently, in 2011 many carriers depleted 

heir cash reserves. Due to the intensity of the investment race 

nd the destructive outcome, industry experts have been calling 
hese investments irrational and increased research effort s have 

under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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een called for to explain excess capacity and persistent overin- 

estment in the container shipping market [31,33] . 

We propose an investment framework for explaining the nature 

f the capacity investment race in the container shipping market. 

t the initial stage of our research in 2016, we conducted inter- 

iews with multiple carriers, asking about why they invested in 

ecent years. Managers of newbuilding explicitly stated that among 

emand growth, economies of scale, and other common invest- 

ent drivers, competition was a key driver for the post-crisis in- 

estments: 

“If the no.1 does it, no.15 also has to do likewise or he will be

icked out of the market, because they are no longer competitive.”

shipping line A); “It is a must to survive! When you cannot beat 

hem, join them.” (shipping line B); “You need to stay relevant for 

our alliance, how fragile that might be. If you are very much behind 

n your investment, nobody would like to partner with you.” (ship- 

ing line C); “Everybody who is doing investments now (2016) in new 

hips, is not based on growth of world market.” (shipping line D). 

Having known what the other firms have purchased, carriers re- 

ponded to these investments through their own investments. Lit- 

le research has explicitly focused on an investment race with such 

 competitive nature and on the optimal structure of a firm’s strat- 

gy in the race. Our research fills the gap by studying a long-term 

apacity investment problem in which two firms make sequential 

apacity decisions, responding to each other’s current and future 

apacity. Because capital assets like containerships have long life- 

imes, present investment decisions influence decisions in the fu- 

ure. A long-term strategy should address the optimal timing and 

ize of capacity adjustments. Capturing the optimal timing under 

ompetition requires firms to balance the financial risk of invest- 

ng and the competitive risk of not investing. Once-in-a-cycle de- 

ays can create a lasting competitive disadvantage in a multi-round 

nvestment race. Similarly, the optimal size of competitive capac- 

ty requires a careful trade-off analysis. Investing too little certainly 

oes not grant firms a competitive advantage, e.g., it is not enough 

o deter the opponent’s future investments. However, competition 

oes not necessarily drive firms to build the maximum possible 

apacity. Examples such as the lack of success of the Airbus 380 

ave demonstrated that more is not always better under competi- 

ion [10] . 

We consider two types of strategies in the investment race: a 

roactive strategy where the firm plans its capacity, assuming that 

he opponent will respond using a certain strategy, or a reactive 

trategy where the firm plans its capacity, assuming that the op- 

onent’s future capacity will remain unchanged. Being proactive is 

ot necessarily better than being reactive. In a proactive strategy, 

he firm needs to have information on the opponent’s strategy and 

his information may be incorrect. In addition, proactive strategies 

ikely lead to more capacity adjustments, potentially resulting in 

ower prices and higher capacity costs for the firm. In our model, 

e allow the proactive firm to have different assumptions on the 

pponent’s strategy, representing different amounts of information 

he firm has on the opponent. We derive the firm’s optimal strat- 

gy in terms of the timing and size of capacity adjustments, fol- 

owing the structure of an ISD ( Invest, Stayput, Disinvest ) policy. 

uch a policy is characterized by a set of stayput intervals in the 

olution space. If the firm’s current capacity falls in a stayput in- 

erval, the optimal decision is to stay put; otherwise, it should ad- 

ust its capacity to the closest boundary of a close-by interval. We 

pply our model to the container shipping market using 16-year 

20 0 0–2015) data. By comparing the optimal decisions specified 

y our model with the reality, we show that the investments of 

he leading carriers, which were often questioned to be irrational, 

ollow an optimally proactive structure. By revealing the underly- 

ng structure of different strategies, that is, the stayput intervals, 

e show how a specific strategy brings value to firms under com- 
2

etition. Based on our results, we provide practical guidelines to 

arriers and firms which operate in a similar competitive market 

or implementing an effective competitive capacity strategy. 

We contribute to theory and practice in five ways: First , to the- 

ry by investigating the strategic implications of capacity in the 

nvestment race and by providing a theory that can explain the in- 

estment phenomena observed in practice. Current models do not 

ully explain these phenomena as they do not explicitly consider 

he competitive feedback nature of the race; Second , to theory by 

nvestigating the optimal structure of the long-term competitive 

trategy, answering the question of how firms should timely re- 

pond to the current competition, in anticipation of future changes. 

urrent research typically focuses on myopic strategies which as- 

ume that the future is fixed forever or Cournot-Nash equilibrium 

trategies which neglect the direct feedback between firms’ deci- 

ions; Third , to theory by studying proactive strategies with dif- 

erent amounts of information on the opponent’s strategy. Current 

odels mostly assume a symmetric scenario in which all firms 

now each other’s strategy; Fourth , to theory by deriving the full 

ptimal policy in terms of both the timing and size of capacity 

djustments. Existing dynamic models often focus on timing only, 

iven fixed-sized capacity options. In addition, different from the 

ajority of the existing models which only focus on a single period 

nd the ultimate decision, i.e., the optimal capacity in that period, 

ur method derives the complete set of optimal decision intervals 

n the available capacity space, revealing the competitive value of 

apacity; Fifth , to practice by providing a framework for planning 

apacity investments in the long-term competition. 

. Literature review 

Our research is related to capacity models that are concerned 

ith strategically determining the timing and size of buying or 

elling additional capacity (see [62] and [15] for a detailed liter- 

ture review). Two categories of capacity models can be distin- 

uished: (1) static models and (2) dynamic models. Table 1 gives 

 comparison of some existing capacity models in each category 

nd our model, in terms of whether the model considers multiple 

ounds of decisions, whether the optimal solution specifies tim- 

ng or size of capacity adjustments, whether it considers compe- 

ition between vertical firms such as manufacturers and retailers 

r horizontal firms who supply a common market, and whether 

t considers simultaneous or sequential decisions of horizontal 

rms. 

Static models investigate the optimal capacity locations and 

izes in a processing network for a single or for multiple decision 

akers in a stationary environment where there is no manage- 

ial flexibility to cope with market changes [11,63] . This collapses 

he problem to a single initial capacity investment where the opti- 

al capacity remains constant over time. This category of capacity 

odels adopts queuing [13,32] and newsvendor network formu- 

ations [30,39,61] . Dynamic models allow time-dependent invest- 

ents to respond to the resolution of uncertainty. They emphasize 

he timing of capacity adjustments in a single-shot or a multi- 

ound game [5,12,27,28,38,48] . Some noted approaches in this cate- 

ory are decision-tree analysis, dynamic programming, control the- 

ry, and real-options models [20,22,36,51,55] . Often, investment 

s viewed as an optimal stopping problem, focusing on finding 

he demand values at which capacity should be adjusted to max- 

mize the expected reward. Eberly and Van Mieghem [21] de- 

ive the optimal investment dynamics as an ISD (invest, stayput 

nd disinvest) policy which is characterized by a single capacity 

nterval. 

Based on Eberly and Van Mieghem [21] ’s solution approach, 

e develop a method to analyze investment opportunities involv- 

ng important competitive and strategic implications under uncer- 
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Table 1 

Comparison of some existing capacity models and our model. 

Capacity models Examples Multi-round 

Investment decisions Firm interaction 

timing size vertical 

horizontal 

simultaneous sequential 

Static 

[39] � 

[30] � 

[61] � � 

[44] � � 

[14] � � 

[32] � � 

[64] � � 

Dynamic 

[21] � � � 

[48] � � � 

[28] � � � 

[19] � � 

[26] � � 

[42] � � 

[54] � � 

[53] � � 

[24] � � � 

[1,2] � � � 

Our model � � � � 
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ainty. Our model belongs to the group of dynamic capacity mod- 

ls in which firms condition their decisions not only on the res- 

lution of exogenous uncertainty, but also on the (re)actions of 

ompetitors [6,15,51] . Numerical results of a multi-round invest- 

ent problem can be derived using stochastic dynamic program- 

ing and Monte Carlo simulation [37] . For analytical results, con- 

rol theory is used to derive capacity strategies in a Nash frame- 

ork [24] . Research that examines dynamic competitive invest- 

ents with an explicit focus on a firm’s strategic thinking is still 

acking. Such research has been applied to some extent in the fi- 

ancial domain, e.g., to research and development investments. A 

imitation of these studies is that they specify a fixed size for the 

ction available to firms and focus only on the timing of taking this 

ction. In addition, current research has been limited to Cournot 

ompetition (e.g., [45] ) in which a firm sees the opponents’ strate- 

ies as exogenous stochastic processes. The Cournot-Nash equilib- 

ium strategy, although mathematically tractable, is considered as 

n open-loop strategy. It fails subgame perfection: if one firm de- 

iates from the equilibrium strategy, driving the price down or up, 

ther firms ignore this and continue to invest [7] . 

Our model considers a sequential competition between firms 

nd a feedback strategy. In addition to timing, our model allows 

he size of an investment to be determined by the optimal pol- 

cy and thus we study more complete features of a capacity strat- 

gy. Sarkar [51] considers both the timing and size, and the impact 

f competition on the investment. However, he captures competi- 

ion as an exogenous factor, measuring the firm’s market power 

y the price-sensitivity of the product, and thus viewing the firm 

n a competitive market as having less market power. His results 

how that the firm’s investment is more sensitive to demand un- 

ertainty if it operates in a competitive market. Rau and Spinler 

45] used real-options models to study the capacity strategy in the 

ontainer shipping market. Focusing on a Cournot-Nash equilib- 

ium, they consider competition from two perspectives: the price 

lasticity of demand and the number of firms. Our research differs 

s we use a Stackelberg framework. We contribute to the extant 

iterature by studying sequential feedback strategies in which all 

rms respond to the investment of any other firm like a Stack- 

lberg follower throughout the investment game. Moreover, our 

eedback strategies incorporate a firm’s assumption on the oppo- 

ent’s strategy, instead of the real strategy. Therefore, we study the 

alue of information in the firm’s strategic investments. 
t

3 
. Our model 

The main notations used in our model are summarized in 

able 5 in the appendix. We consider two firms ( l and f ) selling 

 homogeneous product, e.g., shipping service, in an oligopolistic 

arket within a finite time horizon � = { 1 , · · · , T } , assuming ca-

acity is instantaneously adjustable. We use the subscript i , i � = j,

o refer to the opponent of firm j, i, j ∈ { l, f } . For t ∈ � and j ∈
 l, f } , let k t j represent firm j’s capacity level in period t and let the

nite set K t j ⊆ R ≥0 denote the set of available capacity choices, 

 t j ∈ K t j . The origin and final values of K t j are denoted as k o 
t j 

and

 

e 
t j 

, respectively: k o 
t j 

= inf K t j and k e 
t j 

= sup K t j . At the beginning of

eriod t ∈ �, firm l first changes its capacity from k t−1 l to k tl , and

hen firm f observes k tl and changes its capacity from k t−1 f to k t f . 

ased on the decision sequence, we refer to firm l as the leader 

nd firm f as the follower. The initial capacity of the two firms are 

enoted as k 0 l and k 0 f , respectively. 

A firm’s optimal capacity in each period is determined based on 

he demand, supply, and investment cost information then avail- 

ble to the firm and on its assessment of the uncertain future. At 

he beginning of period t , firms observe the current demand, de- 

oted as, ω t , and predict the demand growth of this year. ω t ∈ �,

here � is the set of demand values and � ⊆ R ≥0 . We assume 

hat exogenous uncertainty exists in ω τ , ∀ τ > t , and it possesses 

 Markov property. Thus, demand information relevant to the ca- 

acity decision in period t includes only the current demand ω t 

nd the transition probability. We denote the transition proba- 

ility function of demand as P r : � × � × � → [0 , 1] , Pr { ω t+1 =
 t+1 | ω t = x t } = P r(x t , x t+1 , t) . Let the two firms’ capacity, de-

and, and time define the state of the system. At the beginning 

f period t , the leader observes state Y tl = (k t−1 l , k t−1 f , ω t , t) ∈
 t−1 l × K t−1 f × � × � and decides k tl . The follower then observes 

tate Y t f = (k tl , k t−1 f , ω t , t) ∈ K tl × K t−1 f × � × � and decides k t f .

ereinafter, we omit the time parameter t in state vectors. 

After having made capacity decisions, the two firms face a 

ingle-period production problem. Production decisions (i.e., capac- 

ty usages) do not have the same strategic implications as capac- 

ty decisions [37,62] . Some capacity models study volume flexibil- 

ty, but in a single-firm setting [47,49,50,67] . Since our focus is on 

trategic capacity decisions for a single product, we do not con- 

ider flexible capacity usage in the long-term problem. We assume 

hat the two firms will produce up to their capacity. Given the total 
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vailable capacity, the price of the homogeneous product is speci- 

ed by an inverse demand function, P t (k ti , k t j , ω t ) . Let H t j (k t j ) rep-

esent firm j’s setup and operating cost function in period t , de- 

endent on the firm’s capacity k t j . Equation (1) lists firm j’s oper- 

ting profit in period t . 

t j (k ti , k t j , ω t ) = P t (k ti , k t j , ω t ) k t j − H t j (k t j ) , ∀ t ∈ � (1)

t is possible that P t (k ti , k t j , ω t ) k t j < H t j (k t j ) , implying that firm j

an have negative profits for a period. This is rational as the firm’s 

bjective considers the long-term profit, and thus a single-period 

oss will unlikely lead the firm to sell all its assets. It is also consis-

ent with the common practice in the container shipping market, 

hat is, in order to remain active in the market, carriers continue 

o operate even if they are facing a loss. For instance, in 2016 and

017, none of the major carriers expected to be profitable, yet they 

till maintained their operations [65] . 

At the end of the time horizon �, the salvage value of firm j

s determined by the function F j (k T i , k T j , ω T +1 ) . Since the marginal

rofit of an investment is usually non-increasing, in Assumption 1 

e formalize our assumption on firm j’s operating profit and sal- 

age value being concave in its capacity decision, given a fixed ca- 

acity of the opponent. Examples of functions that satisfy this as- 

umption include those associated with the market-clearing price 

r isoelastic prices. 

ssumption 1. For any given and fixed capacity of the opponent 

 ti ∈ K ti and for each ω t ∈ �, firm j’s operating profit function

t j (k ti , ·, ω t ) and salvage value function F j (k T i , ·, ω t ) are concave in

ts own decision k t j . 

We define the investment cost function of firm j in period t as 

 kinked piece-wise linear function: C t j (k t j ) = c t j × (k t j − k t−1 j ) 
+ −

 t j × (k t−1 j − k t j ) 
+ , where (x ) + denotes max { 0 , x } . The parameters

 t j and r t j are the marginal investment cost and marginal dis- 

nvestment revenue, respectively. As purchasing capital assets or 

echnology is partially irreversible, we make the following assump- 

ion on the investment cost parameters c t j , r t j and the discount 

ate δ: 

ssumption 2. Capacity investment is costly to reverse as c t j > r t j . 

n addition, the present value of a unit of used capacity cannot be 

igher than a new unit: c t j � δτ−t r τ j , ∀ τ ∈ { t, · · · , T } , where δ > 0

s the single-period discount factor. 

he optimal value function 

The value of a firm’s long-term strategy consists of the value 

f each capacity decision planned for the future. Let K t j = 

k t j , k t+1 j , · · · , k T j ) denote firm j’s capacity strategy vector from

eriod t to the end of the time horizon � and let K t j denote the 

et of all capacity strategy vectors, K t j ∈ K t j . At the beginning of

eriod t , the follower’s expected net present value (NPV) depends 

n the state Y t f = (k tl , k t−1 f , ω t ) that is observed, and on the two

rms’ future capacity, K t+1 l and K t f . The leader’s expected NPV 

epends on the state Y tl = (k t−1 l , k t−1 f , ω t ) , K tl , and K t f . Equa-

ion (2) gives firm j’s NPV function: 

 t j (Y t j , K t+1 i , K t j ) = E 

[ T ∑ 

τ= t 
δτ−t (πτ j (k τ i , k τ j , ω τ ) − C τ j (k τ j )) 

+ δT +1 −t F j (k T i , k T j , ω T +1 ) | ω t 

] 
, (2) 

n firm j’s expected NPV function above, the opponent’s future ca- 

acity K t+1 i , is specified by firm j’s assumption of the opponent’s 

trategy (note that if j = l, then the opponent’s future capacity is 

 ; hereinafter, unless specified otherwise, we present solutions 
ti 

4 
or j = f ). In order to derive a structured optimal strategy, we as- 

ume that for each k τ j in K t j , a value of k τ+1 i is projected accord-

ng to a rule and this rule is consistent for all τ ∈ { t, · · · , T − 1 } . 
All existing oligopoly capacity models implicitly assume that 

oth firms know ex ante each other’s exact response to the firm’s 

wn strategy (e.g., [24,40] ). This assumption may hold true for 

he leader, as it can exert some control over the market and thus 

nows the follower’s possible responses. However, the same as- 

umption is not always applicable to the follower. We assume that 

hen the leader can plan its investments proactively, considering 

he follower’s responses, the leader also has full information on the 

ollower’s responses as part of the first mover advantage. Full in- 

ormation includes the follower’s assumption on the leader’s strat- 

gy as it is considered in the follower’s long-term strategy. When 

he follower can adopt a proactive strategy, we consider two sce- 

arios where the follower’s proactive thinking has complete infor- 

ation and incomplete information, respectively. An example of 

he latter scenario is that while the leader is being self-interested, 

he follower sees the leader being adversarial, i.e., the follower 

hinks that the leader decides its capacity to minimize the fol- 

ower’s value. It is not unrealistic for a firm to speculate that the 

pponent is being adversarial in the investment race. The container 

hipping market is controlled by a small number of carriers who 

an influence the price of the common product through their ca- 

acity. Taking advantage of this market feature, leading carriers can 

queeze the profit margin of other carriers by adding more capac- 

ty [31,45] . Once competitors have been squeezed out of the mar- 

et, leading carriers can then change their objective to maximize 

heir own profit. 

After specifying the rule on the relation between k τ j and k τ+1 i , 

e can omit K t+1 i in firm j’s value function, i.e., V t j (Y t j , K t j ) . Firm

j’s optimal value function at the beginning of period t is: V ∗
t j 
(Y t j ) =

up K t j ∈K t j 
V t j (Y t j , K t j ) . In any proactive case, the optimal value 

unction V ∗
t j 

suffers the curse of dimensionality. We use recursive 

ptimality equations to derive the optimal strategy K 

∗
t j 

. At the end 

f the time horizon � (or at the beginning of period T + 1 ), firm

j’s salvage value associated with the state Y T +1 j = (k T l , k T f , ω T +1 )

s: V ∗
T +1 j 

(Y T +1 j ) = F j (k T i , k T j , ω T +1 ) . According to Bellman’s princi-

le of optimality, at the beginning of period t ∈ �, firm j’s opti-

al value function associated with the state Y t f = (k tl , k t−1 f , ω t )

r Y tl = (k t−1 l , k t−1 f , ω t ) equals the following: 

 

∗
t j (Y t j ) = sup 

k t j ∈ K t j 

{ 

πt j (k ti , k t j , ω t ) − C t j (k t j ) + δE[ V ∗t+1 j (Y t+1 j ) | ω t ] 

} 

, 

(3) 

We define a function G t j as firm j’s expected NPV evalu- 

ted in period t , given that its capacity has been adjusted to 

 t j and an optimal follow-up capacity strategy will be imple- 

ented: G t j (Y t j , k t j ) = πt j (k ti , k t j , ω t ) + δE[ V ∗
t+1 j 

(Y t+1 j ) | ω t ] . Sub-

tituting G t j into equation (3) , the optimization problem of firm j

n period t equals the following: 

 

∗
t j (Y t j ) = sup 

k t j ∈ K t j 

{ 

G t j (Y t j , k t j ) + r t j × (k t−1 j − k t j ) 
+ − c t j × (k t j − k t−1 j ) 

+ 
}

(4) 

The intuition behind Eq. (4) is that given an optimal follow-up 

trategy, the firm’s optimal capacity in the current period can be 

etermined by comparing the cost of increasing the current ca- 

acity with the revenue of reducing it. Eberly and Van Mieghem 

21] solve the above optimization problem for a single-firm case. 

hey show that if the optimal value function is strictly concave, the 

ptimal policy can be represented in the form of a unique stayput 

nterval, which is a continuum of optimal solutions to the invest- 

ent problem. The boundaries of the stayput interval define the 
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ecision rule for investments: if the current capacity falls within 

he boundaries (i.e., inside the stayput interval), it is optimal not 

o adjust capacity; otherwise, capacity should be adjusted to an 

ppropriate point on the interval’ s boundary. The policy which 

akes such a form is referred to as an ISD (invest, stayput and dis- 

nvest) policy. In the next section, we focus on a multi-period se- 

uential competition between the two firms. We adopt the solu- 

ion approach from Eberly and Van Mieghem [21] , while our con- 

ribution lies in the development of a method which incorporates 

he opponent’s ISD policy in a firm’s own ISD policy. 

. The competitive capacity investment policy: Reactive vs 

roactive 

In the duopoly, if firm j’s optimal value function V ∗
t j 

is jointly 

oncave in (k t−1 j , k t j ) for any given k ti ∈ K ti and for each ω t ∈ �,

ts ISD policy can be derived following similar lines as in the proof 

f Theorem 2 of [21] . In Proposition 1 , we present such an ISD pol-

cy. All proofs are given in the appendix. 

roposition 1. Given the current state Y t j , if firm j’s optimal value 

unction V ∗
t j 

is jointly concave in (k t−1 j , k t j ) , then its optimal capacity

n period t is specified by an ISD policy that is characterized by the 

ollowing functions: 

 

L 
t j = sup 

{ 

{ k o t j } ∪ { k t j : 
∇ −G t j (Y t j , k t j ) 

∇k t j 

≥ c t j , k t j ∈ K t j } 
} 

(5)

 

H 
t j = inf 

{ 

{ k e t j } ∪ { k t j : 
∇ + G t j (Y t j , k t j ) 

∇k t j 

≤ r t j , k t j ∈ K t j } 
} 

, (6)

here 
∇ −G t j (Y t j ,k t j ) 

∇k t j 
and 

∇ + G t j (Y t j ,k t j ) 

∇k t j 
are the infimum of all 

eft-sided difference quotients and the supremum of all right- 

ided difference quotients of the function G t j (Y t j , k t j ) at the 

oint k t j , respectively: 
G (Y t j ,a ) −G (Y t j ,k t j ) 

a −k t j 
≥ ∇ −G (Y t j ,k t j ) 

∇k t j 
, ∀ a < k t j , and 

G (Y t j ,b) −G (Y t j ,k t j ) 

b−k t j 
≤ ∇ + G (Y t j ,k t j ) 

∇k t j 
, ∀ b > k t j , where a , b and k t j are in the 

omain of G . Set S t j = [ k L 
t j 

, k H 
t j 

] . Firm j’s optimal capacity in period t

s determined based on its current capacity k t−1 j and S t j : if k t−1 j ∈
 t j , no adjustment should be made, i.e., k ∗

t j 
= k t−1 j ; if k t−1 j < k L 

t j 
, an

nvestment should be made such that the new capacity hits the lower 

oundary of S t j , i.e., k ∗
t j 

= k L 
t j 

; if k t−1 j > k H 
t j 

, a disinvestment should

e made such that the new capacity hits the higher boundary of S t j ,

.e., k ∗
t j 

= k H 
t j 

. 

In Proposition 1 , 
∇ −G t j (Y t j ,k t j ) 

∇k t j 
and 

∇ + G t j (Y t j ,k t j ) 

∇k t j 
can be seen as 

rm j’s (minimal) marginal value of investment and (maximal) 

arginal value of disinvestment at capacity k t j , respectively. Thus, 

he ISD policy specifies an interval S t j of which the (minimal) 

arginal value of investment equals the marginal investment cost 

 t j at the lowerbound and the (maximal) marginal value of disin- 

estment equals the marginal disinvestment revenue r t j at the up- 

erbound. The concavity of V ∗
t j 

indicates that capacity outside S t j 

hould be adjusted to the closest boundary of S t j . In a single-firm 

ase, Eberly and Van Mieghem [21] ’s method directly calculates the 

oundaries of the stayput interval using difference quotients of the 

alue function. However, in the duopoly, such boundaries depend 

n the other firm’s future responses. 

If firm j adopts the reactive strategy, it observes the latest de- 

ision of the opponent and assumes that it will remain unchanged 

or the rest of the timespan. In Proposition 2 , we show that un-

er Assumptions 1 and 2, the firm’s optimal value function is con- 

ave in its capacity decision. Thus, the reactive ISD policy takes the 

ame form as in Proposition 1 and the resulting interval S t j is a 

unction of the opponent’s last observed decision k . 
ti 

5 
roposition 2. Under Assumptions 1 and 2, if firm j adopts the re- 

ctive strategy, the optimal value function V ∗
t j 

is jointly concave in 

k t−1 j , k t j ) for any given current capacity of the opponent k ti ∈ K ti ,

f i = l (or k t−1 i ∈ K t−1 i , if i = f ) and for each ω t ∈ �. 

If firm j adopts a proactive strategy, it perceives that the op- 

onent responds to the firm’s decision. Thus, changing any capac- 

ty in its strategy K t j will potentially trigger a different response 

n the opponent’s strategy K t+1 i . Since the opponent’s future ca- 

acity cannot be fixed at one value, firm j’s optimal value func- 

ion V ∗
t j 

, as well as its expected NPV function G t j , will unlikely be

oncave in its capacity k t j . To efficiently derive firm j’s proactive 

SD policy S t j in a discrete capacity space, we propose a three-step 

ethod. The principle of our method is to “divide and conquer”, 

.e., dividing the problem into a number of subproblems that are 

maller instances of the same problem and conquering the sub- 

roblems by solving them recursively (see a similar method used 

y Groenevelt [25] ). First, we divide the capacity space into mu- 

ually exclusive and complementary ranges , each associated with 

 competitive goal that the firm can define. After that, we deter- 

ine the optimal decision interval in each competitive-goal range , 

eparately, and compare the values of switching between different 

anges to obtain the decision intervals that are optimal across the 

ntire capacity space. Hereinafter, we use interval to refer to a stay- 

ut interval, of which the boundaries define the decision rule for 

nvestments, and use range to refer to a range of capacity values in 

he available capacity space. 

We classify a firm’s competitive goal based on the type of re- 

ponse of the opponent the firm aims at. Considering only the im- 

ediate response of the opponent, a firm can have one of the fol- 

owing three potential goals: (1) a passive goal which leads the op- 

onent to invest, (2) a neutral goal which leads the opponent to 

tay put, and (3) a progressive goal which leads the opponent to 

isinvest. These names indicate the firm’s different attitudes to- 

ards the opponent’s immediate future capacity growth, knowing 

he impact of the firm’s own decision on the opponent. For in- 

tance, with a passive goal, the firm passively accepts that its deci- 

ion will lead the opponent to increase its capacity in the future. 

n our model, the firm determines its capacity strategy to maxi- 

ize its long-term value (see Eq. (3) ), which not only includes the 

resent profit but also the profits in the follow-up periods. There- 

ore, the motivation behind the firm’s capacity decision can be that 

t drives the opponent to take a specific next action, so that the 

rm profits in the future. Our algorithm follows this intuition. 

In the single-period problem, there will be at most three 

ompetitive-goal ranges in the firm’s capacity space, each asso- 

iated with a potential competitive goal. In the long-term prob- 

em, considering a series of responses of the opponent and a num- 

er of possible goals associated with each response, the capacity 

pace can be divided into many ranges. Since the number of re- 

ulting stayput intervals is directly determined by the number of 

ompetitive-goal ranges, an ISD policy with more intervals indi- 

ates that the firm’s capacity decision will be more responsive to 

he opponent’s decision. Depending on the number of stayput in- 

ervals contained in the capacity space, the same space can have 

ifferent strategic im plications. Our method derives the complete 

et of stayput intervals in the capacity space, revealing the com- 

etitive value of capacity. In addition, our method predicts the 

olatility of the firm’s investments by displaying the size of each 

tayput interval. The shorter each interval, the more likely it is 

hat the firm’s current capacity falls outside the interval and it 

hus should be adjusted, indicating a higher level of volatility. Be- 

ow, we elaborate on each step of our method. We first show in 

ection 4.1 how to apply our method to a two-period game, and 

hen in Section 4.2 , formulate our method as an algorithm for com- 
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Table 2 

Three-step method and Decomposition Algorithm . 

Three-step method Decomposition Algorithm 

for firm j’s long-term proactive ISD policy: 

S t j = ∪ n S n 

Step 1 
Divide the capacity space into mutually exclusive and 

complementary ranges 

Divide the capacity space [ k L 
t j 

, k H 
t j 

] into ranges 

[ I o n , I 
e 
n ] : [ k 

L 
t j 

, k H 
t j 

] = 

⋃ 

n [ I 
o 
n , I 

e 
n ] 

Step 2 

Determine the optimal decision interval in each 

range, separately 

In capacity interval [ I o n , I 
e 
n ] , ∀ n , derive the set of 

stayput values, N n , following the process of 

elimination: N n ⊆ [ I o n , I 
e 
n ] 

Step 3 

Determine the decision interval that is optimal across 

the entire capacity space 

Comparing N n , ∀ n , with each other to eliminate 

non-stayput values: in N n , the remaining interval is 

S n , S n ⊆ N n 

p

m

4

p  

h

l

t

v

t

p  

s

l

i

s

t

g

l

v

g

c

t

g

g

l

n

a  

p

s

t

r

t

t

i

v

b

t

t  

v

W

r

p  

s

c

i

 

∪  

p  

[  

t  

c  

d  

o  

p

F

k  

v

f  

w

u  

T

i  

i

c  

t  

k

F

a

d

d

c

m

w

t

i

t

c

a

p

j

m

t

o

o

h

s

b  

s  

i  

f

t

uting a firm’s long-term proactive ISD policy. A summary of our 

ethod and algorithm is presented in Table 2 . 

.1. The two-period proactive ISD policy 

We solve a multi-round game backwards, starting with the last 

eriod T . In the last period, the leader is the only firm who can

ave a proactive strategy as the leader moves first and the fol- 

ower knows that the leader’s capacity will remain unchanged af- 

er the last decision k T l . Under Assumptions 1 and 2, the follower’s 

alue function V T f is concave in its own decision k T f , according 

o Proposition 2 . Thus, following Proposition 1 , the follower’s ISD 

olicy contains a single stayput interval, S T f = [ k L 
T f 

, k H 
T f 

] , which re-

ponds to a possible value of the leader’s capacity k T l . The fol- 

ower’s optimal decision is either to invest, stay put, or disinvest, 

.e., k ∗
T f 

= k L 
T f 

, k T −1 f , or k H 
T f 

. 

To derive the leader’s proactive ISD policy in period T , the first 

tep of our method is to divide the leader’s capacity space, given 

hat it is sufficiently large and connected, into three competitive- 

oal ranges. Each range corresponds to a response of the fol- 

ower. The second step is to determine the optimal decision inter- 

al for each competitive goal separately. Within each competitive- 

oal range, the leader’s value function is concave in the leader’s 

apacity. This is because in the last period, the leader only needs 

o consider one response of the follower and this response is fixed, 

iven any decision of the leader within the same competitive- 

oal range. Using Proposition 1 , we derive the boundaries of the 

eader’s stayput interval for each competitive-goal range. We de- 

ote the stayput interval within the n th competitive-goal range 

s N n , n = 1 , 2 , 3 . If the leader’s current capacity is within a stay-

ut interval, according to Proposition 1 , the leader has more value 

taying put than adjusting to any other point within the same in- 

erval. However, the value of adjusting to another competitive-goal 

ange may be higher than the value of staying put, considering 

hat the follower may respond differently. The third step is to ob- 

ain the decision intervals that are optimal across the entire capac- 

ty space by comparing the value of staying in one stayput inter- 

al and the value of adjusting to either the lowerbound or upper- 

ound of the other interval. The minimal difference between the 

wo values is concave in the leader’s capacity within N n . Hence, 

here exists a single interval S n ⊂ N n satisfying that ∀ k ∈ S n , the

alue of staying at k is larger than the maximal value of adjusting. 

e denote the lowerbound and upperbound of S n as s L n and s H n , 

espectively. Some competitive-goal ranges may not have a stay- 

ut interval, S n = ∅ . This means, the value of staying in a range is

maller than the maximal value of adjusting elsewhere. Since the 

ompetitive-goal ranges are non-overlapping, the resulting stayput 

ntervals are non-overlapping. 
6 
The leader’s ISD policy in period T consists of all S n , i.e., S T l =
 n S n . Figure 1 gives an example of such an ISD policy in the ca-

acity space [ k o 
T l 

, k e 
T l 

] . The first, second, and third stayput intervals,

 s L n , s 
H 
n ] , n = 1 , 2 , 3 , are colored in black, green, and blue, respec-

ively. According to S T l , if at the beginning of period T the leader’s

apacity is inside a stayput interval, e.g., k T −1 L ∈ [ s L 
3 
, s H 

3 
] , its best

ecision is to stay put, i.e., k ∗
T l 

= k t−1 l . If its current capacity falls

utside all stayput intervals S n , ∀ n = 1 , 2 , 3 , the value of staying

ut is smaller than the value of adjusting to an interval boundary. 

or capacity values that are on one side of all stayput intervals, 

 < s L 
1 

or k > s H 
3 

, the optimal decision is to either invest or disin-

est to hit the closest interval boundary. For capacity values that 

all between two adjacent intervals, k ∈ (s H n , s 
L 
n +1 

) , the interval to

hich the current capacity should be adjusted depends on the val- 

es of the two adjacent competitive goals n and n + 1 , respectively.

he difference between the two values is monotonously changing 

n the leader’s capacity, ∀ k ∈ (s H n , s 
L 
n +1 

) . Thus, there exists a unique

nvestment threshold s n,n +1 ∈ [ s H n , s 
L 
n +1 

] such that the optimal de- 

ision for all k ∈ (s H n , s n,n +1 ) is to disinvest to hit s H n , and the op-

imal decision for all k ∈ (s n,n +1 , s 
L 
n +1 ) is to invest to hit s L n +1 . If

 = s n,n +1 , adjusting to either boundary yields the same value. In 

ig. 1 , the investment thresholds are presented by purple crosses 

nd the black lines with an arrow on one side indicate the optimal 

ecision for a non-stayput point. 

As demonstrated above, a firm’s proactive ISD policy in the 

uopoly can largely differ from a single firm’s ISD policy which 

ontains only one stayput interval. A direct implication of having 

ultiple separate stayput intervals is that the optimal investments 

ill show a high level of volatility and irregularity. With one in- 

erval, a firm’s decision is monotonously changing from investing 

f the current capacity is low, then staying put, last, disinvesting if 

he current capacity is high. With multiple intervals, the firm’s de- 

ision is continually changing in the cycle of investing, staying put, 

nd disinvesting. As a result, there may be “irrational” investment 

henomena. e.g., when the current capacity falls between two ad- 

acent intervals. If the current capacity is higher than the invest- 

ent threshold between the two intervals, the optimal decision is 

o invest more to hit the higher stayput interval; if it is lower, the 

ptimal decision is to disinvest to hit the lower stayput interval. In 

ther words, holding more assets may trigger investments, while 

aving fewer assets may trigger disinvestment. 

Given three stayput intervals in period T , the leader has 7 pos- 

ible decisions for k T l : invest or disinvest to hit a stayput interval 

oundary in a competitive-goal range ( k T l = s L n or s H n , n = 1 , 2 , 3 ;

ee Fig. 1 ) or stay put at the current capacity ( k T l = k T −1 l ). Extend-

ng the game to a two-period setting, i.e., T − 1 and T , a proactive

ollower decides its capacity in period T − 1 taking into account 

he leader’s response in the last period, k T l . Since there are 7 pos- 
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Fig. 1. Example of the leader’s ISD policy in the last period T and the follower’s ISD policy in period T − 1 . 

Table 3 

Example of the two firms’ ISD policy in the two-period game. 

t j

[ I o n , I 
e 
n ] , ∀ n 

each corresponding to a value of k ∗
t+1 i 

S t j , 

dependent on [ I o n , I 
e 
n ] 

k ∗
t j 

, 

according to S t j 

t = T 
Follower 

( j = f ) 

NA [ s L 1 , s 
H 
1 ] s L 1 or s H 1 , 

or k t−1 j 

Leader 

( j = l) 

[ I o 1 , I 
e 
1 ] , 

[ I o 2 , I 
e 
2 ] , 

[ I o 3 , I 
e 
3 ] 

∪{ [ s L 1 , s H 1 ] , 

[ s L 2 , s 
H 
2 ] , 

[ s L 3 , s 
H 
3 ] } 

s L 1 or s H 1 

s L 2 or s H 2 , 

s L 3 or s H 3 , 

or k t−1 j 

t = T − 1 Follower 

( j = f ) 

[ I o n , I 
e 
n ] , 

n = 1 , 2 , . . . , 7 

∪ n { [ s L n , s H n ] , 

n = 1 , 2 , . . . , 7 } 
s L n or s H n , 

n = 1 , 2 , . . . , 7 , 

or k t−1 j 

Leader 

( j = l) 

[ I o n , I 
e 
n ] , 

n = 1 , 2 , . . . , 15 

∪ n { [ s L n , s H n ] , 

n = 1 , 2 , . . . , 15 } 
s L n or s H n , 

n = 1 , 2 , . . . , 15 , 

or k t−1 j 
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ible values for k T l , the follower can have up to 7 competitive goals

n period T − 1 , each corresponding to a value of k T l . In Fig. 1 , we

how how the leader’s stayput intervals in period T lead to the fol- 

ower’s stayput intervals in period T − 1 . These competitive goals 

ead to potentially 7 stayput intervals. Consequently, the follower 

an have 15 possible decisions for k T −1 f (invest or disinvest to hit a 

tayput interval boundary, i.e., 2 × 7 decisions, and 1 decision that 

s to stay put). The leader’s proactive ISD policy in period T − 1 

s based on k T −1 f . Following the same logic as above, the leader 

an have 15 (or more since the leader’s value function may not 

e concave in k T −1 l within the same competitive-goal range, con- 

idering that there are now two responses of the follower, k T −1 f 

nd k T f ) stayput intervals in period T − 1 . In Table 3 , we list an

xample of the two firms’ respective ISD policy in the two-period 

ame. Note that the exact number of competitive goals or stay- 

ut intervals directly depends on the size and form (whether it 

s connected) of the available capacity space. For instance, if the 

ollower’s capacity space in period T − 1 is constrained such that 

ll of its available choices can only trigger one type of response 

rom the leader, although there are 7 possible responses (7 possi- 

le values for k T l ), then only one competitive goal is available to 

he follower. In this scenario, the number of the follower’s stay- 

ut intervals in period T − 1 will be largely reduced. Given a suf- 

ciently large capacity space, the number of stayput intervals can 

ncrease exponentially in the long-term problem. Next, we develop 

n exact algorithm (referred to as the Decomposition Algorithm ) to 

erive the optimal long-term proactive ISD policy. 

t

7

.2. The long-term proactive ISD policy 

In the long-term problem, we first identify the range of capac- 

ty which contains the final stayput interval S t j and then apply 

ur method using this range as the new capacity space, instead 

f considering the entire space K t j . We use the two boundary 

unctions in Proposition 1 to identify this capacity range, [ k L 
t j 

, k H 
t j 

] .

ince the value function is not necessarily concave, the computed 

owerbound k L 
t j 

is not guaranteed to be smaller than or equal to 

he computed upperbound k H 
t j 

. In Proposition 3 , we show that if 

here exists a solution to the optimization problem, then k L 
t j 

≤ k H 
t j 

nd the stayput interval S t j is exclusively contained in the range 

 k L 
t j 

, k H 
t j 

] . Otherwise, S t j = ∅ . In addition, k L 
t j 

and k H 
t j 

are contained

n S t j . 

roposition 3. S t j ⊆ [ k L 
t j 

, k H 
t j 

] , k L 
t j 

= inf S t j and k H 
t j 

= sup S t j ,

here k L 
t j 

= sup {{ k o 
t j 
} ∪ { k t j : 

∇ −G t j (Y t j ,k t j ) 

∇k t j 
≥ c t j , k t j ∈ K t j }} and

 

H 
t j 

= inf {{ k e 
t j 
} ∪ { k t j : 

∇ + G t j (Y t j ,k t j ) 

∇k t j 
≤ r t j , k t j ∈ K t j }} . 

We use two rolling procedures, rolling up and rolling down , to 

crutinize a capacity range. Starting with an inspection range, these 

wo rolling procedures iteratively extend the inspection range on 

ne side, while keeping the other side fixed. Unless specified other- 

ise, a rolling procedure continues until the extending end reaches 

he end or the start of the capacity range to which the procedure 
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s applied. In Definition 1 , we define how these two rolling proce- 

ures extend the inspection range in an iteration. 

efinition 1. Given k ∈ K , � 

+ k and � 

−k denote the small-

st possible capacity larger than k and the largest possible 

apacity smaller than k in K , respectively: � 

+ k = inf { k ′ : k ′ >
 and k 

′ ∈ K } and � 

−k = sup { k ′ : k ′ < k and k 
′ ∈ K } . Applying the

wo rolling procedures to capacity range [ k o , k e ] and given that

he n − 1 th inspection range is [ k o , k n −1 ] or [ k n −1 , k e ] , the n th it-

ration of the rolling up procedure extends the range [ k o , k n −1 ] to

 k o , � 

+ k n −1 ] , whereas that of the rolling down procedure extends

he range [ k n −1 , k e ] to [ � 

−k n −1 , k e ] . 

Similar rolling procedures have been widely used in forecasting 

nd planning [8,29] . The most common approach, i.e., the rolling 

indow method, is to divide the time horizon into equal over- 

apping windows and to use the observations in each window 

o construct an aggregated observation [43] . The main differences 

etween the rolling window method and our rolling procedures 

re that: first, we divide the capacity space, instead of the time 

orizon, and second we iteratively extend the inspection capacity 

ange, rather than maintaining equal-sized ranges. 

To identify the stayput values in the capacity space [ k L 
t j 

, k H 
t j 

] ,

ur Decomposition Algorithm follows three steps. In the appendix, 

e provide the pseudocode and detailed explanation of the algo- 

ithm. The first step is to divide the capacity space [ k L 
t j 

, k H 
t j 

] into N,

 ⊂ Z , competitive-goal ranges, each corresponding to an imme- 

iate response of the opponent, assuming that the opponent’s all 

uture capacity stays the same afterwards. We use I o n and I e n (see 

able 2 for the notations used in each step) to denote the origin 

nd final values of the n th range, respectively, ∀ n ∈ N. 

The second step is to derive the set of stayput values, de- 

oted as N n , in each competitive-goal range [ I o n , I 
e 
n ] , separately. De-

ote the lowerbound and upperbound of N n as N 

o 
n and N 

e 
n , re- 

pectively: N 

o 
n = inf N n and N 

e 
n = sup N n . Given any capacity within 

 competitive-goal range, the opponent’s immediate response is 

xed, however its later responses can vary. Therefore, within each 

ompetitive-goal range, the firm’s value function is not necessarily 

oncave in its capacity and the stayput interval in the competitive- 

oal range cannot be directly derived using Proposition 1 . Our De- 

omposition Algorithm derives the stayput interval by elimination: 

t determines whether a capacity value is a non-stayput value by 

omparing it to a known stayput value and eliminates it from 

he solution set if a non-stayput value is identified. According to 

roposition 3 , we can use Eqs. (7) and (8) in Proposition 1 to de-

ive two known stayput values in the competitive-goal range, i.e., 

he lowerbound and upperbound of the stayput interval. These two 

ounds can then be used in the process of elimination. 

The third step is to eliminate capacity values from N n 

hat are non-stayput values across all competitive-goal ranges. 

roposition 4 shows that whether a capacity value in N n is a stay- 

ut value across another competitive-goal range N i , i � = n , can be

etermined by comparing this capacity value with the upperbound 

r lowerbound of N i . In Proposition 5 , we show that when using

he rolling procedure to sequentially scrutinize N n , once a stayput 

alue is confirmed, the procedure can stop at the current iteration. 

ll remaining capacity values in N n are denoted as S n . 

roposition 4. Given the stayput set in the n th competitive-goal 

ange, N n , N 

o 
n = inf N n and N 

e 
n = sup N n : ∀ k , if the expected NPV

alue of staying at k equals the value of adjusting to N 

e 
n or to N 

o 
n ,

hen the value of staying at k equals the value of adjusting to any

alue in N n . 

roposition 5. Given the stayput set in the n th competitive-goal 

ange, N n and a capacity value k ∈ N n : if there exists a capacity value
8 
 < k (or H > k ) such that k ≤ K 

H ([ L, k ]) (or k ≥ K 

L ([ k , H]) ), then

 ≤ K 

H ([ L, k ]) , ∀ k ∈ N n and k > k (or k ≥ K 

L ([ k, H]) , ∀ k < k ). 

After the three steps, the final stayput interval is S t j = 

 n =1 , ··· ,N S n . In Theorem 1 , we elaborate on the decision rule spec- 

fied by a proactive ISD policy with multiple separate stayput in- 

ervals. For stayput capacity, the optimal decision is to do noth- 

ng, i.e., staying put. For non-stayput capacity that falls at one 

ide of all stayput intervals, the optimal decision is to adjust 

o the closest stayput interval boundary. For non-stayput capac- 

ty that falls between two adjacent stayput intervals, the opti- 

al decision is guided by an investment threshold between the 

wo intervals: below the threshold, capacity should be adjusted 

o the upperbound of the lower stayput interval; otherwise, it 

hould be adjusted to the lowerbound of the higher stayput inter- 

al. The investment threshold can be identified through a binary 

earch. 

heorem 1. ∀ k ∈ S t j , no adjustment should be made, i.e., k ∗
t j 

= k .

 k < inf S t j or k > sup S t j , the optimal decision is to adjust to the

losest stayput interval boundary. Given two disjoint stayput intervals, 

 s L n , s 
H 
n ] and [ s L n +1 , s 

H 
n +1 ] , ∀ n ≥ 1 , there exists an investment threshold

 n,n +1 ∈ [ s H n , s 
L 
n +1 ] such that the optimal investment policy assigns all 

apacity in (s H n , s n,n +1 ] to be adjusted downwards to s H 1 , and assigns

ll capacity in [ s n,n +1 , s 
L 
n +1 

) to be adjusted upwards to s L 
n +1 

. 

. Case study on the container shipping market 

In this section, we illustrate how to plan competitive capac- 

ty investment following our model, using data from the container 

hipping market. In our case study, Maersk and MSC, which are 

he biggest and the second biggest carriers based on their fleet 

apacity [4] , are selected as the leader and the follower, respec- 

ively. The criterion for the selection of the competing firms is that 

hether these firms can directly influence the price of the ship- 

ing service through their capacity investments. Having large and 

elatively similar market shares is a good indicator for this. The 

riterion for the selection of the leader between the two firms is 

he market share. In practice, leader firms have superior access to 

upply, which leads them to move first in the capacity investment 

ace, and firms which have more access to supply usually also have 

ore capacity. Thus, having a larger market share can be an indi- 

ator of the leader. 

Mixing the two firms’ proactive or reactive strategies, as well 

s information on the opponent’s strategy used in the follower’s 

roactive strategy, we consider four cases (see a summary in 

able 4 ). (1) Case stayput : the leader is proactive, while the fol- 

ower responds to the competition by assuming that the leader 

ill stay put in the next period. (2) Case adversarial : both firms 

re proactive, however, the follower has incorrect information 

n the leader’s strategy and assumes that the leader is adver- 

arial. In other words, in period t , the follower assumes k τ l = 

rgmin k ∈ K τ l 
V ∗
τ f 

(Y τ f = (k, k τ−1 f , ω τ )) , ∀ τ ∈ { t + 1 , · · · , T } . (3) Case

ptimal : both firms are proactive, and the follower has full infor- 

ation on the leader’s optimal strategy. (4) Case reactive : both 

rms are reactive by assuming that the other firm will stay put in 

he next period. A case in which the leader is reactive and the fol- 

ower is proactive is not mentioned here, as it is identical to case 

tayput with a delayed starting point (i.e., the follower moves first). 

e refer to cases optimal and reactive as symmetric cases since 

oth firms adopt the same strategy and have the same amount 

f information on each other’s strategy, whereas we refer to cases 

tayput and adversarial as asymmetric cases as the situations are 

ifferent for the two firms. 

We use the demand and supply data of the container ship- 

ing market over a timespan of 16 years ( 20 0 0 − 2015 ). We use
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Table 4 

Leader and follower firms’ strategies in the four cases. 

Type of cases Name of cases Leader Follower 

Proactive Reactive Proactive Reactive 

Full 

information 

Incorrect 

information 

Full 

information 

Incorrect 

information 

Asymmetric Stayput � � 

Adversarial � � 

Symmetric Optimal � � 

Reactive � � 
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s

 fixed planning horizon and derive the series of optimal capac- 

ty decisions at the beginning of the horizon. This implies that in 

he later periods in the horizon, there may be a terminating effect: 

s it reaches the end of planning, firms weigh their salvage values 

ore. In practice, both Maersk and MSC’s planning horizons are 

ikely more than 16 years, not planning to end business in 2015. In 

rder to compare our model results, especially those in the later 

eriods in the 16-year timespan, with the reality, we extend the 

ime horizon to 2017, setting � = { 1 , · · · , 18 } . At the beginning of

0 0 0, the first observed demand, ω 1 , is set to be 1. At the begin-

ing of each year, both firms observe the current demand and pre- 

ict the demand growth of this year. In order to mitigate the risk, 

 demand forecast consists of several future scenarios with differ- 

nt probabilities, each taking into account the forecast error to a 

arying degree. Thus, we use the following categorical distribution 

o represent the demand scenario forecast. At the beginning of pe- 

iod t ∈ �, firms observe ω t and expect that ω t+1 evolves as fol-

ows: ω t+1 = ω t × (1 + μt + xσt ) , ∀ x = {−2 , −1 , 0 , 1 , 2 } , with prob-

bility pr x . The transition probabilities, pr x , are taken from the Z- 

core table. μt is the forecast of the demand growth of period t

nd σt is the forecast error in period t , which is the average dis- 

repancy between all previous forecasts μτ and the realized de- 

and growths μr 
τ , ∀ τ ∈ { 1 , · · · , t − 1 } . We use a deviation of 5% ,

 standard forecast deviation in the container shipping market, as 

he first forecast error σ1 . The values of μt and μr 
t are the average 

alues based on the two half-yearly Clarkson Shipping Review and 

utlook reports [16,17] . We use the same demand-growth forecast 

f 2015 for the artificial years (2016 and 2017) in our time horizon, 

etting μ18 = μ17 = μ16 , and assume a zero demand growth after 

015, setting μr 
18 

= μr 
17 

= 0 . 

In the long-term investment problem, we adopt a standard dis- 

ount rate of 0.89 [23] . We keep supply and investment cost pa- 

ameters constant throughout the entire time horizon �. For sim- 

licity, we assume that both firms’ setup and operating costs are 

ero in each period: H t j (k t j ) = 0 , ∀ t ∈ �. We use discrete market

hare values to present the capacity choices available to the two 

rms: K tl = K t f = { 0 , 1 , · · · , 19 } , ∀ t ∈ �. An upper limit of 19 is set

o both firms’ capacity spaces, due to the fact that a single opera- 

or’s market share (based on its fleet capacity) has never exceeded 

9% to date [4] . At the beginning of 20 0 0, the market shares of 

aersk and MSC were around 12% and 5% , thus we set k 0 l = 12

nd k 0 f = 5 [56] . According to Maersk’s container market weekly re- 

ort [35] , the average second-hand vessel price is $4 , 837 per TEU

nd the average newbuilding vessel price is $10 , 741 per TEU, thus 

e set both firms’ investment cost parameters as c tl = c t f = 10 . 7

nd r tl = r t f = 4 . 8 , ∀ t ∈ �. Assumption 2 is thus satisfied. Notice

hat these are not the prices for changing 1% market share, how- 

ver, the difference between c and r still represents the invest- 

ent irreversibility level in the container shipping market. In the 

ppendix, we investigate the impact of different levels of invest- 

ent irreversibility on capacity strategies, using Monte Carlo sim- 

lations (10,0 0 0 demand paths). We find that our results here 

ersists. 
i

9 
Since the freight rate fluctuates heavily with capacity invest- 

ents of dominant firms, we use a linear market-clearing price: 

 t = αω t − k tl − k t f , ∀ t ∈ �, where α is a positive marginal impact

f demand on price, given the supply. We use the same form 

f the operating profit function for the salvage value function: 

 j = (αω T +1 − k T l − k T f ) × k T j . With this function, Assumption 1 is 

atisfied. We determine the value of α using the historical freight 

ates (dollars per TEU), demand and supply data (both in thou- 

and TEUs) on the three major trade routes, transpacific, Europe- 

sia, and transatlantic. Using the linear market-clearing price, the 

arginal demand impact on freight rate ranged from 1.2 to 2.1 on 

he three routes at the beginning of 20 0 0 [57] . We choose the

verage value of 1.5 as the marginal demand effect and scale up 

his value by 10, setting α = 15 . This is because when applying our 

odel, we have scaled the initial demand value to ω 1 = 1 and thus

ll demand values are single-digit. However, the two carriers’ mar- 

et shares are mostly double-digit. Scaling α helps to achieve com- 

arable demand and supply data. 

.1. Optimal ISD capacity strategies in the container shipping market 

Using the Decomposition Algorithm , we determine a firm’s ISD 

olicy in each period. In Fig. 2 , we present the complete set of 

tayput intervals of the two firms in the four cases. We also list 

he key parameter values in the figure title. We use abbreviations 

o refer to a firm in a specific case, e.g., the leader ( L ) in the stay-

ut case ( S ) is abbreviated as SL . The black, green, and blue boxes

ndicate the first, second, and third stayput intervals, respectively. 

ote that in the figure, there are not as many stayput intervals as 

entioned in Section 4.1 (see Fig. 1 and Table 3 ). This is mainly 

ecause here we have a relatively small capacity space, which di- 

ectly influences the number of competitive-goal ranges and thus 

he number of stayput intervals. When an interval contains only 

ne value, e.g., SL at t = 15 , it shows as a single line piece. The

urple crosses indicate the investment threshold between two ad- 

acent intervals. In our examples, all investment thresholds are lo- 

ated at a boundary of a stayput interval. The red solid line depicts 

he optimal capacity, computed based on value function maximiza- 

ion. 

As shown in Fig. 2 , the two firms adjust their capacity based 

n their ISD policy. Taking subfigure (g) OF as an example, at the 

eginning of period 8, the follower’s stayput interval in this pe- 

iod contains two pieces: [8,9] and 11, with a threshold at 9. Since 

he follower’s current capacity, k 7 f = 9 , falls in one of the two in-

ervals, it is optimal for the follower to stay put, i.e., k 8 f = 9 . By

evealing the complete set of stayput intervals in a given capacity 

pace, carriers can better evaluate different capacity options. Still 

sing OF as an example, assume that at the beginning of period 

 and period 6, the offers of the current ship builder are equiva- 

ent to increasing the follower’s market share to the range from 7% 

o 8% (the maximal building capacity is equivalent to 8% market 

hare). According to the stayput intervals revealed in subfigure (g), 

n period 5 there is no competitive value of increasing the upper- 
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Fig. 2. Stayput intervals of in each strategy case ( δ = 0 . 89 , α = 15 , k 0 l = 12 , k 0 f = 5 , c t j = 10 . 7 , r t j = 4 . 8 , ∀ t, j). 
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ound of the current offers since there is only one stayput interval 

n this period and it is contained in the capacity space [7,8]. How- 

ver in period 6, the follower needs to look for a larger capacity 

ption than the current offers as the stayput interval in this pe- 

iod, i.e., [9,10] is outside the capacity space [7,8]. Our results also 

how that there is no need to consider capacity higher than 10% 

arket share. 

In our examples, a more (effective) proactive planning brings 

oth the leader and the follower benefits. The difference between 

he leader’s and the follower’s capacity in each period is almost 

lways bigger in the asymmetric cases than that in the symmet- 

ic cases. Figure 3 presents the profits of each firm in each strat- 

gy case, averaged over 10,0 0 0 simulated demand paths. Com- 

ared with Figs. 2 and 3 shows that higher capacity almost al- 

ays leads to more profits. In the title of Fig. 3 , we also list the

umulative profits of the leader and the follower in each strat- 

gy case, respectively. The difference between the leader’s and 

he follower’s cumulative profits is much bigger in the asymmet- 

ic cases than in the symmetric cases. By adopting a proactive 

trategy, the leader can gain up to 20.87% more cumulative prof- 

ts in 18 years, compared to when both firms are reactive (com- 

aring the leader’s highest total profit in the proactive cases, i.e., 

L , with RL ). The follower also benefits from proactively respond- 

ng to the leader’s proactive strategy, compared to where it re- 

ponds reactively. The follower can gain 36.89% more cumulative 

rofits if it responds proactively to the leader’s proactive strat- 

gy rather than being reactive (comparing OF with SF ). Even in 

he case where the follower has inaccurate information about the 

eader’s strategy, the follower can still gain approximately 12.43% 
10 
ore cumulative profits by acting proactively (comparing AF with 

F ). 

The reason why proactive thinking brings benefits to firms can 

e traced back to the underlying structure of the proactive strate- 

ies. Proactive thinking leads a firm to have multiple stayput in- 

ervals and an ISD policy with such intervals indicates that the 

rm’s capacity will be highly responsive to the opponent’s deci- 

ions. Comparing subfigure (a)–(d) with (e)–(h) in Fig. 2 , the leader 

as more and shorter stayput intervals in each period than the fol- 

ower and the difference between the two firms’ stayput intervals 

s especially obvious in the asymmetric cases. Comparing the ca- 

acity of OF and that of AF with the capacity of SF , respectively, OF

cquires a higher capacity than SF , and the capacity of AF gradu- 

lly surpasses the capacity of SF starting from t = 8 . This is because

F has multiple stayput intervals compared to SF , attributed to the 

ollower’s proactive thinking in OF . Even when the follower has in- 

omplete information on the leader’s strategy, i.e., AF , the follower 

till benefits from proactive thinking as it constrains the leader’s 

roactive thinking. Figure 2 shows that AL has larger intervals than 

L , indicating that the strategic responsiveness of AL is restrained. 

onsequentially, AL has lower capacity than SL . 

Figure 4 presents the two firms’ optimal capacity (same as the 

ptimal capacity of different strategies in Fig. 2 ), compared to the 

ealized end-of-year capacity of Maersk and MSC in period t ∈ 

 1 , · · · , 16 } (20 0 0–2015), which is extracted from the yearly UNC-

AD Review of Maritime Transport report (for 20 0 0–2014) and from 

lphaliner [3] (for 2015). The realized capacity of the leader and 

he follower carriers are denoted as ReL and ReF , respectively. In 

ach strategy case, we list the mean squared errors (MSE), aver- 
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Fig. 3. Optimal profit in each strategy case ( 
∑ 

t πt j ( j = SL ) = 2495 . 4 , 
∑ 

t πt j ( j = AL ) = 2613 , 
∑ 

t πt j ( j = OL ) = 2150 . 65 , 
∑ 

t πt j ( j = RL ) = 2161 . 8 , 
∑ 

t πt j ( j = SF ) = 1289 . 75 , ∑ 

t πt j ( j = AF ) = 1450 . 05 , 
∑ 

t πt j ( j = OF ) = 1765 . 6 , 
∑ 

t πt j ( j = RF ) = 1993 . 5 ). 

Fig. 4. Optimal capacity in each strategy case versus reality. 

11 
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ged for the two firms, during the first 8 years, the second 8 years 

nd the entire 16 years, respectively. The case which fits the re- 

lized capacity of the first 8 years the best, i.e., case stayput , fits

he realized capacity of the second 8 years the worst, whereas the 

ase which fits the second 8 years the best, i.e., case reactive or 

ptimal fits the first 8 years poorly. During the 16-year timespan, 

he strategy case optimal fits the realized capacity the best. At the 

nd of 2015 ( t = 16 ), the realized capacity of the two carriers grew

y 22 . 5% and 164% , respectively, reaching market shares of 14 . 7%

nd 13 . 2% [3] , which are best matched by OL and OF ( 15% and

3% ). While the dominant firms followed their respective compet- 

tive strategies, other firms were squeezed out of the market. Ac- 

ording to the Reuters news, 70% of the carriers each own fewer 

han 51 vessels in 2015 [46] and this trend is continued. Assuming 

hat the leader and the follower follow the trend to increase and 

ecrease its capacity, respectively, beyond 2015 ( t > 16 ), the opti- 

al case shows a better prediction, compared to the other three 

ases. 

According to the results in Fig. 4 , it is plausible that the 2008

 t = 8 ) global recession is a turning point where carriers have

hanged their capacity strategies. Although it is difficult to iden- 

ify which one of the four cases exactly matches the two firms’ 

trategies before 2008 ( 1 ≤ t ≤ 8 the MSE in the four cases varies

rom 3.023 to 7.373), it is noticeable that after 2008 the two 

rms’ strategies are close to optimal . In other words, since 2008, 

oth firms adopt proactive strategies with full information on each 

ther’s future investments. An explanation could be that market 

ownturns attract extra attention on the opponent’s moves, mak- 

ng firms’ strategies transparent to each other. The observation in 

he numerical experiment is also consistent with the results in our 

arly interviews with the carriers. Our interviewees explicitly men- 

ioned that since 2008 pricing downward to marginal costs has be- 

ome necessary due to overcapacity and they have started to pay 

lose attention to each other’s orderbook since any new ship or- 

ers will further deteriorate the freight rate (also mentioned in 

52] ): 

“We follow our competitors carefully and closely.” (shipping line 

); “The newsletter on newbuilding is the first thing we read every 

orning. You need to know what others have just bought and even 

etter if you know their purchases in planning. But it is difficult, the 

idden agenda is everywhere.” (shipping line C); “There is no secret 

regarding ship orders) in this industry after 2008. Suddenly, people 

now what each other is buying, and even if you do not want to 

now, they (shipping lines who have ordered new ships) will find a 

ay to let you know and then you just (have to) follow.” (shipping 

ine E) 

.2. Managerial insights 

Existing studies emphasize that in the capacity investment race, 

t is crucial to act first, as the first mover usually gains a competi-

ive advantage through control of resources. Our case study shows 

hat the key to success in the race is to plan investments proac- 

ively and collect as much information as possible on the com- 

etitor’s strategy to be used in the firm’s proactive strategy. Our 

ecommendation for competing firms is to act proactively at the 

arliest opportunity and to make one’s proactive thinking visible 

n the race . The essence of a proactive strategy is for the firm to

ealize that its decisions can influence other firms’ future plans. 

egardless of how accurately the firm knows its impact, if it is 

ble to convey the message that its strategy considers its com- 

etitor’s potential responses, then the proactive strategy serves as 

 credible threat. This may alter the competitor’s expectations of 

he firm’s future decisions, and thereby induce them to make de- 

isions that are favorable to the firm, or deter them from making 

armful moves. Our method provides a useful tool for both leader 
12 
nd follower firms to plan their long-term capacity investments 

nder competition. Based on our results, we formulate the follow- 

ng three steps for implementing an effective competitive capacity 

trategy. 

1. Find the most relevant competitor. The relevance of a com- 

petitor is judged based on the impact of its capacity decisions 

on the product price. In the example of the container shipping 

market, a carrier’s most relevant competitor is another carrier 

that operates on the same routes and has a similarly large fleet 

size that allows it to influence the price of the shipping service. 

2. Set the competitive goal(s) and identify good investment op- 

tions for each goal. A competitive goal is the firm’s attitude to- 

wards the competitor’s future capacity growth. In general, there 

are three types of competitive goals: passive, neutral and pro- 

gressive . An appropriate competitive goal is set based on the 

current market condition, including demand (growth), the com- 

petitor’s current capacity and investment costs. If the market is 

highly volatile, the firm should always make plans for several 

feasible goals, which helps the firm cope better with the rapidly 

changing market. 

3. Find the best option by comparing options that are close to 

the current capacity. An optimal ISD policy directs the firm’s 

current capacity to a close-by stayput interval. This implies that 

when considering the best investment plan, the firm should 

first evaluate the competitive goal and investment options that 

are easy to reach from the current position, and then decide 

how much further it can stretch its competitive strength based 

on the current investment costs. The approach of comparing 

close plans is sensible as there could still be sizable economies 

to be gained from adjusting the plan slightly, while overextend- 

ing is highly risky. 

In a competitive market, the firm should focus on evaluating 

he impact of its options on the competitor’s future investments. 

his may lead to some non-obvious decisions in practice. For in- 

tance, holding more assets in a competitive market may trig- 

er investments, while having fewer assets may trigger disinvest- 

ents. In some market positions, investing to reach a higher mar- 

et share can put off the competitor’s future investments and lead 

o a higher profit. In this situation, the optimal decision is to in- 

est, even if the current capacity is high. With a lower market 

hare, it may be better to stay at the current capacity or even fall 

ack since the amount of investment required to hold back the 

ompetitor’s investments may be so large that the plan is unre- 

arding. 

. Conclusion 

We study a long-term capacity investment problem in a 

uopoly under demand uncertainty. Different from the majority of 

ligopoly capacity models in the literature which focus on simul- 

aneous investments of firms, we investigate a problem where two 

rms sequentially adjust their capacity to respond to each other’s 

ecisions. In the capacity investment race, a firm can either proac- 

ively or reactively plan its investments. We derive the optimal 

trategy in the form of an ISD policy. We contribute to the liter- 

ture by investigating the strategic implications of capacity in the 

nvestment race. In the race, a firm’s proactive thinking is realized 

y first deciding the set of possible competitive goals towards the 

ompetitor’s future capacity growth, then determining the optimal 

apacity for each goal, and last comparing profits to make the best 

ecision. The multiple competitive goals and the optimal invest- 

ent policy which specifies the current capacity to be adjusted 

o the closest goal range lead to non-obvious investment decisions 

nder competition. Moreover, we contribute to the literature by re- 

ealing the optimal structure of the long-term competitive capac- 
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ty strategy, shown as an array of separate intervals for the opti- 

al capacity in each period. We discover the core of a competitive 

trategy by revealing the meanings behind different stayput inter- 

als. In addition, by deriving the complete set of stayput intervals 

n the available capacity space, our method reveals the competitive 

alue of capacity, helping firms evaluate different capacity options. 

We illustrate the optimal ISD capacity strategies using detailed 

ata from the container shipping market. Our results show that 

he realized investments, which are questioned to be irrational 

ecisions, followed a competitive and optimal structure. In our 

ase study, the leader generally performs better than the follower 

n terms of capacity and profit, and the leader enhances its first 

over advantage by adopting a proactive rather than a reactive 

trategy. The follower’s best response to the leader’s proactive 

trategy is also to be proactive. For our case study which con- 

ains two firms, 18 time periods and 19 capacity options for each 

rm, our algorithm can compute the optimal strategy of each firm 

elatively fast: seconds for the reactive strategy and 1–3 h for a 

roactive strategy (with different amounts of information on the 

pponent’s strategy) on a laptop with i5-7500 CPU and 8 GB RAM. 

lthough theoretically, the capacity space can contain more than 

9 options and the investment timespan can contain more than 

8 periods, practical investment problems usually have a limited 

umber of capacity options and are for a limited timespan. There- 

ore, we believe our algorithm is effective for solving most of the 

ractical investment problems. 

Investment in practice is complex. Firms can switch between 

ultiple strategies in the race. Future research should address the 

ptimal structure of such a competitive capacity strategy, answer- 

ng when the firm should change its strategy and how. In the in- 

estment race, firms can also learn from previous experience and 

pdate their knowledge on the competitors’ strategies. Future re- 

earch can incorporate competition learning. In addition, it can 

ncorporate a delay between the capacity decision and the pro- 

uction decisions and study the implication of this delay in the 

ong-term investment race. Efficient algorithms can be developed 

o solve this combined capacity and production problem. 
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ppendix: Model parameters and proofs 

roposition 1. Given the current state Y t j , if firm j’s optimal value 

unction V ∗
t j 

is jointly concave in (k t−1 j , k t j ) , then its optimal capacity

n period t is specified by an ISD policy that is characterized by the 

ollowing functions: 

 

L 
t j = sup 

{ 

{ k o t j } ∪ { k t j : 
∇ −G t j (Y t j , k t j ) 

∇k t j 

≥ c t j , k t j ∈ K t j } 
} 

(7)

 

H 
t j = inf 

{ 

{ k e t j } ∪ { k t j : 
∇ + G t j (Y t j , k t j ) 

∇k t j 

≤ r t j , k t j ∈ K t j } 
} 

, (8)

here 
∇ −G t j (Y t j ,k t j ) 

∇k t j 
and 

∇ + G t j (Y t j ,k t j ) 

∇k t j 
are the infimum of all 

eft-sided difference quotients and the supremum of all right- 

ided difference quotients of the function G t j (Y t j , k t j ) at the 

oint k t j , respectively: 
G (Y t j ,a ) −G (Y t j ,k t j ) 

a −k t j 
≥ ∇ −G (Y t j ,k t j ) 

∇k t j 
, ∀ a < k t j , and 

G (Y t j ,b) −G (Y t j ,k t j ) 

b−k t j 
≤ ∇ + G (Y t j ,k t j ) 

∇k t j 
, ∀ b > k t j , where a, b and k t j are in 

he domain of G . Set S t j = [ k L 
t j 

, k H 
t j 

] . Firm j’s optimal capacity in pe-

iod t is determined based on its current capacity k t−1 j and S t j : if 
13 
 t−1 j ∈ S t j , no adjustment should be made, i.e., k ∗
t j 

= k t−1 j ; if k t−1 j <

 

L 
t j 

, an investment should be made such that the new capacity hits the 

ower boundary of S t j , i.e., k ∗
t j 

= k L 
t j 

; if k t−1 j > k H 
t j 

, a disinvestment

hould be made such that the new capacity hits the higher boundary 

f S t j , i.e., k ∗
t j 

= k H 
t j 

. 

roof. Assumption 1 of the model specifies that for any given and 

xed capacity of the opponent k ti ∈ K ti and for each ω t ∈ �, firm

j’s operating profit function πt j (k ti , ·, ω t ) and salvage value func- 

ion F j (k T i , ·, ω t ) are concave in its own decision k t j . If firm j’s

ptimization problem V ∗
t j 

is also jointly concave in (k t−1 j , k t j ) for 

ny given k ti ∈ K ti and for each ω t ∈ �, then firm j’s expected

PV function G t j , G t j (Y t j , k t j ) = πt j (k ti , k t j , ω t ) + δE[ V ∗
t+1 j 

(Y t+1 j ) |
 t ] , is concave in k t j , as a sum of concave functions is concave.

heorem 2 of Eberly and Van Mieghem [21] proves that in a single- 

rm setting, given ω t ∈ �, the unique solution to the firm’s con- 

ave optimization problem G t j is an ISD policy. It is defined by 

n unique stayput interval [ k L 
t j 

, k H 
t j 

] , where the two boundaries of

he interval, i.e., k L 
t j 

and k H 
t j 

, can be computed using Equation (18) 

nd Equation (19) of Eberly and Van Mieghem [21] . In the duopoly, 

hese two boundaries then take the forms of Eqs. (7) and (8) , re-

pectively. Under Assumption 2, which specifies c t j > r t j , and be- 

ause of the concavity of the optimization problem V ∗
t j 

(see Eq. (4) ), 

t guarantees that k L 
t j 

≤ k H 
t j 

. The theorem then follows. �

roposition 2. Under Assumptions 1 and 2, if firm j adopts the re- 

ctive strategy, the optimal value function V ∗
t j 

is jointly concave in 

k t−1 j , k t j ) for any given current capacity of the opponent k ti ∈ K ti ,

f i = l (or k t−1 i ∈ K t−1 i , if i = f ) and for each ω t ∈ �. 

roof. The salvage value function F j is concave by assumption. 

e then use induction on t and assume V t+1 j is concave. Us- 

ng a concavity preservation lemma (also used in Theorem 1 of 

21] ), that is, { k t ≥ 0 } = ≥0 is nonempty, A = 

2 
≥0 is a convex set,

nd πt (k t , ω) − C t × (k t − k t−1 ) 
+ + r t × (k t−1 − k t ) 

+ + δE[ V t+1 (k t ) |
] is jointly concave in (k t−1 , k t ) ∈ A as a sum of jointly concave

unctions. In other words, a single firm’s optimal value function 

 t (k t−1 , ω t ) is jointly concave in (k t−1 , k t ) for each ω t ∈ �. In the

eactive case with a given and fixed capacity of the opponent, 

 τ i , which is invariant for all τ > t , firm j’s optimal value func- 

ion V ∗
t j 
(k ti , k t−1 j , ω t ) is also jointly concave in (k t−1 j , k t j ) for each

 t ∈ �. �

roposition 3. S t j ⊆ [ k L 
t j 

, k H 
t j 

] , k L 
t j 

= inf S t j and k H 
t j 

= sup S t j ,

here k L 
t j 

= sup {{ k o 
t j 
} ∪ { k t j : 

∇ −G t j (Y t j ,k t j ) 

∇k t j 
≥ c t j , k t j ∈ K t j }} and

 

H 
t j 

= inf {{ k e 
t j 
} ∪ { k t j : 

∇ + G t j (Y t j ,k t j ) 

∇k t j 
≤ r t j , k t j ∈ K t j }} . 

roof. We abbreviate firm j’s expected NPV function G t j (Y t j , k t j = 

 ) as G (k ) . According to Eqs. (7) and (8) in Proposition 1 ,
G (k ) −G (k L 

t j 
) 

k −k L 
t j 

≥ c t j , ∀ k < k L 
t j 

, and 

G (k ) −G (k H 
t j 

) 

k −k H 
t j 

≤ r t j , ∀ k > k H 
t j 

. This means 

hat ∀ k < k L 
t j 

or k > k H 
t j 

, k / ∈ S t j . If k L 
t j 

≤ k H 
t j 

, S t j ⊆ [ k L 
t j 

, k H 
t j 

] � = ∅ . Oth-

rwise, S t j = ∅ . 
Assume that there exists a = inf { k : G (k L 

t j 
) −G (k ) 

k L 
t j 

−k 
≥ c t j } and b = 

up { k : G (k H 
t j 

) −G (k ) 

k H 
t j 

−k 
≤ r t j } (by definition, a � = k L 

t j 
and b � = k H 

t j 
). Thus,

 k < a , G (k ) −G (a ) 
k −a 

> c t j ; ∀ k > b, G (k ) −G (b) 
k −b 

≤ r t j . This corresponds to 

he definitions of k L 
t j 

and k H 
t j 

, indicating that a = k L 
t j 

and b = k H 
t j 

. It

eans that such a and b do not exist. Therefore, k L 
t j 

and k H 
t j 

are the 

owerbound and the upperbound of S t j . �

roposition 4. Given the stayput set in the n th competitive-goal 

ange, N n , N 

o 
n = inf N n and N 

e 
n = sup N n : ∀ k, if the expected NPV
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Table 5 

Model parameters. 

Parameter Description 

� set of time periods 

k t j , K t j firm j’s capacity and the set of its available capacity choices in period t

k o 
t j 

, k e 
t j 

origin and final values of the capacity space K t j 

K t j firm j’s investment strategy vector from period t to the end of �

K t j the set of all possible K t j 

ω t , � demand indicator of period t and the set of all possible ω t 

Pr transition probability function of the demand 

Y t j state vector observed by firm j at the beginning of period t

P t price function in period t

H t j firm j’s setup and operating cost function in period t

πt j , F j firm j’s operating profit function in period t and salvage value function 

c t j , r t j firm j’s marginal investment cost and marginal disinvestment revenue in period t

C t j firm j’s investment cost function in period t

δ single-period discount factor 

V t j , V 
∗

t j 
firm j’s value function and optimal value function at the beginning of period t

S t j firm j’s stayput interval in period t

k L 
t j 

, K L 
t j 

lowerbound and lowerbound function of firm j’s stayput interval in period t

k H 
t j 

, K H 
t j 

upperbound and upperbound function of firm j’s stayput interval in period t

I o 
i 
, I e 

i 
origin and final values of the i th competitive-goal range 

N i , N 
o 
i 
, N e 

i 
stayput interval in the i th competitive-goal range, origin and final values of the interval 

s n , s 
o 
n , s 

e 
n n th stayput interval in the capacity space, origin and final values of the interval 
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alue of staying at k equals the value of adjusting to N 

e 
n or to N 

o 
n ,

hen the value of staying at k equals the value of adjusting to any

alue in N n . 

roof. We abbreviate firm j’s expected NPV function G t j (Y t j , k t j = 

 ) as G (k ) . Given N n , N 

o 
n = inf N n and N 

e 
n = sup N n , G (N 

e 
n ) − G (k ) >

 × (N 

e 
n − k ) , ∀ k ∈ N n . Assume that there exists a capacity value

 that i > N 

n 
e satisfying i = K 

H ([ N 

e 
n , i ]) , i.e., G (i ) − G (N 

e 
n ) > r × (i −

 

e 
n ) . Adding the two inequality, we get: G (i ) − G (k ) > r × (i − k ) ,

 k ∈ N n . Therefore, i = K 

L ([ k, i ]) , ∀ k ∈ N n . The proof for the case

here i < N 

o 
n satisfying i = K 

L ([ i, N 

o 
n ]) follows the same argument.

he proposition then follows. �

roposition 5. Given the stayput set in the n th competitive-goal 

ange, N n and a capacity value k ∈ N n : if there exists a capacity value

 < k (or H > k ) such that k ≤ K 

H ([ L, k ]) (or k ≥ K 

L ([ k , H]) ), then

 ≤ K 

H ([ L, k ]) , ∀ k ∈ N n and k > k (or k ≥ K 

L ([ k, H]) , ∀ k < k ). 

roof. We abbreviate firm j’s expected NPV function G t j (Y t j , k t j = 

 ) as G (k ) . Given k ∈ N n , for all k that k < k ∈ N n , G (k ) − G ( k ) >

 × (k − k ) . Assume that there exists i < k satisfying k = K 

H ([ i, k ]) ,

.e., G ( k ) − G (i ) > r × ( k − i ) . Adding the two inequalities, we get:

 (k ) − G (i ) > r × (k − i ) . The proof for the case where i > k satisfy-

ng k = K 

L ([ k , i ]) follows the same argument. The proposition then

ollows. �

heorem 1. ∀ k ∈ S t j , no adjustment should be made, i.e., k ∗
t j 

= k .

 k < inf S t j or k > sup S t j , the optimal decision is to adjust to the

losest stayput interval boundary. Given two disjoint stayput intervals, 

 s L n , s 
H 
n ] and [ s L 

n +1 
, s H 

n +1 
] , ∀ n ≥ 1 , there exists an investment threshold

 n,n +1 ∈ [ s H n , s 
L 
n +1 ] such that the optimal investment policy assigns all 

apacity in (s H n , s n,n +1 ] to be adjusted downwards to s H 1 , and assigns

ll capacity in [ s n,n +1 , s 
L 
n +1 

) to be adjusted upwards to s L 
n +1 

. 

roof. According to Propositions 3 –5 , the set of remaining capacity 

alues after the three steps of the Decomposition Algorithm com- 

oses firm j’s stayput interval in period t , S t j . This interval is a set

f capacity values, of which the associated value of Eq. (4) cannot 

e improved. According the procedure following which we derive 

he stayput values, for any capacity values outside S t j , the optimal 

ecision is to adjust to a stayput interval boundary since the value 

f adjusting to a stayput interval is larger than the value of staying 

r that of adjusting to any other non-stayput value. After the ad- 

ustment, the value of staying is larger than the value of adjusting 
14 
o any other value. Considering all available stayput intervals and 

ll values in each interval, the optimal decision for a non-stayput 

apacity is to adjust to the closest boundary of a close-by inter- 

al. This is because the value of adjusting incorporates the cost of 

djusting and it depends on the distance between the current ca- 

acity and the target capacity. 

For any non-stayput capacity value k , s H 1 < k < s L 2 , that is be-

ween the two consecutive stayput intervals, [ s L 
1 
, s H 

1 
] and [ s L 

2 
, s H 

2 
] ,

n adjustment should be made to either s L 
2 

or s H 
2 

. By compar- 

ng the expected NPV of adjusting k to s H 1 with the one of ad- 

usting k to s L 
2 
, a decision whether to invest or disinvest can be 

ade. We abbreviate firm j’s expected NPV function G t j (Y t j , k t j = 

 ) as G (k ) . Under Assumption 2, which specifies r t j < c t j , the

unction T hreshold(k, s H 
1 
, s L 

2 
) = G (s L 

2 
) − c t j × (s L 

2 
− k ) − G (s H 

1 
) − r t j ×

k − s H 
1 
) is monotonously increasing in k . The theorem then 

ollows. �

ppendix: Impact of investment irreversibility 

Using Monte Carlo simulations, we investigate the impact of in- 

estment irreversibility on capacity strategies. Using the same re- 

aining parameters as in Section 5 , we change the value of dis- 

nvestment unit price, i.e., r t j , to represent different levels of in- 

estment irreversibility. In each experiment, 10,0 0 0 demand paths 

hat follow the transition rule in Section 5.1 are simulated and the 

ame demand paths are applied to all four cases. In each simu- 

ation in a case, the optimal capacity and profit of each period are 

omputed and then averaged over the entire time horizon �. These 

ean values are then averaged over the 10,0 0 0 simulations and 

he resulting final values serve as an indicator of a player’s average 

erformance in a case. Figs. 5 a and 5 b show the average capacity 

nd profits of all four cases with different r t j values. 

We find that the results in Section 5 are robust with respect 

o different r t j values. For instance, the leader generally performs 

etter than the follower in terms of average capacity and profit 

nd the leader performs better in asymmetric cases compared to 

hat in symmetric cases, while the opposite holds for the follower. 

hen the level of investment irreversibility is very low, i.e., r t j is 

arge compared to c t j , the leader in case optimal, OL , has slightly 

ore chances than the follower to exercise its competitive strat- 

gy, leading the follower’s, OF ’s, average capacity and profits to de- 

rease. The two firms in other cases keep the average capacity and 

rofit relatively constant. 
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Fig. 5. Impact of investment irreversibility on capacity strategies ( c t j = 10 . 7 ). 
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ppendix: Pseudocode 

Table 6 presents the pseudocode of our Decomposition Algo- 

ithm . Below, we elaborate on each step of the algorithm. 

Step 1. Starting with [ k L 
t j 

, k L 
t j 

] as the first inspection range, we

pply the rolling up procedure to the capacity space [ k L 
t j 

, k H 
t j 

] to

dentify the lists of I o n and I e n , denoted as (I o n ) n ∈ N and (I e n ) n ∈ N .
he first value in (I o n ) n ∈ N is set to be the start of the ca-

acity space, i.e., I o 
1 

= k L 
t j 

. Given firm j’s capacity k t j , we de-

ote the opponent’s response function as follows: K t+1 i (k t j ) = 

rgmax k t+1 i 
V t+1 i (Y t+1 i , K t+1 i ) , where in K t+1 i , k τ i = k t+1 i , ∀ τ ∈ { t +

 , · · · , T } . In each iteration of the rolling procedure, we check

hether the right end of the inspection range, assumed to be I, 

atisfies the following: K t+1 i (I) � = K t+1 i (� 

+ I ) . If so, I is added to

I e n ) n ∈ N ; if not, the rolling procedure proceeds to the next itera- 

ion [ k L 
t j 

, + I] following Definition 1 . For each value in (I e n ) n ∈ N , we

et I o 
n +1 

= � 

+ I e n and add it to (I o n ) n ∈ N . At the end of the rolling pro-

edure, we add k H 
t j 

to the list (I e n ) n ∈ N as the last value, i.e., I e 
N 

= k H 
t j 

.

Step 2. We define the following two boundary func- 

ions, dependent on the capacity space K = [ k o , k e ] :

 

L ([ k o , k e ]) = sup 

{ 

{ k o } ∪ { k : ∇ −G t j (Y t j ,k ) 

∇k 
≥ c t j , k ∈ K } 

} 

and

 

H ([ k o , k e ]) = inf 

{ 

{ k e } ∪ { k : ∇ + G t j (Y t j ,k ) 

∇k 
≤ r t j , k ∈ K } 

} 

. In each

ompetitive-goal range [ I o n , I 
e 
n ] , we first identify the lowerbound 

nd upperbound of the stayput set N n , N 

o 
n and N 

e 
n , as follows: if
Fig. 6. Illustration of the cross-interval compariso
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L ([ I o n , I 
e 
n ]) ≤ K 

H ([ I o n , I 
e 
n ]) , N 

o 
n = K 

L ([ I o n , I 
e 
n ]) and N 

e 
n = K 

H ([ I o n , I 
e 
n ]) ; if

 

L ([ I o n , I 
e 
n ]) > K 

H ([ I o n , I 
e 
n ]) , we set N n to be an empty set. Next, we

nitialize N n = [ N 

o 
n , N 

e 
n ] and apply the rolling up procedure to the

ange [ N 

o 
n , N 

e 
n ] , starting with the inspection range [ N 

o 
n , N 

o 
n ] . At each

teration with the inspection range [ N 

o 
n , k ] , k is eliminated from

 n if k > K 

H ([ N 

o 
n , k ]) . After the rolling up procedure, we apply the

olling down procedure in N n , starting with the inspection range 

 N 

e 
n , N 

e 
n ] . At each iteration with the inspection range [ k, N 

e 
n ] , k is

liminated from N n if k < K 

L ([ k, N 

e 
n ]) . 

Step 3. We first initialize S n = N n . Then ∀ i = 1 , · · · , n − 1 , using

he upperbound of N i , N 

e 
i 
, as a benchmark, we apply the rolling up

rocedure to examine all capacity values in N n . The first iteration 

tarts with the inspection range [ N 

e 
i 
, N 

o 
n ] . At each iteration with the

nspection range [ N 

e 
i 
, k ] , k is eliminated from S n if k > K 

H ([ N 

e 
i 
, k ]) ;

therwise, we stop the rolling procedure. The rolling up procedure 

s applied n − 1 times. Then we apply the rolling down procedure 

n remaining S n , using the lowerbound of N i , ∀ i = n + 1 , · · · , N,

 

o 
i 
, as a benchmark. The first iteration starts with the inspec- 

ion range [ N 

e 
n , N 

o 
i 
] . At each iteration with the inspection range

 k, N 

o 
i 
] , k is eliminated from S n if k < K 

L ([ k, N 

o 
i 
]) ; otherwise, we

top the rolling procedure. The rolling down procedure is applied 

 − n times. Figure 6 shows an illustration of the cross-interval 

omparison. In the figure, there are four competitive-goal ranges, 

rom the n − 1 th to the n + 2 th. In each range, the red lines in-

icate the stayput intervals after the second step, N n −1 , · · · , N n +2 . 

he black solid line with an arrow indicates the n − 1 th rolling up
n (step 3 of the Decomposition Algorithm ). 
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Table 6 

Decomposition Algorithm for computing firm j’s stayput interval in period t: S t j . 

( continued on next page ) 
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Table 6 ( continued ) 

p

c

R

[

[

[

[

[

[

[

rocedure for N n , and the black dashed lines with an arrow indi- 

ate the first two rolling down procedures for N n . 
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